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Abstract: We construct a hierarchy of integrable systems whose Poisson structure corre-

sponds to the BMS3 algebra, and then discuss its description in terms of the Riemannian

geometry of locally flat spacetimes in three dimensions.

The analysis is performed in terms of two-dimensional gauge fields for isl(2,R), being

isomorphic to the Poincaré algebra in 3D. Although the algebra is not semisimple, the

formulation can still be carried out à la Drinfeld-Sokolov because it admits a nondegener-

ate invariant bilinear metric. The hierarchy turns out to be bi-Hamiltonian, labeled by a

nonnegative integer k, and defined through a suitable generalization of the Gelfand-Dikii

polynomials. The symmetries of the hierarchy are explicitly found. For k ≥ 1, the corre-

sponding conserved charges span an infinite-dimensional Abelian algebra without central

extensions, so that they are in involution; while in the case of k = 0, they generate the

BMS3 algebra. In the special case of k = 1, by virtue of a suitable field redefinition and

time scaling, the field equations are shown to be equivalent to the ones of a specific type

of the Hirota-Satsuma coupled KdV systems. For k ≥ 1, the hierarchy also includes the

so-called perturbed KdV equations as a particular case. A wide class of analytic solutions

is also explicitly constructed for a generic value of k.

Remarkably, the dynamics can be fully geometrized so as to describe the evolution of

spacelike surfaces embedded in locally flat spacetimes. Indeed, General Relativity in 3D can
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be endowed with a suitable set of boundary conditions, so that the Einstein equations pre-

cisely reduce to the ones of the hierarchy aforementioned. The symmetries of the integrable

systems then arise as diffeomorphisms that preserve the asymptotic form of the spacetime

metric, and therefore, they become Noetherian. The infinite set of conserved charges is

then recovered from the corresponding surface integrals in the canonical approach.

Keywords: Conformal and W Symmetry, Space-Time Symmetries, Integrable Hierar-

chies, Gauge-gravity correspondence
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1 Introduction

It has been recently shown that General Relativity on AdS3 can be endowed with a suitable

set of boundary conditions, so that the Einstein equations on the reduced phase space

precisely reduce to the ones of the KdV hierarchy in two spacetime dimensions [1]. In turn,

the dynamics of the KdV hierarchy can then be understood in terms of the geometry of
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spacelike surfaces that evolve within a three-dimensional spacetime of negative constant

curvature. In the absence of cosmological constant, it is then natural to wonder whether

General Relativity in three spacetime dimensions might also be linked with some sort of

integrable systems. Thus, one of the main purposes of this work is constructing a new

hierarchy of integrable systems, whose geometrical interpretation in terms of locally flat

spacetimes in 3D can be precisely established.

Let us then begin considering a Galilean conformal algebra which can be understood

as the nonrelativistic limit of the algebra of the conformal group (see, e.g. [2–4]). In two

spacetime dimensions, the Galilean conformal algebra (GCA2) is then obtained from a suit-

able Inönü-Wigner contraction of two copies of the Virasoro algebra, where the parameter

of the contraction is the speed of light (c → ∞). Remarkably, GCA2 is isomorphic to the

Bondi-Metzner-Sachs algebra in three spacetime dimensions (BMS3), which spans the dif-

feomorphisms that preserve the asymptotic form of the metric for General Relativity [5–7],

possibly endowed with parity-odd terms [8]. The Poisson bracket algebra is given by

i {Jm,Jn} = (m− n)Jm+n + 2πcJ m
3δm+n,0 ,

i {Jm,Pn} = (m− n)Pm+n + 2πcP m
3δm+n,0 , (1.1)

i {Pm,Pn} = 0 ,

with m and n arbitrary integers. The central extensions cP and cJ are related to the

Newton constant and to the coupling of the parity-odd terms, respectively. The BMS3

algebra (1.1) is then described by the semi-direct sum of a Virasoro algebra, spanned

by Jm, with the Abelian ideal generated by Pm. Note that the Poincaré algebra in three

dimensions is manifestly seen as the subalgebra of (1.1) spanned by the subset of generators

with m, n = −1,0,1 (after suitable trivial shifts of J0 and P0). Induced and coadjoint

representations of the BMS3 algebra have been considered in [9, 10].

The BMS3 algebra also naturally arises in diverse contexts of physical interest. For

instance, it describes the worldsheet symmetries of the bosonic sector in the tensionless

limit of closed string theory [11–18], and it is then expected to be relevant for the descrip-

tion of interacting higher spin fields [19–23] (for a review, see e.g. [24]). In two spacetime

dimensions, the BMS3 algebra also describes the symmetries of a “flat analog” of Liouville

theory [25, 26], while on Minkowski spacetime in 3D, in the absence of central exten-

sions, the algebra (1.1) manifests itself through nonlocal symmetries of a free massless

Klein-Gordon field [27]. The algebra (1.1) also plays a key role in nonrelativistic and flat

holography [3, 7, 28–40]. Furthermore, by virtue of a Sugawara-like construction, their

generators have been recently seen to emerge as composite operators of the affine currents

that describe the asymptotic symmetries of the “soft hairy” boundary conditions in [41–

43]. In the sense of [44–46], this might shed light in the resolution of the information

loss paradox [47]. Similar results also hold for the analysis of the near horizon symme-

tries of non-extremal black holes, so that (twisted) warped conformal algebras also lead

to BMS3 [48–50]. The minimal supersymmetric extension of the BMS3 algebra has been

shown to generate the asymptotic symmetries of N = 1 supergravity in 3D [51–53], for

a suitable set of boundary conditions [8, 54], and it is then isomorphic to the minimal
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supersymmetric extension of GCA2 [55, 56] (see also [57]). Supersymmetric extensions

of BMS3 with N > 1 have also been discussed along diverse lines in [14, 15, 56, 58–62].

Interestingly, nonlinear extensions of the BMS3 algebra are known to exist when higher

spin bosonic or fermionic generators are included, see [63–67] and [68, 69] respectively.

Further generalizations of the BMS3 algebra can also be found from suitable expansions of

the Virasoro algebra [70].

One of the main purposes of our work is exploring whether the BMS3 algebra could

be further linked with some sort of integrable systems. There are some hints that can be

borrowed from CFTs in two dimensions that suggest to look towards this direction. Indeed,

it is known that CFTs in 2D admit an infinite set of conserved charges that commute

between themselves, which can be constructed out from suitable nonlinear combinations

of the generators of the Virasoro algebra and their derivatives (see e.g. [71]). Remarkably,

these composite operators turn out to be precisely the conserved charges of the KdV

equation, which also correspond to the Hamiltonians of the KdV hierarchy. Therefore,

since the BMS3 algebra can be seen as a limiting case of the conformal algebra in 2D, it is

natural to wonder about the possibility of performing a similar construction in that limit.

Specifically, one would like to know about the existence of an infinite number of commuting

conserved charges that could be suitably recovered from the BMS3 generators, as well as

its possible relation with some integrable system, or even to an entire hierarchy of them.

Here we show that this is certainly the case.

Furthermore, and noteworthy, the dynamics of this class of integrable systems can be

equivalently understood in terms of Riemannian geometry. Indeed, following similar strat-

egy as the one in [1], here we show that General Relativity without cosmological constant in

3D can be endowed with a suitable set of boundary conditions, so that in the reduced phase

space, the Einstein equations precisely agree with the ones of the hierarchy aforementioned.

In other words, the dynamics of our class of integrable system can be fully geometrized,

since it can be seen to emerge from the evolution of spacelike surfaces embedded in locally

flat spacetimes. As a remarkable consequence, in the geometric picture, the symmetries of

the integrable systems correspond to diffeomorphisms that maintain the asymptotic form

of the spacetime metric, so that they manifestly become Noetherian. Hence, the infinite

set of conserved charges can be readily obtained from the surface integrals associated to

the asymptotic symmetries in the canonical approach.

In the next section we explicitly construct dynamical (Hamiltonian) systems whose

Poisson structure corresponds to the BMS3 algebra. In order to analyze their symmetries

and conserved charges, in section 3 we show how the Drinfeld-Sokolov formulation can be

adapted to our case, through the use of suitable flat connections for isl(2,R). Section 4 is

devoted to a thorough construction and the analysis of an entire bi-Hamiltonian hierarchy

of integrable systems with BMS3 Poisson structure, labeled by a nonnegative integer k.

We start with a very simple dynamical system (k = 0) from which the bi-Hamiltonian

structure can be naturally unveiled. The case of k = 1 is described in section 4.2, where

the Abelian infinite-dimensional symmetries and conserved charges are explicitly identified

in terms of a suitable generalization of the Gelfand-Dikii polynomials (see also appendices A

and B). The equivalence between our field equations and the ones of the Hirota-Satsuma
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coupled KdV system of type ix, is shown to hold by virtue of a suitable field redefinition

and time scaling in section 4.2.4. The hierarchy of integrable systems with BMS3 Poisson

structure is then explicitly discussed in section 4.3, where it is shown that the so-called

“perturbed KdV equations” are included as a particular case. Section 4.4 is devoted to the

construction of a wide interesting class of analytic solutions for a generic value of the label

of the hierarchy k. In section 5, we show how the dynamics of the hierarchy of integrable

systems can be fully geometrized in terms of locally flat three-dimensional spacetimes. The

deep link with General Relativity in 3D is explicitly addressed. We conclude with some

remarks about possible extensions of our results in section 6. Appendices A, B, C and D

are devoted to some technical remarks.

2 Dynamical systems with BMS3 Poisson structure

In order to construct dynamical systems whose Poisson structure is described by the BMS3

algebra, let us consider two independent dynamical fields, J = J (t, φ) and P = P(t, φ),

being defined on a cylinder whose coordinates range as 0 ≤ φ < 2π, and −∞ < t < ∞.

The Poisson structure we look for can then be defined in terms of the following operator

D(2) ≡

(
D(J ) D(P)

D(P) 0

)
, (2.1)

where D(J ) and D(P) stand for Schwarzian derivatives, given by

D(J ) = 2J ∂φ + ∂φJ − cJ ∂3
φ ,

D(P) = 2P∂φ + ∂φP − cP∂3
φ , (2.2)

with arbitrary constants cJ and cP .

The operator D(2) in eq. (2.1) then allows to write the Poisson brackets of two arbitrary

functionals of the dynamical fields, F = F [J ,P] and G = G[J ,P], according to

{F,G} ≡
ˆ
dφ
(
δF
δJ

δF
δP

)(D(J ) D(P)

D(P) 0

)(
δG
δJ
δG
δP

)
. (2.3)

Therefore, the brackets of the dynamical fields read

{J (φ) ,J
(
φ̄
)
} = D(J )δ

(
φ− φ̄

)
,

{J (φ) ,P
(
φ̄
)
} = D(P)δ

(
φ− φ̄

)
, (2.4)

{P (φ) ,P
(
φ̄
)
} = 0 ,

so that expanding in Fourier modes as X = 1
2π

∑
nXne

−inφ, the algebra of the Poisson

brackets in (2.4) precisely reduces to the BMS3 algebra in eq. (1.1).

The field equations for the class of dynamical systems we were searching for can then

be readily defined as follows (
J̇
Ṗ

)
= D(2)

(
µJ
µP

)
, (2.5)
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where dot denotes the derivative in time, while µJ and µP stand for arbitrary functions

of the dynamical fields and their derivatives along φ. When these functions are defined in

terms of the variation of a functional H = H[J ,P], so that

µJ =
δH

δJ
, µP =

δH

δP
, (2.6)

the dynamical system is Hamiltonian; and hence, by virtue of (2.3), the field equations can

be written as (
J̇
Ṗ

)
= D(2)

(
µJ
µP

)
=

(
{J , H}
{P, H}

)
. (2.7)

Note that unwrapping the angular coordinate to range as −∞ < φ <∞, allows to extend

this class of dynamical systems to R2, provided that the fall-off of the dynamical fields

J , P is sufficiently fast in order to get rid of boundary terms. Hereafter, for the sake of

simplicity, we will assume that the dynamical systems are defined on a cylinder, with a

single exception for an interesting particular solution that is described in section 4.4.2.

3 Zero-curvature formulation

In order to study the properties of the dynamical systems with BMS3 Poisson structure

that evolve according to eq. (2.5), including their symmetries and the corresponding con-

served charges, it turns out to be useful to reformulate them in terms of a flat connection

for a suitable Lie algebra (see e.g. [72, 73]). In the standard approach of Drinfeld and

Sokolov [74], the Lie algebra is assumed to be semisimple. Here we slightly extend this

approach in a sense explained right below.

For our purposes, the relevant Lie algebra to be considered corresponds to isl(2,R),

which is isomorphic to the Poincaré algebra in 3D. Their commutation relations can then

be written as

[Ja, Jb] = εabcJ
c , [Ja, Pb] = εabcP

c , [Pa, Pb] = 0 , (3.1)

where Ja stand for the generators of sl(2,R) ' so(2, 1). It is worth emphasizing that

the algebra (3.1) is not semisimple; but nonetheless, it admits an invariant bilinear metric

whose nonvanishing components read

〈Ja, Jb〉 = cJ ηab , 〈Ja, Pb〉 = cPηab , (3.2)

where cJ and cP are arbitrary constants. Note that the invariant bilinear metric is nonde-

generate provided that cP 6= 0, which will be assumed afterwards.1

Hence, by virtue of (3.2), the analysis of the class of dynamical systems defined in

section 2 can still be performed à la Drinfeld-Sokolov, provided that the field equations are

able to be reproduced in terms of a flat connection for isl(2,R).

1We choose the orientation according to ε012 = 1, while the Minkowski metric ηab is assumed to be

non-diagonal, whose non-vanishing components are given by η01 = η10 = η22 = 1.
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We then propose that the spacelike component of the isl(2,R)-valued gauge field a =

aµdx
µ is given by

aφ = J1 +
1

cP

[(
J − cJ

cP
P
)
P0 + PJ0

]
, (3.3)

with J = J (t, φ) and P = P(t, φ), while the timelike component reads

at = Λ (µJ , µP) , (3.4)

where

Λ(µJ ,µP) =µPP1+µJ J1−µP′P2−µJ ′J2

+

(
1

cP
PµJ −µJ ′′

)
J0+

[
1

cP

(
J − cJ

cP
P
)
µJ +

1

cP
PµP−µP′′

]
P0 . (3.5)

Here µJ and µP can be assumed to be given by some arbitrary functions of J , P, and their

derivatives along φ (being denoted by a prime here and afterwards). Therefore, requiring

the field strength for the gauge field defined in (3.3) and (3.4) to vanish, i.e.,

f = da+ a2 = 0 , (3.6)

implies that the field equations for the dynamical system with BMS3 Poisson structure

in (2.5) hold. It is worth mentioning that (at, aφ) can then be interpreted as the components

of an isl(2,R)-valued Lax pair.

3.1 Symmetries and conserved charges

One of the advantages of formulating the field equations in terms of a flat connection, is

that the symmetries of the dynamical system in (2.5) turn out to correspond to gauge trans-

formations, δλa = dλ+[a, λ], that preserve the form of the gauge field defined through (3.3)

and (3.4).

Hence, requiring the form of the spacelike component of the connection aφ in (3.3) to

be preserved under gauge transformations, restricts the Lie-algebra-valued parameter to

be of the form

λ = Λ (εJ , εP) , (3.7)

where Λ is precisely given by eq. (3.5), but now depends on two arbitrary functions εJ =

εJ (t, φ) and εP = εP(t, φ), while the dynamical fields have to transform according to(
δJ
δP

)
= D(2)

(
εJ
εP

)
. (3.8)

Analogously, preserving the timelike component of the gauge field at in (3.4), implies that

the transformation law of the functions µJ and µP is given by

δµJ = ε̇J + εJ µJ
′ − µJ εJ ′ , (3.9)

δµP = ε̇P + εJ µP
′ + εPµJ

′ − µJ εP′ − µPεJ ′ . (3.10)

– 6 –
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However, µJ and µP generically depend on the dynamical fields and their spatial deriva-

tives, which means that eqs. (3.9), (3.10) actually become a consistency condition to be ful-

filled by the functions εJ and εP that parametrize the symmetries of the dynamical system.

In the case of Hamiltonian systems, µJ and µP are determined by the corresponding

functional variations of the Hamiltonian as in (2.6), and consequently, the consistency

condition for the functions εJ and εP , that arises from (3.9), (3.10), can be compactly

written as (
ε̇J (t, φ)

ε̇P (t, φ)

)
= −

(
δ

δJ (t,φ)
δ

δP(t,φ)

) ˆ
dϕ

(
D(2)

(
µJ
µP

))T (
εJ
εP

)
. (3.11)

In sum, the functions that parametrize the symmetries of the Hamiltonian system

with BMS3 Poisson structure must fulfill the consistency condition in (3.11), which for

an arbitrary choice of Hamiltonian, implies that εJ and εP generically acquire an explicit

dependence on the dynamical fields and their spatial derivatives.

The variation of the canonical generators associated to the symmetries spanned by εJ ,

εP can then be readily found by virtue of eqs. (3.2), (3.3) and (3.7), which reduces to the

following simple expression

δQ [εJ , εP ] = −
ˆ
dφ 〈λδaφ〉 = −

ˆ
dφ (εJ δJ + εPδP) . (3.12)

As a cross-check, it is simple to verify that the variation of the canonical generators is

conserved (δQ̇ = 0) provided that the consistency condition for the symmetry parameters

in (3.11) is satisfied.

It is also worth emphasizing that the integrability conditions of (3.12) require that

the allowed parameters εJ , εP must correspond to the variation of a functional, since

εJ = − δQ
δJ and εP = − δQ

δP .

Nevertheless, it must be highlighted that finding the explicit form of the conserved

charges Q is not so simple, because it amounts to know the general solution of the consis-

tency condition for the parameters in (3.11). Indeed, although the consistency condition is

linear in the parameters εJ , εP , the generic solution manifestly depends on the dynamical

fields and their spatial derivatives that fulfill a nonlinear field equation. Thus, for a generic

choice of the Hamiltonian, solving eq. (3.11) is actually an extremely difficult task.

However, for a generic Hamiltonian that is independent of the coordinates, the con-

served charges associated to translations along space and time can be directly constructed.

In fact, for a flat connection, diffeomorphisms spanned by ξ = ξµ∂µ are equivalent to gauge

transformations generated by λ = −ξµaµ, since Lξa = dλ + [a, λ]. Therefore, for ξ = ∂φ,

the linear momentum on the cylinder readily integrates as

Q[∂φ] = Q[−1, 0] =

ˆ
dφJ . (3.13)

Analogously, the variation of the energy is obtained for ξ = ∂t, so that

δQ[∂t] = δQ[−µJ ,−µP ] =

ˆ
dφ (µJ δJ + µPδP) , (3.14)

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
8

which by virtue of (2.6), integrates as expected, i.e.,

Q[∂t] = H . (3.15)

Note that, generically, there might be additional nontrivial solutions of eq. (3.11) that

would lead to further conserved charges.

As a closing remark of this section, it must be emphasized that in order to construct an

integrable system with the BMS3 Poisson structure, one should at least specify the precise

form of the Hamiltonian, so that the general solution of the consistency condition for the

parameters in (3.11) could be obtained. Explicit examples of integrable systems of this

sort that actually belong to an infinite hierarchy of them are discussed in the next section.

4 Hierarchy of integrable systems with BMS3 Poisson structure

In this section we introduce a bi-Hamiltonian hierarchy of integrable systems with BMS3

Poisson structure in a constructive way. We start from an extremely simple case, which

nonetheless, possesses the key ingredients in order to propose a precise nontrivial integrable

system of this type, that can be extended to an entire hierarchy labeled by a nonnegative

integer k. The contact with some known results in the literature for certain particular cases

is also addressed. Furthermore, a wide class of analytic solutions are explicitly constructed

for an arbitrary representative of the hierarchy, including a couple of simple and interesting

particular examples.

4.1 Warming up with a simple dynamical system (k = 0)

Let us begin with one of the simplest possible examples of a dynamical system with BMS3

Poisson structure. The field equations can be obtained from (2.7) with µJ = µ
(0)
J and

µP = µ
(0)
P constants, given by (

µ
(0)
J
µ

(0)
P

)
=

(
1

a

)
, (4.1)

so that, according to (2.6), the Hamiltonian is given by H = H(0), with

H(0) =

ˆ
dφ (J + aP) . (4.2)

The field equations then explicitly read

J̇ = J ′ + aP ′ ,
Ṗ = P ′ , (4.3)

which are trivially integrable. Indeed, the general solution of (4.3) on the cylinder is

described by left movers and it can be expressed in terms of periodic functionsM =M(t+

φ) and N = N (t+ φ), so that it reads

P =M ,

J = N + atM′ . (4.4)

– 8 –
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Besides, since the field equations are very simple in this case, the consistency condition for

the parameters of their symmetries in (3.11) becomes independent of the dynamical fields

and their spatial derivatives, which explicitly reduces to

ε̇J = εJ
′ ,

ε̇P = εP
′ + aεJ

′ . (4.5)

Note that (4.5) coincides with the field equations in (4.3) for εJ = P and εP = J , and

hence, if one assumes that the parameters εJ , εP depend only on the coordinates t, φ,

and not on the dynamical fields, the general solution of the consistency conditions for the

parameters is also given by chiral (left mover) functions as in (4.4). Therefore, the variation

of the canonical generators in (3.12) readily integrates as

Q [εJ , εP ] = −
ˆ
dφ (εJJ + εPP) . (4.6)

The algebra of the conserved charges (4.6) can then be directly obtained from their corre-

sponding Poisson brackets. As a shortcut, by virtue of

{Q [ε1] , Q [ε2]} = δε2Q [ε1] , (4.7)

the algebra can also be read from the transformation law of the fields in (3.8), and it is

then found to be given precisely by the BMS3 algebra in (2.4), which once expanded in

modes reads as in eq. (1.1).

It is worth highlighting that this simple dynamical system actually turns out to be

bi-Hamiltonian. This is so because the field equations can be expressed in terms of two

different Poisson structures, so that (4.3) can be written as(
J̇
Ṗ

)
= D(2)

(
µ

(0)
J
µ

(0)
P

)
= D(1)

(
µ

(1)
J
µ

(1)
P

)
, (4.8)

where D(2) is the BMS3 one in (2.1), while D(1) stands for the “canonical” Poisson structure,

defined through the following differential operator

D(1) ≡

(
0 ∂φ
∂φ 0

)
. (4.9)

In (4.8) the functions µ
(1)
J and µ

(1)
P are then given by(
µ

(1)
J
µ

(1)
P

)
=

(
P

J + aP

)
, (4.10)

and thus, according to (2.6), the canonical Poisson structure (4.9) is associated to the

following Hamiltonian

H(1) =

ˆ
dφ
(
JP +

a

2
P2
)
. (4.11)
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It is worth highlighting that the conserved charge H(1) can also be obtained from (3.12)

provided that the parameters of the symmetries are given by εJ = µ
(1)
J = P and εP =

µ
(1)
P = J +aP. Indeed, if the parameters are allowed to depend only on the fields and their

derivatives, but not explicitly on the coordinates t, φ, one is able to construct an infinite

set of independent commuting conserved charges of this sort. This is shown in section 4.3.

In sum, the analysis of this extremely simple dynamical system with BMS3 Poisson

structure D(2), being trivially integrable, allows to unveil a naturally related Poisson struc-

ture given by D(1). The presence of both Poisson structures turns out to be the key in

order to proceed with the construction of nontrivial integrable systems as well as an en-

tire hierarchy associated to them. This can be seen as follows. One begins verifying that

both Poisson structures are “compatible” in the sense that any linear combination of D(2)

and D(1) also defines a Poisson structure. It is then enough proving that the operator

D(3) = D(2) + D(1) also defines a Poisson structure (see e.g. [75]). This is so because the

Poisson bracket constructed out from D(3) is clearly antisymmetric, and furthermore, since

D(3) also fulfills the BMS3 algebra, but just being shifted by the zero modes of P0 → P0+π,

the Jacobi identity also holds. Besides, by virtue of the fact that our Poisson structure D(1)

is nondegenerate, the hypotheses of a strong theorem for bi-Hamiltonian systems in [76],

and further elaborated in [75], are satisfied, which guarantees the existence of the type of

hierarchy of integrable systems that we are searching for.

Furthermore, and remarkably, the simple dynamical system described in this section

can be seen to be equivalent to the Einstein equations for the reduced phase space that

is obtained from a suitable set of boundary conditions for General Relativity in three

spacetime dimensions, including its extension with purely geometrical parity-odd terms

in the action. This is discussed in section 5. It is also worth pointing out that our field

equations (4.4), in the case of cJ = a = 0, can be interpreted as the ones of a compressible

Euler fluid [77].

In the next subsection we carry out the explicit construction and the analysis of a

simple, but nontrivial, integrable system with BMS3 Poisson structure.

4.2 Integrable bi-Hamiltonian system (k = 1)

The first nontrivial integrable system of our hierarchy is obtained from (2.7) with µJ = µ
(1)
J

and µP = µ
(1)
P , where µ

(1)
J and µ

(1)
P are given by eq. (4.10), so that the Hamiltonian

corresponds to H(1) in (4.11). The field equations are then explicitly given by

J̇ = 3J ′P + 3JP ′ − cPJ ′′′ − cJP ′′′ + a
(
3P ′P − cPP ′′′

)
,

Ṗ = 3P ′P − cPP ′′′ . (4.12)

Note that P evolves according to the KdV equation,2 while the remaining equation is

linear in J , with an inhomogeneous source term that is entirely determined by P and their

spatial derivatives.

2This is a direct consequence of the choice of µJ and the fact that the off-diagonal terms in the Poisson

structure D(2) exclusively depend on D(P). Besides, a common practice in the literature is rescaling the

field and the coordinates so that the KdV equation does not depend on cP (see, e.g., [72, 75]). However, as

explained in section 4.2.1, for our purposes, and for the sake of simplicity, keeping cP explicitly in the field

equations turns out to be very useful and convenient.
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The field equations in (4.12) can also be seen to arise from a bi-Hamiltonian system

with the same BMS3 and canonical Poisson structures given by (2.1) and (4.9), respectively.

Indeed, they can be written as(
J̇
Ṗ

)
= D(2)

(
µ

(1)
J
µ

(1)
P

)
= D(1)

(
µ

(2)
J
µ

(2)
P

)
, (4.13)

where the functions µ
(2)
J and µ

(2)
P are given by(

µ
(2)
J
µ

(2)
P

)
=

(
3
2P

2 − cPP ′′

3JP − cPJ ′′ − cJP ′′ + a
(

3
2P

2 − cPP ′′
)) , (4.14)

which can be obtained from the functional derivatives of a different Hamiltonian, as in (2.6),

that reads

H(2) =

ˆ
dφ

[
3

2
P2J − cPP ′′J +

cJ
2
P ′2 + a

(
1

2
P3 +

cP
2
P ′2
)]

, (4.15)

being clearly conserved.

4.2.1 Symmetries

As explained in section 3.1, in order to find the remaining conserved quantities, it is

necessary to find the general solution of the consistency conditions in (3.11) for the functions

εJ and εP that parametrize the symmetries of the field equations. In this case (k = 1), the

consistency conditions in (3.11), with µJ and µP given by eq. (4.10), explicitly reduce to

ε̇J = 3Pε′J − cPε′′′J ,
ε̇P = 3J ε′J + 3Pε′P − cPε′′′P − cJ ε′′′J + a

(
3Pε′J − cPε′′′J

)
. (4.16)

Note that the equations in (4.16) are linear for the parameters εJ and εP . However, finding

their solution is not that simple because their coefficients depend on J and P, who evolve

according to the nonlinear field equations in (4.12). Nevertheless, if one assumes that the

parameters εJ , εP depend only on the dynamical fields and their spatial derivatives, but

not explicitly on the coordinates t, φ, and takes into account that the parameters must

correspond to the variation of a functional, the theorem in [75, 76] then guarantees that the

general solution of the consistency conditions (4.16) can be formally found. In our case, the

explicit solution turns out to be given by a linear combination of two independent arrays,

K(j) and K̃(j), that stand for a suitable generalization of the Gelfand-Dikii polynomials.

The solution can then be written as(
εJ
εP

)
=

∞∑
j=0

[
ηjK

(j) + η̃jK̃
(j)
]
, (4.17)

where ηj and η̃j are arbitrary constants, and both generalized polynomials K(j) and K̃(j)

fulfill the same recursive relationship, given by

D(1)K(i+1) = D(2)K(i) . (4.18)
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If the initial seeds of the independent arrays are chosen as

K(0) =

(
0

1

)
, K̃(0) =

(
1

0

)
, (4.19)

the recursion relation (4.18) then implies that the remaining ones are given by

K(n) =

(
0

R(n)

)
, K̃(n) =

(
R(n)

T (n)

)
, (4.20)

where R(n) stand for the standard Gelfand-Dikii polynomials, while T (n) correspond to a

different set of polynomials that fulfill the following recursion relationships

∂φR
(n+1) = D(P)R(n) , (4.21)

∂φT
(n+1) = D(P)T (n) +D(J )R(n) . (4.22)

Remarkably, both sets of polynomials can be obtained from the variation of two indepen-

dent functionals, H
(n)
KdV [P] and H̃(n) [P,J ], so that

R(n) =
δH

(n)
KdV [P]

δP
=
δH̃(n) [P,J ]

δJ
, (4.23)

T (n) =
δH̃(n) [P,J ]

δP
, (4.24)

where H
(n)
KdV stands for n-th conserved quantity of the KdV equation, while H̃(n) [P,J ]

depends linearly on J and it is given by

H̃(n) [P,J ] = cJ
∂H

(n)
KdV [P]

∂cP
+

ˆ
dφJ

δH
(n)
KdV [P]

δP
. (4.25)

Therefore, the generalized polynomials can also be compactly defined as

K(n) =

(
δ
δJ
δ
δP

)
H

(n)
KdV , K̃(n) =

(
δ
δJ
δ
δP

)
H̃(n) . (4.26)

An explicit list of the first six polynomials R(n) and T (n), with their corresponding

functionals H
(n)
KdV and H̃(n) is given in appendix A.

4.2.2 Conserved charges

Since the general form of the parameters that describe the symmetries of the field equations

has been explicitly found to be given by (4.17), by virtue of the fact that the generalized

polynomials come from the functional derivatives of suitable functionals as in (4.26), the

variation of the canonical generators in (3.12) reduces to

δQ [η, η̃] = −
∞∑
j=0

ˆ
dφ

[
ηj
δH

(j)
KdV

δP
δP + η̃j

(
δH̃(j)

δP
δP +

δH̃(j)

δJ
δJ

)]
, (4.27)
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which then readily integrates as

Q [η, η̃] = −
∞∑
j=0

(
ηjH

(j)
KdV + η̃jH̃

(j)
)
. (4.28)

Therefore, we have explicitly found two infinite independent towers of conserved quan-

tities, being spanned by H
(j)
KdV and H̃(j), which by virtue of the recursion relation in (4.18),

turn out to be in involution for both Poisson structures D(2) and D(1), i.e.,{
Q[η, η̃], Q[ζ, ζ̃]

}
(2)

=
{
Q[η, η̃], Q[ζ, ζ̃]

}
(1)

= 0 , (4.29)

where the subscripts for the brackets in (4.29) stand for the corresponding Poisson struc-

tures.3

Note that the pair of Hamiltonians that yield the same field equations in (4.13), given

by (4.11) and (4.15), can then be written as

H(1) = H̃(1) + aH
(1)
KdV , H(2) = H̃(2) + aH

(2)
KdV . (4.30)

In sum, as pointed out in the introduction, eq. (4.28) turns out to be an explicit

realization of the infinite set of commuting conserved charges that is constructed out from

precise nonlinear combinations of the generators of the BMS3 algebra and their spatial

derivatives. As discussed in section 4.3, this provides the basis to extend this integrable

system to an entire hierarchy.

4.2.3 Remarks on some additional symmetries

The existence of additional symmetries, enlarging the set spanned by the parameters εJ , εP
in (4.17), is unveiled by relaxing our hypotheses, so that the parameters of the symmetries

are now allowed to depend not just on the dynamical fields and their spatial derivatives,

but also explicitly on the coordinates t, φ. Hence, apart from the infinite set of symmetries

spanned by (3.8), with εJ and εP given by (4.17), the field equations (4.12) can also be

seen to be invariant under Galilean and anisotropic scale transformations:

Galilean transformations. They are parametrized by a single constant velocity param-

eter v0, so that the coordinates and the fields transform according to

φ̄ = φ− v0t , t̄ = t , (4.31)

and

P̄ = P +
v0

3
, J̄ = J − a

3
v0 , (4.32)

respectively.

For simplicity, if one chooses the Poisson structure D(1), the parameters εJ , εP that

correspond to the infinitesimal Galilean transformations are then given by

εJ = v0tP +
φ

3
,

εP = v0tJ −
aφ

3
, (4.33)

3For an explicit proof of the involution of the conserved charges see appendix B.
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which manifestly fulfill their consistency conditions in (4.16). Equivalently, the parameters

in (4.33) can be expressed in terms of the generalized polynomials as in (4.17), where now

the coefficients ηj and η̃j acquire an explicit dependence on the coordinates t, φ, so that(
εJ
εP

)
= v0tK̃

(1) +
v0φ

3

(
K̃(0) − aK(0)

)
. (4.34)

Therefore, since εJ = v0
δG
δJ and εP = v0

δG
δP , one readily obtains the conserved charge that

corresponds to the generator of the Galilean transformations, which reads4

G =

ˆ
dφ

[
tJP +

φ

3
(J − aP)

]
. (4.35)

Anisotropic scaling of Lifshitz type. This symmetry is defined through a constant

parameter σ, and it is generated by the transformations

t̄ = σ3t , φ̄ = σφ ,

(
J̄
P̄

)
= σ−2

(
J
P

)
, (4.36)

which correspond to anisotropic scaling of Lifshitz type with dynamical exponent z = 3

(for a deeper discussion on anisotropic scaling of Lifshitz type, see e.g. [1, 78–86]).

In this case, in terms of the Poisson structure D(2), the parameters that span the

infinitesimal anisotropic scaling transformations in (4.36) read as

εJ = λ (3tP + φ) ,

εP = 3λt (J + aP) , (4.37)

which satisfy the consistency conditions in (4.16). These parameters can also be written

as a linear combination of the generalized polynomials as in (4.17), where the coefficients

depend on t and φ, so that(
εJ
εP

)
= 3λt

(
K̃(1) + aK(1)

)
+ λφK̃(0) . (4.38)

Hence, the form of the generator of the anisotropic scaling transformations D can be

directly read from εJ = λ δDδJ and εP = λ δDδP , with

D =

ˆ
dφ
[
3t
(
JP +

a

2
P2
)

+ φJ
]
. (4.39)

For later purposes, it is worth noting that both sets of conserved quantities, H
(n)
KdV and

H̃(n), scale under (4.36) according to

H̄(n) = σ−(2n+1)H(n) . (4.40)

4We thank an anonymous referee for providing the explicit form of the generator of Galilean transfor-

mations.
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4.2.4 Equivalence with the Hirota-Satsuma coupled KdV system of type ix

Here we show that the field equations of the bi-Hamiltonian integrable system with BMS3

and canonical Poisson structures, described by (4.12), can be seen to be equivalent to

a particular class of a generalization of the Hirota-Satsuma coupled KdV system [87].

Specifically, according to the classification in [88], the equivalence is shown to hold for the

field equations of type ix, which have been shown to be integrable through a method that

differs from the one we have used above. The equivalence can be seen as follows.

If one changes the dynamical fields and rescale time according to

u =
1

4cP
P , v =

1

4
(J + aP) , τ = −cPt , (4.41)

the field equations in (4.12) read

∂τv = −12uv′ − 12vu′ + v′′′ + γu′′′ , (4.42)

∂τu = −12uu′ + u′′′ , (4.43)

with

γ ≡ cJ + acP . (4.44)

The equations in (4.42), (4.43) then turn out to be precisely the ones of type ix in [88].

Thus, at the level of the field equations there are actually only two inequivalent cases. The

generic one corresponds to γ = 1, since the field equation in (4.42) can always be brought

to this form provided that v is rescaled as v → γv. The remaining case is described by

γ = 0, which is also known in the literature as “perturbed KdV” (see e.g. [89–95]).

Note that for γ = 0 (cJ = −acP), configurations with v = 0 (J = −aP) are devoid of

energy, since H = H(0) in (4.2) vanishes. Nonetheless, they are generically endowed with

both towers of conserved charges H
(j)
KdV and H̃(j).

The structures discussed in this subsection provide all what is needed in order to

generalize the integrable system to a hierarchy of them that is labeled by a nonnegative

integer k.

4.3 The hierarchy (k ≥ 0)

The results obtained in section 4.2 ensure that a hierarchy of bi-Hamiltonian integrable

systems with BMS3 and canonical Poisson structures, given by D(2) and D(1), can be readily

constructed out from choosing any of their Hamiltonians to be given by an arbitrary linear

combination of the independent conserved charges H
(n)
KdV and H̃(n) in (4.25). Hereafter we

focus in the subclass of them that possesses well-defined scaling properties. In order to

achieve this task, we recall that if one rescales the spacelike coordinate and the fields as

in (4.36), then both sets of conserved charges scale according to (4.40). Therefore, the

most general combination that possesses the suitable scaling properties that we look for is

described by a Hamiltonian of the form

H(k) = H̃(k) + aH
(k)
KdV , (4.45)

with a constant and any fixed value of the integer k ≥ 0.
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The field equations of the corresponding hierarchy of integrable systems then read(
J̇
Ṗ

)
= D(2)

(
µ

(k)
J
µ

(k)
P

)
, (4.46)

with

µ
(k)
J =

δH(k)

δJ
and µ

(k)
P =

δH(k)

δP
. (4.47)

The hierarchy defined through (4.46) is clearly bi-Hamiltonian, since by virtue of the

recursion relationship in (4.18), the field equations can also be expressed as(
J̇
Ṗ

)
= D(2)

(
µ

(k)
J
µ

(k)
P

)
= D(1)

(
µ

(k+1)
J
µ

(k+1)
P

)
. (4.48)

The field equations of the hierarchy can also be explicitly written in terms of the

polynomials T (k) defined through (4.24) and the Gelfand-Dikii polynomials R(k), so that

they read

J̇ = D(P)T (k) +
(
D(J ) + aD(P)

)
R(k) ,

Ṗ = D(P)R(k) . (4.49)

It is worth pointing out that for any representative of the hierarchy with k > 1, not only

the field equations in (4.49), but also the consistency condition for the functions εJ and

εP that parametrize the symmetries in (3.11) become severely more complicated than the

simplest cases of k = 0, 1 (see eqs. (4.3), (4.5), and (4.12), (4.16), respectively). However,

and remarkably, when εJ and εP are assumed to depend only on the dynamical fields and

their spatial derivatives, but not explicitly on t, φ, by virtue of the theorem in [75, 76], the

general solution of the consistency condition for the parameters in (3.11) for k ≥ 0 turns

out to be precisely given by the same expansion in terms of the generalized Gelfand-Dikii

polynomials K(j) and K̃(j), as in (4.17) for k = 1. This is explicitly verified in appendix C.

Therefore, as a consequence, the corresponding canonical generators turn out to be given by

the two independent sets of conserved charges given by (4.28), which are in involution, i.e.,

the commuting charges fulfill (4.29) for both Poisson structures. Nevertheless, depending

on the choice of Poisson structure, D(2) or D(1), the energy of the system in (3.15), now

corresponds to the Hamiltonian, H(k) or H(k+1), defined through (4.45), respectively.

Furthermore, by construction, the field equations for any representative of the hierarchy

turn out to be invariant under anisotropic scaling transformations given by

t→ σzt , φ→ σφ ,

(
J
P

)
→ σ−2

(
J
P

)
, (4.50)

which is of Lifshitz type, and characterized by a dynamical exponent z = 2k+ 1. Isotropic

scaling then only holds for k = 0.

In terms of the BMS3 Poisson structure D(2), the parameters εJ , εP that correspond

to the infinitesimal anisotropic scaling transformation in (4.50), are then given by(
εJ
εP

)
= λzt

(
K̃(k) + aK(k)

)
+ λφK̃(0) , (4.51)
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and fulfill the consistency conditions in (3.11). The corresponding conserved charge can

then be obtained from εJ = λ δDδJ and εP = λ δDδP , with

D = ztH(k) +

ˆ
dφφJ , (4.52)

where H(k) stands for the Hamiltonian, given by eq. (4.45).

As an ending remark of this subsection, it is worth noting that the field equations of the

so-called “perturbed KdV hierarchy” (see e.g., [89, 91]) are precisely recovered from (4.49)

for the particular case of cJ = a = 0. In this case, for the entire hierarchy, according

to (4.45), configurations with J = 0 do not carry energy, which goes by hand with the

fact that the Hamiltonian corresponds to the energy of a perturbation described by J .

Indeed, for this class of configurations, the entire set of conserved charges H̃(j) in (4.25)

also vanishes. Note that the remaining ones, given by H
(j)
KdV generically remain nontrivial,

which can be interpreted as the conserved charges associated to an arbitrary “background

configuration” described by P = P (t, φ) that solves the field equations of the k-th repre-

sentative of the KdV hierarchy.

4.4 Analytic solutions

Exact analytic solutions of the KdV equation, as well as for the k-th representative of

the KdV hierarchy, have been thoroughly studied in the literature since long ago through

different methods (see e.g., [72, 96]).

Here we show how to obtain an interesting wide class of analytic solutions of the field

equations in (4.49) for an arbitrary value of the nonnegative integer k that labels our

hierarchy of integrable systems with BMS3 Poisson structure.

As a warming up exercise, let us begin considering the simplest case, described by

choosing the field P to be constant, so that the field equation of the KdV hierarchy in (4.49)

is trivially solved for an arbitrary value of k. In this case, the field equation for J (t, φ)

in (4.49) just reduces to a dispersive linear homogeneous equation with constant coefficients,

given by

J̇ =

k∑
m=0

αk,m(−cP)k−mPm∂2k−2m+1
φ J , (4.53)

with αk,m ≡ (2k+1)!!
m!(2k−2m+1)!! , which can be easily solved for an arbitrary member of the

hierarchy. Indeed, expanding in Fourier modes according to5

J (t, φ) =
1

2π

∞∑
n=0

Jne−i(ωk,nt+nφ) , (4.54)

one finds that the corresponding dispersion relation is given by

ωk,n =

k∑
m=0

αk,mcP
k−mPmn2(k−m)+1 . (4.55)

5J (t, φ) is real provided that the modes fulfill (Jn)∗ = J−n.
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In the case of nontrivial solutions P = P(t, φ) of the k-th KdV equation, it is also

possible to find generic analytic solutions for J (t, φ). Remarkably, in spite of the fact that

J (t, φ) obeys a linear differential equation, their exact solutions are able to be nondisper-

sive. This effect occurs because the coefficients of the linear equation for J in (4.49) are

determined by nontrivial solutions of the k-th KdV equation, and it persists even in pres-

ence of a source term (with a 6= 0 or cJ 6= 0). This is explicitly discussed in what follows.

4.4.1 Generic analytic solutions

Let us assume that P = P(t, φ) corresponds to an arbitrary generic solution of the field

equations of the k-th representative of the KdV hierarchy, described by the second line

of (4.49). Note that, since the central extension cP has not been scaled away, nontrivial

solutions P(t, φ) explicitly depend on cP .

In order to find the form of J = J (t, φ) one has to solve the remaining equation

in (4.49), which turns out to be linear in J , and possesses an inhomogeneous term that is

completely specified by P and their spatial derivatives. Hence, the generic solution for J
is given by the sum of the particular and the homogeneous solutions, i.e.,

J = Jh + Jp . (4.56)

Noteworthy, as it is shown in appendix D, for an arbitrary value of the label k of the

hierarchy, a particular solution J = Jp(t, φ) can be analytically expressed in a very compact

way, so that it reads6

Jp = cJ
∂P
∂cP

+ atṖ . (4.57)

Besides, a generic solution of the homogeneous equation can be found by virtue of the

symmetries in (3.8), being spanned by the subset of parameters given by (4.17) that preserve

the form of P(t, φ), i.e., the ones for which δP = 0. The suitable subset of symmetries we

look for then becomes generated by an arbitrary combination of the generalized polynomials

K(j), excluding K̃(j); and hence the parameters are given by εJ and εP in (4.17) with

η̃j = 0. Thus, according to (3.8), the homogeneous solution is given by

Jh = δηjJ =

∞∑
j=0

ηjD(P)R(j) . (4.58)

Therefore, by virtue of the recursive relation of the Gelfand-Dikii polynomials in (4.21),

the generic solution for J acquires the form

J =
∞∑
j=0

ηj∂φR
(j+1) + cJ

∂P
∂cP

+ atṖ . (4.59)

As a cross-check, in appendix D it is explicitly shown that eq. (4.59) solves the field

equation for J in (4.49).

6Note that this particular solution becomes trivial (Jp = 0) in the case of “perturbed KdV” described

by cJ = a = 0.
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In sum, the generic solution for J in (4.59) has been generated through acting on the

particular solution Jp with the symmetries that are spanned by the corresponding canonical

generators in (4.28) with η̃j = 0. Hence, since the generators are in involution, the full set

of conserved charges for the solution characterized by the fields P and Jp must coincide

with the ones for the fields P with J given by (4.59). In other words, the homogeneous

part of the solution Jh does not contribute to the conserved charges.

The conserved charges are then described by the corresponding ones for KdV, given by

H
(n)
KdV, together with the independent set H̃(n) in (4.25). Once the latter set is evaluated

in the generic solution (4.59), it can be compactly written in terms of the total derivative

of H
(n)
KdV with respect to cP , so that it reads (see appendix D)

H̃(n) = cJ
dH

(n)
KdV

dcP
. (4.60)

Therefore, for the BMS3 Poisson structure D(2), the energy of our generic solution

for the k-th representative of the hierarchy is given by the Hamiltonian in (4.45), which

reduces to

H(k) = cJ
dH

(k)
KdV

dcP
+ aH

(k)
KdV . (4.61)

It is worth pointing out that the conserved charges of the solution can be expressed

exclusively in terms of P and their spatial derivatives.

Note that the generic class of solutions presented here is mapped into itself under the

anisotropic scaling of Lifshitz type given in (4.50), where the arbitrary constants ηj of the

homogeneous solution (4.58) transform as η̄j = σ2j−1ηj .

Additionally, as pointed in section 4.2.3, in the case of k = 1 the field equations

are also invariant under Galilean transformations. Hence, in this case, by virtue of the

Galilean boost spanned by (4.31), our solution in (4.59) acquires nontrivial zero modes

once expressed in the moving frame.

In the next subsection, we explicitly describe a couple of simple and interesting par-

ticular examples of analytic solutions in the case of k = 1.

4.4.2 Particular cases for k = 1

Single KdV soliton on the real line. The integrable system described in section 4.2

can be extended to R2 provided that the angular coordinate is unwrapped (−∞ < φ <∞),

so that our previous analysis still holds once the fall-off of the fields is assumed to be fast

enough so as to get rid of boundary terms.

In our conventions, the well-known single soliton solution of the KdV equation

in (4.12) reads

P = −v sech2 (x) , (4.62)

where x =
√

v
4cP

(φ− vt), and v stands for the integration constant that parametrizes the

velocity and amplitude of the soliton.

An analytic solution for the remaining field equation in (4.12) can then be constructed

out from (4.59), with P given by (4.62). For simplicity we consider that the integration
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x

J

Figure 1. The form of J in (4.63) is plotted for generic fixed values of cP , cJ , a, v and for

different values of η1. Note that when the integration constant η1 vanishes, J becomes an even

function of x (solid line).

constants in (4.59) are chosen as ηj = η1δj,1, with η1 arbitrary, so that the solution for J
becomes explicitly given by

J =

(
η1
v3/2

√
cP
− vx(acP + cJ )

cP

)
tanh (x) sech2 (x) + av sech2 (x) . (4.63)

Therefore, although J obeys a linear differential equation, the solution in (4.63) clearly

maintains its shape as it evolves in time. The profile of J in (4.63) is depicted in figure 1.

Cnoidal wave on S1. In the case of periodic boundary conditions (−π ≤ φ < π) an

analytic solution for the KdV equation in (4.12) of solitonic type is known as a “cnoidal

wave”, since it is described in terms the Jacobi elliptic cosine (cn) (see e.g. [96]). The

solution is given by

P = 4cP
[
A− αcn2 (y,m)

]
, (4.64)

with y =
√

α
m(φ−cPvt), and the velocity parameter is related to the remaining integration

constants as

v = 4α

(
2− 1

m

)
− 12A . (4.65)

The wavelength of the solution is given by 2
√

m
αK(m), where K stands for a complete

elliptic integral of the first kind. Accordingly, the elliptic parameter m can take values

within the range 0 < m < 1, satisfying 2
√

m
αK(m) = 2π

n with n ∈ N.

As in the previous example, we then construct the analytic solution for J from the

generic one in (4.59), with P given by the cnoidal wave in (4.64). For the sake of simplicity,
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−π π

φ

P

−π π

φ

J

Figure 2. Profiles of P (cnoidal wave in (4.64)) and J in (4.66) for a fixed generic value of A, α,

m and t.

we again choose the integration constants to be given by ηj = η1δj,1, and hence the searched

for analytic solution becomes

J = 4cJ
[
A−αcn2 (y,m)

]
+

[
8αcP

√
α

m
(η1−(acP+cJ )vt)

]
cn(y,m)sn(y,m)dn(y,m) ,

(4.66)

where sn and dn stand for the elliptic sine and the delta amplitude, respectively.

Note that the profile of J preserves its form as it evolves in time only in the case of

γ = acP + cJ = 0 (perturbed KdV), otherwise the amplitude grows linearly with time.

Nonetheless, the energy in (4.61) as well as the remaining conserved charges given by H
(n)
KdV,

and H̃(n) in (4.25), turn out to be finite regardless the value of γ.

The profiles of P and J are sketched in figure 2.

As an ending remark of this section, it is worth pointing out that in the special case of

cJ = a = 0, the field equation for J becomes devoid of a source. The particular solutions,

given by (4.63) for the real line, and by (4.66) in the case of S1, in this case turn out to

be described by odd analytic functions that maintain its shape as they propagate with the

same velocity as their corresponding KdV solitons described by P in (4.62) and (4.64),

respectively. Note that, according to eq. (4.61), the total energy of this sort of soliton-

antisoliton bound states for J vanishes, and the conserved charges H̃(n) in (4.25) also do.

Nevertheless, the conserved charges H
(n)
KdV remain being nontrivial.

5 Geometrization of the hierarchy: the dynamics of locally flat space-

times in 3D

In this section, we show that the entire structure of the class of integrable systems with

BMS3 Poisson structure described above can be fully geometrized, in the sense that the dy-

namics turns out to be equivalently understood through the evolution of spacelike surfaces

embedded in locally flat spacetimes in three dimensions.

– 21 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
8

For the sake of simplicity, here we focus in the case of BMS3 Poisson structures with

cJ = 0. Thus, following the lines of [1], it is possible to unveil a deep link between the class

of integrable systems aforementioned and General Relativity in three spacetime dimensions.

Concretely, here we show that the Einstein-Hilbert action without cosmological constant

in 3D can be endowed with an appropriate set of boundary conditions, so that in the

reduced phase space, the Einstein equations in vacuum, which imply the vanishing of the

Riemann tensor, precisely reduce to the ones of the dynamical systems with BMS3 Poisson

structure in (2.7). As a consequence, it is possible to establish a one-to-one map between

any solution of this kind of integrable systems and certain specific locally flat metric in

three spacetime dimensions. Furthermore, the symmetries of the integrable systems can be

seen to naturally emerge from diffeomorphisms that preserve the asymptotic form of the

spacetime metric. Hence, and remarkably, the symmetries manifestly become Noetherian in

our geometric framework. Therefore, the infinite set of conserved charges for the integrable

system is transparently recovered from the corresponding surface integrals in the canonical

approach. This can be seen as follows.

The Einstein-Hilbert action in three spacetime dimensions

I =
1

16πG

ˆ
d3x
√
−gR , (5.1)

can be equivalently expressed as a Chern-Simons action for the isl(2,R) algebra [97, 98].

Thus, up to boundary terms, the action (5.1) can be written as

I =
1

2

ˆ
d3x

〈
AdA+

2

3
A3

〉
, (5.2)

where 〈· · · 〉 stands for the invariant bilinear form defined in eq. (3.2) with cJ = 0 and

cP = 1/ (8πG). The components of the isl(2,R)-valued gauge field are then identified with

the dualized spin connection and the dreibein according to

A = ωaJa + eaPa . (5.3)

In order to describe the asymptotic structure of the fields, as explained in [99–101] it

is useful to choose the gauge so that the connection reads

A = b−1ab+ b−1db , (5.4)

where the radial dependence is completely captured by the group element b = b (r), which

as shown in [66] can be conveniently chosen as b = erP2 . One of the advantages of this gauge

choice is that the remaining analysis can be performed in terms of the auxiliary connection

a = atdt+ aφdφ , (5.5)

that only depends on t, φ. Here we propose that the asymptotic form of the auxiliary

connection for the gravitational field in (5.5) is precisely given by the two-dimensional

locally flat gauge field that describes the field equations of the dynamical system with

BMS3 Poisson structure in section 3. Their components aφ and at are then described by
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eqs. (3.3) and (3.4), respectively. Therefore, from (5.2), the field equations imply that the

connection A is flat (F = dA + A2 = 0), which by virtue of (5.3) amounts to deal with

three-dimensional manifolds with vanishing curvature and torsion; whereas eq. (5.4) means

that the field strength of the auxiliary gauge field also vanishes as in (3.6). Hence, for our

boundary conditions, the Einstein equations in vacuum precisely reduce to the ones of a

dynamical system with BMS3 Poisson structure in (2.5).

Besides, the asymptotic symmetries, being defined as the diffeomorphisms that preserve

the asymptotic form of the spacetime metric, turn out to be equivalent to the set of gauge

transformations δA = dλ̃ + [A, λ̃] that maintain the asymptotic form of the gauge field

in (5.4). For our boundary conditions, one then finds that the asymptotic symmetries are

spanned by a Lie-algebra-valued parameter of the form λ̃ = b−1λb, where λ = Λ (εJ , εP)

is exactly given as in eq. (3.7), including the consistency condition for the parameters εJ ,

εP in (3.11). Furthermore, the transformation law of the dynamical fields J , P precisely

agrees with the transformations in eq. (3.8).

Since the asymptotic symmetries are Noetherian, the global conserved charges can be

readily obtained using the canonical approach [102]. Indeed, their variation is explicitly

given by surface integrals defined at the boundary of the spatial section,7 which read

δQ[λ̃] = −
ˆ
dφ
〈
λ̃δAφ

〉
= −

ˆ
dφ 〈λδaφ〉 = −

ˆ
dφ (εJ δJ + εPδP) , (5.6)

and precisely coincide with the variation of the conserved charges introduced in eq. (3.12),

in the context of integrable systems.

In particular, if the Lagrange multipliers µJ and µP are kept fixed at the boundary

according to (4.47), so that they correspond to the variation of the functional H(k) defined

in (4.45), the Einstein equations reduce to the ones of the hierarchy of integrable systems

discussed in section 4.3. Therefore, in this case, the variation of the surface integrals in (5.6)

integrates precisely as in (4.28). Note that the energy of a gravitational configuration that

fulfills these boundary conditions is then given by the Hamiltonian of the corresponding

integrable system as in (3.15), i.e., E = Q[∂t] = H(k).

In the simplest case of k = 0, described in section 4.1, we recover the set of boundary

conditions proposed in [66]8 (see also [65]) which contain the boundary conditions in [6]

for a particular choice of Lagrange multipliers at the boundary. Note that in this case,

the BMS3 algebra is realized as the asymptotic symmetry algebra. For the remaining

cases (k ≥ 1), the new class of boundary conditions is such that the asymptotic symmetry

algebra is infinite-dimensional, abelian and devoid of central charges, which is equivalent

to the fact that the conserved charges of the hierarchy are in involution (see eq. (4.29)).

It is worth pointing out that, in the metric formalism, our particular choices for the

Lagrange multipliers µJ and µP correspond to fixing the lapse and shift functions in the

7It is worth noting that, by virtue of the gauge choice in (5.4), since the radial coordinate has been

explicitly gauged away, the analysis can be carried out for a boundary that is located at any fixed value of

the radial coordinate, and hence, not necessarily at null infinity.
8Strictly speaking, we are dealing with the boundary conditions in [66] provided that the higher spin

fields and their corresponding chemical potentials are turned-off.
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ADM decomposition of the metric, as suitable local functionals of the dynamical variables

at the boundary. Furthermore, and remarkably, the class of locally flat spacetimes de-

scribed by this new set of asymptotic conditions inherits the anisotropic Lifshitz scaling

of the corresponding integrable systems by virtue of the boundary conditions. This effect

then becomes the flat analogue of the one found in [1] for the case of locally AdS3 space-

times, where isotropy is recovered in the particular case of the Brown-Henneaux boundary

conditions [103].

It is also amusing to verify that trivial solutions of the class of integrable systems

described above, like the ones just given by configurations with J and P constants, actually

correspond to the geometries of the flat cosmological spacetimes in [104]. Hence, from a

gravitational point of view, these configurations become certainly non-trivial, not only in

a geometric sense, but also in the physical one since they carry Hawking temperature

and entropy associated to the cosmological horizon. It would then be worth to explore

additional simple configurations for the integrable systems that could naturally become

non-trivial in the gravitational framework and vice versa.

The results of this section are also related to some interesting issues that will be

discussed in a forthcoming work, including the precise details of the asymptotic structure

in the metric formulation, as well as the microscopic entropy of flat cosmological spacetimes

once they are embedded within the new set of boundary conditions. An intriguing link

with the recent results in refs. [43, 105] concerning “soft hair” in the sense of [44–46]

for asymptotically flat spacetimes in 3D, can also be established once the hierarchy of

integrable systems with BMS3 Poisson structure presented here is suitably extended to the

case of z = 0 in a form akin to the one performed in [1] for the KdV hierarchy. It can also

be shown that the geometrization of the class of integrable systems discussed here, but in

the generic case with cJ 6= 0, can be performed through a suitable extension of the analysis

in [8, 69] once suitable parity odd terms in the action are included (see also [106]).

6 Extensions of our results

As pointed out in the introduction, the BMS3 algebra admits some extensions which, ac-

cording to our results, might be expected to be linked to new classes of integrable systems.

In particular, an interesting nonlinear extension of BMS3 that includes additional gener-

ators of spin s > 2 was found in [64] (in full agreement with the algebra simultaneously

found in [63] for s = 3). This kind of extensions can be regarded as “flat W -algebras”,

since they can be recovered from a suitable Inönü-Wigner contraction of two copies of

certain classical W -algebras (for a review about W -algebras, see e.g. [107]). Noteworthy,

preliminary results [108] show that new hierarchies of integrable systems whose Poisson

structures correspond to flat W -algebras indeed exist. In fact, this family of integrable

systems turns out to be bi-Hamiltonian, and furthermore, following the lines of section 5,

they can also be geometrized in terms of higher spin gravity without cosmological constant

in three spacetime dimensions endowed with a suitable set of boundary conditions. There-

fore, the symmetries of this novel class of integrable systems can be seen as combinations

of diffeomorphisms and higher spin gauge transformations that preserve the asymptotic
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form of the three-dimensional configurations. As a consequence, in the three-dimensional

geometric setup, the infinite set of conserved charges of the integrable systems emerge as

the canonical generators that correspond to the asymptotic symmetries, being described

by suitable surface integrals at the boundary, which turn out to be in involution.

Further interesting links between certain well-known classes of integrable systems and

higher spin gravity on AdS3 have been explored in [1, 109–112].
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A List of conserved quantities and polynomials

Here we provide an explicit list of the first six conserved charges H
(n)
KdV and H̃(n), and their

associated polynomials R(n) and T (n).

The conserved quantities H
(n)
KdV correspond to the ones of the KdV equation in (4.12),

which in our conventions, generically depend on the central extension cP . Therefore,

they read

H
(0)
KdV =

ˆ
dφP ,

H
(1)
KdV =

ˆ
dφ
P2

2
,

H
(2)
KdV =

ˆ
dφ

[
1

2
cPP ′2 +

1

2
P3

]
,

H
(3)
KdV =

ˆ
dφ

[
1

2
c2
PP ′′2 +

5

2
cPPP ′2 +

5

8
P4

]
,

H
(4)
KdV =

ˆ
dφ

[
1

2
c3
P

(
P(3)

)
2 +

7

2
c2
PPP ′′2 +

35

4
cPP2P ′2 +

7

8
P5

]
,

H
(5)
KdV =

ˆ
dφ

[
1

2
c4
P

(
P(4)

)
2 +

9

2
c3
P

(
P(3)

)
2P +

63

4
c2
PP2P ′′2 − 5c3

PP ′′3

+
105

4
cPP3P ′2 − 35

8
c2
PP ′4 +

21

16
P6

]
.

– 25 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
8

The remaining conserved charges H̃(n), can then be readily obtained from (4.25), which

are given by

H̃(0) =

ˆ
dφJ ,

H̃(1) =

ˆ
dφJP ,

H̃(2) =

ˆ
dφ

[
J
(

3

2
P2 − cPP ′′

)
+

1

2
cJP ′2

]
,

H̃(3) =

ˆ
dφ

[
J
(
c2
PP(4) − 5cPPP ′′ −

5

2
cPP ′2 +

5

2
P3

)
+ cJ

(
cPP ′′2 +

5

2
PP ′2

)]
,

H̃(4) =

ˆ
dφ

[
J
(
− c3
PP(6) + 7c2

PP(4)P − 35

2
cPP2P ′′ + 21

2
c2
PP ′′2 −

35

2
cPPP ′2

+ 14c2
PP(3)P ′ + 35

8
P4

)
+ cJ

(
3

2
c2
P(P(3))2 + 7cPPP ′′2 +

35

4
P2P ′2

)]
,

H̃(5) =

ˆ
dφ

[
J
(
c4
PP(8) − 9c3

PP(6)P − 69

2
c3
P(P(3))2 +

189

2
c2
PPP ′′2

− 27c3
PP(5)P ′ − 57c3

PP(4)P ′′ + 63

2
c2
PP(4)P2 − 105

2
cPP3P ′′

+ 126c2
PP(3)PP ′ + 231

2
c2
PP ′2P ′′ −

315

4
cPP2P ′2 +

63P5

8

)
+ cJ

(
2c3
P(P(4))2 +

27

2
c2
PP(P(3))2 − 15c2

PP ′′3 +
63

2
cPP2P ′′2

− 35

4
cPP ′4 +

105

4
P3P ′2

)]
.

Hence, according to (4.23), the Gelfand-Dikii polynomials read

R(0) = 1 , R(1) = P , R(2) = −cPP ′′ +
3

2
P2 ,

R(3) = c2
PP(4) − 5cPPP ′′ −

5

2
cPP ′2 +

5

2
P3 ,

R(4) = −c3
PP(6) + 7c2

PP(4)P − 35

2
cPP2P ′′ + 21

2
c2
PP ′′2 −

35

2
cPPP ′2

+ 14c2
PP(3)P ′ + 35

8
P4 ,

R(5) = c4
PP(8) − 9c3

PP(6)P +
63

2
c2
PP(4)P2 − 69

2
c3
P(P(3))2 − 105

2
cPP3P ′′

+
189

2
c2
PPP ′′2 −

315

4
cPP2P ′2 − 27c3

PP(5)P ′ − 57c3
PP(4)P ′′

+ 126c2
PP(3)PP ′ + 231

2
c2
PP ′2P ′′ +

63

8
P5 ,

while the polynomials T (n) can be obtained from (4.24), so that they are given by

T (0) = 0 , T (1) =J , T (2) =−cPJ ′′−cJP ′′+3JP ,

T (3) = c2
PJ (4)−5cPPJ ′′−5cPJP ′′−5cPJ ′P ′+

15

2
JP2

+cJ

(
2cPP(4)−5PP ′′− 5

2
P ′2
)
,

– 26 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
8

T (4) =−c3
PJ (6)+7c2

PJ (4)P+14c2
PJ (3)P ′+21c2

PJ ′′P ′′−
35

2
cPP2J ′′+14c2

PP(3)J ′

+7c2
PJP(4)−35cPPJ ′P ′−35cPJPP ′′−

35

2
cPJP ′2+

35

2
JP3−cJ

(
3c2
PP(6)

−14cPPP(4)−21cPP ′′2+
35

2
P2P ′′+ 35

2
PP ′2−28cPP(3)P ′

)
,

T (5) = c4
PJ (8)−9c3

PJ (6)P−27c3
PJ (5)P ′−57c3

PJ (4)P ′′+ 63

2
c2
PJ (4)P2−69c3

PJ (3)P(3)

+126c2
PJ (3)PP ′−57c3

PP(4)J ′′+189c2
PPJ ′′P ′′+

231

2
c2
PJ ′′P ′2−

105

2
cPP3J ′′

−27c3
PP(5)J ′+126c2

PPP(3)J ′− 315

2
cPP2J ′P ′+231c2

PJ ′P ′P ′′−9c3
PJP(6)

+63c2
PJPP(4)+

189

2
c2
PJP ′′2−

315

2
cPJP2P ′′− 315

2
cPJPP ′2+126c2

PJP(3)P ′

+
315

8
JP4+cJ

(
4c3
PP(8)−27c2

PPP(6)+63cPP2P(4)− 207

2
c2
P(P(3))2+189cPPP ′′2

−81c2
PP(5)P ′−171c2

PP(4)P ′′+252cPPP(3)P ′+231cPP ′2P ′′−
105

2
P3P ′′− 315

4
P2P ′2

)
.

B Involution of the conserved quantities

In order to prove that our set of conserved charges, H̄(m) =
(
H

(n)
KdV; H̃(n)

)
, is abelian in

both Poisson brackets, one can follow the lines of the proof of the same statement in the

case of the pure KdV equation that can be found in standard textbooks (see e.g., [72, 75]).

Without loss of generality, let us assume that m > n. Thus, the Poisson bracket

associated to the BMS3 operator D(2) of two conserved charges, which reads

{H̄(m), H̄(n)}(2) =

ˆ
dφ
(
δH̄(m)

δJ
δH̄(m)

δP

)
D(2)

(
δH̄(n)

δJ
δH̄(n)

δP

)
, (B.1)

by virtue of the recursion relation in (4.18), can be written in terms of the Poisson bracket

associated to the “canonical” operator D(1), according to

{H̄(m), H̄(n)}(2) =

ˆ
dφ
(
δH̄(m)

δJ
δH̄(m)

δP

)
D(1)

(
δH̄(n+1)

δJ
δH̄(n+1)

δP

)
= {H̄(m), H̄(n+1)}(1) (B.2)

= −{H̄(n+1), H̄(m)}(1) .

Analogously, making use of the recursion relationship again, one finds that

{H̄(m), H̄(n)}(2) = −{H̄(n+1), H̄(m)}(1) = {H̄(m−1), H̄(n+1)}(2) . (B.3)

Therefore, once the procedure is applied m− n times, one obtains

{H̄(m), H̄(n)}(2) = {H̄(n), H̄(m)}(2) , (B.4)

which implies that the conserved charges are involution in both Poisson brackets, i.e.,

{H̄(m), H̄(n)}(2) = {H̄(m), H̄(n)}(1) = 0 . (B.5)
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C Verification of the solution in (4.17) for the consistency condition of

the symmetry parameters

Here we explicitly verify that eq. (4.17) solves the consistency condition for the parameters

εJ , εP in (3.11) for an arbitrary representative of the hierarchy, being characterized by

the Hamiltonian H(k) given by (4.45). Since the equation is linear for the parameters, it is

then enough proving that

εJ (φ) =
δH̄(j)

δJ (φ)
, εP(φ) =

δH̄(j)

δP(φ)
, (C.1)

fulfills, for an arbitrary member of the set of conserved charges H̄(j) =
(
H

(j)
KdV; H̃(j)

)
.

Note that the consistency condition for the parameters in (3.11) can also be written as(
ε̇J (φ)

ε̇P(φ)

)
= −
ˆ
dϕ

( δ
δJ (φ)
δ

δP(φ)

)(
D(2)

(
µJ (ϕ)

µP(ϕ)

))T( εJ (ϕ)

εP(ϕ)

)
, (C.2)

which by virtue of the definition of µJ and µP in (4.47), it reads(
ε̇J (φ)

ε̇P(φ)

)
= −

ˆ
dϕ

( δ
δJ (φ)
δ

δP(φ)

)(
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

))T( εJ (ϕ)

εP(ϕ)

)
. (C.3)

Therefore, once (C.1) is evaluated on (C.3), the consistency condition reduces to(
ε̇J (φ)

ε̇P(φ)

)
= −

ˆ
dϕ

( δ
δJ (φ)
δ

δP(φ)

)(
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

))T( δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)
. (C.4)

Besides, taking the time derivative of (C.1), by virtue of the field equations in (4.46)

one can readily show that(
ε̇J (φ)

ε̇P(φ)

)
=

ˆ
dϕ

[(
δ

δJ (φ)
δ

δP(φ)

)(
δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)]
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

)
. (C.5)

Then, integrating by parts, the latter equation reads(
ε̇J (φ)

ε̇P(φ)

)
=

(
δ

δJ (φ)
δ

δP(φ)

) ˆ
dϕ
(
δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

)

−
ˆ
dϕ

( δ
δJ (φ)
δ

δP(φ)

)(
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

))T( δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)
, (C.6)

which reduces to(
ε̇J (φ)

ε̇P(φ)

)
=−
ˆ
dϕ

( δ
δJ (φ)
δ

δP(φ)

)(
D(2)

(
δH(k)

δJ (ϕ)
δH(k)

δP(ϕ)

))T( δH̄(j)

δJ (ϕ)
δH̄(j)

δP(ϕ)

)
+

(
δ

δJ (φ)
δ

δP(φ)

)
{H̄(j),H(k)} ,

(C.7)
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where we have made use of the definition of the Poisson brackets in (2.3). Therefore, since

the conserved charges commute with the Hamiltonian ({H̄(j), H(k)} = 0), the second term

at the r.h.s. of (C.7) vanishes; and consequently, the consistency condition evaluated on

the parameters (C.1), given by (C.4), has been shown to be fulfilled.

D Generic solution for the field equations of the hierarchy

Here we show that the generic solution in (4.59) solves the field equations (4.49) for an

arbitrary value of the label of the hierarchy k, provided that P stands for an arbitrary

generic solution for the field equations of the k-th representative of the KdV hierarchy.

In sum, we want to prove that

J =

∞∑
j=0

ηj∂φR
(j+1) + cJ

∂P
∂cP

+ atṖ , (D.1)

is a solution of

J̇ = D(P)T (k) +
(
D(J ) + aD(P)

)
R(k) , (D.2)

provided that P solves

Ṗ = D(P)R(k) , (D.3)

where the Gelfand-Dikii polynomials R(k), and the polynomials T (k) are defined

through (4.23) and (4.24), with H̃(k) given by (4.25), i.e.,

R(k) =
δH

(k)
KdV [P]

δP
, (D.4)

T (k) = cJ
∂R(k)

∂cP
+

ˆ
dϕJ (ϕ)

δR(k)(ϕ)

δP
. (D.5)

Thus, once (D.5) is evaluated on (D.1), it reduces to

T (k) =

∞∑
j=0

ηj

ˆ
dϕ∂ϕR

(j+1)(ϕ)
δR(k)

δP(ϕ)
+ cJ

dR(k)

dcP
+ at∂tR

(k) , (D.6)

where dR(k)

dcP
stands for the total derivative of R(k) with respect to the central charge cP ,

given by
dR(k)

dcP
=
∂R(k)

∂cP
+

ˆ
dϕ
∂P(ϕ)

∂cP

δR(k)

δP(ϕ)
. (D.7)

Besides, the time derivative of (D.1) can be written as

J̇ =
∞∑
j=0

ηj∂φ

[ˆ
dϕ
δR(j+1)

δP(ϕ)
Ṗ(ϕ)

]
+cJ

∂Ṗ
∂cP

+a∂t (t∂tP )

= aD(P)R(k)+∂φ

− ∞∑
j=0

ηj

ˆ
dϕ
δ∂ϕR

(j+1)

δP(ϕ)
R(k+1)(ϕ)+cJ

∂R(k+1)

∂cP
+at∂tR

(k+1)

 , (D.8)
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where we have made use of the k-th KdV equation in (D.3), as well as the recursion relation

for the Gelfand-Dikii polynomials in (4.21). Note that by virtue of (D.4), the following

identity holdsˆ
dϕ

δ∂ϕR
(j+1)

δP(ϕ)
R(k+1)(ϕ) =

δ

δP

ˆ
dϕ∂ϕR

(j+1)(ϕ)R(k+1)(ϕ)−
ˆ
dϕ∂ϕR

(j+1)(ϕ)
δR(k+1)(ϕ)

δP ,

(D.9)

where the first term in the r.h.s. of (D.9) vanishes due to the fact that the conserved charges

H
(k)
KdV are in involution, i.e., {H(k+1)

KdV , H
(j+1)
KdV }(1) = 0. Hence, eq. (D.9) implies that (D.8)

reduces to

J̇ = aD(P)R(k) + ∂φ

 ∞∑
j=0

ηj

ˆ
dϕ∂ϕR

(j+1)(ϕ)
δR(k+1)(ϕ)

δP
+ cJ

∂R(k+1)

∂cP
+ at∂tR

(k+1)


= aD(P)R(k) + ∂φT

(k+1) . (D.10)

Therefore, making use of the recursion relation for the polynomials T (k) in (4.22), one

finally proves that eq. (D.10) reduces to the field equation in (D.2), which implies that J
in (D.1) is indeed a solution.

Consequently, making ηj = 0 in (D.1), one concludes that Jp in (4.57) provides a

particular solution for the field equation (D.2).

The conserved charges associated to this exact solution are then given by H
(n)
KdV and

H̃(n) defined in (4.25). Note that once H̃(n) is evaluated on the exact solution (D.1), the

contribution due to the homogeneous part vanishes, because

ˆ
dφJh

δH
(n)
KdV

δP
=
∞∑
j=0

ηj

ˆ
dφ∂φR

(j+1) δH
(n)
KdV

δP
=
∞∑
j=0

ηj

{
H

(n)
KdV, H

(j+1)
KdV

}
(1)

= 0 . (D.11)

Therefore, H̃(n) reduces to

H̃(n) = cJ

(
∂H

(n)
KdV

∂cP
+

ˆ
dφ

∂P
∂cP

δH
(n)
KdV

δP

)
+ atḢ

(n)
KdV , (D.12)

where the last term in (D.12) vanishes since H
(n)
KdV is conserved. Hence, (D.12) can be

written in terms of the total derivative with respect to the central extension cP , according to

H̃(n) = cJ
dH

(n)
KdV

dcP
. (D.13)
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[42] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo and R. Troncoso, Higher Spin Black Holes

with Soft Hair, JHEP 10 (2016) 119 [arXiv:1607.05360] [INSPIRE].

[43] H. Afshar, D. Grumiller, W. Merbis, A. Pérez, D. Tempo and R. Troncoso, Soft hairy
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