61. Integral Basis of the Field $Q(\sqrt[n]{a})$

By Kōsaku Okutsu
Department of Mathematics, Gakushuin University

(Communicated by Shokichi Iyanaga, m. J. a., May 12, 1982)

In application of the theory exposed in our preceding notes [1], we give here explicitly an integral basis of the field $\boldsymbol{Q}(\sqrt[n]{a})$, where $n, a \in Z, n \geq 2,(n, a)=1$. Some facts about the Newton diagram which are needed, will be first explained.

1. Newton diagram and irreducible factors of a polynomial. Let k be a complete discrete valuation field with exponential valuation v. For a monic polynomial $f(x)=x^{n}+a_{1} x+\cdots+a_{n}$ in $k[x]$, we define the Newton diagram of $f(x)$ as follows (cf. [2]). Put $m_{i}=v\left(a_{i}\right)(i=1$, \cdots, n). We define inductively a sequence ($i_{0}, i_{1}, \cdots, i_{t}$) which is a subset of $\{0,1, \cdots, n\}$, and a sequence of rational numbers $\left(\kappa_{1}, \cdots, \kappa_{t}\right)$ as follows. Put $i_{0}=0$. Assuming i_{s} is already defined, we put

$$
\begin{aligned}
& \kappa_{s+1}=\min \left\{\left(m_{h}-m_{i_{s}}\right) /\left(h-i_{s}\right) \mid i_{s}<h \leq n\right\} \\
& i_{s+1}=\max \left\{h \mid i_{s}<h \leq n \quad \text { and } \quad\left(m_{h}-m_{i_{s}}\right) /\left(h-i_{s}\right)=\kappa_{s+1}\right\} .
\end{aligned}
$$

Then we have clearly $0=i_{0}<i_{1}<\cdots<i_{t}=n$, and $\kappa_{1}<\kappa_{2}<\cdots<\kappa_{t}$. We put $j_{s}=m_{i_{s}}(s=1, \cdots, t)$.

Let P_{0} be the point $(0,0)$ and P_{s} the point $\left(i_{s}, j_{s}\right)$ in the Cartesian plane $(s=1, \cdots, t)$. The broken line consisting of t segments $P_{s-1} P_{s}$ ($s=1, \cdots, t$) will be called the Newton diagram of $f(x)$, denoted N_{f}, the number t the order of N_{f}, and ($i_{1}, i_{2}, \cdots, i_{t} ; \kappa_{1}, \cdots, \kappa_{t}$) the index of N_{f}. Obviously N_{f} is "convex downward", all points (i, m_{i}) ($i=0,1$, \cdots, n) are lying "upper than" N_{f}, and N_{f} is the extremal curve with these properties in a well understood sense. It is clear that the order of the Newton diagram of a monic irreducible polynomial is one.

Lemma 1. Let $f(x)$ be a monic polynomial in $k[x]$ whose Newton diagram N_{f} has the index ($i_{1}, \cdots, i_{t} ; \kappa_{1}, \cdots, \kappa_{t}$), and $g(x)$ be a monic polynomial in $k[x]$ with the Newton diagram N_{g} with order one and the index $(l ; \bar{\kappa})$. Then the order and the index of the Newton diagram $N_{f g}$ of the product of $f(x)$ and $g(x)$ are obtained as follows.
i) When $\bar{\kappa}<\kappa_{1}, N_{f g}$ has the order $t+1$ and the index $\left(l, i_{1}+l, i_{2}+l\right.$, $\left.\cdots, i_{t}+l ; \bar{\kappa}, \kappa_{1}, \cdots, \kappa_{t}\right)$.
ii) When $\bar{\kappa}=\kappa_{s}$ for some $s(1 \leq s \leq t), N_{f g}$ has the order t and the index $\left(i_{1}, \cdots, i_{s-1}, i_{s}+l, \cdots, i_{t}+l ; \kappa_{1}, \cdots, \kappa_{t}\right)$.
iii) When $\kappa_{s}<\bar{\kappa}<\kappa_{s+1}$ for some $s(1 \leq s \leq t), N_{f g}$ has the order $t+1$, and the index $\left(i_{1}, \cdots, i_{s}, i_{s}+l, \cdots, i_{t}+l ; \kappa_{1}, \cdots, \kappa_{s}, \bar{\kappa}, \kappa_{s+1}, \cdots, \kappa_{t}\right)$.
iv) When $\kappa_{t}<\bar{\kappa}, N_{f g}$ has the order $t+1$, and the index (i_{1}, \cdots, i_{t},
$\left.i_{t}+l ; \kappa_{1}, \cdots, \kappa_{t}, \bar{\kappa}\right)$.
From this Lemma 1, we have immediately the following
Proposition 1. Let $f(x)$ be a monic polynomial in $k[x]$ whose Newton diagram N_{f} has the index $\left(i_{1}, \cdots, i_{t} ; \kappa_{1}, \cdots, \kappa_{t}\right)$. Then $f(x)$ is a product of t monic polynomials f_{1}, \cdots, f_{t} in $k[x]$ with order 1 , the index of the Newton diagram $N_{f_{s}}$ being $\left(i_{s}-i_{s-1} ; \kappa_{s}\right)$.

Corollary. If $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in k[x]$ has the Newton diagram N_{f} of order 1 and $v\left(a_{n}\right)$ is relatively prime to n, then $f(x)$ is irreducible. Especially $f(x)$ is irreducible if $f(x)$ is of Eisenstein type, i.e. if $v\left(a_{i}\right) \geq 1(1 \leq i \leq n)$ and $v\left(a_{n}\right)=1$.
2. Decomposition of $x^{p^{m}}-a$ over \boldsymbol{Q}_{p}. Let p be a prime, m a natural number, and $a \in Z,(a, p)=1$. By means of the following lemma, which is easy to prove, we can obtain irreducible factors of $x^{p m}-a$ in $\boldsymbol{Q}_{p}[x]$.

Lemma 2. For any natural number $i<p^{m}$, we have

$$
\operatorname{ord}_{p}\left(p_{p^{m}} C_{i}\right)=m-\operatorname{ord}_{p}(i) .
$$

To decompose $f(x)=x^{p^{m}}-a$ in irreducible factors, we observe $f(x)$ $=F(x-a)$ where $F(x)=\sum_{i=1 p^{m}}^{p_{i}^{m}} C_{i} a^{p^{m-i}} x^{i}+a^{p^{m}}-a$. Put $F_{0}(x)=F(x)$ $-\left(a^{p^{m}}-a\right)$. The index $\left(i_{1}, i_{2}, \cdots ; \kappa_{1}, \kappa_{2}, \cdots\right)$ of $N_{F_{0}}$ is $\left(p^{m}-p^{m-1}, p^{m}\right.$ $\left.-p^{m-2}, \cdots, p^{m}-1, p^{m} ; 1 / \varphi\left(p^{m}\right), \cdots, 1 / \varphi(p), \infty\right)$ where φ is the Euler function.

Now we calculate the index of N_{F} and obtain the irreducible factors of $F(x)$. We put $r=\operatorname{ord}_{p}\left(a^{p m-1}-1\right)$.
(i) If $r / p^{m}<\kappa_{1}$, we have $r=1$. In this case the index of N_{F} is ($p^{m} ; 1 / p^{m}$), and $F(x)$ is an Eisenstein polynomial. So $F(x)$ is irreducible.
(ii) If $\kappa_{s} \leq\left(r-\operatorname{ord}_{p}\left({ }_{p} C_{i_{s}}\right)\right) /\left(p^{m}-i_{s}\right)<\kappa_{s+1}$ for some $s<t$, we have $s=r-1>0$. When p is an odd prime,

$$
\kappa_{s}<\frac{1}{p^{m-s}}=\frac{r-\operatorname{ord}_{p}\left(p_{p m} C_{i_{s}}\right)}{p^{m}-i_{s}} .
$$

So the index of N_{F} is $\left(p^{m}-p^{m-1}, \cdots, p^{m}-p^{m-r+1}, p^{m} ; 1 / \varphi\left(p^{m}\right), \cdots\right.$, $\left.1 / \varphi\left(p^{m-r+2}\right), 1 / p^{m-r+1}\right)$ and each corresponding factor is Eisenstein type. When $p=2, \kappa_{s}=1 / 2^{m-s}=\left(r-\operatorname{ord}_{2}\left({ }_{p m} C_{i_{s}}\right) /\left(2^{m}-i_{s}\right)\right.$. So the index of N_{F} is $\left(2^{m-1}, \cdots, 2^{m}-2^{m-r+2}, 2^{m} ; 1 / 2^{m-1}, \cdots, 1 / 2^{m-r+2}, 1 / 2^{m-r+1}\right)$. The first $r-2$ factors are of Eisenstein type. The last factor is not of Eisenstein type, but we can show that it is also irreducible.
(iii) If $\kappa_{m} \leq\left(r-\operatorname{ord}_{p}\left({ }_{p m} C_{i_{s}}\right)\right) /\left(p^{m}-i_{m}\right)$, then $r>m$. In this case the index of N_{F} is ($p^{m}-p^{m-1}, \cdots, p^{m}-1, p^{m} ; 1 / \varphi\left(p^{m}\right), \cdots, 1 / \varphi(p), r-m$), and $F(x)$ is a product of m Eisenstein polynomials and a polynomial of degree 1.
3. Integral Basis of $\boldsymbol{Q}(\sqrt[n]{a})$. Let, n, a be two rational integers such that $n \geq 2$, and $(n, a)=1$. We assume that $f(x)=x^{n}-a$ is irreduci-
ble in $Z[x]$. We shall calculate the integral basis of the field $\boldsymbol{Q}(\sqrt[n]{a})$.
Now let p be a prime such that $m=\operatorname{ord}_{p}(n)$ is positive. Let us fix p for a while. Put $l=n / p^{m}$. By Hensel's lemma we have the irreducible decomposition $x^{l}-a=\prod_{j=1}^{v} H_{j}(x)$ in $\boldsymbol{Q}_{p}[x]$ where $H_{j}(x)$ is irreducible modulo p, and $H_{j}(x) \bmod p$ and $H_{k}(x) \bmod p$ are prime to each other for any $k \neq j$. On the other hand, by the results of above section, we have the irreducible decomposition $(x+a)^{p^{m}}-a=\prod_{i=1}^{u} G_{i}(x)$ in $\boldsymbol{Q}_{p}[x]$, where $r=\operatorname{ord}_{p}\left(a^{p m-1}-1\right), u=\min \{r, m+1\}$ when p is an odd prime, and $u=\min \{r-1, m+1\}$ when $p=2$.

Proposition 2. The notations being the same as above, let $F_{i j}(x)$ be the greatest common divisor of $G_{i}\left(x^{l}-a\right)$ and $H_{j}\left(x^{p^{m}}\right)$. In case $p \neq 2$, or $p=2$ and $r>m+1, F_{i j}(x)$ is an irreducible polynomial in $\boldsymbol{Q}_{p}[x]$ with degree $\varphi\left(p^{m-i+1}\right) \cdot \operatorname{deg} H_{j}(x)$ when $i<u$, and $p^{m-u+1} \cdot \operatorname{deg} H_{j}(x)$ when $i=u$. In case $p=2$ and $r \leq m+1, F_{i j}(x)$ is irreducible in $\boldsymbol{Q}_{2}[x]$, and has the degree $\varphi\left(2^{m-i+1}\right) \cdot \operatorname{deg} H_{j}(x)$ for $i \leq r-2$. As for $F_{r-1, j}(x)$ of degree $2^{m-r+1} \cdot \operatorname{deg} H_{j}(x)$, it is irreducible or decomposed into two irreducible factors of the same degree according as the following (a) or (b) takes place. Let γ be any root of $F_{r-1, j}(x)$, o be the valuation ring of $\boldsymbol{Q}_{2}(\gamma)$, and $\mathfrak{\beta}$ the maximal ideal of \mathfrak{o}. Let $\bar{\gamma}$ be the class of $\gamma \bmod \Re$. $\bar{\gamma}$ may be considered as an element of the algebraic closure of the prime field $\boldsymbol{Z} / 2 \boldsymbol{Z}$, and $\boldsymbol{Z} / 2 \boldsymbol{Z}(\bar{\gamma})$ is a subfield of the residue field \mathfrak{o} / \Re. Now it is shown that $H_{j}(\gamma)^{2 m-r} / 2 \in \mathfrak{o}$ and (a) means $H_{j}(\gamma)^{2 m-r} / 2 \bmod \mathfrak{\beta} \notin \boldsymbol{Z} / 2 \boldsymbol{Z}(\bar{\gamma})$, and (b) means $H_{j}(\gamma)^{2 m-r} / 2 \bmod \mathfrak{\beta} \in \boldsymbol{Z} / 2 \boldsymbol{Z}(\bar{\gamma})$. If $l>1, H_{j}(x)$ and x are a first and a second (and last) primitive divisor polynomials of any irreducible factor of $F_{i, j}(x)$ for $1 \leq i \leq r-1$. If $l=1$, we have $v=1$ and $H_{1}(x)=x-a$ is a first (and last) primitive divisor polynomial.

Now let q be a prime such that $t=\operatorname{ord}_{q}(a)$ is positive, which we consider as fixed for a while. Put $a_{0}=a / q^{t}, s=(n, t), n_{0}=n / s, t_{0}=t / s$. Then by Hensel's lemma we have the irreducible decomposition $x^{s}-a_{0}$ $=\prod_{i=1}^{m} \Psi_{i}(x)$ where $\Psi_{i}(x)$ is a monic polynomial in $\boldsymbol{Q}_{q}[x]$ such that $\Psi_{i}(x)$ $\bmod q$ is irreducible in $Z / q Z[x]$, and $\Psi_{j}(x) \not \equiv \Psi_{i}(x) \bmod q$ for any $j \neq i$.

Proposition 3. The notations being as above, put $\Phi_{j}(x)$ $=q^{t_{0} \operatorname{deg} \Psi_{j}} \Psi_{j}\left(x^{n_{0}} / q^{t_{0}}\right)$. Then $\Phi_{j}(x)$ is a monic irreducible polynomial in $\boldsymbol{Z}_{q}[x]$, and so $x^{n}-a=\prod_{i=1}^{m} \Phi_{j}(x)$ is an irreducible decomposition in $\boldsymbol{Q}_{q}[x]$. Moreover x is a first (and last) primitive divisor polynomial of $\Phi_{j}(x)$ in $\boldsymbol{Q}_{q}[x](j=1, \cdots, m)$.

In virtue of our Theorems 1, 2 in [1]-IV and above Propositions 2, 3 we obtain finally :

Theorem. Let n, a be two rational integers such that $n \geq 2$, $(n, a)=1$, and suppose $f(x)=x^{n}-a$ is irreducible in $Z[x]$. Let $\sqrt[n]{a}$ be one of the root of $f(x)$ in C. Let $n=\prod_{i=1}^{k} p_{i}^{s_{i}}, a=\prod_{j=1}^{l} q_{j}^{t_{j}}$ where p_{i} $(i=1, \cdots, k), q_{j}(j=1, \cdots, l)$ are distinct primes. Put $n_{i}=n / p_{i}^{s_{i}}$
$(i=1, \cdots, k)$. Now put $g_{0}(x)=1$, and for any $m \in\{1,2, \cdots, n\}$, denote by $g_{m}(x)$ a monic polynomial in $Z[x]$ satisfying

$$
g_{m}(x) \equiv\left(x^{n_{i}}-a\right)^{\left[m / n_{i}\right]} x^{m-n_{i}\left[m / n_{i}\right]} \bmod p_{i}^{\left[\left[m / n_{i}\right] r_{i}\right]+1} \quad(i=1, \cdots, k)
$$

where

$$
\gamma_{i}= \begin{cases}\frac{1}{p_{i}^{s_{i}}} & \text { when } \operatorname{ord}_{p_{i}}\left(a^{p_{i}^{s_{i}-1}}-1\right)=1 \\ \frac{1}{\varphi\left(p_{i}^{s_{i}}\right)} & \text { when } \operatorname{ord}_{p_{i}}\left(a_{i}^{s_{i}^{s i-1}}-1\right)>1\end{cases}
$$

Then

$$
\left\{\left.\frac{g_{m}(a)}{\prod_{i=1}^{k} p_{i}^{\left[\left[m / n_{i}\right]_{i}\right]} \prod_{j=1}^{l} q_{j}^{\left[t m_{j} / n\right]}} \right\rvert\, m=0,1, \cdots, n-1\right\}
$$

is an integral basis of $\boldsymbol{Q}(\sqrt[n]{a})$.
Remark. Let $n=p, a=p^{t} \prod_{j=1}^{v} q_{j}^{t_{j}}$ where p, q_{1}, \cdots, q_{v} are distinct primes, and t, t_{1}, \cdots, t_{v} are rational integers such that $0 \leq t<p, 1 \leq t_{j}$ $<p(j=1, \cdots, v)$. By the similar method as above we have the following.

Put

$$
\gamma= \begin{cases}t / p & \text { when } r=0 \\ 1 / p & \text { when } r=1 \\ 1 /(p-1) & \text { when } r \geq 2\end{cases}
$$

where $r=\operatorname{ord}_{p}\left(\alpha^{p-1}-1\right)$.
Then $\left\{(\theta-a)^{m} / p^{[m r]} \prod_{j=1}^{v} q_{j}^{\left[m t_{j} / p\right]} \mid m=0,1, \cdots, p-1\right\}$ is an integral basis of $\boldsymbol{Q}(\sqrt[n]{a})$.

References

[1] K. Okutsu: Construction of integral basis. I-IV. Proc. Japan Acad., 58A, 47-49; 87-89; 117-119; 167-169 (1982).
[2] N. Koblitz: p-adic Numbers, p-adic Analysis, and Zeta Functions. Springer (1977).

