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Abstract

In this paper we discuss the structure of recursion operators. We show that re-
cursion operators of evolution equations have a nonlocal part that is determined
by symmetries and cosymmetries. This enables us to compute recursion operators
more systematically. Under certain conditions (which hold for all examples known
to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchies of in-
finitely many commuting symmetries of the operator. Moreover, the nonlocal part
of a Nijenhuis operator contains the candidates of roots and coroots.
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1 Historical introduction

We first give a sketch of how the subject of integrable systems started, before
we move on to the specific subject of this paper, the analysis of the structure
of recursion operators.

There are several places in the literature with eye-witness descriptions such
as [vdB78,Kru78,EvH81,New85,Kon87,AC91] and [Pal97]. The following nar-
rative is based mainly on these sources.

The discovery of the physical soliton is attributed to John Scott Russell’s
observation in 1834: A boat was rapidly drawn along a narrow channel by

1 This paper is is combining the contributions of both authors to the Proceedings.
J. P. Wang gratefully acknowledges the support from Netherlands Organization for
Scientific Research (NWO) for part of this research.
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a pair of horses. When the boat suddenly stopped before a bridge, the bow
wave detached from the boat and rolled forward with great velocity assuming
the form of large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel without change the
original form or diminution of the speed, as observed by Scott Russell who
followed on horseback.

Although Scott Russell spent a major part of his professional life carrying out
experiments to determine the properties of the great wave, it is doubtful that
he appreciated their true soliton properties, i.e., the ability of these waves
to interact and come out of these interactions without change of form, as if
they were particles. Nevertheless, the dash on the horseback exerts a powerful
appeal.

The discovery of mathematical soliton started with an investigation of the solu-
tions of nonlinear partial differential equations, such as the work of Boussinesq
and Rayleigh, independently, in the 1870’s.

It was in 1895 that Korteweg and de Vries derived the equation for water
waves in shallow channels, which confirmed the existence of solitary waves.
The equation which now bears their names 2 is of the form

ut = u3 + uu1 (KdV equation), where ui =
∂iu

∂xi
. (1.1)

This was the first stage of discovery. The primary thrust was to establish the
physical and mathematical existence and robustness of the wave. The discovery
of its additional properties was to await the appearance of computers.

In 1955, Fermi, Pasta and Ulam (FPU) undertook a numerical study of the
one-dimensional anharmonic lattice of equal masses coupled by nonlinear
springs. The computations were carried out on the Maniac I computer. They
predicted that any smooth initial state would eventually reach equilibrium
due to the nonlinear coupling, according to the ergodic hypothesis. Much to
their surprise, the energy recollected after some time in the degree of freedom
where it was when the experiment was started. Thus the experiment failed to
produce the expected result. Instead it produced a difficult challenge.

Fortunately, the curious results were not ignored altogether. In 1965, Kruskal
and Zabusky approached the FPU problem from the continuum viewpoint.
They amazingly rederived the KdV equation and found its stable pulse-like

2 According to R. Pego, in a letter to the Notices of the AMS, 1998, volume 45,
number 3, this equation appears in a footnote of a paper by Boussinesq, Essai sur la
théorie des eaux courantes, presented in 1872 to the French Academy and published
in 1877.
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waves by numerical experimentation. A remarkable property of these solitary
waves was that they preserved their shapes and speeds after two of them col-
lide, interact and then spread apart again. They named such waves solitons.

The discovery by Kruskal and Zabusky attracted the attention and stimu-
lated the curiosity of many physicists and mathematicians throughout the
world. They took up the intriguing challenge of the analytical understanding
of the numerical results. The stability and particle-like behavior of the so-
lutions could only be explained by the existence of many conservation laws;
this started the search for the conservation laws for the KdV equation. A
conservation law has the form DtU + DxF = 0; U is called the conserved
density and F is called conserved flux. The expressions for the conservation
of momentum and energy were classically known:

Dtu−Dx(u2 +
u2

2
) = 0, Dt(

u2

2
)−Dx(uu2 − u2

1

2
+
u3

3
) = 0.

Whitham found a third conserved density, which corresponds to Boussinesq’s
famous moment of instability. Zabusky and Kruskal continued searching and
found two more densities of order 2 and 3 (the highest derivative in the expres-
sion). Since they had made an algebraic mistake, they did not find a conserved
density of order 4. This caused a delay of more than a year before they went
back on the right track.

Kruskal somewhat later asked Miura to search for a conserved density of order
5. Miura found one and then quickly filled in the missing order 4. After the
order 6 and 7 were found, Kruskal and Miura were fairly certain that there
was an infinite number. However, Miura was challenged to find the order 8
conserved density since there were rumors that order 7 was the limit. He
did this during a two-week vacation in the summer of 1966. Later, it was
proved that there was indeed a conserved density of each order [MGK68].
Moreover, in [SW97b] it is proven that there are no other conservation laws
besides the known conservation laws of the KdV equation , see also [SW97a]
for generalizations of this result.

The existence of an infinite number of conservation laws was an important
link in the chain of discovery. After the search for conserved densities of the
KdV equation (1.1), Miura found that the Modified Korteweg–de Vries
equation

vt = v3 + v2v1 (mKdV) (1.2)

also had an infinite number of conserved densities. He showed that

ut − (u3 + uu1) = (2v +
√−6Dx)(vt − (v3 + v2v1)),
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under the transformation u = v2 +
√−6v1, which now bears his name. There-

fore, if v(x, t) is a solution of (1.2), u(x, t) is a solution of (1.1). From this
observation, the famous inverse scattering method was developed and the Lax
pair was found [Lax68]. Gardner was the first to notice that the KdV equation
could be written in a Hamiltonian framework. Later, Zakharov and Faddeev
showed how this could be interpreted as a completely integrable Hamiltonian
system in the same sense as finite dimensional integrable Hamiltonian systems
[ZF71] where one finds for every degree of freedom a conserved quantity, the
action.

The conserved geometric features of solitons are intimately bound up with
notions of symmetry. The symmetry groups of differential equations were first
studied by Sophus Lie [Lie60]. Roughly speaking, a symmetry group of a sys-
tem consists of those transformations of the variables which leave the system
invariant. In the classical framework of Lie, these groups consist of only geo-
metric transformations on the space of independent and dependent variables
of the system, the so-called geometric symmetries. There are four such linear
independent symmetries for the KdV equation, namely arbitrary translations
in x and t, Galilean boost and scaling.

In 1918, Emmy Noether proved the remarkable theorem giving a one-to-
one correspondence between symmetry groups and conservation laws for the
Euler–Lagrange equations [Noe18]. The question was raised how to explain
the infinitely many conserved densities for the KdV equation. One started
to search for the hidden symmetries, generalized symmetries, which are
’groups’ whose infinitesimal generators depend not only on the independent
and dependent variables of the system, but also the derivatives of the depen-
dent variables.

In fact, generalized symmetries first appeared in [Noe18]. Somehow, they were
neglected for many years and have since been rediscovered several times. The
great advantage of searching for symmetries is that they can be found by
explicit computation. Moreover, the entire procedure is rather mechanical
and, indeed, several symbolic programs have been developed for this task
[HZ95,Her96].

In 1977, Olver provided a method for the construction of infinitely many sym-
metries of evolution equations, originally due to Andrew Lenard [GGKM74,
p. 99]. This is the recursion operator [Olv77], which maps a symmetry to
a new symmetry. For the KdV equation, a recursion operator is

RKdV = D2
x +

2

3
u+

1

3
u1D

−1
x .

Here D−1
x stands for the left inverse of Dx, so the recursion operator is only
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defined on ImDx.

Almost at the same time, Magri studied the connections between conservation
laws and symmetries from the geometric point of view [Mag78]. He observed
that the object of the theory of conservation laws, the gradients of the con-
served densities (covariants), was dual to that of the theory of the symmetries.
This problem required the introduction of a ”metric operator”, called sym-
plectic operator if it maps the symmetries to the cosymmetries, or called
Hamiltonian (cosymplectic) operator in the reverse direction. He found
that some systems admitted two distinct but compatible Hamiltonian struc-
tures (Hamiltonian pairs). He called them twofold Hamiltonian system, now
called bi-Hamiltonian systems. The KdV equation is a bi-Hamiltonian system.
It can be written

ut = Dx(u2 +
1

2
u2) = (D3

x +
2

3
uDx +

1

3
u1)u,

where these two operators are a Hamiltonian pair.

Actually, the two operators had made their appearance before. Lenard used
them to rederive the KdV hierarchy, infinitely many equations sharing all t-
independent conservation laws. Lax also used them to produce infinitely many
conservation laws for the KdV equation [Lax76]. This scheme is now called
the Lenard scheme[Dor93].

There appeared naturally a special kind of operator, called the Nijenhuis or
hereditary operator. The defining relation for this operator was originally
found as a necessary condition for an almost complex structure to be com-
plex, i.e., as an integrability condition. Its important property is to construct
an abelian Lie algebra. . Precisely speaking, for any given vectorfield Q0 leav-
ing the Nijenhuis operator R invariant, the Qj = Rj(Q0), j = 0, 1, · · · , leave
R invariant again and commute in pairs. This property was independently
given by Magri [Mag80] and Fuchssteiner [Fuc79], where it was called hered-
itary symmetry. In the paper [GD79], the authors also introduced Nijenhuis
operators, called regular structures.

Interrelations between Hamiltonian pairs and Nijenhuis operators were discov-
ered by Gel’fand & Dorfman [GD79] and Fuchssteiner & Fokas [FF80,FF81].

For example, the recursion operator of the KdV equation

RKdV = (D3
x +

2

3
uDx +

1

3
u1)D

−1
x
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is a Nijenhuis operator and it produced the higher KdV equations,

ut = Rj(u1), j = 0, 1, · · · .

This is the KdV hierarchy, which shares infinitely many commuting symme-
tries produced by the same recursion operator.

From this point in time on, there has been an explosion of research activity in
algebraic and geometric aspects of nonlinear partial differential systems, both
the applications to concrete physical systems and the development of the the-
ory itself. See [Oev84,MSS91,Olv93,Dor93,FG96,Wan98,BSW98,SW98,BSW01,SW00b]
and section 6.

2 Integrable Evolution Equations

Integrable evolution equations in one space variable, like the KdV equation,
are often characterized by the possession of a recursion operator, which is an
operator invariant under the flow of the equation, carrying symmetries of the
equation into its (new) symmetries.

Example 1 The operator R = D2
x + 2

3
u + 1

3
u1D

−1
x is a Nijenhuis recursion

operator for the Korteweg–de Vries equation ut = u3 + uu1. It is remarkable
that any Rlu1 is a local function ([Olv93, p. 312]), i.e., Rlu1 ∈ ImDx for
l ≥ 0.

The fact that the image under repeated application of the recursion operator
is again a local function is often not proved, with the KdV equation as an
exception to this rule; some proofs can be found in [Dor93], relying on the bi-
Hamiltonian character of the equations. But usually one finds in the literature
a few explicit calculations, followed by the remark that this goes on. It is the
goal of this paper to prove that this is indeed the case for at least a large
class of examples (no exception being known to us, cf. however [Li91]). We
give a general theorem to that effect, valid for systems of evolution equations
in one spatial variable and apply this theorem to a number of characteristic
examples.

We do not use the property that the operator is a recursion operator of any
given equation, only that it is a Nijenhuis operator. Of course, the fact that
these operators are recursion operators makes them interesting in the study
of integrable systems. We show that Nijenhuis operators of the form that
one finds in the study of evolution equations are well defined, i.e., they map
into their own domain under some weak conditions and can therefore produce
hierarchies of symmetries which are all local. Moreover, the nonlocal part of
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the operator contains the candidates of roots, starting points for a hierarchy
of symmetries.

Apart from the theoretical interest, this splitting (which reminds one of the
factorization of the operator in symplectic and cosymplectic operators, if they
exist) is useful in the actual computation of a recursion operator for a given
system. For this can be done iteratively, once the order of the operator is
known or guessed, treating Dx as a symbol, which is fine as long as its power
is nonnegative, but fails for D−1

x . It is here that one can proceed to split off a
symmetry, and move the remaining part after the D−1

x . This turns out to be
an effective algorithm to compute recursion operators.

3 Construction of recursion operators

We show that if the recursion operator is of a specific form, its nonlocal part,
namely containing the D−1

x term(s), can be written as the outer products of
symmetries and cosymmetries.

Let us start by sketching the way things are set up abstractly, mainly to fix
notations. We construct, following [GD79,Dor93], a Lie algebra complex. First
we consider the representation space A as functions in t, x and u, u1, · · · (where
each function depends only on a finite number of variables, the so-called local
functions), divided out by the image of the differentiation operator

Dx =
∂

∂x
+

∞∑

k=0

uk+1
∂

∂uk

.

The equivalence class of a local function g is called a functional and denoted
by

∫
g, the idea being that one can do partial integration, since

0 ≡
∫
Dx(gh) =

∫
hDxg +

∫
gDxh.

Next the Lie algebra h, the algebra of evolutionary vectorfields, is defined
as follows. Take the Lie algebra of vertical vectorfields of the form

∞∑

k=0

fk
∂

∂uk

,

where the fk are local functions, and divide out the image of the Lie derivative
of Dx, where the Lie derivative is given by the commutator of the vectorfields.
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This construction has as an immediate consequence that elements in h com-
mute with Dx and that if

∑∞
k=0 fk

∂
∂uk

∈ h, then fk = Dk
xf0. This implies that

the elements in the Lie algebra are determined by a local function f0. Under
this identification the Lie derivative now looks like

Lk0f0 = Df0 [k0]−Dk0 [f0],

where Df0 [k0] is the Fréchet derivative

Df0 [k0] =
∞∑

k=0

∂f0

∂uk

Dk
xk0.

To each element in h one can associate an evolution equation of the form

ut = f0,

although, strictly speaking, this association is not so innocent as it looks, since
one associates to the evolution equation the operator

f̂0 =
∂

∂t
+

∞∑

k=0

Dk
xf0

∂

∂uk

.

To distinguish the evolutionary vectorfields from the operator associated to
the evolution equation, we introduce the notation

f̄0 =
∞∑

k=0

Dk
xf0

∂

∂uk

∈ h.

This leads to: f̄0k0 = Dk0 [f0]. As long as things are time-independent, one does
not see the difference, but in the time dependent case one really has to treat
the equation and its symmetries as living in different spaces. Since everything
is defined in terms of the Lie derivative of Dx, the natural ring of coefficients
C is formed by the functions of t alone, since they commute with Dx. In the
sequel, tensor products will be with respect to C, unless otherwise indicated.
We now have a ring of coefficients, a Lie algebra and a representation space,
with the Lie derivative as the representation operator. From here on we can
construct a Lie algebra complex. Let us give the first steps here, since we do
not need the general theory.

We denote the space C-multilinear n-forms by Cn(h,A). One defines, starting
with a 0-form in C0(h,A) = A, i.e. a functional

∫
g, a 1-form

d0
∫
g(

∞∑

k=0

Dk
xf0

∂

∂uk

) =
∫ ∞∑

k=0

Dk
xf0

∂g

∂uk

≡
∫
f0

∞∑

k=0

(−1)kDk
x

∂g

∂uk

=
∫
f0E(g)
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in C1(h,A), where E is the so-called Euler operator, cf [Olv93]. One could
write this as

d0
∫
g = E(

∫
g).

When α ∈ C1(h,A) is of the form α = d0
∫
g, one calls

∫
g the density of α.

Next one defines, starting from a 1-form α ∈ C1(h,A), a 2-form d1α ∈
C2(h,A) by

ι2(H)d1α = LHα− d0
∫
α ·H = LHα− d0ι1(H)α,

where ιn(H)β(H1, · · · , Hn) = β(H,H1, · · · , Hn), with H,Hi ∈ h, i = 1, · · · .n.

In this Lie algebra complex we identify all the objects of interest to the study
of integrable systems, like symmetries, cosymmetries, conservation laws, re-
cursion operators etc., which are all characterized by the fact that their Lie
derivative with respect to the evolution equation vanishes. For the complete
theory of this Lie algebra complex we refer to [Wan98].

In this paper we make the blanket assumptions that

• The operators and vectorfields are t-independent. However, with care we can
treat the time-dependent case, see example 17. For some new developments
concerning time-dependent vectorfields we refer to [SW01].

• There exists an universal scaling symmetry. E.g., for the KdV equation

ut = K[u] = u3 + uu1

we have a scaling symmetry xu1 + 2u, such that λK̂ = 3 and λR[u] = 2. Here
λY is defined by Lxu1+2uY = λY Y, λY ∈ C.

• For any operator R : h → h of the form

R =
n∑

i=0

R(i)Di
x +

∑

j∈Γ

h(j) ⊗D−1
x ξ(j),

where R(i) ∈ h ⊗ C1(h,A), h(j) ∈ h, ξ(j) ∈ C1(h,A) and Γ is the set of
gradings, i.e., λh(j) = j. Remark that this does not hold for the ξ(j), but we
have j + λξ(j) = 1 + λR. We denote R ∼ ∑

j∈Γ h
(j) ⊗D−1

x ξ(j). In order to be
able to give some estimates later, we introduce the gap length

γ(R) = maxj∈Γj −minj∈Γj.

We denote by G⊥R the space of all g ∈ h such that ξ(j)(g) ≡ 0, where the ξ(j)

are given in the recursion operator.
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Lemma 2 Let R =
∑n

i=0 R(i)Di
x +

∑
j∈Γ h

(j)⊗D−1
x ξ(j) be a recursion operator

of the equation ut = K, i.e. LK̂R = 0, with |λK̂ | > γ(R). Then the h(j) are
symmetries of the equation and the ξ(j) are cosymmetries for any j ∈ Γ, that
is

LK̂h
(j) = 0, LK̂ξ

(j) = 0.

PROOF. Notice that

LK̂R ∼ ∑

j∈Γ

(
h(j) ⊗D−1

x LK̂ξ
(j) + LK̂h

(j) ⊗D−1
x ξ(j)

)
.

We have either λK∂u > γ(R), in which case λLK̂h(j) = λK̂ + j > γ(R) + j ≥
maxj∈Γj, or λK̂ < −γ(R) and then λLK̂h(j) = λK̂ +j < −γ(R)+j ≤ minj∈Γj.

Therefore LK̂h
(j) = 0 and LK̂ξ

(j) = 0.

Remark 3 The only case known to us that a recursion operator is not in
the form covered by our blanket assumption, is in one of the noncommutative
mKdV equations, see [GKS99].

Remark 4 We mention that this result also appeared in the paper [Bil93].
The author gave the condition that h(j) and ξ(j) are independent differential
functions, which seems not enough for the proof.

Remark 5 A similar result holds for symplectic and cosymplectic operators
i.e., their D−1

x part (if it exists) can be written as the product of cosymmetries
and symmetries, respectively. This observation is of great help in computing the
splitting of a recursion operator, see section 5.7, The new Nijenhuis operator
(3D), for an example.

4 Hierarchies of symmetries

It is shown that under certain conditions (which hold for all examples known
to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchies of
infinitely many commuting symmetries of the operator. Moreover, the nonlocal
part of a Nijenhuis operator contains the candidates of roots and coroots.

Definition 6 We say that A is an invariant of X if LXA = 0. If A is in A,
then LXA = XA, if A ∈ h then LXA = [X,A]. For the definition of the Lie
derivative LX on other objects, see [Olv93,Wan98,Oev84].
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We make a distinction between R being an invariant of K̂ and of Y ∈ h. In
the first case, we say R is a recursion operator of ut = K but in the second
case that Y is a symmetry of R. When R is t-independent, the ∂

∂t
in K̂ does

not play a role. These two act in the same way. The operator R is C-linear.
If Y is a symmetry of R, then fY , with f ∈ C, is also a symmetry of R.
However, when Y is a symmetry of K̂, in general fY will not be a symmetry
unless f ∈ R.

We finally remark that ū1 is a trivial symmetry for any operator and that any
t-independent operator is a recursion operator of the equation ut = u1.

Definition 7 An operator R is called a Nijenhuis operator (or hereditary
operator) if

LRY R = RLY R ∀Y ∈ h

Corollary 8 If Y ∈ h is a symmetry of R, then the RlY, l ∈ N are commuting
symmetries.

Theorem 9 Let R =
∑n

i=0 R(i)Di
x +

∑
j∈Γ h

(j) ⊗ D−1
x ξ(j) be a Nijenhuis op-

erator with d1ξ(r) = 0 for r ∈ Γ. If Q0 ∈ h is a symmetry of the Nijenhuis
operator with |λQ0| > γ(R) and λRλQ0 ≥ 0, then Ql = RlQ0 ∈ G⊥R for all
l ≥ 0. Moreover, the Ql commute.

PROOF. Since R is a Nijenhuis operator, for any l ≥ 0 and any symmetry
Q0 ∈ h i.e., LQ0R = 0, it follows from corollary 8 that Ql ∈ h satisfies
LQl

R = 0. We have

LQl
R ∼ ∑

j∈Γ

(
h(j) ⊗D−1

x LQl
ξ(j) + LQl

h(j) ⊗D−1
x ξ(j)

)
.

Due to the assumption that λRλQ0 ≥ 0, |λQl
| = |lλR + λQ0| ≥ |λQ0| > γ(R).

Therefore LQl
h(j) = 0 and LQl

ξ(j) = 0 by the same reason as in the proof of
lemma 2. We have, using the definition of d1,

d0
∫
ξ(j) ·Ql = d0ι1(Ql)ξ

j = LQl
ξ(j) − ι2(Ql)d

1ξj = 0.

This implies ξ(j) · Ql ∈ ImDx and we prove Ql ∈ G⊥R by induction. The
commuting of Ql follows from corollary 8.

Remark 10 The operator R can often be written as

n∑

i=0

R(i)Di
x +

∑

j∈Γ

h(j) ⊗D−1
x d0T (j),
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where the T (j) are the densities of ξ(j), i.e., E(T (j)) = ξ(j).

Our assumptions for lemma 2 and theorem 9 are not sharp. For a given oper-
ator which is t-dependent, the proof may still go through (cf. example 17).

Recursion operators of nonevolution equations appear to have a similar form.
Compare with [vBGKS97], where the same splitting of the D−1

x and D−1
y terms

is found. It would be interesting to see whether one can obtain similar results.

Corollary 11 If, moreover, R is a recursion operator of an equation and
Q0 is a symmetry of the equation, all Ql for l ≥ 0 consist of a hierarchy of
commuting symmetries of the equation.

Definition 12 Let R be a Nijenhuis operator. If the RlQ0 6= 0 exist for all
l ≥ 0 and are commuting symmetries of R, we call Q0 ∈ h but /∈ ImR a root
of R.

Definition 13 Let R be a recursion operator of a given equation. If the
RlQ0 6= 0 exist for all l ≥ 0 and are commuting symmetries of the equation,
we call Q0 ∈ h but /∈ ImR a root of symmetries for the equation.

This way, a hierarchy of commuting symmetries (of R or the equation itself,
respectively) can be characterized by the pair (R, Q0).

Definition 14 We define R? : C1(h,A) → C1(h,A), the conjugate of R, by

(R?α)Y = α(RY ), Y ∈ h.

Similarly, we define Q0 ∈ C1(h,A) to be the coroot of a Nijenhuis oper-
ator R, from which we produce a hierarchy consisting of elements satisfying
d1R?lQ0 = 0 for all l ≥ 0 and coroot of covariants for the equation, when
the operator R is its recursion operator, from which we produce a hierarchy
of covariants (furthermore, conserved densities) for the equation.

The question we try to answer now is: are the conditions in theorem 9 really
necessary or does everything follow from the fact that one has a Nijenhuis
operator? Our answer is not complete, but definitely a step in the right direc-
tion.

The reader should also notice that the proofs of theorems 9 and 15 are ad-
vertisements for the cohomological methods which are the basis for our setup.
Written out in terms of Fréchet derivatives the proofs take many pages.

Theorem 15 Define

∆ = {H ∈ dom R | |λRH | > γ(R)},
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and let R =
∑n

i=0 R(i)Di
x +

∑
j∈Γ h

(j) ⊗ D−1
x ξ(j) be a Nijenhuis operator. As-

sume that Rh(j) exist and that d1ξ(j) = 0 for j ∈ Γ. Then Lh(j)R |∆= 0 and
ι2(H)d1R?ξ(j) = 0, H ∈ ∆.

PROOF. We know that R is a Nijenhuis operator, that is LRHR = RLHR

for H ∈ dom R. We have

RLHR∼∑

r∈Γ

RLHh
(r) ⊗D−1

x ξ(r) + Rh(r) ⊗D−1
x LHξ

(r)

+
∑

j∈Γ

h(j) ⊗D−1
x (LHR)?ξ(j),

LRHR∼∑

j∈Γ

LRHh
(j) ⊗D−1

x ξ(j) +
∑

j∈Γ

h(j) ⊗D−1
x LRHξ

(j).

Since H ∈ dom R, d0
0

∫
ξ(j) ·H = 0. We know that

d0
∫
ξ(j) ·H = d0ι1(H)ξ(j) = LHξ

(j) − ι2(H)d1ξ(j).

Therefore, LHξ
(j) = 0.

Due to the same analysis as in the proof of lemma 2, for any H ∈ ∆, we draw
the following conclusions:

RLHh
(j) = LRHh

(j), (4.1)

(LHR)?ξ(j) = LRHξ
(j). (4.2)

Formula (4.1) implies that (Lh(j)R)H = Lh(j)(RH) − RLh(j)H = 0. Hence
Lh(j)R |∆= 0.

Notice that (LHR)? = LHR?. Therefore, formula (4.2) implies that

LH(R?ξ(j))−R?LHξ
(j) = LRHξ

(j),

i.e., LH(R?ξ(j)) = LRHξ
(j) since LHξ

(j) = 0. This leads to

ι2(H)d1R?ξ(j) = LH(R?ξ(j))− d0
∫

R?ξ(j) ·H =

=LRHξ
(j) − d0

∫
ξ(j) ·RH = ι2(RH)d1ξ(j) = 0.

The statement is proved now.

13



Remark 16 This theorem theoretically gives us the candidates of roots and
coroots. One notices that the restriction on the space ∆ is due to the technical
problem in the proof. In practice, they are indeed roots and coroots, since the
statement of the theorem can be checked by computer algebra on arbitrary
H ∈ dom R, without any use of the condition that restricts one to ∆.

Example 17 Consider the Cylindrical Korteweg–de Vries equation

ut = u3 + uu1 − u

2t

and let a Nijenhuis recursion operator be given by

R = t(D2
x +

2

3
u+

1

3
u1D

−1
x ) +

1

3
x+

1

6
D−1

x ∼ (
t

3
u1 +

1

6
)D−1

x .

There exists a scaling symmetry −3t∂t + xu1 + 2u such that

λût = 3, λR = −1, λ t
3u1+1

6

= −2.

However, h(−2) = t
3
u1 + 1

6
is not a symmetry and ξ(−2) = 1 is not a cosym-

metry of the equation. Lemma 2 fails since LXξ
(−2) = − 1

2t
ξ(−2) and − 1

2t
∈ C

which commutes with D−1
x . We now compute LXκ−2 = − 1

2t
κ−2, to find ∂κ−2

∂t
=

− 1
2t
κ−2. This implies κ−2 = 1√

t
.

We rewrite the nonlocal part of R as R ∼ √
t( t

3
u1 + 1

6
)D−1

x
1√
t
, and we have

that λ√
t(u1

3 + 1
6t )

= −7
2

and λ 1√
t

= 5
2
. By direct computation, we know that h(− 7

2
)

is a symmetry of the equation and ξ(− 7
2
) is a cosymmetry.

Notice that L
h(− 7

2 )R = 0 and the proof of theorem 9 can be applied. Therefore,
it produces a hierarchy of symmetries of the operator R. So we conclude that√
t(u1

3
+ 1

6t
) is a root of symmetries for the equation and 1√

t
is a coroot.

The trivial symmetry u1 of R cannot produce a hierarchy of symmetries, con-
sistent with the fact λu1λR = −1 and it does not satisfy the conditions of
theorem 9.

5 Examples

A number of examples are given, exhibiting the structure of the Nijenhuis
operator and proving the existence of the hierarchies.

14



In the following examples we do not check whether the recursion operator is
in fact a Nijenhuis recursion operator except for Burgers equation. Proofs in
the literature are usually in the forms ’after a long and boring calculation it
follows that...’. We show they satisfy the other conditions of the theorem.

5.1 Burgers equation

Consider Burgers equation [Olv93, p.315], [Oev84, p.38]

ut = f = u2 + uu1.

We explicitly check all the conditions we need in order to prove that a hierarchy
of the symmetries for the equation and the operator exists.

First we check that R = Dx + 1
2
u + 1

2
u1D

−1
x is a recursion operators of the

equation, i.e., that Lf̂R is equal to zero. We have

LXR =
∂R

∂t
+DR[f ]−DfR + RDf

=
1

2
f +

1

2
Dx(f)D−1

x − (D2
x + uDx + u1)(Dx +

1

2
u+

1

2
u1D

−1
x )

+(Dx +
1

2
u+

1

2
u1D

−1
x )(D2

x + uDx + u1)

=
u2 + uu1

2
+
u3 + uu2 + u2

1

2
D−1

x

−(D3
x +

3u

2
D2

x +
5u1 + u2

2
Dx +

3u2 + 3uu1

2
+
u3 + uu2 + u2

1

2
D−1

x )

+(D3
x +

3u

2
D2

x +
5u1 + u2

2
Dx + u2 + uu1)

= 0.

Furthermore, there exists a vectorfield xu1 + u as a scaling symmetry such
that λu2+uu1

= 2, λR = 1, λu1 = 1. It is easy to see that for R, the conditions
of lemma 2 are satisfied since γ(R) = 0. So, u1 is a symmetry of the equation.

Now we check R is a Nijenhuis operator. For all H ∈ domR, i.e., H = DxP ,
we compute

LRHR =DR[Dx(H) +
1

2
Dx(uP )]− (DxDH +

1

2
Dx · (uDP + P ))R

+R(DxDH +
1

2
Dx · (uDP + P ))

15



=
1

2
(Dx(H) +

1

2
Dx(uP )) +

1

2
(D2

x(H) +
1

2
D2

x(uP ))D−1
x

−(RDH +
1

2
(PDx +H))R + R(RDH +

1

2
(PDx +H))

= R2DH −RDHR +
1

2
Dx(H) +

1

4
uH +

1

4
u1P

+
1

2
(D2

x(H) +
1

2
(uDx(H) + 2u1H + u2P ))D−1

x

−1

4
u1P − 1

4
(u2P + u1H)D−1

x +
1

2
HDx +

1

2
Dx(H)

= R2DH −RDHR +
1

2
HDx +Dx(H) +

1

4
uH

+
1

2
(D2

x(H) +
1

2
(uDx(H) + u1H))D−1

x ,

RLHR = R(
1

2
H +

1

2
Dx(H)D−1

x −DHR + RDH)

= R2DH −RDHR +
1

2
HDx +Dx(H) +

1

4
uH

+
1

2
(D2

x(H) +
1

2
(uDx(H) + u1H))D−1

x .

Therefore, LRHR = RLHR, for all H ∈ domR.

Notice that λRλu1 > 0 and Lu1R = 0. From theorem 9 and its corollary, a
hierarchy of symmetries of the equation are Rlu1 for l ≥ 0. This confirms our
remark 16 that u1 is the root of R. There is no coroot for it since R?(1) = 0.
This reflects the fact there is only one conservation law for Burgers equation.

5.2 Krichever–Novikov equation

The Krichever–Novikov equation [Dor93, p. 121] is given by

ut = u3 − 3

2
u−1

1 u2
2

and it has a Nijenhuis recursion operator of the form

R = D2
x − 2u−1

1 u2Dx + (u−1
1 u3 − u−2

1 u2
2) + u1D

−1
x ξ(1),

where ξ(1) = 3u−4
1 u3

2−4u−3
1 u2u3 +u−2

1 u4 = E(1
2
u−2

1 u2
2). First we have γ(R) = 0

and λR = 2, λu1 = 1, λut∂u = 3 with respect to a scaling symmetry xu1 ∈ h.
Therefore, u1 is a symmetry and ξ(1) is a cosymmetry of the equation by lemma
2. Moreover, we compute Lu1R = 0 and R?ξ(1) = E(−1

2
u−2

1 u2
3 + 3

8
u−4

1 u4
2). We

16



conclude that u1 is a root of a hierarchy and ξ(1) is a coroot generating a
hierarchy of covariants for the equation.

5.3 Diffusion system

We consider the Diffusion system [Oev84, p. 41]




ut = u2 + v2

vt = v2,

with Nijenhuis recursion operator given by

R[u, v] =



Dx vD

−1
x

0 Dx


 ∼



v

0


⊗D−1

x

(
0, 1

)
.

We have Γ = {1}, λR = 1 with respect to the scaling symmetry




xu1

xv1 + v




and Lh(1)R = 0, where obviously d1ξ(1) = 0. Thereby, h(1) fulfills the conditions
of lemma 2 and theorem 9. It is a root of R and also produces a hierarchy of
symmetries of the equation.

Another candidate is the trivial symmetry



u1

v1


 and it satisfies the conditions

of theorem 9, so it is a root of a hierarchy of symmetries, which includes the
equation itself, for both the equation and R.

5.4 Boussinesq system

We consider the Boussinesq system [Olv93, p. 459]




ut = v1

vt = 1
3
u3 + 8

3
uu1,

with Nijenhuis recursion operator given by

17



R(u, v) =


3v + 2v1D
−1
x D2

x + 2u+ u1D
−1
x

1
3
D4

x + 10
3
uD2

x + 5u1Dx + 3u2 + 16
3
u2 + 2vtD

−1
x 3v + v1D

−1
x




∼



2v1

2
3
u3 + 16

3
uu1


⊗D−1

x

(
1, 0

)
+



u1

v1


⊗D−1

x

(
0, 1

)
.

There exists a scaling symmetry



xu1 + 2u

xv1 + 3v


 such that Γ = {1, 2} and λR =

3. Since the equation is t-independent, it is also a symmetry of R. Notice that
γ(R) = 1 and d1ξ(1) = d1ξ(2) = 0. So h(2) obeys the estimates in theorem 9
and is therefore a root since λR > 2.

For h(1) we explicitly compute

Rh(1) =




v3 + 4u1v + 4uv1

1
3
u5 + 4uu3 + 8u1u2 + 32

3
u2u1 + 4vv1




and λRh(1) = 4. So Rh(1) satisfies the conditions of theorem 9. Therefore the
h(j), j = 1, 2 are roots of hierarchies of symmetries for the equation (of R).

5.5 Derivative Schrödinger system

Consider the Derivative Schrödinger system [Oev84, p. 103]




ut = −v2 − (u2 + v2)u1

vt = u2 − (u2 + v2)v1,

with Nijenhuis recursion operator given by

R(u, v) =

vD−1

x · v1 − u1D
−1
x · u− u2+v2

2
−Dx − u1D

−1
x · v − vD−1

x · u1

Dx − v1D
−1
x · u− uD−1

x · v1 uD−1
x · u1 − v1D

−1
x · v − u2+v2

2




∼


vD−1

x · v1 − u1D
−1
x · u −u1D

−1
x · v − vD−1

x · u1

−v1D
−1
x · u− uD−1

x · v1 uD
−1
x · u1 − v1D

−1
x · v




18



=




v

−u


⊗D−1

x

(
v1, −u1

)
+



−u1

−v1


⊗D−1

x

(
u, v

)
.

We find that λR = 1 and Γ = {0, 1} with respect to the scaling symmetry

xu1 + u

2

xv1 + v
2


, implying γ(R) = 1. And we have that d1ξ(0) = d1ξ(1) = 0.

However, the condition for h(0) and h(1) in theorem 9 is not satisfied. First we
notice that h(1) = −Rh(0). So all we have to check explicitly are the conditions

for h(1). First all, Lh(1)R = 0 trivially. Secondly, Rh(1) =



−ut

−vt


 6= 0 and

λRh(1) = 2. We now see that Rh(1) satisfies the conditions. So h(0) =




v

−u




is a root of a hierarchy.

5.6 Sine–Gordon equation in the laboratory coordinates

Consider the Sine–Gordon equation [CLL87] in the form of




ut = v

vt = u2 − α sin(u), α ∈ R.

with Nijenhuis recursion operator given by

R(u, v) =




R11 R12

R21 R22




∼



u1 + v

u2 + v1 − α sin(u)


⊗D−1

x

(
−(u2 + v1 − α sin(u)), u1 + v

)
,

where

R11 = 4D2
x − 2α cos(u) + (u1 + v)2 − (u1 + v)D−1

x (u2 + v1 − α sin(u)),

R12 = 4Dx + (u1 + v)D−1
x (u1 + v),

R21 = 4D3
x + (u1 + v)2Dx − 4α cos(u)Dx + 2u1α sin(u) + (u2 + v1)(u1 + v)

− (u2 + v1 − α sin(u))D−1
x (u2 + v1 − α sin(u)),
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R22 = 4D2
x + (u1 + v)2 − 2α cos(u) + (u2 + v1 − α sin(u))D−1

x (u1 + v).

This is one of the ’new’ operators which appeared in [FOW87], p. 53, when
α = 1. The system is not homogeneous in 2-dimensional space, namely u and
v. Let us consider the extended system





ut = v

vt = u2 − α sin(u)

αt = 0.

Then

R̃(u, v, α) =




R11 R12 0

R21 R22 0

0 0 0



∼ ˜h(1) ⊗D−1

x
˜ξ(1)

and λR = 2 with respect to the scaling symmetry




xu1

xv1 + v

xαx + 2α




. We see that

γ(R) = 0, d1 ˜ξ(1) = 0 and L ˜h(1)R̃ = 0. So ˜h(1) is a root of a hierarchy of

symmetries of the Nijenhuis operator R̃. This leads to the same result if we

take α as a constant, i.e., h =




u1 + v

u2 + v1 − α sin(u)


 is a root of R.

In fact R(h) = 2R(Q0), where Q0 =
(
u1, v1

)
which is considered as a start

point in [FOW87] (so this is not in contradiction, since the same hierarchy
will be generated by h and Q0).

5.7 The new Nijenhuis operator (3D)

Consider the following Nijenhuis operator [FOW87, p. 54]
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R(u, φ, ψ) =




4u2 0 1

Dx −2u2 0

4uψ Dx − 4uφ −2u2




+ 4




φ

ψ

u1 − 6u2φ



⊗D−1

x

(
ψ + 6u3, −φ, u

)
.

We see that λR = 2
3

and R ∼ 4h( 1
3
) ⊗D−1

x ξ( 1
3
) under the scaling symmetry




xu1 + u
3

xφ1 + 2φ
3

xψ1 + ψ



.

Furthermore, we have L
h( 1

3 )R = 0 and d1ξ( 1
3
) = 0. So the conditions of theorem

9 are satisfied for h( 1
3
). Therefore from h( 1

3
) a hierarchy of symmetries of R is

generated.

In fact R(h( 1
3
)) =

(
4u1, 4φ1, 4ψ1

)
, which is considered as a starting point in

[FOW87]. h( 1
3
) must be a root, since the only (using a scaling argument and

the fact that it should be in the domain of R) vectorfield that could generate

h( 1
3
) is

(
0, u, φ

)
, and this gives not h( 1

3
), but h( 1

3
) −

(
0, ψ + 2u3, 0

)
and

their difference is not in Ker R.

Assume H2 = RH1 where H1 and H2 are both cosymplectic operators. We
know that H2 must have the following term as its nonlocal part




φ

ψ

u1 − 6u2φ



⊗D−1

x




φ

ψ

u1 − 6u2φ



.
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This means
(
ψ + 6u3, −φ, u

)
H1 ≡

(
φ, ψ, u1 − 6u2φ

)
. Therefore

H1 =




0 1 0

−1 0 6u2

0 −6u2 −Dx



.

One can easily check that H1 and H2 form an cosymplectic pair (cf. [Olv93]
pp. 444–454)

5.8 Landau–Lifshitz system

Consider the Landau–Lifshitz system [vBK91]




ut = − sin(u)v2 − 2 cos(u)u1v1 + (J1 − J2) sin(u) cos(v) sin(v)

vt = u2

sin(u)
− cos(u)v2

1 + cos(u)(J1 cos2(v) + J2 sin2(v)− J3),

with Nijenhuis recursion operator given by

R(u, v) =

=




R11 R12

R21 R22




∼


ut

vt


⊗D−1

x

(
sin(u)v1, − sin(u)u1

)
−



u1

v1


⊗D−1

x

(
S1, S2,

)
,

where

R11 =−D2
x − 2 sin2(u)v2

1 − u2
1 + v2

1 − (J1 − J2) sin2(u) sin2(v)

+(J1 − J3) sin2(u) + J3 − J2 + utD
−1
x · (sin(u)v1)− u1D

−1
x · S1,

R12 = 2 cos(u) sin(u)v1Dx + cos(u) sin(u)v2 − 3 sin2(u)u1v1 + 2u1v1

+utD
−1
x · (− sin(u)u1)− u1D

−1
x · S2,

R21 =−2 cos(u)v1Dx − cos(u)v2 + u1v1

+vtD
−1
x · (sin(u)v1)− v1D

−1
x · S1,

R22 =−D2
x − 2 cos(u)u1Dx − cos(u)u2 − (J1 − J2) sin(u) sin2(v)

−2 sin2(u)v2
1 + v2

1 + (J1 − J3) sin2(u) + J3 − J2
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+vtD
−1
x · (− sin(u)u1)− v1D

−1
x · S2,

S1 = (J1 − J2) cos(u) sin(u) sin2(v)− (J1 − J3) cos(u) sin(u)

+ cos(u) sin(u)v2
1 − u2,

S2 = (J1 − J2) cos(v) sin2(u) sin(v)− 2 cos(u) sin(u)u1v1 − sin2(u)v2.

As we did in section 5.6, for the extended system, we have that λJi
= 2 for

i = 1, 2, 3, λR = 2 and Γ = {1, 2} with

h(1) =



u1

v1


 , h(2) =



ut

vt


 .

So γ(R) = 1. Notice that d1ξ(1) = d1ξ(2) = 0. It follows that h(2) is a root of a
hierarchy. For h(1), we have

ξ(1) · h(1) =
(
S1, S2

)
·
(
u1 v1

)

= (J1 − J2) cos(u) sin(u) sin2(v)u1 + (J1 − J2) cos(v) sin2(u) sin(v)v1

−(J1 − J3) cos(u) sin(u)u1 − u1u2 − cos(u) sin(u)u1v
2
1 − sin2(u)v1v2

=
1

2
Dx((J1 − J2) sin2(u) sin2(v)− (J1 − J3)sin

2(u)− u2
1 − sin2(u)v2

1)

and

ξ(2) · h(1) =
(

sin(u)v1 − sin(u)u1

)
·
(
u1, v1

)
= 0.

So h(1) · ξ(j) ∈ ImDx for j = 1, 2. This implies that Rh(1) 6= 0 exists. Notice
that λRh(1) = 3. By theorem 9, we conclude that h(1) is a root of a hierarchy.

6 Plans for the future

Nowadays the field of integrable systems is so widely extended that it would
be difficult to list all developments, let alone sketch their future direction. So
here we restrict ourself to our own views.

It is surprising, at least to us, how many questions, both on a fundamental and
philosophical level and on a practical computational level are still unanswered,
in spite of more than three decades of rather intensive activity, which attracted
a sizeable part of the mathematical and physical research community.
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For one thing, the connections between the different kind of integrability,
while quite convincing by their overwhelming evidence, are still far from being
understood. And with any new pattern that is found, there is none that gives
a complete and convincing explanation.

On a more mundane level, there are two kinds of computations that never seem
to have been completely incorporated in the theoretic development, namely
the time-dependent and the nonlocal systems and symmetries. For instance,
in [SW01], we found that the time dependent recursion operator for Burgers
equation gives the wrong result! The source of many of the problems seems to
be that the relation

D−1
x Dx = 1

is not valid on KerDx. In [OSW01] we address these problems, extending
the theory in such a way that we get rid of KerDx. We hope to be able to
analyze by Lie algebraic methods the nonlocal KP equation, and more specif-
ically its time-dependent symmetries using representation theory of sl(2,R),
see [SW00a].

It is hoped that classifications of integrable systems, according to the differ-
ent definitions, will clarify their connections. At least it will provide us with
definitive material to start thinking about the larger issues. A good source on
this is [Zak91]. More recently we were able to classify a large class of scalar
equations [SW98,SW00b] and a not so large class of systems of evolution equa-
tions [BSW98,BSW01], using the symbolic method and number theory. We are
presently working on the classification of homogeneous polynomial systems.

Another area of current interest is noncommutative equations. The similarity
and difference between the commutative and noncommutative case is rather
unexpected and unpredictable. A list of scalar equations with one symmetry
was found in [OS98] and these equations were proved to be integrable in
[OW00]. The technique of the proof in this case is completely similar to that
in the commutative case.

It is often assumed, implicitly or explicitly, that the occurrence of one gener-
alized (non-contact) symmetry of an evolution equation implies the existence
of infinitely many. As a rule, this seems to be the case. However, in [vdKS99]
an example was found of a two-dimensional system with exactly two such
symmetries. This means that the conjecture of Fokas, which states that if the
number of such symmetries equals the dimension of the system, the system
must by integrable, has to be refined in order to describe the situation cor-
rectly. Clearly, theorems to this effect would be of great practical importance,
since they reduce the integrability question to a search of a finite number of
symmetries. Of course, bounds on the order of possible symmetries are also
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important in this respect.
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