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Many integrable equations are known to be reductions of the self-dual Yang–Mills
equations. This article discusses some of the well known reductions including the
standard soliton equations, the classical Painleve´ equations and integrable generali-
zations of the Darboux–Halphen system and Chazy equations. The Chazy equation,
first derived in 1909, is shown to correspond to the equations studied independently
by Ramanujan in 1916. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586967#

I. INTRODUCTION

The self-dual Yang–Mills~SDYM! equations~a system of equations for Lie algebra-valu
functions ofC4) play a central role in the field of integrable systems and also play a fundam
role in several other areas of mathematics and physics.

From the perspective of integrable systems, the study of the SDYM equations becam
ticularly intriguing when, in 1985, R. S. Ward59 conjectured that

... many (and perhaps all?) of the ordinary and partial differential equations that
regarded as being integrable or solvable may be obtained from the self-dual gauge
equations (or its generalizations) by reduction.

That the SDYM equations are a rich source of integrable systems is suggested by the fact th
are the compatibility condition of an associated linear problem which admits enormous freed
one allows the associated Lie algebra~the so-called gauge algebra! to be arbitrary. In light of this
and other results, the SDYM equations are often referred to as the master integrable syste
SDYM equations provide us with a means of generating and classifying many integrable sy
and they also give a unified geometrical framework in which to analyze them. Moreover, i
context of the inverse scattering transform, an integrable equation admits well-behaved so
obtained via the related linear problems.

The SDYM equations are of great importance in their own right and have found a remar
number of applications in both physics and mathematics. These equations arise in the con
gauge theory,49 in classical general relativity,63,39and can be used as a powerful tool in the analy
of four-manifolds.29

For finite-dimensional gauge groups the integrability of the SDYM equations can be u
stood from both the inverse scattering transform and geometric points of view.58,13,26An excellent
reference related to the geometric aspects is Mason and Woodhouse.41 Our point of view deals
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with the algebraic and analytic aspects and novel reductions via infinite-dimensional gauge
bras.

The use of certain infinite-dimensional gauge algebras in the self-dual Yang–Mills equa
is an important development in the theory. Using these Lie algebras, reductions of the S
equations to many important equations including the Kadomtsev–Petviashvili, Da
Stewartson, 211-dimensionaln-wave, and Chazy equations have been found. Recently a g
alized Darboux–Halphen system has been obtained as a reduction of the SDYM equations
infinite-dimensional gauge algebra.7 These equations are solvable via an associated linear p
lem, yet their solutions do not possess the Painleve´ property—the characteristic singularity stru
ture often thought to be the hallmark of integrability. A special case of the Darboux–Hal
system is equivalent to the generalized Chazy equation. Much work remains to be done in o
identify the class of infinite-dimensional gauge algebras for which the SDYM equations
integrable. These investigations force us to take a much closer look at the idea of integr
itself.

Throughout we will present geometrical interpretations and reasoning whenever we b
that they provide a deeper insight into the reduction process and the properties of the re
equations. However, this article has been written with the nongeometer in mind. We hope th
survey will be accessible to a wide variety of researchers from many different branches of
ematics and physics.

In Sec. II we introduce the self-dual Yang–Mills equations and their underlying linear p
lem. In Sec. III we discuss reductions of the SDYM equations to integrable PDEs. Many o
reductions in this section can be found in Ablowitz and Clarkson.1 In this section we also conside
reductions to PDEs when the underlying Lie algebra is infinite dimensional. Such redu
include the Kadomtsev–Petviashvili and Davey–Stewartson equations. In Sec. IV we de
reductions of the SDYM equations with finite-dimensional Lie algebras to ODEs. In particula
integrable cases of the equations of motion of a spinning top are recovered, together with
generalizations. We also describe the reductions of SDYM to the Painleve´ equations due to Mason
and Woodhouse.41 Finally, Sec. V considers the reduction of the SDYM with an infini
dimensional Lie algebra to a generalized Darboux–Halphen system whose general solu
densely branched about movable singularities and can contain movable natural barrier
equation in turn has reductions to the Chazy equation and integrable generalizations of the
equation.

II. THE SDYM EQUATIONS

In this section we motivate the SDYM equations from the points of view of both integr
systems and gauge theory.

A. Linear problems and integrable systems

Recall that many 111-dimensional integrable systems are solved via related linear prob
of the form

Cx5XC, ~1!

Ct5TC, ~2!

whereX and T are square matrices of the same dimension which are functions ofx, t, and the
spectral parameterz. The compatibility of these equations~i.e., Cxt5Ctx) is equivalent to

Xt2Tx1@X,T#50. ~3!

In 1973, Ablowitzet al.10,11 solved the inverse scattering problem in the case

X5S 2 i z q~x,t !

r ~x,t ! i z D , T5S A B

C 2AD , ~4!
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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whereA,B,C are ~Laurent! polynomials inz.
Below we list several choices ofT that yield a number of integrable equations which will

discussed in later sections.
„i… The Korteweg–de Vries equation:

qt16qqx1qxxx50,

T5S 24i z312iqz2qx 4qz212iqxz2~2q21qxx!

24z212q 4i z322iqz1qx
D

~r 521!.

„ii … The nonlinear Schrödinger equation:

iqt5qxx62q2q* ,

T5S 2i z21 iqr 22qz2 iqx

2r z1 ir x 22i z22 iqr D
~r 57q* !.

„iii … The sine-Gordon equation:

uxt5sinu

T5z21S 1
4 i cosu 1

4 i sinu

1
4 i sinu 2 1

4 i cosu
D ~5!

~q52r 52 1
2 ux !.

It should be noted that the dependence on the spectral parameter and the restriction t32
systems given by~4! is not the only choice for which the inverse scattering problem can be so
for Eq. ~3! ~see, for example, Refs. 3 and 57!.

A simple, natural, and highly symmetric generalization of the linear problem~1! and ~2! to
four variables;x1 , x2 , t1 , t2 is given by

S ]

]x1
1z

]

]x2
DC5~X11zX2!C, ~6!

S ]

]t1
1z

]

]t2
DC5~T11zT2!C, ~7!

where X1 , X2 ; T1 , T2 are functions fromC4 to sl(n;C)—the Lie algebra ofn3n trace-free
matrices with complex-valued entries. The compatibility of this system is equivalent to the
dual Yang–Mills equations with gauge algebrasl(n;C) ~see Sec. II C below!. From the general
form of this linear problem it is clear that many integrable equations are reductions of the sel
Yang–Mills equations because their associated linear problems arise as reductions of the
problem for the SDYM equations. Notice, however, that the right sides of Eqs.~6! and ~7! are
linear inz whereas in the AKNS scheme, the right side of Eq.~2! can be a Laurent polynomial in
z. However, it turns out that reductions of~6! and~7! can have much more general dependence
the spectral parameter.
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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B. The Yang–Mills equations

Non-Abelian gauge theories first appeared in the seminal work of Yang and Mills65 as a
non-Abelian generalization of Maxwell’s equations. Let G be a Lie group~referred to as the gaug
group! with Lie algebra LG and let$xm%m50,...,3be coordinates on a four-dimensional manifoldM
which can beR4, R1,3 or R2,2. GivenAm(x)PLG, we introduce the covariant derivatives

Dm5]m2Am , ~8!

and their commutators

Fmn52@Dm ,Dn#5]mAn2]nAm2@Am ,An#. ~9!

The fact that the Yang–Mills equations have a natural geometric interpretation was recog
early on in the history of gauge theory. The covariant derivatives~8! can be used to obtain a loca
representation of a connection on a principal fiber bundle overM . The one-formAªAmdxm is
called theconnection one-formandFª 1

2 Fmndxmdxn thecurvature two-formof the connection.F
can also be expressed as the exterior covariant derivative ofA given by

F5DAªdA2A∧A.

Recall that the Hodge dual operator on the four-dimensional manifoldM takes any two-formT
5 1

2Tmndxm∧dxn to the dual two-form* T5 1
2«mn

gdTgddxm∧dxn where«mngd is totally antisym-
metric with «012351 and the standard metric onM is used to raise and lower indices. Th
Yang–Mills equations then have the simple form

D* F50

together with the Bianchi identity

DF50 ,

which follows from the definitions of exterior covariant derivativeD andF. Note that under the
gauge transformation

Am°g21Amg1g21]mg, gPG, ~10!

the components of the curvature two-form transform as

Fmn°g21Fmng, ~11!

which corresponds to the transformation of the fibers by the right action of the structure gro
on the principal bundle.

C. The self-dual Yang–Mills equations

The Yang–Mills equations are a set of coupled, second-order PDEs in four dimensions
LG-valued gauge potential functionsAm’s, and are extremely difficult to solve in general. It i
however, possible to obtain a special class of first-order reductions of the full Yang–Mills e
tions by noting that anyF that satisfies

* F5lF ~12!

for some constantl, also satisfies the Yang–Mills equations by virtue of the Bianchi ident
DF50. From~12! we must have

** F5l* F5l2F. ~13!
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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However,** F5gF whereg5det@gmn# is the determinant of the metric on M. Hence

l5H 61 on R4, R2,2;

6 i on R3,1.

All real solutions of the equations* F56 iF are trivial. On R4 and R2,2, the equations
* F5(2)F are called the~anti-!self-dual Yang–Mills equations. We will work inR4 with the
standard metric

ds25~dx0!21~dx1!21~dx2!21~dx3!2.

The SDYM equations now take the form

F015F23, F025F31, F035F12. ~14!

We introduce the null coordinates

s5
1

&
~x11 ix2!, t5

1

&
~x02 ix3!,

s̃5
1

&
~x12 ix2!, t̃5

1

&
~x01 ix3!.

It then follows fromA5Amdxm5Asds1As̃ds̃1Atdt1At̃dt̃ that

A05
1

&
~At1At̃ !, A15

1

&
~As1As̃!,

A25
i

&
~As2As̃!, A352

i

&
~At2At̃ !,

and the SDYM equations become

Fst50, F s̃ t̃50, Fss̃1Ftt̃50. ~15!

Equations~15! are the compatibility condition of the isospectral linear problem

~]s1z]t̃!C5~As1zAt̃ !C, ~16!

~]t2z]s̃!C5~At2zAs̃!C, ~17!

wherez is the spectral parameter andC is a local section of the Yang–Mills fiber bundle. Th
compatibility condition is simply (]t2z]s̃)(]s1z]t̃)C5(]s1z]t̃)(]t2z]s̃)C. On using Eqs.
~16! and ~17!, this gives

@Fst2z~Fss̃1Ftt̃!1z2F s̃ t̃#C50.

The gauge transformation~10! can be understood by settingC5gC̃ in ~16! and ~17! and
demanding that theAm’s transform so as to preserve the form of these equations.

A very compact way of writing the SDYM equations was introduced by Pohlmeyer.48 Fol-
lowing Yang,64 and working with the Lie algebra su~2!, Pohlmeyer noted that the vanishing ofFst

andF s̃ t̃ allows us to write~locally!
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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As5~]sC!C21, At5~]tC!C21,

As̃5~]s̃D !D21, At̃5~]t̃D !D21,

for someC andD in the Lie group G. LettingJ5C21DPG we see that the last equation in~15!
becomes

]s̃~J21]sJ!1]t̃~J21]tJ!50. ~18!

III. EXAMPLES OF REDUCTIONS

Perhaps the simplest reductions of the SDYM equations are those in which theAm’s are taken
to be independent of certain coordinates. With the exception of the reduction to the Ernst eq
all reductions in this section will be with respect to translational symmetries. That is, theAm’s will
be taken to depend only on two linear combinations of the variablesx0, x1, x2, and x3 ~or
equivalentlys, s̃, t, and t̃).

A. The nonlinear Schro ¨ dinger equation

Following Mason and Sparling,40 let us consider the case in which the Lie algebra issl(2;C)
~trace-free 232 matrices over the field of complex numbers! and theAm’s are functions ofx
5s1s̃ andt5 t̃ only. We use the gauge freedom and takeAs50. ~Note that this involves solving
a linear equation forg.)

In terms of the matrix-valued functionsPªAt , QªAs̃ andRªAt̃ , the self-dual Yang–Mills
equations~15! are

Px50, ~19!

Qx2Pt2@P,R#50, ~20!

Rx2Qt2@Q,R#50. ~21!

Note that Eqs.~19!–~21! are invariant ifP, Q, andR all undergo the same constant similari
transformation. Hence ifP is independent oft it can be put into canonical form. In particular,
it is diagonalizable we can, without loss of generality, assume it has the form

P5S k 0

0 2kD ,

for some constantk. From Eq.~20! we see thatQx must have zero diagonal part. Hence we c
take

Q5S 0 q

2r 0D .

Equation~20! gives the parametrization of the off-diagonal elements ofR in terms ofq andr . So
up to a constant~which can be gauged away!, Eq. ~21! gives

R5
1

2k S qr qx

r x 2qr D ,

together with the equations

2kqt5qxx12q2r ,

2krt52r xx22qr2.
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Choosingk5 i /2, r 56q* , gives the nonlinear Schro¨dinger equation

iqt5qxx62uqu2q.

B. The Korteweg–de Vries equation

Mason and Sparling40 also considered the above reduction for the case in whichP is not
diagonalizable. LetP take the canonical form

P5S 0 0

1 0D .

We then find that

Q5S v 1

w 2v D ,

wherew5vx2v2 ~up to an arbitrary function oft),

R5
1

8 S 4~vx2v2!x 28vx

vxxx24vvxx22vx
214v2vx 24~vx2v2!x

D
andu52vx satisfies the Korteweg–de Vries equation

ut5
1
4 uxxx13uux .

C. The sine-Gordon equation

Suppose that theAm’s depend onx5s andt5s̃ only. If we use a gauge in whichAs̃50, then
the linear problem~16! and ~17! for the SDYM equations becomes

]xC5~As1zAt̃ !C, ] tC52
1

z
AtC.

Here we choose the Lie algebra to besu~2! so that theAm’s are skew-Hermitian. We introduce th
parametrization

As52
i

2 S c 0

0 2cD , At52
i

2 S 0 a2 ib

a1 ib 0 D , At̃52
i

2 S 0 1

1 0D
~Ref. 14!, wherea,b,c are real functions ofx and t. The SDYM equations are equivalent to

]a

]x
52bc,

]b

]x
5ac,

]c

]t
52b. ~22!

It follows from the first two equations of~22! that a21b2 is independent ofx. We choosea2

1b251 and introduce the parametrizationa5cosu, b5sinu. This givesc5 ]u/]x. The third
equation in~22! then becomes the sine-Gordon equation

uxt52sinu.
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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D. The N-wave equations

Following Chakravarty and Ablowitz,14 we consider the case in which theAm’s are functions
of s andt only and the Lie algebra issu(n;R). In this case, from the self-duality equationF s̃ t̃

50, it follows that@As̃ ,At̃#50. We take

As̃5diag~a1 ,a2 ,...,an!, At̃5diag~b1 ,b2 ,...,bn!,

where theaj ’s andbj ’s are constants~we can use a gauge transformation to make them const!.
Using the parametrizationAs5@Ai j # and At5@Bi j #, the vanishing ofFss̃1Ftt̃ implies that
@As ,As̃#1@At ,At̃#50, which gives

Ai j 5l i j Bi j ,

where

l i j 52
bi2bj

ai2aj
, iÞ j ,

and we have assumed that theaj ’s are distinct. Finally, the vanishing ofFst gives theN-wave
interaction equations,

]Bi j

]s
2l i j

]Bi j

]t
5 (

k51

n

~l ik2lk j!BikBk j . ~23!

In the caseN53 and in whichB is skew-Hermitian, Eq.~23! becomes the three-wave interactio
equation.66 The equation~23! for arbitraryN was studied by Ablowitz and Haberman.3

E. The chiral field equations

A number of important reductions of the SDYM equations come directly from Eq.~18!. If J
depends only onx5s1s̃ and t5t1 t̃, then Eq.~18! becomes the chiral field equation

~J21Jx!x1~J21Jt! t50. ~24!

Usings5 (1/&) (x11 ix2), s̃5 (1/&) (x12 ix2), Ward61,60obtained a 211-dimensional gener-
alization of Eq.~24! by considering a reduction of Eq.~18! in which J depends ont5t1 t̃ ands
and s̃. This gives

~J21Jt! t1~J21Js!s̃50, ~25!

which has been studied by Manakov and Zakharov38 and Villarroel.56 More generally, Ward
obtains the equation

2~J21Jt! t1~J21Jx!x1~J21Jy!y1a@~J21Jy!x2~J21Jx!y#1b@~J21Jt!y2~J21Jy! t#

1c@~J21Jx! t2~J21Jt!x#50, ~26!

where (a,b,c) is spacelike (2a21b21c251) or timelike (2a21b21c2521). If (a,b,c) is
timelike, then Eq.~26! can be transformed to~25!.

F. The Ernst equation

Following L. Witten,62 we letJ in Eq. ~18! be a function ofr5A(x1)21(x2)2 andz5x3 only.
That is,r252ss̃ andz5 ( i /&) (t2 t̃). Equation~18! becomes

r21~rJ21Jr!r1~J21Jz!z50. ~27!
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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WhenJ is a real symmetric matrix in SL~2;R!, we can parametrizeJ as

J5
1

f S 1 g

g f21g2D .

In terms of this parametrization, Eq.~27! becomes

f D f 5¹ f •¹ f 2¹g•¹g,

f Dg52~¹ f !•~¹g!,

where¹ª(]r ,]z) and Dª]r
21r21]r1]z

2 are the axisymmetric forms of the gradient and L
placian onR3, respectively, in cylindrical-polar coordinates. Introducing the variableEª f 1 ig,
this system can be written compactly as

R~E!DE5¹E•¹E. ~28!

Equation~28! is called the Ernst equation and describes stationary axisymmetric space–tim
general relativity.30 The functionE is known as the Ernst potential.

G. Toda molecule

In this reduction we choose the Lie algebra to be simple and of rankN @e.g.,sl(N11;C)]. We
use the basis$H j ,Ej

1 ,Ej
2% j 51

N , which satisfies

@Hi ,H j #50, @Ei
1 ,Ej

2#5d i j H j ,
~29!

@Hi ,Ej
1#5KN

ji Ej
1 , @Hi ,Ej

2#52KN
ji Ej

2 ,

whereKN5@KN
i j # is a Cartan matrix. Recall that anN3N-matrix K is called a Cartan matrix if it

satisfies the following properties:

~1! Kii 52.
~2! Ki j is a nonpositive integer ifiÞ j .
~3! Ki j 50 if and only if K ji 50.
~4! K is positive definite with rankN.

We choose theAm’s to be functions ofs and s̃ only and of the form

As5 (
k51

N

uk~s,s̃ !Hk , As̃5 (
k51

N

vk~s,s̃ !Hk ,

At5 (
k51

N

wk~s,s̃ !Ek
1 , At̃5 (

k51

N

wk~s,s̃ !Ek
2 .

Substituting the aboveAm’s into the self-duality equations and using the commutation relati
~29!, a straightforward calculation shows that the functionsuk andvk , k51,2,...,N can be elimi-
nated from the resulting equations, which then yield

Df i52(
j 51

N

KN
i j exp~f j !, i 51,2,...,N, ~30!

wherewi5exp(fi/2) andDf5fss̃ . Equations~30! are known as the Toda molecule equations46

The caseN51 corresponds to the Liouville equationDf1522 exp(f1).
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The above analysis can be repeated for the case in which a basis$H j ,Ej
1 ,Ej

2% j 50
N satisfies the

relations~29! in which K̃N is now taken to be an extended Cartan matrix. An (N11)3(N11)
matrix is said to be an extended Cartan matrix if and only if it is of rank N and satisfies prop
1–3 above. Note that, in particular, an extended Cartan matrix possesses a zero eigenvalue
it is not of maximal rank. This gives the Toda lattice equation

Df i52(
j 51

N

K̃N
i j exp~f j !, i 50,1,...,N. ~31!

In particular, if we take

K̃N5S 2 21 0 ¯ 0 21

21 2 21 0 0

0 � � � A

A � � � 0

0 21 2 21

21 0 ¯ 0 21 2

D ,

then Eq.~31! becomes the two-dimensional Darboux–Toda equation

Df i5exp~f i 21!22 exp~f i !1exp~f i 11!, ~32!

wheref i5f i 1N11 . The system~32! was known to Darboux28 in the nineteenth century.

H. Infinite-dimensional algebras and 2 ¿1 equations

In Ref. 9, Ablowitz, Chakravarty, and Takhtajan considered reductions of the SDYM e
tions in which the Lie algebra is the infinite-dimensional Lie algebra of formal matrix differen
operators in an auxiliary variabley. They then considered reductions in which theAm’s depend
only on two space–time variables. The resulting equations then depends on three variable

1. The 2¿1-dimensional N-wave equation

First consider a reduction in which theAm’s are functions ofx5s and t5t only. Then the
resulting SDYM linear system is given by

]xC5~As1zAt̃ !C,

] tC5~At2zAs̃!C ,

whereC is a function ofx,t,y andz. Choose a gauge in whichAt̃5B andAs̃5C, whereB and
C are constant, commutingn3n matrices. We take the remaining gauge potentials of the f
As5U1B]y and At5V1C]y , whereU(x,y,t),V(x,y,t)Psl(n,C). By taking C5Ge2zy, we
obtain a simpler, reduced linear system from above,

]xG5~U1B]y!G, ~33!

] tG5~V1C]y!G , ~34!

in terms of the functionG(x,y,t). The system~33! and~34! is the standard linear system relate
to the 211-dimensionalN-wave equations. The compatibility of~33! and ~34! is

] tU2]xV1@U,V#2C]yU1B]yV50, @B,V#5@C,U#,

which gives
d 14 Aug 2003 to 158.125.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@B,] tQ#2@C,]xQ#2C@B,]yQ#1B@C,]yQ#1@@B,Q#,@C,Q##50,

whereU5@B,Q# andV5@C,Q#. In the case whenB andC are diagonal andQ is off-diagonal,
these equations can be transformed to the 211 N-wave equations

]Qi j

]t
5ai j

]Qi j

]x
1bi j

]Qi j

]y
1 (

k51

n

~aik2ak j!QikQk j ,

whereai j , bi j are suitable constants depending on the matrix elements ofB andC.

2. KP, mKP, and DS equations

Chakravarty, Kent, and Newman21 also obtained the Kadomtsev–Petviashvili, modifi
Kadomtsev–Petviashvili, and Davey–Stewartson equations directly as reductions of the S
equations with an infinite-dimensional Lie algebra of formal matrix differential operators. If
Am’s are assumed to depend onx5s1s̃ and t5t only, then the linear problem~16! and ~17!
becomes

]xC5~As1zAt̃ !C, ~35!

] tC5~At1z@As1As̃#1z2At̃ !C. ~36!

The connection components are taken to be of the form

As5U01U1]y , As̃52~B01B1]y!, At5V01V1]y1V2]y
2 , At̃5A,

where the coefficients are 232 matrix-valued functions ofx and t. In order to simplify the
integrability conditions of~35! and~36!, we demand~as in the 211 N-wave case! that the spectral
parameterz be eliminated from this system after a change of variable of the formC5Ge2zy. It
can be shown that this requirement implies thatU15V25B11A andV15U01B0 . Subsequently,
the system~35! and ~36! becomes

]xG5~U01A]y!G, ~37!

] tG5~V01@U01B0#]y1A]y
2!G . ~38!

Appropriate choices of the matricesA, B, U, andV give the linear problem for the KP, mKP, an
DS equations~see Ref. 21!.

Another notable reduction with an infinite-dimensional gauge algebra was considered i
39 by Mason and Newman. They showed that the SDYM equations with the Lie algebra of th
group of volume preserving diffeomorphisms on a four-manifold, in which theAm’s are indepen-
dent of the space-time coordinatess, s̃, t, and t̃, are equivalent to the self-dual Einstein equ
tions. In particular, the reduction to the Plebanski heavenly equation is given in Ref. 22.
equation in turn has a reduction to the Monge–Ampere equation.

I. The SDYM hierarchy

In Ref. 9, the authors studied an infinite hierarchy of equations whose first member w
SDYM system. Each member of the hierarchy has the same underlying spectral problem, a
higher flows are derived from an infinite sequence of nonlocal conservation laws associate
the SDYM equations. Furthermore, many well known integrable hierarchies in 111- and
211-dimensions are derived from the symmetry reductions of the self-dual hierarchy.

In an appropriate gauge, thekth member of the SDYM hierarchy is given by

]tk
As2]sFk211@As ,Fk21#50, ~39!
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whereFn is given recursively by

~]t̃2adAt̃ !Fn1152~]s2adAs!Fn2]s̃Asdn0 , n50,1,...,

andF052As̃ . Equation~39! is the compatibility condition for the system

D1C5A1C, D2C5A2C, ~40!

where, fork52,3,...,

D15]s1z]t̃ , A15As1zAt̃ ,

Dk5]tk
2zk21]s̃ , Ak5~zk21F!1 , F5 (

n50

`

Fnz2n,

and (F)1 denotes the power series part of the Laurent expansion ofF aboutz50. Note that if
k52, thenD25]t2z]s̃ andA25At2zAs̃ , wheret5t2 and we have identifiedAt with F1 . In
this case the linear problem~40! becomes the standard linear problem for the SDYM equatio

As mentioned above, the reduction of the SDYM equations to the 111- and
211-dimensional integrable equations can be extended to a reduction of the SDYM hierar
the corresponding hierarchies. In this way, we can obtain, for example, both the 111- and 2
11-dimensionalN-wave hierarchies. In particular, the Davey–Stewartson equation~DS! can be
obtained as the second member of the 211-dimensionalN-wave hierarchy. See Ref. 9 for detail

IV. ODE REDUCTIONS

A. Integrable tops

The equations of motion for a spinning top have played a fundamental role in the
development of the theory of integrable systems.

1. The Euler –Arnold –Manakov top

In this reduction, following Chakravarty, Ablowitz, and Clarkson,18,19we take the Lie algebra
to be sl(n;C) and we assume that theAm’s are functions oft5s only. The vanishing ofF s̃ t̃

demands thatAs̃ andAt̃ commute. We take these matrices to be diagonal and of the form

As̃5diag~a1 ,a2 ,...,an!, At̃5diag~b1 ,b2 ,...,bn!,

where theaj ’s andbj ’s are constants. The equationFss̃1Ftt̃50 is now the algebraic equatio
@As ,As̃#1@At ,At̃#50, which gives the elements ofAs5@Ai j # in terms of the elements ofAt

5@Bi j # as

Ai j 52
bj2bi

aj2ai
Bi j , iÞ j ,

providedaiÞaj , biÞbj for iÞ j .
Choosingai5bi

2 , i 51,...,n, and As and At to be skew-symmetric, we haveAi j 52(bi

1bj )
21Bi j and the vanishing ofFst gives

dBi j

dt
5 (

k51

n S 1

bj1bk
2

1

bk1bi
DBikBk j . ~41!

Equations~41! were first considered by Manakov37 and Arnold12 and are the equations of motio
for a free n-dimensional rigid body about a fixed point. In the casen53, we obtain Euler’s
equations for a free spinning body about a fixed point,
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dL1

dt
5g1L2L3 ,

dL2

dt
5g2L3L1 ,

dL3

dt
5g3L1L2 , ~42!

where

L15B23, L25B31, L35B12, I 152~b21b3!, I 252~b31b1!, I 352~b11b2!,

and

g15
I 22I 3

I 2I 3
, g25

I 32I 1

I 3I 1
, g35

I 12I 2

I 1I 2
.

In Eq. ~42!, (L1 ,L2 ,L3) is the angular momentum in the body frame and theI k’s are the principal
moments of inertia. Reductions to other integrable tops, including the Kowalevsaya top
described in Refs. 18 and 19.

B. The Painlevé equations

With the exception of the reduction to the Ernst equation, all of the above reductions
been with respect to translational symmetries. In other words, the reductions have all resulte
consideringAm’s that depend only on one or more linear combination of the variabless, s̃, t, and
t̃. In this section we follow Mason and Woodhouse41,42 and obtain reductions to the Painlev´
equations by considering reductions by conformal symmetries.

The Painleve´ equations are the following six classically known ODEs:

PI u956u21t,

PII u952u31tu1a,

PIII u95
1

u
u822

1

t
u81

1

t
~au21b!1gu31

d

u
,

PIV u95
1

2u
u821

3

2
u314tu212~ t22a!u1

b

u
,

PV u95H 1

2u
1

1

u21J u822
1

t
u81

~u21!2

t2 S a1
b

u D1
gu

t
1

du~u11!

u21
,

P VI u95
1

2 H 1

u
1

1

u21
1

1

u2tJ u822H 1

t
1

1

u21
1

1

u2tJ u8

1
u~u21!~u2t !

t2~ t21!2 H a1
bt

u2 1
g~ t21!

~u21!2 1
dt~ t21!

~u2t !2 J .

These equations have played a very important role in integrable systems. Indeed they aris
similarity reductions of classical soliton equations and as monodromy preserving deform
equations associated with linear systems of ODEs with rational coefficients.

The SDYM equations are invariant under the group of conformal transformations~transfor-
mations that preserve the metric up to an over all factor!. The metric onR4 in null coordinates,
ds ds̃1dt dt̃, is proportional to«abgddxabdxgd, where@xab# is the skew-symmetric singula
matrix
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@xab#5S 0 l s t̃

2l 0 2t s̃

2s t 0 1

2 t̃ 2s̃ 21 0

D , ~43!

wherel5ss̃1tt̃.
Consider a mapping of the formx°y5gxgT, where gPGL(4;C). Then the mapping

x°y/y23 generates a conformal transformation ofC4 as it maps the space of matrices of the fo
~43! into itself. In fact, every proper conformal transformation arises in this way. The generato
the conformal transformations are called conformal Killing vectors. In order to calculate
associated conformal Killing vectors we consider a one-parameter family of transformations
by g5exp(eK)5I1eK1O(e2), whereKPgl(4;C). Hencey5x1e(Kx1xKT)1O(e2). Consider
the case in which the matrixK has a 1 in themn component and zeros elsewhere. In compone
we have

yab5xab1e~xandbm2xbndam!1O~e2!.

So

xab° x̃ab5yab/y235xab1e~xandbm2xbndam1xabqmn!1O~e2!,

whereqmn5x3nd2m2x2nd3m. By considering the appropriate components of@xab# we find

s°s1e~x0nd2m2x2nd0m1sqmn!1O~e2!,

s̃°s̃1e~x1nd3m2x3nd1m1s̃qmn!1O~e2!,

t°t1e~x2nd1m2x1nd2m1tqmn!1O~e2!,

t̃° t̃1e~x0nd3m2x3nd0m1 t̃qmn!1O~e2!.

It follows that the conformal Killing vectorXmn associated with the matrixK which is one in the
mn-entry and zero elsewhere, is

X005s]s1 t̃] t̃ , X2052st̃]s2s̃ t̃]s̃1ss̃]t2 t̃2]t̃ ,

X015s̃] t̃2t]s , X215tt̃]s2s̃2]s̃2ts̃]t2s̃ t̃] t̃ ,

X105 t̃]s̃2s]t , X305s2]s2tt̃]s̃1st]t1st̃]t̃ ,

X115s̃]s̃1t]t , X3152st]s2s̃t]s̃2t2]t1ss̃]t̃ ,

X025]t̃ , X2252s̃]s̃2 t̃] t̃ ,

X0352]s , X235 t̃]s2s̃]t ,

X125]s̃ , X3252t]s̃1s]t̃ ,

X135]t , X3352s]s2t]t .

Note that there are 15 independent conformal Killing vectors sinceX001X111X221X3350. This
corresponds to the fact that we could have takengPSL(4;C), which would mean that the trace o
K is zero.
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The Painleve´ equations correspond to reductions of the SDYM equations when the Lie
bra is sl(2;C). The conformal Killing vectors of these reductions correspond to the follow
four-parameter subgroups of GL~4;C!. Mason and Woodhouse42 call these the Painleve´ groups:

PI , PII S a4 a3 a2 a1

0 a4 a3 a2

0 0 a4 a3

0 0 0 a4

D ,

PIII S a4 a2 0 0

0 a4 0 0

0 0 a3 a1

0 0 0 a3

D ,

PIV S a3 a2 a1 0

0 a3 a2 0

0 0 a3 0

0 0 0 a4

D ,

PV S a2 a1 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

D ,

P VI S a4 0 0 0

0 a3 0 0

0 0 a2 0

0 0 0 a1

D .

The conformal Killing vectors associated with the Painleve´ equations are discussed below.
PI , PII : The conformal Killing vectors associated with the Painleve´ subgroup given above ar

of the form

a1X031a2~X021X13!1a3~X011X121X23!1a4~X001X111X221X33!.

In this case the vector multiplyinga4 is zero. More generally for the reductions described for ot
Painlevéequations below, the conformal Killing vector associated witha4 is a linear combination
of the conformal Killing vectors associated witha1 , a2 , anda3 .

The vectors multiplyinga1 , a2 , anda3 are, respectively,

X̃152]s ,

X̃25]t1]t̃ ,

X̃35~ t̃2t!]s1]s̃2s̃]t1s̃] t̃ .

We now choose new variablesw1, w2, w3, andt, such that

X̃i~wj !5d i
j , X̃i~ t !50, i , j 51,2,3. ~44!
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A particular choice is

w152s1s̃~ t̃2t!2 2
3s̃

3, w25 t̃2 1
2s̃

2, w35s̃, t5 t̃2t2s̃2.

Using the gauge freedom, we let the one-formA have the form

A5Wjdwj ,

where theWj ’s are functions oft only. That is, the gauge freedom has been used to choos
coefficient ofdt to be zero. Hence,

A52W1ds1~@ t̃2t22s̃2#W12s̃W21W3!ds̃2s̃W1dt1~ s̃W11W2!dt̃,

from which we can read the values ofAs , As̃ , At , andAt̃ . The SDYM equations are

W1850, W285@W1 ,W3#, W385@W2 ,tW11W3#.

From these equations it follows that three conserved quantities arel 5Tr(W1W2), m5Tr(W3W1

1 1
2W2

2), andn5Tr(W2W3).
Using the residual gauge freedom,W1 can be put into one of the canonical forms,

S k 0

0 2kD or S 0 1

0 0D ,

wherek is a constant. The first case leads toPII while the second leads toPI . If we choosey to
be one of the roots of the gauge-invariant equation

det~@W1 ,yW22W3# !50 ,

we find that~up to simple rescalings! y solves the appropriate Painleve´ equation.
For the other Painleve´ equations, we list the conformal Killing vectors, the choices for

wj ’s and t, and the reduced SDYM equations.
PIII

X̃15 t̃]s2s̃]t ,

X̃252t]s1s̃] t̃ ,

X̃352s]s2s̃]s̃2t]t2 t̃] t̃ .

w152t/s̃, w25 t̃/s̃, w352 log s̃, t5s̃21Ass̃1tt̃.

W1850, tW2852@W3 ,W2#, W3852t@W1 ,W2#.
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PIV

X̃15]t̃ ,

X̃252t]s1]s̃1s̃] t̃ ,

X̃35s]s1t]t .

w15 t̃2 1
2 s̃2, w252s/t, w35 logt, t5s̃1s/t.

~45!
W1850, W285@ tW21W3 ,W1#, W385@W3 ,W2#.

PV

X̃152t]s1s̃] t̃ ,

X̃25s]s1s̃]s̃1t]t1 t̃] t̃ ,

X̃352s̃]s̃2 t̃] t̃ .

w15 t̃/s̃, w25 log~@ss̃1tt̃#/s̃ !, w35 log~t/s̃ !, t5s/t1 t̃/s̃.

W1850, W285@W3 ,W1#, tW385@ tW11W2 ,W3#.

PVI

X̃152s]s2t]t ,

X̃252s̃]s̃2 t̃] t̃

X̃35s̃]s̃1t]t .

w152 logs, w252 log t̃, w35 log~ s̃/ t̃ !, t52~tt̃ !/~ss̃!.

W1850, tW285@W2 ,W3#, t~12t !W385@W3 ,tW11W2#.

1. Reduction of the linear problem

Note that each of the symmetry reductions of the SDYM equations to one of the Pai´
equations extends to a reduction of the linear problem~16! and ~17!. However, in finding a
reduction of the linear problem, the spectral parameterz must also be transformed. The symm
tries of the field equations are lifted to symmetries of the linear problem. ForPVI we extend the
reduction above to the linear problem~16! and ~17! by restricting C to have the form
C(s,t,s̃,t̃;z)5c(t;l), wherel5 t̃/(sz). Note that then

t]tC52s̃]s̃C5t] tc, and t̃] t̃C52s]sC5t] tc1l]lc.

The linear problem~16! and ~17! then becomes

]lc52F W2

l21
2

W11W21W3

l21
1

W3

l2t Gc, ] tc5
W3

l2t
c. ~46!

The system of equations~46! is the isomonodromy problem forP VI . The compatibility of~46!
gives Eqs.~45!, which are equivalent toP VI . Isomonodromy problems for the above reductio
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to PI –PV can be obtained in the same way. Indeed, it is often easier to identify a reduction t
of the Painleve´ equations from the form of the isomonodromy problem. By comparing
isomonodromy problem to those in the literature, we can identify the component that will s
the appropriate Painleve´ equation.

V. THE DARBOUX–HALPHEN SYSTEM

In this section we consider a reduction of the SDYM equations to an integrable generali
of the classical Darboux–Halphen system. Its general solution is densely branched and con
movable natural barrier.

Consider the reduction of the SDYM equations in which theAm’s are functions oftª2x0

only. This gives the well known Nahm equations43

Ȧ15@A2 ,A3#, Ȧ25@A3 ,A1#, Ȧ35@A1 ,A2#, ~47!

where we have chosen a gauge in whichA0[0.
Using diff(S3), the infinite-dimensional Lie algebra of vector fields onS3, we choose the

components of the connection to be of the form

Ai~ t !5 (
j ,k51

3

Oi j M jk~ t !Xk . ~48!

The Xk’s are divergence-free vector fields onS3 and satisfy thesu~2! commutation relations

@Xi ,Xj #5 (
k51

3

« i jkXk , ~49!

where« i jk is totally antisymmetric and«12351. The SO~3! matrix @Oi j # is used to represent th
points ofS3 ~see, e.g., Ref. 55! and the action of the vector fieldsXi on Ojk is given by6

XiOjk5(
l 51

3

« iklOjl . ~50!

Substituting Eq.~48! into Eq. ~47! and using~49! and ~50! together with the identities

(
i , j ,k51

3

« i jkOipOjqOkr5«pqr , (
i 51

3

« i jk« imn5 d jmdkn2d jndkm,

yields

Ṁ5~Adj M !T1MTM2~Tr M !M , ~51!

where (AdjM )ª(detM)M21 is the adjoint ofM and the dot denotes differentiation with respe
to t. Equation~51! was first derived in Ref. 20. Equation~51! was also derived in Ref. 34 wher
it was shown to represent an SU~2! invariant hypercomplex four-manifold. Since the Weyl curv
ture of a hypercomplex four-manifold is self-dual, Eq.~51! describes a class of self-dual We
Bianchi IX space–times with Euclidean signature.15

In order to solve Eq.~51! we first introduce a simple factorization. If the eigenvalues of
symmetric part,Ms , of M are distinct, thenMs can be diagonalized using a~complex! orthogonal
matrix P. In this case we may write

M5Ms1Ma5P~d1a!P21,
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wheredªdiag (v1,v2,v3), v iÞv j , iÞ j , and the nonzero elements of the skew-symmetric ma
a are denoted asa1252a215t3 , a2352a325t1 and a3152a135t2 . Using the above factor-
ization of M , Eq. ~51! can be transformed into

v̇15v2v32v1~v21v3!1t2,

v̇25v3v12v2~v31v1!1t2, ~52!

v̇35v1v22v3~v11v2!1t2,

wheret2
ªt1

21t2
21t3

2 and

ṫ152t1~v21v3!, ṫ252t2~v31v1!, ṫ352t3~v11v2! , ~53!

together with the linear equation

Ṗ1Pa50, ~54!

for the matrixP. The system~52! with t250 is the classical Darboux–Halphen system wh
appeared in Darboux’s analysis of triply orthogonal surfaces27 and was later solved by Halphen.32

Halphen also studied and solved Eqs.~52!–~56!,31 which are linearizable in terms of Fuchsia
differential equations with three regular singular points.

Taking the differences between the various equations in~52! results in

v152
1

2

d

dt
ln~v22v3!, v252

1

2

d

dt
ln~v32v1!, v352

1

2

d

dt
ln~v12v2!.

Together with Eqs.~53!, these equations show that

a2
ª

t1
2

~v12v2!~v32v1!
,

b2
ª

t2
2

~v22v3!~v12v2!
, ~55!

g2
ª

t3
2

~v32v1!~v22v3!

are constants. Without loss of generality we choosea, b, andg to have nonnegative real part
Hence, provided the symmetric part ofM has distinct eigenvalues, Eq.~51! reduces to the third-
order system~52!, where

t25a2~v12v2!~v32v1!1b2~v22v3!~v12v2!1g2~v32v1!~v22v3!, ~56!

together with the linear equation~54! for P. In Refs. 47 and 33, solutions of equations~52!–~56!
for special choices ofa, b, andg were determined in terms of automorphic forms.

Note that the system~52! with t2 as in ~56! is invariant under the transformation

t°m~ t !ª
at1b

ct1d
, v j~ t !°

v j~m~ t !!

~ct1d!2 1
c

ct1d
, ad2bc51.

We introduce them-invariant function
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sª
v12v3

v22v3
. ~57!

Differentiating Eq.~57! and using the system~52! yields ṡ52s(v12v2). Repeating this proces
gives s̈52(ṡ22v3s)(v12v2). Solving these two equations together with~57! for thev’s gives

v152
1

2

d

dt
ln

ṡ

s~s21!
,

v252
1

2

d

dt
ln

ṡ

s21
, ~58!

v352
1

2

d

dt
ln

ṡ

s
.

Substituting the parametrization~58! into any of the equations in~52! shows thats(t) must satisfy

$s,t%1
ṡ2

2
V~s!50, ~59!

where

$s,t%ª
d

dt S s̈

ṡD2
1

2 S s̈

ṡD
2

is the Schwarzian derivative andV is given by

V~s!5
12b2

s2 1
12g2

~s21!2 1
b21g22a221

s~s21!
. ~60!

The general solution of Eq.~59! is given implicitly by

t~s!5
u1~s!

u2~s!
, ~61!

whereu1(s) andu2(s) are two independent solutions of the Fuchsian differential equation

d2u

ds2 1
1

4
V~s!u50 ~62!

with regular singular points at 0, 1, and̀. The transformation

u~s!5sc/2~12s!(a1b2c11)/2x~s! ~63!

maps Eq.~62! to the Gauss hypergeometric equation

s~12s!
d2x

ds2 1@c2~a1b11!s#
dx

ds
2abx50, ~64!

wherea5(11a2b2g)/2, b5(12a2b2g)/2, andc512b ~see, e.g., Refs. 45 and 2!. Note
that from the general solutions(t) of Eq. ~59! we can reconstruct thev j ’s from Eqs.~58! and the
t j ’s then follow from ~55!.

From Eq.~61!, if a, b, andg are non-negative real numbers such thata1b1g,1, then the
upper-~or lower-! half s-plane is mapped to a triangular region in thet-plane whose sides are th
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arcs of circles and whose vertices subtend angles ofap, bp, andgp. Moreover, ifa, b, andg are
either 0 or reciprocals of integers, thens is an analytic function oft on the interior of a circle on
the complex sphereCø` but cannot be analytically extended across any point of the circle.
is, the circle is a natural barrier for the functions(t).

The solution procedure just outlined allows us to obtain explicit expressions for the cons
quantities for the generalized Darboux–Halphen system~52! and ~56!. In Ref. 36, it was shown
that the classical Darboux–Halphen system admits no meromorphic first integrals. In Ref. 1
first integrals for the full system~52! and ~56! were found and shown to be branched and tr
scendental involving hypergeometric functions. The existence of these integrals is consiste
Ref. 36 because even in the classical case they are branched despite the fact that the
solution is single-valued.

Fix two linearly independent solutionsu1 andu2 of Eq. ~62! with Wronskian

W~u1 ,u2!5u1u282u2u1851, ~65!

where prime denotes differentiation with respect tos. Then the general solution of Eq.~59! is
given implicitly by

t~s!5
J2u1~s!2J1u2~s!

I 2u1~s!2I 1u2~s!
, ~66!

whereI a andJa , a51,2, are constants satisfyingI 1J22I 2J151. Differentiating Eq.~66! twice
and using~65! gives

I 2u12I 1u25 ṡ1/2 , I 2u182I 1u285 1
2 ṡ23/2s̈. ~67!

Solving the linear equations~67! for I 1 and I 2 gives

I a5
dfa

dt
, fa5 ṡ21/2ua~s!, a51,2. ~68!

The constantsJ1 andJ2 are then obtained from Eqs.~66! and~68! together with the normalization
I 1J22I 2J151. They are given by

Ja5tI a2fa , a51,2 .

So, theI a and Ja , taken to be functions oft,s,ṡ and s̈ are first integrals for the Schwarzia
equation. In terms of the Darboux–Halphen variables, these quantities are

fa5A2r ~v i ! ua~s~v i !! , I a5A 2

r ~v i !
ua8 ~s~v i !!2~v12v22v3!Ar ~v i !

2
ua~s~v i !! ,

wherer (v i)5A(v22v3)/(v12v2)(v12v3) ands(v i) is given by Eq.~57!.
In terms of these variables, the Darboux–Halphen system~52! and~56! can be written as the

Hamiltonian system

ḟa5
]H

]I a
5I a , İ a52

]H

]fa
50 , H5

I 1
21I 2

2

2
, a51,2, ~69!

subject to the algebraic constraint

f1I 22f2I 15W~u1 ,u2!51. ~70!

The canonical coordinates$I a ,fa% are analogs of the action-angle variables for the Darbou
Halphen system. The phase space dynamics of the system is restricted to the constraint s
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given by Eq.~70!. This represents a three-dimensional complex quadric. Poisson–Nambu
tures for the generalized Darboux–Halphen system~52! and ~56! are presented in Ref. 17 whic
are similar to those for rigid body dynamics in three dimensions.44,54The system is also written a
a gradient flow in Ref. 16.

A. The Chazy equation

Let v1 , v2 , v3 be a solution of~52! with t50 and defineyª22(v11v21v3). Theny is
a solution of the equation17,18

d3y

dt3
52y

d2y

dt2
23S dy

dt D
2

, ~71!

which was studied by Chazy.23–25Furthermore, given a solutiony of the Chazy equation~71!, let
v1 , v2 , andv3 be the three roots of the cubic equation

v31
1

2
yv21

1

2

dy

dz
v1

1

12

d2y

dt2
50.

If the v j ’s are distinct, then they solve the classical Darboux–Halphen system@i.e., the system
~52! with t50].

The general solution of the Chazy equation is given by

y~ t~s!!56
d

dt
ln x1~s!, t~s!5x2~s!/x1~s!, ~72!

wherex1 andx2 are two independent solutions of the special hypergeometric equation

s~12s!
d2x

ds2 1S 1

2
2

7

6
sD dx

ds
2

1

144
x50.

On replacingx1 and x2 with the independent linear combinationsax11bx2 and cx11dx2 ,
ad2bc51, it can be seen from Eq.~72! that the Chazy equation admits the symmetry

y~ t !° ỹ~ t !5~ct1d!22yS at1b

ct1dD2
6c

ct1d
, ad2bc51. ~73!

As well as having a general solution in terms of special hypergeometric functions as des
above, the Chazy equation~71! is related to the theory of modular functions.8,53 Indeed, a particu-
lar solution of~71! is given by

y~ t !ª ipE2~ t !, ~74!

where

E2~ t !ª11
6

p2 (
m51

`

(
n52`

`
1

~mt1n!2 ~75!

is the second Eisenstein series.@Note that the series~75! is not absolutely convergent, so the ord
of the sum is important.# The second Eisenstein series can also be written as the Fourier se

E2~ t !51224(
n51

`

s1~n!qn, q5e2p i t ,
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wheres1(n) is the sum of the divisors ofn.
Furthermore, the solution~74! can be written in terms of a special logarithmic potential,

y~ t !5
1

2

d

dt
ln D~ t !, ~76!

whereD is the discriminant cusp form of weight 12, which satisfies

D~m~ t !!5~ct1d!12D~ t !, mPPSL~2;Z!. ~77!

This shows that there is a deep connection between the Chazy equation and the theory of m
forms.

The discriminant modular form has the well known representation

~2p!212D~ t !5q)
n51

`

~12qn!245 (
n51

`

t~n!qn,

whereq5e2p i t and the coefficient functiont(n) is called the Ramanujant-function ~see, e.g.,
Ref. 52!. From Eqs.~76! and ~74! it can be shown thatD satisfies the homogeneous ODE
degree 4;

D3
d4D

dt4
25D2

dD

dt

d3D

dt3
2

3

2
D2S d2D

dt2 D 2

112DS dD

dt D
2 d2D

dt2
2

13

2 S dD

dt D
4

50.

Rankin51 first showed that the discriminant cusp form satisfies this equation. SinceD has no zeros
or poles and satisfies a homogeneous equation it is the natural analog of thet function that appears
in Hirota’s method~see, e.g., Sec. 3.3 of Ref. 4!.

Note that the characterization of the Ramanujan coefficientst(n) is a major problem in
number theory. These famous numbers arise naturally as the Fourier coefficients ofD(t) when we
write the Chazy equation in the above homogeneous form.

Furthermore, there is another important correspondence between the Chazy equati
Ramanujan’s work. In 1916 Ramanujan50 proved that the functions

P~q!51224(
n51

`

s1~n!qn,

Q~q!511240(
n51

`

s3~n!qn,

R~q!512504(
n51

`

s5~n!qn,

wheresk(n)5(dundk, k51,3,5 ~sum of the divisors ofn to thekth power!, satisfy
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q
dP

dq
5

1

12
~P22Q!,

q
dQ

dq
5

1

3
~PQ2R!, ~78!

q
dR

dq
5

1

2
~PR2Q2!.

Using q5e2p i t , t5pt, the equations~78! take the form

dP

dt
5

i

6
~P22Q!,

dQ

dt
5

2i

3
~PQ2R!, ~79!

dR

dt
5 i ~PR2Q2!.

Using the first of the above equations to find Q:Q5P216i dP/dt, the second equation implie
R529(d2P/dt2) 19iP (dP/dt) 1P3. Then the last of the above equations yields

d3ỹ

dt3 52y
d2ỹ

dt2 23S dỹ

dt D 2

,

whereP(q)52 i ỹ(t). Finally, in terms ofỹ(t)5p21y(t), y satisfies the Chazy equation~71!.
Thus the special solution~74! yieldsy(t)5 ipE2(t)5 ipP(q). Knowing P(q), from ~78! we can
obtain the other functionsQ(q) andR(q) directly. Moreover, since we know the general soluti
of the Chazy equation, we know the general solution of the equations of Ramanujan. NoteQ
andR are also called the normalized Eisenstein seriesE4 andE6 ~see, e.g., Ref. 35!.

As an historical postscript we note that Chazy and Ramanujan both worked on the
equation at nearly the same time, but apparently they did not know this!

B. The generalized Chazy equation

Let (v1 ,v2 ,v3) be a solution of~52!–~56!. Ablowitz, Chakravarty, and Halburd5,7 showed
that

yª22~v11v21v3!522TrM ~80!

solves

d3y

dt3
22y

d2y

dt2
13S dy

dt D
2

5
4

362n2 S 6
dy

dt
2y2D 2

, ~81!

if and only if eithera5b5g5..2/n or exactly one of the parametersa, b, g is 2/n and the other
two are 1

3. Equation~81! was also studied by Chazy23–25 and is usually referred to as thegener-
alized Chazy equation@to contrast it with the classical Chazy equation~71!, which is the special
casen5`].

It follows from Eqs.~58! and ~80! that the general solution of~81! is given by

y~ t !5
1

2

d

dt
ln

ṡ6

s4~s21!4 . ~82!
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In Chazy’s analysis of Eq.~81! he showed that its solution is given by

y~ t !5
1

2

d

dt
ln

J̇6

J4~J21!3 , ~83!

where the Schwarz functionJ solves Eq.~59! with ~60! anda51/n, b5 1
3, g5 1

2. The functionJ,
and hencey, is single-valued ifn is an integer greater than 1. The choicen5` again corresponds
to the classical Chazy equation~71!.

Equations~82! and~83! suggest that there is a relationship betweenJ and the special Schwar
zian triangle functionss described above. In the case whens corresponds to the choicea5b
5g52/n, it can be shown that

J5
4

27

~s22s11!3

s2~s21!2 ,

and, similarly, whena52/n, b5g5 1
3, we have

J524s~s21!

~see Ref. 5!.

VI. SUMMARY AND DISCUSSION

The SDYM equations are a rich source of integrable systems. The classical soliton equ
in 111 dimensions and the well known Painleve´ quationsPI –P VI are reductions of the SDYM
equations with finite-dimensional Lie algebras. Reductions of the SDYM equations using in
dimensional algebras are of particular interest. They yield the classical 211-dimensional soliton
equations, the Chazy equations and a ninth-order generalization of the Darboux–Halphen s
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24Chazy, J., ‘‘Sur les e´quations différentielles dont l’inte´grale générale posse`de une coupure essentielle mobile,’’ C. R
Acad. Sci. Paris,150, 456–458~1910!.
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