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INTEGRAL AVERAGING TECHNIQUES
FOR THE OSCILLATION

OF SECOND ORDER SUBLINEAR ORDINARY
DIFFERENTIAL EQUATIONS
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Abstract

New oscillation criteria are established for second order sublinear ordinary differential equations with
alternating coefficients. These criteria are obtained by using an integral averaging technique and can
be applied in some special cases in which other classical oscillation results are not applicable.

1980 Mathematics subject classification (Amer. Math. Soc): 34 C 10, 34 C 15.

1. Introduction

The oscillation problem for second order nonlinear ordinary differential equa-
tions is of special importance. For some results concerning the problem we refer
the reader to the paper by Wong [13] where a complete bibliography up to 1968 is
given. Also, for a detailed account on second order nonlinear oscillation and its
physical motivations we refer to a survey article by Sevelo [11]. In particular, for a
survey on results for the so-called Emden-Fowler equation and a summary of
some important historical developments concerning this equation, we refer to the
article by Wong [16], where an extensive bibliography is contained. An interesting
case is that of second order nonlinear ordinary differential equations with
alternating coefficients. For such equations several oscillation criteria have been
obtained. Some of the more important and useful tests involve the average
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behavior of the integral of the alternating coefficient. These tests have been
motivated by the classical averaging criterion of Wintner [12] (and its generaliza-
tion by Hartman [2]) for the linear case. For such averaging techniques in the
second order nonlinear oscillation, we choose to refer to the papers by Butler [1],
Kamenev [3, 4], Kura [5], Kwong and Wong [6, 7], Onose [8], Philos [9, 10], Wong
[14, 15], and to the references contained therein. The purpose of this paper is to
proceed further in this direction for the case of sublinear ordinary differential
equations of second order.

Throughout the paper, we restrict our attention only to solutions of the
differential equations considered which exist on some ray [T, oo). A continuous
real-valued function defined on ray [T, oo) is said to be oscillatory if it has
arbitrarily large zeros. Otherwise, it is called nonoscillatory. A differential equation
is called oscillatory if all its solutions are oscillatory.

Consider the second order nonlinear ordinary differential equation

(E) x"(t) + a(t)f[x(t)}=0,

where
(a) the function a is continuous on the interval [t0, oo), t0 > 0, without any

restriction on its sign,
(/?) the function f is continuous on the real line U and has the sign property

yf(y)>0forally*0,
(y)fis continuously differentiable onU — {0} and satisfies f\y) > Ofory # 0,
(8)fis strongly sublinear in the sense that

dy r dy
—.—r < oo and I —.—r < oo.

«. f(y) V f(y)
For our purposes, we define

(V dz / /•>' dz
F\y)= I ~~i—7 ioiy > 0 and F(y) = / —-;—-Jo+ f{z) Jo- f\z)

We also consider the constant If defined by

infy>QF(y)f'(y) iniy<0F(y)f'(y) \
1 (0\ 1 + My>0F(y)f'(y) ' 1 + infy<0F(y)f'(y) j

Throughout the sequel, we suppose that If > 0.
The special case where/(y) = |j>|Ysgn y, y e R (0 < y < 1), i.e. the case of the

differential equation

(E) x"(t) + a(t)\x(t)\ysgn x(t) = 0 (0 < y < 1),

is of particular interest. In this case we can easily see that /^ = y.
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[ 31 Second order sublinear oscillation 113

Recently, Kura [5] and Kwong and Wong [7] presented two new oscillation
criteria for the differential equation (E) which can be applied to the case
a(t) = fAsin t, where t > t0 and -y < X < 1 — y, in which case other known
oscillation tests including the criterion of Kamenev [3] are not applicable. In this
paper, we extend (and improve) these criteria to the general case of the differen-
tial equation (E). We also deal with the oscillation in the more general case where
a damped term is included, and with an asymptotic property in the forced case.

2. Second order sublinear oscillation

In this section we shall give two oscillation criteria for the differential equation
(E).

THEOREM 1. Let <p be a positive and twice continuously differential function on the
interval [t0, oo), and let m be a continuous function on [t0, oo) so that

(i) l i m s u p - = | I [<P(T)] ''a(r) drds > m(t) for every t > 10.

Then equation (E) is oscillatory if

/•oo [ttJ + (?) l
(ii) j A = 0 0 ,

where m+(t) = max{m(?),0}, t > to, and if, for some positive constant c,

(iii) (y) < c<p(-q>") on[t0,oo).

PROOF. Let x be a nonoscillatory solution on an interval [To, oo), To > t0, of the
differential equation (E). Without loss of generality, we assume that x(t) # 0 for
all t > To. Furthermore, we define

w(t)=[<p(t)]l'F[x(t)}, t>T0.

Then for every t > To, we have

"V) = I/[<p(t)] '< \V)F[x{t)\ ffi
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Therefore, using the product rule of differentiation and the method of completing
the square, we obtain, for t > To:

Upon integrating the above inequality twice and then multiplying by -l/T, we
obtain, for T > / > To, that

(1)

w

l-IfTJ, J,

Now, by (i) and (iii), (1) gives

f'(t) ^ \imsup— f f [<P(T)] ' ^ ( T ) drds
T-+oo l J< Jt

Uminf

IfJt
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for all / > To, which proves that

(2) w'(t) > m(t) forevery? > To,

(3)

(4) /
JT0

and

(5)

Next, for T > To we obtain

rT
<p(T) = (f(T0) + / <p'(s) ds > (T — T0)q)'(T),

which ensures that

(6) limsup y j < oo.

Also, by using (iii), we derive, for every T 3s To, that

\(TO)
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Therefore,

' o

which, because of (3), (4), (5) and (6), yields

w(r)

Furthermore, by the Schwarz inequality, for t > TQ we have

and consequently

(8) wit)K^=^. + ^J^i^^J-dT)t t>To.

Finally, by using (2), (7) and (8), we get

+ (Q] f MOT
t JT t

'0

which contradicts (ii).

COROLLARY 1. Let B be a number with 0 < B < If, and let m be a continuous
function on the interval [t0, oo) so that

(iv) limsup — I I T^O(T) drds > m(t) for every t ^ t0.

Then equation (E) is oscillatory if (ii) holds.
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P R O O F . T h e corollary follows immedia te ly from T h e o r e m 1 by choos ing

<p(0 = t^1', t > /„.

REMARK 1. For the special case of the differential equation (E), we have If = y,
and hence the oscillation criterion of Kura [5, Theorem 2] is a consequence of
Corollary 1.

THEOREM 2. Let <p be a positive and twice continuously differentiable function on
the interal [t0, oo) with

(v) ep' > 0 and <p" < 0 on [tQ, oo),

and let m be a continuous function on [t0, oo) so that

(vi) liminf—/ / [<p(r)] 'a(r) dr ds > m(t) for every t > t0.

Then equation (E) is oscillatory if

PROOF. Let x be a solution on an interval [r0, oo), To > t0, of the differential
equation (E) with x(t) * 0 for all t > To, and let w(t) = [<p(t)]IfF[x(t)], t ^ To.
Then, as in the proof of Theorem 1, we see that (1) holds for every T, t with
T > t 3s r0. Thus, because of (v) and (vi), we have, for all t > To,

liminf \ fT f [<p(T)]Ifa(T)drds

If r l \ u \ ^ T

- j \ - J T he T —
) (
-w(r
)

m(t) + limsup ̂ p- + f ^

1 - IfJ,

and

(9) l imsup^zr^- < oo.
l
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Also, as in the proof of Theorem 1, we arrive at (6). Furthermore, for every
T > To, we obtain

r i r V(T) A
^ ( ) [ ( ) J( T ) ^r0 W(T) [ <P(T)

- 2

where M = sup7->7-ow(71)/7'(and by (9), M is finite). So, by taking (4), (5) and (6)
into account, we conclude that there exists a positive constant N such that

(l0) IrMiT dS<Nl \^\SdS> t>T»-
*§ V / 'o L

Finally, by (2) and (10), for / > To we get

/ ± ds = j ds
J. s J, s

which, by (vii), is a contradiction.

REMARK 2. For the special case of the differential equation (E), Theorem 2 has
recently been proved by Kwong and Wong [7, Theorem 1], under the additional
assumption that

lim - /"' f [<P(T)YU{T) dTds

exists in
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COROLLARY 2. Let m be a continuous function on the interval [t0, oo) such that

(viii) liminf—/ / T^O(T) drds > m(t) for every t > t0.
T—> oo 1 * / *t

Then equation (E) is oscillatory if

(IX) hmsup- / - — ds=cc.

PROOF. It suffices to apply Theorem 2 with <p(t) — t, t > tQ.

REMARK 3. Provided that <p is subject to (v), condition (vii) is satisfied if (ix)
holds. Indeed, by using (v), we see that (6) is fulfilled, and hence there exists a
positive constant d such that t<p'(t)/<p(t) < d for all / > t0. Thus, for all large t,
we have

[ l 2

which proves our assertion.

REMARK 4. Condition (iii) of Theorem 1 is stronger than condition (v) required
in Theorem 2. On the other hand, the other assumptions of Theorem 1 are weaker
than the analogous ones in Theorem 2. In each of the cases (1), (2), (3) and (4)
below, (iii) is satisfied, while in the cases (5) and (6), condition (iii) fails and (v)
holds.

(1) <p(t) = f, t > t0, where 0 < /i < 1.
(2) <p(t) = log t, t > t0, where /„ > 1.
(3) <p(0 = f1/2log t, t > t0, where t0 > 1.
(4) <p(t) = log*1 /, t > t0, where /u > 0 and t0 > e^1.

(5) <p(t) = t + log t, t 3> fo> where t0 > 1.

(6)q>(0= t,t> t0.

REMARK 5. The case where f(y) = Ij^sgn y, y G U (0 < y < 1) is the classical
example of a function / which satisfies all conditions imposed on it. Some more
examples of such functions/are the following ones.

(I) f(y) = l^rsgn ^ + ^ e R ( 0 < Y < l ) with y/2 < / , < 1 (cf. [9]);
(II) f(y) = M 1 / 2 / ( l + l>f/4)sgn j j e R with I, = 1/4;

(III) f(y) = \y\y{k + sin[log(l + ^|)]}sgn y , ^ R ( 0 < 7 < U > l +
w i t h [(k - l ) / ( k + 1)] • [(yk - y - l ) / ( k + 2 y ) ] < If < 1 (cf. [9]) .
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EXAMPLE 1. Consider the differential equation (E) with a(t) = ;Asin t, t > t0,
i.e. the equation

( E J x"(t) + t\smt)f[x(t)]=O,

where X is a real number. Moreover, consider the particular case of the differen-
tial equation

(EA) *"(*) +/x(sinOMOfsgnx(0 = 0 (0 < 7 < 1).

Our purpose here is to prove that the differential equation (Ex) is oscillatory for
A > —/y. This result will be obtained from Theorem 1 in [9] when A > 1 — //, and
from Theorem 1 (or, more precisely, from Corollary 1) if -If < A < 1 - If.
Theorem 1 in [9] ensures that (E) is oscillatory if

limsup — I f T^a(r) drds = 00 for some fi e [0, 7^].
t —> 00 '0 ' 0

Note that (Ex) is nonoscillatory if X < -y (cf. Kwong and Wong [7]). Also, Butler
[1] conjectures that (Ex) is oscillatory for X = -y, but this critical case remains
open. Now, if S is a real number, then for every T, t with T > t > t0, one can
obtain

— / /
7 / , J,

= -TslsinT~ 28Ts~2cosT+ 8(8 -

+ j;[tSsint + 28ts~lcost - 8(8 -

-8(8 - l)(8 + 1)(8 - 2)^ [Tss-3sinsds

- 8 ( 8 - l ) ( 8 - 2 ) fT s S 3 c o s s d s .

If X > 1 — Ip then we put 8 = If + A > 1, and we get

limsup— I I Tr'a(r) drds = limsup — I I TSsii\Tdrds = 00,
t->oo ' J>o '0 r^oo ' •''o J'o

and consequently Theorem 1 in [9] ensures the oscillation of (Ex). Furthermore,
we suppose that -If < X < 1 - If. If -If < A < 0, we consider a number /? with
-If < -/? < A < 0, while if 0 < A < 1 - If, we set /? = 0. Then 0 < P < If.
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Moreover, we have 0 < 8 < 1, where 8 = p + X. So, for all / ^ /0, we obtain

limsup — I I r^a(r) drds = limsup — / I rssinTdTds

> /scos/ - Sts~1siat - 8(8 - l) / s~2cos/

-8(8 - 1)(8 - 2) f°° ss~3cos sds > tscost - ju,,

where ft is positive constant. Namely, (iv) is satisfied with m(t)= tscost — ji,
t ^ t0. Next, we consider an integer N such that 2NTT — IT/4 > max{ro,(l +
21/2/x)1/s }• Then for all integers n > N, we have

m(t) > 2"1/2 for every/ e 2«TT - J,2MT + 7 •

Thus,

8 * - 1
= oo,

i.e. (ii) is fulfilled. Hence, Corollary 1 can be applied to guarantee the oscillation
of(£x).

EXAMPLE 2. Consider the differential equation (E) with

a(t) = t(t + log t)'ysin t, / ^ / 0 > 1.

We define <p(r) = / + log /, / > z0, and we observe that (v) is fulfilled. Further-
more, for every T, t with T > / > /0, we obtain

1 [T fs f l W y ( ^ fT fs

TJ, J, T J, J,

= - s i n r + 1 - — )(/cos/ - sin/)

+ — (-2cosT+ /sin/ + 2 sin/),

and consequently, for every / > /0, we have

liminf—/ / [<P(T)]
 ya(r) drds = /cos/ - sin / - 1 > /cos/ - 2.

Thus, (vi) holds with m(t) = /cos/ - 2, / > /0. We consider a number /: such
that tl > max{/0, 2

5 / 2}. Next, we choose an integer N such that 2NIT - TT/4 ^ /t.
Then, for every integer n ^ N, we have

forre
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Thus, for n > N, we get

r2nir + w/4 \m + (s)] rlrnr + TT/4 \m + (s)\ , 1 rlnir + ir/4 , <n2n
I ds> ds>-\ sds = — ,

Jt0
 s J2nn-77/4 S ° J2nv-ir/4 5

and therefore

,. 1 n [m + (s)] . . . 1 f2nv + v/4 [m + (s)]
hmsup -. / s— ds > hmsup -—-. r / -— J ds

.. ir2n
> lim r = oo.

n-oa 8lOg(2«W + 7J-/4)

Hence, (ix) is satisfied and, consequently, (vii) holds, as noted in Remark 3. So,
by Theorem 2, the differential equation under consideration is oscillatory.

3. Oscillation in the damped case

Theorems 1 and 2 can be extended to differential equations with damped term
of the form

(E') x"(t) + q(t)x'(t) + a(t)f[x(t)}=0,

where q is a nonnegative continuous function on the interval [t0, oo). More precisely,
we have the following more general theorems.

THEOREM V. Let <p be a positive and twice continuously differentiable function on
the interval [t0, oo), and let m be a continuous function on [/0, oo) so that (i) holds.
Suppose that (ii) holds and, for some positive constant c, that (iii) is satisfied.
Moreover, suppose that

(x) q>r'q is decreasing on [ t0, oo),

and that

(xi) f t[q(t)]2dt< oo.

Then the differential equation (E') is oscillatory.

PROOF. Let x b e a solution on [To, oo), To > t0, of (E') with x(t) * 0 for all
t > To, and let w be defined as in the proof of Theorem 1. Then, for every T, t
with T > / > To, (1) is satisfied. Furthermore, by taking into account (x), and by
using the Bonnet theorem, we conclude that for any s, t with 5 > t > To, there
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exists a number £ e [/, s] such that

<[<p(T)]f'q(t)F[x(t)]=q(t)w(t),

since

(0, ifx(S)>x(t)

for x > 0, and

(0, itx(S)<x(t)

for x < 0. Hence, for T > t > To, we have

(i) ' - ^ + ^

l-IfTJ, J,

Therefore, for every ? > To, we obtain

(p(r)
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Consequently, (3), (4) and (5) are satisfied, and we have

(2)' w'(t) + q(t)w(t) > m(t) for all t > To.

Next, as in the proof of Theorem 1, we derive (6), (7) and (8). So, by (2)', (7) and
(8), we have

Kf q(t)w(t)]

*-'»
where

Thus, because of (ii) and (xi), we have arrived at a contradiction.

THEOREM 2'. Let <p be a positive and twice continuously differentiable function on
the interval [t0, oo) satisfying (v), and let m be a continuous function on [t0, oo) so
that (vi) holds. Suppose that (vii) and (x) are satisfied, and that

(xii) limsup I f —7—- \ s ds ) I s[q(s)]2 ds < 00.

Then the differential equation (E') is oscillatory.

PROOF. Let x and w be as in the proof of Theorem 1; and let To > t0. Then (1)'
is satisfied for T > t > TQ. Thus, for every t > To, we have

w'(t) + q(t)w(t) > m(t) + limsup

which ensures that (2)', (4), (5) and (9) hold. Furthermore, we can conclude that
(10) is satisfied for some constant N > 0. So, by taking (2)' and (10) into account,
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we obtain that, for every t 3* To,

I ± ds = I ds + I ± ds

ds

2Mf i ^ l d s + 2Mf' [q(s)]2w(s)
JT0 w(s) JTo

where M = supr> To w(t)/t (and M < oo because of (9)). Hence, for all t > TQ, we
have

which contradicts (vii) and (xii).

REMARK 6. By applying Theorem 1' with <p(t) = tp/l>, t > t0 (0 < /$ < If), we
obtain the following result: let ft be a number with 0 < /? < If, and let m be a
continuous function on [t0, oo), so that (iv) holds. Then equation (E') is oscillatory if
(ii) and (xi) are satisfied, and if t^q(t) is decreasing for t > tQ. Also, for <p(t) = t,
t > t0, Theorem 2' leads to the next result: let m be a continuous function on
[t0, oo) so that (viii) holds. Then equation (E') is oscillatory if (ix) is satisfied, if
t'fq(t) is decreasing for t > t0, and if hmsup^^l/log t)J,'os[q(s)]2 ds < oo.

EXAMPLE 3. By applying Theorem 1' with <p(t) = tl/2, t > t0, and with m(t) =
tcos t, t s* t0, we conclude that the differential equation

x"(t) + r 5 / V ( / ) + /3/4sin/ |x(0|1 / 2sgnx(r) = 0
is oscillatory.

EXAMPLE 4. For q>(t) = t, t ^ t0 and for m(t) = tcos t — 2, t > t0, Theorem 2'
guarantees that the differential equation

Y"( A +('[ / A Y ' ( t\ + / 1 / 2 s i n t\v( t\\1^2 <;pn x(/) = 0

is oscillatory.
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4. An asymptotic property in the forced case

Now we shall give two results concerning the asymptotic behavior of the
solutions of forced differential equations of the form

(E*) x"(t) + a(t)f[x(t)]=b(t),

where b is a continuous function on the interval [t0, oo).

PROPOSITION 1. Let <p be a positive and twice continuously differentiable function
on the interval [t0, oo), and let m be a continuous function on [/0, oo) so that (i)
holds. Suppose that (ii) holds and, for some positive constant c, that (iii) is satisfied.
Moreover, suppose that

(xiii)

Then for all solutions x of the differential equation (E*), we have

liminf|jc(OI=O.

PROOF. Let x be a solution of the differential equation (E*) on an interval
[To, oo), To > t0, with hminf,_0O|x(0| > 0. Obviously, x is nonoscillatory. So we
can suppose, without loss of generality, that x(t) ¥= 0 for all t > To. Furthermore,
let w be defined as in the proof of Theorem 1. Then (1) is satisfied for T > t > To.
But, for any T, t with T > / > TQ, we have

where 0 is a constant such that x(t) > 6 > 0 for all t > TQ, or such that
x(t) < 0 < 0 for all / > To. Hence, for every T, t with T > t > t0, we have

(1)" -
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and consequently, for / > To, we obtain

w

r->oo

Therefore, (3), (4) and (5) are fulfilled, and so

(2)" " '(0 +JJ^j\f MJM ''IM*)I* > m(r), * > To.
Furthermore, we may verify that (6), (7) and (8) hold. So, from (2)", (7), (8), and
(xiii) we derive

/; M^^/; ih^wy
dt

2JTo W(T) jJTo w(t)
2

+ •

which contradicts (ii).

PROPOSITION 2. Let <p be a positive and twice continuously differentiable function
on the interval [t0, oo) satisfying (v), and let m be a continuous function on [t0, oo) so
that (vi) holds. Suppose that (vii) is satisfied, and that

(xiv)

Then for all solutions x of the differential equation (E*), we have

Uminf|x(0|= 0.
(-•00

PROOF. Let x be a solution of (E*) on [To, oo), To > t0, such that x(t) > 6 > 0
for / > r0, or such that x(t) < 6 < 0 for f > To, where tf is a constant. Moreover,
let w be defined as in the proof of Theorem 1. Then, for any T, t with T > t > To,
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( 1 ) " holds. So, for every t > To, we have

[18]

w

m(t) + limsup + dr

and this implies that (2)", (4), (5) and (9) are satisfied. Furthermore, for some
positive constant N, (10) holds. So, for t ^ TQ, we obtain

I I ^
+ (

'-[C [<p(T)]'ib(T)\dA2 ds

jTojn + i
<p(s)

'-IT W{T)]''\b{r)\dr) ds,

where M = supr > r w(t)/t < oo. Thus, for every t > To, we have

ds

+ 2MN +

which contradicts (vii) and (xiv).
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REMARK 7. From Propositions 1 and 2 we derive the following particular result:
let m be a continuous function on [tQ, oo). In each of the cases (I) and (II) below, all
solutionsx o/(E*)satisfy \vcn'ml,^x\x{t)\ = 0.

(I) (ii) and (iv) hold, and jx{\/t)[f^s^\b{s)\ ds]2 dt < oo, where /? is a number
with 0 < P < If.

(II) (viii) and(ix) hold, and j°°t'f\b(t)\ dt < oo.

REMARK 8. The methods used in proving Theorems 1', and 2' and Propositions
1 and 2 can be applied in order to extend Propositions 1 and 2 to the more
general case of forced differential equations with damped term of the form

x"(t) + q(t)x'(t) + a(t)f[x(t)]=b(t).

EXAMPLE 5. By applying Proposition 1 with <p(t) = tl/2, t > /0, and with
m(t) = tcos t, t ^ t0, we conclude that all solutions x of the differential equation

x"(t) + /3/4sin t\x(t)\l/2sgn x(t) = r3/2(sin t + 99/4t5)

satisfy liminf,_00|.x(f)| = 0. For example, x(t) = t~9/2, t > t0, is such a solution.

EXAMPLE 6. We choose <p(t) — t, t > t0, and m(t) = tcos t — 2, t ^ t0, and we
apply Proposition 2 to the differential equation

x"(t) + ̂ ^ s in /|jc(O|1/2sgn JC(/) = r 2 ( shw + 3Or5)

to conclude that all solutions x satisfy liminf,_00|x(r)| = 0. For example, x(t) =
t~5, t > t0, is such a solution.

REMARK 9. The results of this paper can be extended to more general differen-
tial equations involving the term (rx')' in place of the second derivative x" of the
unknown function x, where r is a positive continuous function on [t0, oo).
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