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Turbulence in dynamical systems is one of the most intriguing phenomena of modern science. Integrable

systems offer the possibility to understand, to some extent, turbulence. Recent numerical and experimental

data suggest that the probability of the appearance of rogue waves in a chaotic wave state in such systems

increases when the initial state is a random function of sufficiently high amplitude. We provide

explanations for this effect.

DOI: 10.1103/PhysRevLett.116.103901

Turbulence is an irregular behavior of dynamical systems

characterized by chaotic changes of the flow parameters

[1]. It has attracted much attention in relation to integrable

and Hamiltonian systems [2–7]. The knowledge of its

properties is vital for oceanographic [8] and atmospheric

[9] studies as well as for optical communications [10].

Although the equations that describe wave propagation in

these fields are not integrable, in a first approximation they

are close to them [8]. Of special interest is the rogue wave

(RW) content of a turbulent wave field, represented by the

extreme deviations from the average wave amplitude [2,3].

There are several crucial results on this subject [3–7], but

many questions remain. One of the interesting results to be

mentioned is that Peregrine breathers are not the highest

waves that may appear in a chaotic wave field [2]. This had

already been observed in previous numerical simulations

[11], but its importance had not been fully recognized

until recently [2]. The highest waves appear as a result of

superpositions of breathers and solitons [11] rather than as

a single Peregrine breather as conjectured in Ref. [12].

Another paramount finding is that the probability of RW

appearance depends very much on the initial conditions [3].

One of the mechanisms that contributes to the formation

of a chaotic wave field is modulation instability (MI) [13].

MI transforms an initially smooth function into a chaotic

wave field. A chaotic wave field can also be created directly

using an initial condition with high amplitude chaotic

components. In integrable and Hamiltonian systems this

chaotic field contains solitons, justifying the term “soliton

turbulence” suggested in Ref. [14]. The relative contribu-

tion of each mechanism is not easy to find when the field

is already highly turbulent. However, it can be found for

initial conditions consisting of a continuous wave (cw)

component mixed with noise of variable amplitude. Small

amplitude noise leads to modulation instability of the cw

while large amplitude noise makes a direct contribution to

the soliton content. A significant difference in the proba-

bility of appearance of rogue waves in these two cases was

observed experimentally in Ref. [3], and in numerical

simulations in Ref. [15]. Both simulations and experiment

show that the probability of RW generation increases

with the increase of the initial noise level. However, clear

explanations for this phenomenon have not been given.

In the present work, we provide explicit clarification for

this remarkable effect.

In order to find the mechanism of the emergence of a

higher number of rogue waves, we have performed

numerical simulations with the dimensionless nonlinear

Schrödinger equation (NLSE),

iψξ þ
1

2
ψ ττ þ jψ j2ψ ¼ 0; ð1Þ

taking as the initial condition a constant background of unit

amplitude with random perturbation on top of it. Namely,

as in Ref. [15–17], we used the function

ψðτ; 0Þ ¼ 1þ μfðτÞ, where fðτÞ is a normalized complex

random function whose standard deviation is σ ¼ 1. When

multiplied by the variable coefficient μ, this gives the

standard deviation for the function ψ . The real and

imaginary parts of the function fðτÞ are taken as

Gaussian distributed and Gaussian correlated functions

[18], with variable correlation length Lc. Real and imagi-

nary parts of the random field are mutually uncorrelated

functions. The parameter μ that we varied in the simulations

is related to the variance of the resulting initial field

intensity distribution σ2 ¼ hI2i − hIi2, where I ¼ jψ j2,
and hi stands for the mean value in τ over thousands of

realizations. The use of two variable parameters, σ and Lc,

allowed us to reveal a more complex dynamics of integrable

chaos than in previous works.

Figure 1 illustrates the main features of the phenomenon.

Figure 1(a) shows the intensity profile of three typical

initial conditions used in our simulations. Only a small part

of the entire τ interval is shown here. The value of the mean

field intensity hIi is taken always equal to 1. The value of σ
for each case is given inside the figures. The correlation
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length Lc in this case is 0.76. The solid red curve that

corresponds to σ ¼ 0.1 shows relatively small random

deviations from the cw with amplitude 1. The dotted green

curve that corresponds to σ ¼ 0.5 shows higher chaotic

deviations around the cw, while the blue dashed curve that

corresponds to the highest σ ¼ 0.9 shows a considerable

amount of noise. The cw component in this last case is

completely out balanced by noise.

Figure 1(b) illustrates the result of the simulations with

the above initial conditions. It shows the peak amplitude

(absolute maximum of jψ j over the whole τ interval of

simulation) as a function of ξ. As expected from the theory

of modulation instability, for the lowest values of σ, the

maximum increases exponentially at the initial stages of

evolution. It evolves chaotically after the saturation is

reached at a certain propagation distance. The convergence

to a chaotic state is similar but quicker when σ ¼ 0.5. For

σ ¼ 0.9, the evolution is chaotic from the very beginning.

The plots in Fig. 1(b) are not necessarily smooth. The

location of the peak amplitude in τ may change abruptly,

especially for a wide numerical grid.

A remarkable fact observed in Fig. 1(b) is that the

maximal field amplitude takes higher values for higher σ.

Namely, in the case of σ ¼ 0.9, the highest amplitudes are

roughly 1.5 times higher than in the case of σ ¼ 0.1. Each

of the above examples represents only one, randomly

chosen, realization. In order to calculate the statistical

characteristics of the phenomenon, we repeated the sim-

ulations with thousands of different, but statistically equiv-

alent, initial conditions. Figure 1(c) shows the probability

density function (PDF) of the field intensity obtained after

propagating a distance of 100 units along the ξ axis. The

PDF’s curves are not settled at the initial stages of

propagation, but converge to a nearly stationary regime

and practically do not change after ξ ¼ 20. The curves in

Fig. 1(c) show clearly that the tails of the PDF increase

considerably with σ. At I ≈ 16, the probability increases

roughly 20 times when σ increases from 0.1 to 0.5, and

20 times more when it increases from 0.5 to 0.9. Thus,

the probability of generating rogue waves is significantly

enhanced when the chaotic component in the initial

conditions is comparable or stronger than the cw. As the

total energy density in the initial conditions is kept the same

in all three cases, the origin of the enhancement has to be

sought for in the internal dynamics of the system governed

by the NLSE rather than in the changes of energy.

In order to find the reason for this enhancement, we used

the fact of the integrability of the system. Namely, the

NLSE originates from the compatibility condition of the

following set of linear matrix equations [19]:

Rτ ¼ URþ λJR; ð2Þ

Rξ ¼ ðλ2 þ λU þ V=2ÞR; ð3Þ

where the 2 × 2 matrices U, V, and J are given by

U¼

�

0 iψ�

iψ 0

�

; V¼

�

−ijψ j2 ψ�
τ

−ψ τ ijψ j2

�

; J¼

�

i 0

0 −i

�

;

while

R ¼

�

r

s

�

is a column matrix composed of the two complex functions

rðξ; τÞ and sðξ; τÞ.
One of the major results of the inverse scattering

technique [19] is that the spectrum of eigenvalues of

Eq. (2) does not depend on ξ. This means that the dynamics

of the field ψðξ; τÞ at any ξ is defined by the spectrum of the

eigenvalues of Eq. (2) at ξ ¼ 0, i.e., defined by the initial

condition. The latter plays the role of a potential in the

eigenvalue and eigenfunction problem. By solving Eq. (2)

for each initial chaotic “potential” ψ ¼ ψðξ ¼ 0; τÞ, we
can find the set of eigenvalues λ and eigenfunctions R of

this problem. These eigenfunctions are either nonlocalized

solutions that correspond to breathers and radiation waves

or functions localized on the “potential wells” created by

the holes of the chaotic function ψ . The latter correspond to

solitons. The complete sets of eigenvalues λ are of crucial

importance for finding the reasons for the enhancement of

the probability of the appearance of rogue waves.

We have numerically solved the eigenvalue problem

Eq. (2) using the initial chaotic functions ψ for the same

three values of σ as above. The sets of complex eigenvalues

λ found this way are shown in Fig. 2. The results for various

chaotic functions generated in each realization differ.

However, the average location of the eigenvalues occupies

an area in the complex plane well determined by the

corresponding values of σ. The three plots in Fig. 2 show

the result of the superposition of 11 realizations. In all

cases, there is a continuous line of eigenvalues located

on the real axis that correspond to radiation waves. They

extend to much larger values along the horizontal axis of

ReðλÞ than those shown in the figure.
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FIG. 1. (a) Initial field intensity for three values of σ. The solid

red curve corresponds to a small perturbation, σ ¼ 0.1, the dotted

green curve is for moderate perturbation, σ ¼ 0.5, and the dashed

blue curve stands for the highest perturbation, σ ¼ 0.9. The

correlation length Lc ¼ 0.76. (b) Evolution of the maximum of

the field amplitude versus ξ for the above three realizations of the

initial field. (c) The probability density function for the field

intensity at ξ ¼ 100 for the same values of σ.
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When ψðξ ¼ 0; τÞ ¼ const, the eigenvalues located

along the vertical axis correspond to Akhmediev breathers

(AB). Figure 2(a) shows the set of eigenvalues for σ ¼ 0.1,

which gives an initial ψ function close to the unperturbed

cw. Smaller perturbations produce practically the same

spectrum (and, accordingly, identical PDFs). The upper

limiting point λ ¼ i in the spectrum corresponds to the

Peregrine breather. The latter has a peak amplitude of 3,

which is the maximum possible for breathers. The eigen-

values located below the point λ ¼ i on the imaginary axis

correspond to the excitation of ABs which have lower

amplitudes. They continuously occupy the whole interval

of unstable frequencies inside the modulation instability

gain curve. Discreteness in Fig. 2(a) is due to the use of

periodic boundary conditions in our numerical scheme.

Increasing the number of mesh points leads to denser

distribution of eigenvalues along the vertical axis.

Figure 2(b) shows the set of eigenvalues obtained when

the chaotic perturbation is larger, σ ¼ 0.5. The spectrum

becomes visibly chaotic. Most of the excitations are ABs,

although some of them may split into solitons. As we know

from the work by Mahnke and Mitschke [20], small

perturbations do not destroy Akhmediev breathers if the

governing equation remains integrable. However, not all

eigenvalues remain strictly on the imaginary axis. Those

eigenvalues that acquire a real part correspond to solitons.

Moreover, the eigenvalues that previously were located

on the real axis and described radiation waves now have a

finite imaginary part and also correspond to solitons. The

eigenvalues with imaginary part exceeding imay correspond

to Kuznetsov-Ma solitons [2]. As can be seen in Fig. 2(b),

there is a comparable number of breathers and solitons in

this case.

Larger deviations from the cw in the initial conditions

result in practically no eigenvalues left exactly on the

imaginary axis. Figure 2(c) shows the set of eigenvalues

obtained when σ ¼ 0.9. The total number of eigenvalues

remains the same as before. Practically all eigenvalues now

correspond to solitons rather than breathers. Their ampli-

tudes are twice the imaginary part of the eigenvalue. They

acquire velocity, which is defined by the real part of the

complex eigenvalue. These solitons are located on a

background that consists of a sea of radiation waves.

The cw that was present in the initial conditions does

not exist anymore. Thus, when the perturbation is compa-

rable to the amplitude of the initial cw, the continuous

spectrum of breathers is replaced by a spectrum of solitons.

Figure 2(c) shows clearly such transformation.

As the spectrum of eigenvalues remains unchanged on

propagation, the field evolution is defined by the relative

number of solitons and breathers in the chaotic wave field.

Rogue waves are the result of the interaction of either

breathers or solitons with each other. The switch of the

wave content from breathers to solitons changes the chaotic

pattern dramatically. Examples of these patterns are shown in

Fig. 3. Namely, Fig. 3(a) shows the field amplitude jψ j for
σ ¼ 0.1. The pattern corresponds to the interaction of a

multiplicity of breathers. In contrast, Fig. 3(c) shows the case

when σ ¼ 0.9. The pattern here is dominated by solitons and

their collisions. In the intermediate case, σ ¼ 0.5 shown in

Fig. 3(b), both breathers and solitons are present. The highest

amplitudes in these patterns are accented in red. These

amplitudes differ as shown in the caption of Fig. 3. The

corresponding peak intensities I ¼ jψ j2 are around I ¼ 9.0

in Fig. 3(a), above 12.25 in Fig. 3(b). and above 16 in

Fig. 3(c). These figures show clearly that solitons create the

highest amplitude waves in the chaotic pattern.

The amplitudes that appear in the chaotic patterns are

in agreement with the eigenvalue analysis. The highest

amplitude of the breather family, which is 3, appears in the

case of the Peregrine breather with eigenvalue i. This is the
lower threshold of high amplitudes observed in Fig. 3(a).

On the other hand, the imaginary part of the soliton

eigenvalues in Fig. 2(c) reaches the value of almost 2.0,

which corresponds to a soliton amplitude of 4.0. This is

also in agreement with observations in Fig. 3(c). These

amplitudes are higher than the amplitudes of breathers.

Peak amplitudes at soliton and breather collision points

may reach even higher values, thus causing the generation

of rogue waves. Another important feature of the patterns

in Fig. 3 is the fact that the solitons and breathers appear

on top of a multiplicity of radiation waves. This can be

seen more clearly in the 3D plots of Fig. 4, which show
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FIG. 2. Complex eigenvalues λ calculated for the initial con-

ditions ψð0; τÞ, with (a) σ ¼ 0.1, (b) σ ¼ 0.5, and (c) σ ¼ 0.9. As

the eigenvalues appear in complex conjugate pairs, only the upper

half of the complex plane is shown.
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FIG. 3. Chaotic patterns generated for (a) σ ¼ 0.1, (b) σ ¼ 0.5,

and (c) σ ¼ 0.9. Red spots in these patterns correspond to

amplitudes higher than 3.0 in (a), 3.5 in (b), and 4.0 in (c).
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smaller parts of the chaotic fields in Figs. 3(a) and 3(c).

In particular, this superposition leads to irregular changes

of the breather and soliton amplitudes which are well

visible in Fig. 4.

Another factor that plays a significant role in this chaotic

evolution is the correlation length of the initial random field.

The smooth or sharp changes of the initial field influences

the number and parameters of the solitons generated at the

beginning of the process and therefore determines its

corresponding PDFs. Figure 5(a) shows the intensity varia-

tions in the initial conditions with fixed σ ¼ 0.5 for three

different correlation lengths. The smallest correlation

length Lc ¼ 0.19 leads to a fast changing function while

the largest Lc ¼ 1.8 results in slower variations.

Figure 5(b) shows the sets of eigenvalues calculated

for the same σ and correlation lengths as in Fig. 5(a).

This figure shows that for the lowest correlation length

Lc ¼ 0.19 (red triangles), the maximum value of the

imaginary part of all the eigenvalues does not exceed 1.

This means that the soliton amplitudes are smallest among

the three cases. The soliton amplitudes are higher when

Lc ¼ 0.76 and the highest when Lc ¼ 1.8. A similar

distribution of eigenvalues is observed in the case of

σ ¼ 0.9 shown in Fig. 5(c) except that the soliton ampli-

tudes and velocities take even larger values, producing

a broader distribution of eigenvalues around the vertical

axis. When σ ¼ 0.1, the eigenvalue spectrum is practically

independent of the correlation length and similar to the one

shown in Fig. 2(a).

The above results allow us to anticipate the influence of

the correlation length on the tails of the corresponding

PDFs. Each individual plot for a particular σ in Fig. 6 shows

three curves for three different correlation lengths. When

σ ¼ 0.1, the three curves nearly overlap for all values of I,
as can be seen from Fig. 6(a). This is not surprising, as the

initial conditions contain mostly ABs independent of the

value of the correlation length. The spectra of eigenvalues

in this case are almost identical. It is the MI that is driving

the evolution when the perturbations are small. A higher

level of perturbations transforms some ABs into solitons.

The amplitudes of these solitons play a decisive role

in increasing the field amplitudes. As can be seen from

the eigenvalue sets, the higher Lc creates solitons with

higher amplitudes and consequently taller rogue waves.

Figure 6(b), calculated for the case of σ ¼ 0.5, shows a

higher tail of the PDF for the correlation length Lc ¼ 0.76

and even higher for Lc ¼ 1.8. This effect is more pro-

nounced when σ ¼ 0.9, as shown in Fig. 6(c).

Soliton collisions are one of the major sources of

rogue waves during supercontinuum generation in optical

fibers [21]. This happens when more complicated physical

effects are acting, such as third-order dispersion [22] and

Raman effect [13]. The process involves cascades of soliton

interactions with energy exchange between them before the

most energetic solitons emerge at the fiber output [23,24].

The latter are known as optical rogue waves [25]. As we

have found in the present work, the mechanism of rogue

wave generation in an integrable system is different. It

depends significantly on the relative number of breathers

and solitons and their parameters.

In conclusion, we studied the process of rogue wave

formation in a system governed by the NLSE. We used

initial conditions with a variable random component and

have shown that the increase of the probability of rogue

wave generation is related to the relative content of solitons

and breathers in the initial conditions. Our theory can be

extended to other integrable models that have both solitons

and breathers as essential parts of complex dynamics.

These include vector NLSEs [26], three-wave parametric
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interaction equations [27], and other similar models where

rogue waves exist on an equal basis with solitons.
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