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Many integrable equations are known to be reductions of the self-dual Yang—Mills
equations. This article discusses some of the well known reductions including the
standard soliton equations, the classical Paintygations and integrable generali-
zations of the Darboux—Halphen system and Chazy equations. The Chazy equation,
first derived in 1909, is shown to correspond to the equations studied independently
by Ramanujan in 1916. @003 American Institute of Physics.
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[. INTRODUCTION

The self-dual Yang—Mill§SDYM) equations(a system of equations for Lie algebra-valued
functions ofC*) play a central role in the field of integrable systems and also play a fundamental
role in several other areas of mathematics and physics.

From the perspective of integrable systems, the study of the SDYM equations became par-
ticularly intriguing when, in 1985, R. S. Watticonjectured that

... many (and perhaps all?) of the ordinary and partial differential equations that are
regarded as being integrable or solvable may be obtained from the self-dual gauge field
equations (or its generalizations) by reduction

That the SDYM equations are a rich source of integrable systems is suggested by the fact that they
are the compatibility condition of an associated linear problem which admits enormous freedom if
one allows the associated Lie algelftize so-called gauge algebra be arbitrary. In light of this

and other results, the SDYM equations are often referred to as the master integrable system. The
SDYM equations provide us with a means of generating and classifying many integrable systems
and they also give a unified geometrical framework in which to analyze them. Moreover, in the
context of the inverse scattering transform, an integrable equation admits well-behaved solutions
obtained via the related linear problems.

The SDYM equations are of great importance in their own right and have found a remarkable
number of applications in both physics and mathematics. These equations arise in the context of
gauge theor§? in classical general relativifi?*°and can be used as a powerful tool in the analysis
of four-manifolds?®

For finite-dimensional gauge groups the integrability of the SDYM equations can be under-
stood from both the inverse scattering transform and geometric points of%#é#PAn excellent
reference related to the geometric aspects is Mason and WoodHoDse.point of view deals
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with the algebraic and analytic aspects and novel reductions via infinite-dimensional gauge alge-
bras.

The use of certain infinite-dimensional gauge algebras in the self-dual Yang—Mills equations
is an important development in the theory. Using these Lie algebras, reductions of the SDYM
equations to many important equations including the Kadomtsev—Petviashvili, Davey—
Stewartson, 2 1-dimensionah-wave, and Chazy equations have been found. Recently a gener-
alized Darboux—Halphen system has been obtained as a reduction of the SDYM equations with an
infinite-dimensional gauge algebfahese equations are solvable via an associated linear prob-
lem, yet their solutions do not possess the Painf@eperty—the characteristic singularity struc-
ture often thought to be the hallmark of integrability. A special case of the Darboux—Halphen
system is equivalent to the generalized Chazy equation. Much work remains to be done in order to
identify the class of infinite-dimensional gauge algebras for which the SDYM equations are
integrable. These investigations force us to take a much closer look at the idea of integrability
itself.

Throughout we will present geometrical interpretations and reasoning whenever we believe
that they provide a deeper insight into the reduction process and the properties of the resulting
equations. However, this article has been written with the nongeometer in mind. We hope that our
survey will be accessible to a wide variety of researchers from many different branches of math-
ematics and physics.

In Sec. Il we introduce the self-dual Yang—Mills equations and their underlying linear prob-
lem. In Sec. Il we discuss reductions of the SDYM equations to integrable PDEs. Many of the
reductions in this section can be found in Ablowitz and Clarksbmthis section we also consider
reductions to PDEs when the underlying Lie algebra is infinite dimensional. Such reductions
include the Kadomtsev—Petviashvili and Davey—Stewartson equations. In Sec. IV we describe
reductions of the SDYM equations with finite-dimensional Lie algebras to ODEs. In particular, the
integrable cases of the equations of motion of a spinning top are recovered, together with some
generalizations. We also describe the reductions of SDYM to the Paietpwations due to Mason
and Woodhous&' Finally, Sec. V considers the reduction of the SDYM with an infinite-
dimensional Lie algebra to a generalized Darboux—Halphen system whose general solution is
densely branched about movable singularities and can contain movable natural barriers. This
equation in turn has reductions to the Chazy equation and integrable generalizations of the Chazy
equation.

IIl. THE SDYM EQUATIONS

In this section we motivate the SDYM equations from the points of view of both integrable
systems and gauge theory.

A. Linear problems and integrable systems

Recall that many %+ 1-dimensional integrable systems are solved via related linear problems
of the form

W, =XV, oy
v,=TW, 2

whereX andT are square matrices of the same dimension which are functiors tofand the
spectral parametef. The compatibility of these equatiofise., ¥,,= W,,) is equivalent to

Xi— Ty +[X, T]=0. (3

In 1973, Ablowitzet al1% solved the inverse scattering problem in the case

—i¢ q(x,t)) _(A B)
r(x,t) i¢ )’ =le —a) @
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whereA,B,C are (Lauren} polynomials in{.

Below we list several choices @f that yield a number of integrable equations which will be
discussed in later sections.

(i) The Korteweg—de Vries equation:

gi+ 690yt dxxx= 0,

—4i3+2iq— 0y 4922+ 20, — (2024 Oxy)

= —422+42q 4i 8- 2iq+q,

(i) The nonlinear Schradinger equation:
9= 0xx*20°0*,
u 2i22+iqr  —2q¢—iqy
\a2rg+ir,  —2i%—igr
(r=q%).
(iii) The sine-Gordon equation:

Uy =Sinu

©)

ficosu  isinu
T=¢71

1: o 1:
zisinu — zicosu

It should be noted that the dependence on the spectral parameter and the restrictich to 2
systems given by4) is not the only choice for which the inverse scattering problem can be solved
for Eq. (3) (see, for example, Refs. 3 and)57

A simple, natural, and highly symmetric generalization of the linear prok{lenand (2) to
four variablesx,, x», ty, t, is given by

Jd J

[7—)(1+§(9—X2>‘1’=(X1+§X2)‘1’, (6)
(a d ) B

Iﬁfé“@ W=(T,+{Ty)W, (7)

where Xy, X,; Ty, T, are functions fromC* to si(n;C)—the Lie algebra ofnxn trace-free
matrices with complex-valued entries. The compatibility of this system is equivalent to the self-
dual Yang—Mills equations with gauge algehién;C) (see Sec. Il C beloy From the general

form of this linear problem it is clear that many integrable equations are reductions of the self-dual
Yang—Mills equations because their associated linear problems arise as reductions of the linear
problem for the SDYM equations. Notice, however, that the right sides of GBysnd (7) are

linear in { whereas in the AKNS scheme, the right side of B).can be a Laurent polynomial in

{. However, it turns out that reductions @) and(7) can have much more general dependence on
the spectral parameter.
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B. The Yang—Mills equations

Non-Abelian gauge theories first appeared in the seminal work of Yang and®Miisa
non-Abelian generalization of Maxwell’s equations. Let G be a Lie groeferred to as the gauge
group with Lie algebra LG and lefx“},_o . sbe coordinates on a four-dimensional maniftid
which can beR?, R*® or R?2 GivenA,(x) € LG, we introduce the covariant derivatives

D A, ®)

w=Ou~
and their commutators
Fu=-—[D,.D,]1=0,A,—d,A,—[A,.A] 9

The fact that the Yang—Mills equations have a natural geometric interpretation was recognized
early on in the history of gauge theory. The covariant derivatiBesan be used to obtain a local

representation of a connection on a principal fiber bundle ddeThe one-formA:=A ,dx* is

called theconnection one-forrandF :=%Fwdx"dx” the curvature two-fornof the connectionF
can also be expressed as the exterior covariant derivativegiven by
F=DA:=dA-ALA.

Recall that the Hodge dual operator on the four-dimensional manifolidikes any two-fornir
=3T,,dx“0dx" to the dual two-form* T= 3¢, 7T, ;dx“0dx” wheree ,,.; is totally antisym-
metric with €5105=1 and the standard metric d is used to raise and lower indices. The
Yang—Mills equations then have the simple form

D*F=0

together with the Bianchi identity

which follows from the definitions of exterior covariant derivatieandF. Note that under the
gauge transformation

-1 -1
A,—~9 "A,0+9 79,0, QgeG, (10
the components of the curvature two-form transform as
F—>9 'F .0, (12)

which corresponds to the transformation of the fibers by the right action of the structure group G
on the principal bundle.

C. The self-dual Yang—Mills equations

The Yang—Mills equations are a set of coupled, second-order PDEs in four dimensions for the
LG-valued gauge potential functiors,’s, and are extremely difficult to solve in general. It is,
however, possible to obtain a special class of first-order reductions of the full Yang—Mills equa-
tions by noting that any that satisfies

*F=\F (12

for some constank, also satisfies the Yang—Mills equations by virtue of the Bianchi identity:
DF=0. From(12) we must have

**E=\*F=\°F. (13
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However,** F=gF whereg=def{g,,] is the determinant of the metric on M. Hence

+1 on R4 R??Z
| xi on R3%L
All real solutions of the equation§ F==iF are trivial. On R* and R?? the equations
*F=(—)F are called thganti-self-dual Yang—Mills equations. We will work ik* with the
standard metric
ds?=(dx%)2+ (dx})?+ (dx?)2+ (dx3)2.

The SDYM equations now take the form

Foi=F23, Fox=Fa1, Foz=Fi. (14

We introduce the null coordinates

1 1
o=—0x+ix?), =—(x=ix%),
V2 V2

1 1
T=—(x*—ix?), F=—(x"+ix3).
V2 V2

It then follows fromA=A dx*“=A,do+Azdo+A d7+ A;d7 that

AOZ%(A#A}): Alzé(Ao_’_A}),
Az=i—(Ag—A;), Az=— i—(AT—A;),
V2 V2
and the SDYM equations become
F,,=0, Fz=0, F,;+F3z=0. (15)

Equations(15) are the compatibility condition of the isospectral linear problem
(05+ (7)W= (A, + AW, (16)
(0,={05)¥=(A,—{A;)Y, 17)
where { is the spectral parameter am#l is a local section of the Yang—Mills fiber bundle. The
compatibility condition is simply {,— £d3)(d,+ () W= (d,+ {3:)(d,— {d5)¥. On using Egs.
(16) and(17), this gives
[Form §(F o5+ F )+ 25 ¥ =0.
The gauge transformatiofi0) can be understood by settinf=gW¥ in (16) and (17) and
demanding that th@ ,’s transform so as to preserve the form of these equations.
A very compact way of writing the SDYM equations was introduced by Pohinféyfeol-

lowing Yang® and working with the Lie algebra &), Pohimeyer noted that the vanishingfaf,,
andFz; allows us to write(locally)
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A,=(3,C)CY, A,=(4,C)CH,
A;=(3;D)D™!, A;=(sD)D Y,

for someC andD in the Lie group G. Lettingl=C ™D € G we see that the last equation(itb)
becomes

9:(37 19,3+ -(3"19,.3)=0. (18

Ill. EXAMPLES OF REDUCTIONS

Perhaps the simplest reductions of the SDYM equations are those in whiéh thare taken
to be independent of certain coordinates. With the exception of the reduction to the Ernst equation,
all reductions in this section will be with respect to translational symmetries. That i8,,teewill
be taken to depend only on two linear combinations of the variakles<t, x2, andx® (or
equivalentlyo, o, 7, and7).

A. The nonlinear Schro “dinger equation

Following Mason and Sparlin, let us consider the case in which the Lie algebrsi(g;C)
(trace-free 22 matrices over the field of complex numbeend theA,'s are functions ofx
= o+ andt="7 only. We use the gauge freedom and téke=0. (Note that this involves solving
a linear equation fog.)

In terms of the matrix-valued functiori®:=A ., Q:=A; andR:=A:, the self-dual Yang—Mills
equationg15) are

P,=0, (19
Qx—P—[P,R]=0, (20)
Ry—Q—[Q.,R]=0. (21

Note that Eqs(19)—(21) are invariant ifP, Q, andR all undergo the same constant similarity
transformation. Hence P is independent of it can be put into canonical form. In particular, if
it is diagonalizable we can, without loss of generality, assume it has the form

for some constarit. From Eq.(20) we see thaf), must have zero diagonal part. Hence we can

take
=l_r o)

Equation(20) gives the parametrization of the off-diagonal elementR @fi terms ofg andr. So
up to a constantwhich can be gauged awgyEqg. (21) gives

o L(ar o
2kl —qr)’

together with the equations
2kay= gxct 297,

2Kkry=—r,,—2qr2.
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Choosingk=i/2, r=*q*, gives the nonlinear Schdinger equation

i0:=0yx*2|q|?

0t~ Oxx a7g-.

B. The Korteweg—de Vries equation

Mason and Sparliff also considered the above reduction for the case in whRidk not
diagonalizable. LeP take the canonical form

Y

We then find that

Q=(:v _10),

wherew=uv,—v? (up to an arbitrary function of),

4(UX_U2)X —8uy

1
R=
8 ( Uxxx— 40Uxx— 2U>2<+402Ux _4(Ux_U2)x)

andu= —v, satisfies the Korteweg—de Vries equation
Up= 3 Uyt SU L .

C. The sine-Gordon equation

Suppose that tha,’s depend ox= ¢ andt=7a only. If we use a gauge in which;=0, then
the linear problen{16) and (17) for the SDYM equations becomes

1
KW= (A LAY, == AW,

Here we choose the Lie algebra tod?2) so that theA ,’s are skew-Hermitian. We introduce the

parametrization
if0 1
As=—5
' T 2\1 0

ifc O 0 a—ib
Ay=—<
(Ref. 14, wherea,b,c are real functions ok andt. The SDYM equations are equivalent to

a+ib 0

’ AT_ 2

7 210 -—c

da db Jc

- be ——=ac. —=-b. (22

It follows from the first two equations of22) that a®>+ b? is independent ok. We choosea?
+b?=1 and introduce the parametrizatian-cosu, b=sinu. This givesc= du/dx. The third
equation in(22) then becomes the sine-Gordon equation

Uyy= —Sinu.
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D. The N-wave equations

Following Chakravarty and Ablowit?} we consider the case in which the,’s are functions
of o and 7 only and the Lie algebra isu(n;R). In this case, from the self-duality equatiém:;
=0, it follows that[ A;,A>]=0. We take

Az;=diaga;,a,,...,.a,), A;=diagbq,b,,...b,),

where thea;’s andb;’s are constantgve can use a gauge transformation to make them constant
Using the parametrizatiod,=[A;;] and A,=[Bj;], the vanishing ofF ,;+F 5 implies that
[A,,Az]+[A.,Az]=0, which gives

Aij=\jBij,
where

_ b-b

)\ij_ aiTaj’ 1#],

and we have assumed that thgs are distinct. Finally, the vanishing &, gives theN-wave
interaction equations,

JB;; B <
e ij7=k21 (Nik = Nkj)BikBy; - (23

In the caseN=3 and in whichB is skew-Hermitian, Eq(23) becomes the three-wave interaction

equatior?® The equatior(23) for arbitraryN was studied by Ablowitz and Haberman.

E. The chiral field equations

A number of important reductions of the SDYM equations come directly from(Hg). If J
depends only ox=o+¢ andt=7+7, then Eq.(18) becomes the chiral field equation

(Jil‘]x)x—i_(‘-]il‘]t)t:o' (24)

Usingo= (1nM2) (x*+ix?), o= (1n2) (x*—ix?), Ward*®°obtained a 2 1-dimensional gener-
alization of Eq.(24) by considering a reduction of E¢L8) in which J depends on= 7+7 ando
ando. This gives

(371 )+(371,)5=0, (29)

which has been studied by Manakov and zZakh#tand Villarroel®® More generally, Ward
obtains the equation

_(J_l‘]t)t+(‘]_l‘]x)x+(J_l‘]y)y+a[(J_l‘]y)x_(‘]_l‘Jx)y]+b[(‘]_l‘]t)y_(‘]_l‘]y)t]
+c[(I71,0— (I714]=0, (26)
where @,b,c) is spacelike ¢ a?+b?+c?=1) or timelike (—a?+b?+c?=—1). If (a,b,c) is

timelike, then Eq(26) can be transformed t@®5).

F. The Ernst equation

Following L. Witten®? we letJ in Eq. (18) be a function ofp = y/(x1)%+ (x?)Z andz=x° only.
That is, p?=200 andz= (i/v2) (r—7). Equation(18) becomes

pHpI M), +(I71,),=0. (27)
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WhenJ is a real symmetric matrix in SR;R), we can parametrizé as
1 ( 1 g

=1 g f2+g?

In terms of this parametrization, E(R7) becomes
fAf=Vf.Vi-Vg-Vg,
fAg=2(Vf)-(Vg),

whereV:=(49 o d;) and A=+ p 13, + % are the axisymmetric forms of the gradient and La-
placian onR*®, respectively, in cylindrical-polar coordinates. Introducing the varidhbief +ig,
this system can be written compactly as

R(E)AE=VE-VE. (28

Equation(28) is called the Ernst equation and describes stationary axisymmetric space—times in
general relativity’® The function€ is known as the Ernst potential.

G. Toda molecule

In this reduction we choose the Lie algebra to be simple and of Kajekg.,s[((N+1;C)]. We

use the basi§H; ,E/" ,E; }]L;, which satisfies

[Hi.Hj1=0, [E .E 1=6;H;,
. (29)
[HH J] KJIE+! [HI!E]_]:_KJI\IIEJ_y

WhereKN=[Ki,\j‘] is a Cartan matrix. Recall that ahx N-matrix K is called a Cartan matrix if it
satisfies the following properties:

(1) Ki'=2

(2) K" is a nonpositive integer if+#j.

(3) K''=0 if and only if KI'=0.

(4) K is positive definite with raniN.

We choose thé\,’s to be functions ofo and'a only and of the form

N N
A0=k2 up(o, ) Hy, A—;,=k2 vi(,F)Hy,
=1 =1

N N
A= W(o,)E!, A= W0, 7)E .
k=1 k=1

Substituting the abové,’s into the self-duality equations and using the commutation relations
(29), a straightforward calculation shows that the functiapgindv,, k=1,2,..,N can be elimi-
nated from the resulting equations, which then yield

P4

2 Kilexp(¢), i=12,..N, (30)

wherew; = exp(#/2) andA ¢= ¢, . Equationg30) are known as the Toda molecule equatiths.
The caseN=1 corresponds to the Liouville equatidng,; = —2 exp(e;).
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The above analysis can be repeated for the case in which a{l?)ta}slé.J E; “1N j—o satisfies the
relations(29) in which Ky is now taken to be an extended Cartan matrix. AtH(1)x (N+1)
matrix is said to be an extended Cartan matrix if and only if it is of rank N and satisfies properties
1-3 above. Note that, in particular, an extended Cartan matrix possesses a zero eigenvalue because
it is not of maximal rank. This gives the Toda lattice equation

N
Z Kiexp¢), i=0,1,..N. (31)
In particular, if we take
2 -1 0 0o -1
-1 2 -1 0 0
- 0
Kn=
N O L
0 -1 2 -1
-1 0 o -1 2

then Eq.(31) becomes the two-dimensional Darboux—Toda equation

Adi=exp($i-1) —2 exp ¢i) +expldi1), (32

where g, = ¢; , n+1. The systen(32) was known to Darbou in the nineteenth century.

H. Infinite-dimensional algebras and 2 +1 equations

In Ref. 9, Ablowitz, Chakravarty, and Takhtajan considered reductions of the SDYM equa-
tions in which the Lie algebra is the infinite-dimensional Lie algebra of formal matrix differential
operators in an auxiliary variable They then considered reductions in which tg's depend
only on two space—time variables. The resulting equations then depends on three variables.

1. The 2+ 1-dimensional N-wave equation

First consider a reduction in which th,’s are functions ofk= o andt= 7 only. Then the
resulting SDYM linear system is given by

oW =(A,+ (AW
W =(A,—{A)V,

whereW is a function ofx,t,y and{. Choose a gauge in which;=B andA;=C, whereB and
C are constant, commutingx n matrices. We take the remaining gauge potentials of the form
A,=U+Bd, andA =V+Cdy, whereU(x,y,t),V(x,y,t) esl(n,C). By taking ¥ =Ge ¥, we
obtain a simpler, reduced linear system from above,
9,G=(U+Bd,)G, (33
9G=(V+Co)G, (34

in terms of the functiorG(x,y,t). The system33) and(34) is the standard linear system related
to the 2+ 1-dimensionaN-wave equations. The compatibility ¢83) and (34) is

#U—aV+[U,V]-CaU+Ba,V=0, [BV]=[C,U],

which gives
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[Br&tQ]_[C!&xQ]_C[BlayQ]+ B[C,(?YQ]+[[B,Q],[C,Q]]:O,

whereU=[B,Q] andV=[C,Q]. In the case wheB andC are diagonal an® is off-diagonal,
these equations can be transformed to thel2N-wave equations

n

0Qy  IQ;
Q'—a Qi +k21(aik_akj)Qikaj1

ot T ox

Qi
i Gy

+b

wherea;; , bj; are suitable constants depending on the matrix elemersanfd C.

2. KB, mKP, and DS equations

Chakravarty, Kent, and NewmZ#nalso obtained the Kadomtsev—Petviashvili, modified
Kadomtsev—Petviashvili, and Davey—Stewartson equations directly as reductions of the SDYM
equations with an infinite-dimensional Lie algebra of formal matrix differential operators. If the
A,’'s are assumed to depend &m0 +G andt= 7 only, then the linear probler(i6) and (17)
becomes

o W=(A,+ AW, (35)
FW=(A+ A, +A;]+2A)W. (36)

The connection components are taken to be of the form

T

A,=Ug+U1dy, Az=—(Bot+Bidy), A, =Vo+Vidy+Vodo, A=A,

where the coefficients are>X22 matrix-valued functions ok andt. In order to simplify the
integrability conditions of35) and(36), we demandas in the 2+ 1 N-wave casgthat the spectral
parametel be eliminated from this system after a change of variable of the MrmGe V. It
can be shown that this requirement implies tat V,=B;+ A andV;=Uy+ By. Subsequently,
the system(35) and(36) becomes

3,G=(Uo+Ad))G, (37)
3G=(Vo+[Ug+Boldy+Ad)G . (39

Appropriate choices of the matricés B, U, andV give the linear problem for the KP, mKP, and
DS equationgsee Ref. 2L

Another notable reduction with an infinite-dimensional gauge algebra was considered in Ref.
39 by Mason and Newman. They showed that the SDYM equations with the Lie algebra of the Lie
group of volume preserving diffeomorphisms on a four-manifold, in whichAjes are indepen-
dent of the space-time coordinatesc, 7, and7, are equivalent to the self-dual Einstein equa-
tions. In particular, the reduction to the Plebanski heavenly equation is given in Ref. 22. This
equation in turn has a reduction to the Monge—Ampere equation.

I. The SDYM hierarchy

In Ref. 9, the authors studied an infinite hierarchy of equations whose first member was the
SDYM system. Each member of the hierarchy has the same underlying spectral problem, and the
higher flows are derived from an infinite sequence of nonlocal conservation laws associated with
the SDYM equations. Furthermore, many well known integrable hierarchies+-land
2+ 1-dimensions are derived from the symmetry reductions of the self-dual hierarchy.

In an appropriate gauge, ttk¢h member of the SDYM hierarchy is given by

aTkA(T_aoq)k—l—'—[Ao'!q)k—l]:O! (39)
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where®, is given recursively by
(r—adA) D, = —(d,—adA,)D,— dzA, 8., n=01,..,
and®,=—A;. Equation(39) is the compatibility condition for the system
D, V=A%, D,¥=A,V, (40)
where, fork=2,3,..,

D1:(90.+§(9’7‘., Al:A0+§A;l

D=0, =05, A= TIO), =2 Dy,

and (). denotes the power series part of the Laurent expansidn atbout{=0. Note that if

k=2, thenD,=4d,.— {d; and A,=A,— {A;, wherer= 7, and we have identified . with ®,. In

this case the linear problefd0) becomes the standard linear problem for the SDYM equations.
As mentioned above, the reduction of the SDYM equations to thel-l and

2+ 1-dimensional integrable equations can be extended to a reduction of the SDYM hierarchy to

the corresponding hierarchies. In this way, we can obtain, for example, both+tlie and 2

+1-dimensionaN-wave hierarchies. In particular, the Davey—Stewartson equéii@ can be

obtained as the second member of theZ>dimensionaN-wave hierarchy. See Ref. 9 for details.

IV. ODE REDUCTIONS

A. Integrable tops

The equations of motion for a spinning top have played a fundamental role in the early
development of the theory of integrable systems.

1. The Euler —Arnold —Manakov top

In this reduction, following Chakravarty, Ablowitz, and Clarks&®we take the Lie algebra
to besl(n;C) and we assume that th®,’s are functions oft=o only. The vanishing of;:
demands thaf; and Az commute. We take these matrices to be diagonal and of the form

Az;=diaga;,a,,...,.a,), A;=diagbq,b,,...b,),

where thea;’s andb;’s are constants. The equatién;+F ;=0 is now the algebraic equation
[A,,A;]+[A,,A;]=0, which gives the elements &,=[A;;] in terms of the elements ok,
:[B”] as

b;—b; o
Aij:_—Bij, |¢j,
aj_ai
provideda; #a;, b;#b; fori#]j.
Choosingaizb?, i=1,...n, andA, and A; to be skew-symmetric, we hawk;; = —(b;
+b;) 'B;; and the vanishing of ,, gives

n

1 1
b;+b, b+b,

dB” _

dt =1

BiiByj - (47

Equations(41) were first considered by Manakthand Arnold? and are the equations of motion
for a free n-dimensional rigid body about a fixed point. In the case3, we obtain Euler’s
equations for a free spinning body about a fixed point,
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dL, dL, dLs
W:hLz'—s- W:72L3L11 W:%Ll'—z, (42

where
L1=By3, Ly=Bs;, L3=Bip, [I1=—(byt+b3), Il;=—(bs+by), I3=—(by+by),
and

[Pl I3—1, li—15
Yi=— » YT, . V3T

PIE 311 FP
In Eq.(42), (L4,L,,L5) is the angular momentum in the body frame andlihe are the principal
moments of inertia. Reductions to other integrable tops, including the Kowalevsaya top, are

described in Refs. 18 and 19.

B. The Painleve equations

With the exception of the reduction to the Ernst equation, all of the above reductions have
been with respect to translational symmetries. In other words, the reductions have all resulted from
consideringA,'s that depend only on one or more linear combination of the variahlés 7, and
7. In this section we follow Mason and Woodhofs# and obtain reductions to the Painleve
equations by considering reductions by conformal symmetries.

The Painleveequations are the following six classically known ODEs:

P, Uu"=6u%+t,

P, u’=2u®+tu+ta,

b 1 5 1 1 ) 3 )
n= =y + = + + + —
m u=gu U t(aU B)+yu 0

1 3 B
"_ 12, ~,,3 2 2_ _
Py u _2uu + U +4tu +2(t°—a)u+ 0

_ 2
_| ! L}U'Z_Euq(u ) <a+ ,3)+7u 8u(u+1)1
t u—1

t2 u

P 111 1 1 ) 1 1 1
r= T T T2 T Ty
vi i U u—1 u-t/" t u—1 u—t|"

uu-1)u—t)[ Bt yt-1) St(t—1)
2t-1)? [ T (u—1)2+(u—t)2)'

These equations have played a very important role in integrable systems. Indeed they arise from
similarity reductions of classical soliton equations and as monodromy preserving deformation
equations associated with linear systems of ODEs with rational coefficients.

The SDYM equations are invariant under the group of conformal transformati@msfor-
mations that preserve the metric up to an over all facfBne metric onR* in null coordinates,
do do+d7d7, is proportional toe ,z,,0x*#dx”®, where[x*#] is the skew-symmetric singular
matrix
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0 A o 7T

o (43
o T o 1]’
% -5 -1 0

wherex=o0+ 77.

Consider a mapping of the form—y=gxg', where ge GL(4;C). Then the mapping
x—yly?3 generates a conformal transformation(8fas it maps the space of matrices of the form
(43) into itself. In fact, every proper conformal transformation arises in this way. The generators of
the conformal transformations are called conformal Killing vectors. In order to calculate the
associated conformal Killing vectors we consider a one-parameter family of transformations given
by g=exp(eK)=I+eK+O(e?), whereK e gl(4;C). Hencey=x+ e(Kx+xK")+O(€?). Consider
the case in which the matrix has a 1 in theur component and zeros elsewhere. In components
we have

yB=xP 1 e(x" 5PH—xPY 5% + O(€?).
So
XBrsR 2B = yabBly28= B 1 ¢(xaV 51 — xPBY 57 + x i) + O(€?),
whereg#”=x3"§%—x2"§%*. By considering the appropriate component$xf’] we find
o> o+ e(X° §2F — x2 % + o qH7) + O(€?),
T>T+ e(x 8% —x3" 8+ TR + O(€%),
> 7+ e(X2V 5 — x1V 5%H 4+ 1qHV) + O(€2),
T+ e(X0V 83— X3 OL +7gHY) + O(€2).

It follows that the conformal Killing vectoK ,, associated with the matrix which is one in the
uv-entry and zero elsewhere, is

Xoo= 00g+7¢, Xoo=— 07d,— G1d5+ 0Gd,— 725,
Xo1=00—1d,, Xyp=77d,~ I3~ 750,~ 57,
X1g=Fd5— 00,, Xgo=0%d,— 1705+ 07d,+ 070,
X11=Gd3+7,, Xg1=—07d,—01d5— 7°0,+ 05 d,
Xop=05, Xop=—005— 705,
Xoa= —dy, Xo3=7d,—00,,
X12=05, Xgp=—1d5+ 005,
X13=9d,, Xzz=—0d,—70,.
Note that there are 15 independent conformal Killing vectors sifyge X1+ X+ X33=0. This

corresponds to the fact that we could have tafferSL(4;C), which would mean that the trace of
K is zero.
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The Painlevesquations correspond to reductions of the SDYM equations when the Lie alge-
bra issl(2;C). The conformal Killing vectors of these reductions correspond to the following
four-parameter subgroups of GLC). Mason and Woodhou$ecall these the Painlévgroups:

a, az a, a

a, az a
PoPuly o a, as|’
0 0 0 a,
a,;3 a, 0 O
0 a;, 0 O
Pul o o az a;|’
0 0 0 as
a; a, a; 0O
0 a3 a, O
Pvilo o a; 0]’
0 0 0 a,
a, a; 0
0 a, O
Pvlo o as ’
0 0 0 a,
a, 0 0 O
0 a3 0 O
Pvilo o a, 0
0 0 0 a

The conformal Killing vectors associated with the Painlegeiations are discussed below.
P,, P, : The conformal Killing vectors associated with the Painlsubgroup given above are
of the form

a1 Xzt ax(Xoot X13) + a3(Xor+ XioF Xoz) +a4(Xog+ X121+ Xoot X33).

In this case the vector multiplyinay, is zero. More generally for the reductions described for other
Painleveequations below, the conformal Killing vector associated \siftis a linear combination
of the conformal Killing vectors associated with, a,, andas.

The vectors multiplyingg;, a,, andas are, respectively,

’Xl: - &U,
X,=d,+d,
X3=(F—1)dy+ 05— G, +To.

We now choose new variables', w?, w3, andt, such that

X(wh=6, X(t)=0, i,j=1,2,3. (44)
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A particular choice is

1 2~3

=—oc+o(7—1)— 507, w2

1~2

=7- 507, W3

w =0, t=7T—7-0
Using the gauge freedom, we let the one-fodnmave the form

A=W;dw,

where theW;’s are functions ot only. That is, the gauge freedom has been used to choose the
coefficient ofdt to be zero. Hence,

A= _W1d0'+ ([’7'_ T— 2772]W1—5'W2+W3)d5'—5W1d7'+ (BW]_"‘Wz)d?,
from which we can read the values Af., A;, A., andA;. The SDYM equations are

W;=0, Wp=[W; W3], W5=[W,,tW,;+Ws].

From these equations it follows that three conserved quantitielk=are(W,;W,), m=Tr(Wz;W;
+2W2), andn=Tr(W,Ws,).
Using the residual gauge freedol; can be put into one of the canonical forms,

(g —0k> . (8 ;)

wherek is a constant. The first case leads?p while the second leads 1, . If we choosey to
be one of the roots of the gauge-invariant equation

de([Wy,yW,—W;])=0,

we find that(up to simple rescalingsy solves the appropriate Painleeguation.

~ For the other Painlévequations, we list the conformal Killing vectors, the choices for the
w!’s andt, and the reduced SDYM equations.
I:)III

X1=79,~5d,,
Xo=—10,+ T,
Xs=—0d,—Tds— 19, — 7.
wl=—7/%, wW2=7%, wi=-logo, t=o oo+ 77

WiIO, tWéZZ[W?),Wz], Wé=2t[W1,W2]
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PIV
Xl= a;!
Xo=—1d,+ d5+T 5,
3(32 00,+70,.

wl=7— 152, w?=—olr, W3=|0g7', t=o+aolr.

NI

(45)
Wi=0, Wé:[tW2+W3,W1:|, Wé:[W:;,Wz]

Xi=—10,+ 7,
Xo=0d,+Tds+ 19, +7,
X3=—Gd;—70;.
W=7z, wi=log([oT+77)/T), Wi=log(r/F), t=olr+7/5.

W:II_ZO, Wé=[W3,W1], tWé:[tW]_'f'Wz,Wg]

$(1= —0d,—71d,,

Xo= — T35 —70
X3=Td5+ 70,.
wl=—logo, w?=-log7 w3=log(c/7), t=—(79)/(o7).
W,=0, tWj=[W, W5], t(1—t)W;=[Ws, tW;+W,].

1. Reduction of the linear problem

Note that each of the symmetry reductions of the SDYM equations to one of the Painleve
equations extends to a reduction of the linear probl@® and (17). However, in finding a
reduction of the linear problem, the spectral paraméterust also be transformed. The symme-
tries of the field equations are lifted to symmetries of the linear problemPgpive extend the
reduction above to the linear problefl6) and (17) by restricting W to have the form
W(o,7,0,7,0)=¢(t;\), wherex=7/(c{). Note that then

70, W=—Go-W=tdp, and FW=—0cd, W=tdy+\d .
The linear problen{16) and (17) then becomes

W wirwarws W W 45

The system of equation@6) is the isomonodromy problem fd? \,. The compatibility of(46)
gives Eqgs.(45), which are equivalent t® ;. Isomonodromy problems for the above reductions
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to P,—Py can be obtained in the same way. Indeed, it is often easier to identify a reduction to one
of the Painleveequations from the form of the isomonodromy problem. By comparing the
isomonodromy problem to those in the literature, we can identify the component that will satisfy
the appropriate Painlévequation.

V. THE DARBOUX—-HALPHEN SYSTEM

In this section we consider a reduction of the SDYM equations to an integrable generalization
of the classical Darboux—Halphen system. Its general solution is densely branched and contains a
movable natural barrier.

Consider the reduction of the SDYM equations in which #)gs are functions ott:==—x°
only. This gives the well known Nahm equati6hs

Ar=[A2.A3], A=[Az. A1l As=[A1.A;], (47)

where we have chosen a gauge in whigj=0.
Using 0iff(S%), the infinite-dimensional Lie algebra of vector fields 8f we choose the
components of the connection to be of the form

3
A&t)zj%l OijM (D) X . (48)

The X,’s are divergence-free vector fields 84 and satisfy thesw(2) commutation relations

3
[Xiaxj]:gl Eijk Xy s (49

wheree;j, is totally antisymmetric and;,3=1. The S@3) matrix[O;;] is used to represent the
points of S® (see, e.g., Ref. 3%and the action of the vector field§ on Ojk is given by

3
xiojkzzl ik Oj - (50

Substituting Eq(48) into Eq.(47) and using(49) and (50) together with the identities

3

3
i ]_%1 &ijkOipOjqOwr=¢€pqr» ;1 Eijk€imn= OjmSkn— Sjn Skms

yields
M=(AdjM)T+M™™M —(TrM)M, (52)

where (AdjM):=(detM)M 1 is the adjoint ofVl and the dot denotes differentiation with respect
to t. Equation(51) was first derived in Ref. 20. Equatidfl) was also derived in Ref. 34 where
it was shown to represent an &) invariant hypercomplex four-manifold. Since the Weyl curva-
ture of a hypercomplex four-manifold is self-dual, E§1) describes a class of self-dual Weyl
Bianchi IX space—times with Euclidean signattre.

In order to solve Eq(51) we first introduce a simple factorization. If the eigenvalues of the
symmetric partM¢, of M are distinct, theiM ¢ can be diagonalized using(l@omplex orthogonal
matrix P. In this case we may write

M=Mc+M,=P(d+a)P %,
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whered:=diag (1,0,,ws3), ;# o, i#], and the nonzero elements of the skew-symmetric matrix
a are denoted aa;,= —ay;= 73, ay3= —azy= 7, andas;= —a3= 7,. Using the above factor-
ization of M, Eq. (51) can be transformed into
1= ww3— 0 (wy+ w3)+ 72,
2= w301~ wy( w3+ 1)+ 72, (52
(.1)3: wWiWwo— (1)3((1)1+ (1)2) + 7'2,
where 72:= 75+ 75+ 75 and
1=~ 7wt w3), To=—T(w3ztwy), T3=—T3(w1twy), (53

together with the linear equation
P+Pa=0, (54)

for the matrixP. The system(52) with 72=0 is the classical Darboux—Halphen system which
appeared in Darboux’s analysis of triply orthogonal surfacasd was later solved by Halphéh.
Halphen also studied and solved E¢52)—(56),* which are linearizable in terms of Fuchsian
differential equations with three regular singular points.

Taking the differences between the various equatior($2n results in

1 1
w1="5 &ln(wz— w3), Wy=— > aln(wg,— 1), wz3=-— > aln(wl— 7).
Together with Eqs(53), these equations show that
2
CEZ:: 1 y
(w1~ w3) (w3~ 1)
2, , 55
p (w2— w3)(w1~ ) ®9
2
’)/22: T3

(03— 1) (0~ w3)

are constants. Without loss of generality we choasg, and y to have nonnegative real parts.
Hence, provided the symmetric part ldf has distinct eigenvalues, E(1) reduces to the third-
order systenm52), where

7= a%(w1— wy) (03— w1) + B0y~ w3) (w1~ wy) + Y (w3~ w1) (0~ w3), (56)
together with the linear equatids4) for P. In Refs. 47 and 33, solutions of equatidb®)—(56)

for special choices of, B, andy were determined in terms of automorphic forms.
Note that the systerf62) with 72 as in(56) is invariant under the transformation

wj(u(t)) c
(ct+d)? * ct+d’

t—pu(t):= wj(t)— ad—bc=1.

ct+d’

We introduce theu-invariant function
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w1 w3

S:=

(57)

Wy~ w3

Differentiating Eq.(57) and using the systeli®%2) yields 5=2s(w;— w,). Repeating this process
givess=2(5—2w3s) (w1 — w,). Solving these two equations together wifY) for the w's gives

1 dI S
1T 75 Gt s(s— 1)
1d S
w2=—§ alna, (58)
! I
w3——§ ang

Substituting the parametrizatigh8) into any of the equations i(62) shows thas(t) must satisfy

2
{s,t}+%V(s)=O, (59

where
d/s) 1/8\?
{S"}:a(g)‘z(g)

is the Schwarzian derivative andis given by

1_B2 1_,)/2 ,82+72—a2—l

V)= —g—+ (s—1)? * s(s—1) (60
The general solution of Eq59) is given implicitly by
uy(s)
t(s)= ——, 61
(9= 0.5 (61

whereu,(s) andu,(s) are two independent solutions of the Fuchsian differential equation

d?u 1
@'ﬁ‘zV(S)U:O (62)

with regular singular points at 0, 1, and The transformation
U(S) — SC/2(1_ S)(a+ b—c+ 1)/2X(S) (63)
maps Eq(62) to the Gauss hypergeometric equation

d?x dy
s(l—s)@+[c—(a+b+l)s]E—abX:O, (64)

wherea=(1+a—B—y)/2, b=(1—a—B—vy)/2, andc=1- B (see, e.g., Refs. 45 and. Note
that from the general solutios(t) of Eqg. (59) we can reconstruct the;’s from Egs.(58) and the
7;’'s then follow from (55).

From Eq.(61), if «, B, andy are non-negative real numbers such that3+ y<1, then the
upper-(or lower) half s-plane is mapped to a triangular region in taglane whose sides are the
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arcs of circles and whose vertices subtend anglesf3, andym. Moreover, ife, 8, andy are
either O or reciprocals of integers, thers an analytic function of on the interior of a circle on
the complex spher€U<« but cannot be analytically extended across any point of the circle. That
is, the circle is a natural barrier for the functis(t).

The solution procedure just outlined allows us to obtain explicit expressions for the conserved
guantities for the generalized Darboux—Halphen sys&2h and (56). In Ref. 36, it was shown
that the classical Darboux—Halphen system admits no meromorphic first integrals. In Ref. 17, the
first integrals for the full systent62) and (56) were found and shown to be branched and tran-
scendental involving hypergeometric functions. The existence of these integrals is consistent with
Ref. 36 because even in the classical case they are branched despite the fact that the general
solution is single-valued.

Fix two linearly independent solutions, andu, of Eq. (62) with Wronskian

W(Uy,Up)=Uup—Upu; =1, (65

where prime denotes differentiation with respectstaThen the general solution of E(G9) is
given implicitly by

H(s)= JoUs(S) = JgUs(s)
()= loui(s)—luy(s)’

(66)

wherel , andJ,, a=1,2, are constants satisfyingJ,—1,J;= 1. Differentiating Eq.(66) twice
and using(65) gives

loui—lu,=8Y2,  |u;—lu,=35"3%, (67)
Solving the linear equation®7) for |, andl, gives

_dée,

CT

é,=5Yu,(s), a=12. (68)
The constantd; andJ, are then obtained from Eq&6) and(68) together with the normalization
I,J,—1,J,=1. They are given by

J,=tl,—d,, a=172.

So, thel, andJ,, taken to be functions of,s,5 and$ are first integrals for the Schwarzian
equation. In terms of the Darboux—Halphen variables, these quantities are

2 i
b= 2 (@) Ug(s(@), 1o= \/r(w_)uz,(s(wi))—(wl—wz—wg)\/%uas(wi)),

wherer () = V(w,— w3)/ (01— w,) (w,— w3) ands(w;) is given by Eq.(57).
In terms of these variables, the Darboux—Halphen sys&tnand(56) can be written as the
Hamiltonian system

AL B L, H—Iiﬂ% =1,2 69
¢a_m_ ) a__a¢a_ ) - 2 ] a= 149 ( )

subject to the algebraic constraint

d1lo— ol 1 =W(uy,uy) = 1. (70

The canonical coordinates,, ,¢,} are analogs of the action-angle variables for the Darboux—
Halphen system. The phase space dynamics of the system is restricted to the constraint subspace
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given by Eq.(70). This represents a three-dimensional complex quadric. Poisson—Nambu struc-
tures for the generalized Darboux—Halphen systB#) and (56) are presented in Ref. 17 which

are similar to those for rigid body dynamics in three dimensf3ri8The system is also written as

a gradient flow in Ref. 16.

A. The Chazy equation

Let w;, wy, w3 be a solution 0f52) with 7=0 and defing/:=—2(w;+ w,+ w3). Theny is
a solution of the equatidfr'®

(71

d3y d2y dy 2
W‘ZVW_3(E) :

which was studied by ChaZy-2°Furthermore, given a solution of the Chazy equatiofi71), let
w1, w,, andw; be the three roots of the cubic equation

1d 1 d?
+——yw J

23z 12ae 0

If the w;’s are distinct, then they solve the classical Darboux—Halphen syStemthe system
(52) with 7=0].
The general solution of the Chazy equation is given by

d
y(t(s))= 6 Inxl(s) t(s)= x2(s)/ x1(s), (72

wherey; and y, are two independent solutions of the special hypergeometric equation

L d>x¢ (1 7 \dy 1 0
S1=9)42 12765 as ~ 1aaX =

On replacingy; and x», with the independent linear combinatioag,+by, and cy;+dys,
ad—bc=1, it can be seen from E¢72) that the Chazy equation admits the symmetry

6¢C
ct+d’

at+b
ct+d

y(t)—=Y(t)=(ct+d) %y ad—bc=1. (73

As well as having a general solution in terms of special hypergeometric functions as described
above, the Chazy equatigiil) is related to the theory of modular functioh®’ Indeed, a particu-
lar solution of(71) is given by

y(t) =i 7E,(1), (749

where

6
2

Ea(t):=1+— mZ: :2 (79

» (mt+n)2

is the second Eisenstein serifidote that the serie§’5) is not absolutely convergent, so the order
of the sum is important. The second Eisenstein series can also be written as the Fourier series

©

E2<t>=1—24n§1 o (n)q", q=&",
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whereoq(n) is the sum of the divisors at.
Furthermore, the solutio(v4) can be written in terms of a special logarithmic potential,

1d
y(t)=§aln A(t), (76)

whereA is the discriminant cusp form of weight 12, which satisfies
A(u(t)=(ct+d)A(t), nePSL2;2). (77)

This shows that there is a deep connection between the Chazy equation and the theory of modular
forms.
The discriminant modular form has the well known representation

o0

(277)*12A(t>=qn[[1 (1-gqM?*= 2 (n)q",

n=1

whereq=¢&"" and the coefficient functior(n) is called the Ramanujamfunction (see, e.g.,
Ref. 52. From Egs.(76) and (74) it can be shown thaf\ satisfies the homogeneous ODE of
degree 4;

d*A dA d®A 3 [d?A\2 dA\2d?A  13/dA\*
AS__SAZ____ 2 | T =
dt* dt dt* 2 (dtz) (dt) dt? 2(dt>

Rankir?! first showed that the discriminant cusp form satisfies this equation. &ihes no zeros
or poles and satisfies a homogeneous equation it is the natural analogrdéittetion that appears
in Hirota’'s method(see, e.g., Sec. 3.3 of Ref).4

Note that the characterization of the Ramanujan coefficiefity is a major problem in
number theory. These famous numbers arise naturally as the Fourier coefficiarfty athen we
write the Chazy equation in the above homogeneous form.

Furthermore, there is another important correspondence between the Chazy equation and
Ramanujan’s work. In 1916 Ramanujdproved that the functions

F><q>=1—24n§l o1(n)g",

Q<q)=1+24onz1 o3(n)q",

[’

R(q)=1—504n§l os(n)q",

whereak(n)=2d|ndk, k=1,3,5 (sum of the divisors of to thekth powey), satisfy
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P_1
qd_q_l_z( -Q),

dQ 1
qd—q—g(PQ—R), (78

dR_l PR ’
qd_q_i( —Q9).

Usingq=¢€*"", r=t, the equationg78) take the form

aP i

4" PQ.

dQ 2i

g;=§%PQ—R% (79

dR )
E—I(PR—Q ).

Using the first of the above equations to find @= P2+ 6i dP/dr, the second equation implies
R=—9(d?P/d7?) +9iP (dP/d7) + P3. Then the last of the above equations yields

&y, ()
a3~V e

whereP(q)=—iy (7). Finally, in terms ofy(7)=="1y(t), y satisfies the Chazy equati¢nl).
Thus the special solutiof74) yieldsy(t) =i 7E,(t) =i 7P(q). Knowing P(q), from (78) we can
obtain the other function®(q) andR(q) directly. Moreover, since we know the general solution
of the Chazy equation, we know the general solution of the equations of Ramanujan. N@e that
andR are also called the normalized Eisenstein seffigaindEg (see, e.g., Ref. 35

As an historical postscript we note that Chazy and Ramanujan both worked on the same
equation at nearly the same time, but apparently they did not know this!

B. The generalized Chazy equation

Let (w;,w,,w3) be a solution 0f52)—(56). Ablowitz, Chakravarty, and Halbutd showed

that
yi=—2(w1+ wo+ w3)=—2TrM (80
solves
d3y d?y dy\? 4 dy ,\?
ae Pae 3 a) ——36—n2(f’a‘y) : (81)

if and only if eithera= B=vy=:2/n or exactly one of the paramete#s 3, y is 2/n and the other
two arei. Equation(81) was also studied by ChaZy?®and is usually referred to as tlyener-
alized Chazy equatiofto contrast it with the classical Chazy equati@ti), which is the special
casen=o].

It follows from Egs.(58) and (80) that the general solution @81) is given by

'SG

1
yO=5 G sf(s—1)* (82)
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In Chazy’s analysis of Eq81) he showed that its solution is given by

~1d | J8 83
y(t)= > P17 (83
where the Schwarz functiohsolves Eq(59) with (60) anda=1/n, B=3, y=3. The functionJ,
and hencg, is single-valued ih is an integer greater than 1. The choice again corresponds
to the classical Chazy equati¢nl).

Equationg82) and(83) suggest that there is a relationship betwéemd the special Schwar-
zian triangle functions described above. In the case whemrorresponds to the choice=
=+y=2/n, it can be shown that

5 4 (s>—s+1)3
27 A(s—1)2"

and, similarly, wherw=2/n, B=y=3 we have
J=—4s(s—1)
(see Ref. h

VI. SUMMARY AND DISCUSSION

The SDYM equations are a rich source of integrable systems. The classical soliton equations
in 1+ 1 dimensions and the well known PainlegeationsP,—P , are reductions of the SDYM
equations with finite-dimensional Lie algebras. Reductions of the SDYM equations using infinite-
dimensional algebras are of particular interest. They yield the classical@imensional soliton
equations, the Chazy equations and a ninth-order generalization of the Darboux—Halphen system.
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