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Abstract

We construct regular integral canonical models for Shimura varieties attached to Spin
and orthogonal groups at (possibly ramified) primes p > 2 where the level is not
divisible by p. We exhibit these models as schemes of ‘relative PEL type’ over integral
canonical models of larger Spin Shimura varieties with good reduction at p. Work of
Vasiu–Zink then shows that the classical Kuga–Satake construction extends over the
integral models and that the integral models we construct are canonical in a very precise
sense. Our results have applications to the Tate conjecture for K3 surfaces, as well as
to Kudla’s program of relating intersection numbers of special cycles on orthogonal
Shimura varieties to Fourier coefficients of modular forms.

Introduction

The objects of study in this paper are certain Shimura varieties attached to GSpin and special
orthogonal groups. More precisely, we will consider the Q-algebraic stack ShKmax := ShKmax(G,
X), where G = GSpin(V,Q) is attached to a quadratic space (V,Q) over Q of signature (n, 2)
and X is the space of oriented negative definite planes in VR. The level sub-group Kmax ⊂ G(Af )

is attached to a lattice L ⊂ V : it is the intersection of G(Af ) with C(L ⊗ Ẑ)×, the unit group

of the Clifford algebra of L ⊗ Ẑ. The image of Kmax in SO(V )(Af ) is the discriminant kernel :

the largest sub-group of SO(L)(Ẑ) that acts trivially on the discriminant L∨/L. Here, L∨ ⊂ V
is the dual lattice for L.

Our results can be summarized by the following theorem.

Theorem. Assume that L has square-free discriminant. Then, over Z[12 ], ShKmax admits a
regular canonical model with a regular compactification.

The precise meaning of the word ‘canonical’ is explained in § 4. In the body of the paper,
we will isolate a prime p > 2 and work with finite quasi-projective covers ShK → ShKmax , where
K ⊂ Kmax is of the form KpK

p with Kp = G(Qp) ∩ C(L ⊗ Zp)
× and Kp ⊂ G(Ap

f ) is a small
enough compact open sub-group. We will then build canonical models over Z(p) for the tower of
such covers.

The basic idea of the proof is quite simple and involves exhibiting the model as the solution
to a ‘relative PEL’ problem1 over the smooth integral model of a larger Shimura variety attached
to a self-dual lattice. To explain this, we work over Z(p) for some odd prime p. When the lattice
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L is self-dual at a prime p, Kp is hyperspecial and the results of [Kis10] already give us a smooth
integral canonical model over Z(p) (compactifications are dealt with in [MaP15]). In general, we

can exhibit L as a sub-lattice of a bigger lattice L̃ that is self-dual at p and is such that the
associated quadratic space (L̃, Q̃) over Q again has signature (m, 2) for some m ∈ Z>0. If ShK̃
is the Shimura variety attached to a L̃ and a compact open K̃ ⊂ G̃(Ap

f ) containing K, this
allows us to exhibit ShK as an intersection of divisors in Sh

K̃
. Let S

K̃
be the integral canonical

model for Sh
K̃

over Z(p). We show that the divisors have a moduli interpretation and we use
this interpretation to define models for them as schemes over S

K̃
. We then construct our regular

models as intersections (over S
K̃
) of the integral models of these divisors.

The moduli interpretation of the divisors can be described as follows: the classical Kuga–
Satake construction, combined with Kisin’s construction, gives us a natural polarized abelian
scheme (ÃKS, λ̃KS) over S

K̃
. Let L̃B be the Z(p)-local system over S

K̃,C
attached to L̃Z(p)

.

Let H̃B be the first Betti cohomology of ÃKS
C over S

K̃,C
with coefficients in Z(p). Then the

construction allows us to view L̃B as a sub-local system of H̃B ⊗ H̃∨
B. Given an Sh

K̃
-scheme

T , we say that an endomorphism f of ÃKS
T is special if over TC it induces a section of L̃B.

Then the divisors mentioned above can be viewed as the loci where ÃKS inherits certain special
endomorphisms of fixed degree. So, we obtain a moduli interpretation for ShK → Sh

K̃
: it is

the locus over which ÃKS inherits a certain family of special endomorphisms. For an analytic
viewpoint of all this in the case of orthogonal Shimura varieties, cf. [Kud97].

Let H̃cris be the first crystalline cohomology of ÃKS
Fp

over S
K̃,Fp

. Then Kisin’s work provides

us with a canonical sub-crystal L̃cris ⊂ H̃cris ⊗ H̃∨
cris attached to the quadratic space L̃. This

allows us to give a definition of specialness in characteristic p as well: for any S
K̃,Fp

-scheme T ,

an endomorphism f of ÃKS
T is special if its crystalline realization is a section of L̃cris at every

point of T . We can patch together the two notions of specialness to get the notion of a special
endomorphism of ÃKS in general.

The moduli interpretation for ShK(G,X) as a scheme over Sh
K̃
(G̃, X̃) can now be extended

over Z(p) to obtain a natural integral model SK(G,X). To study its local properties, we study

the problem of deforming special endomorphisms of ÃKS, using ideas of Deligne [Del81] and
Ogus [Ogu79]. These methods help us show that the quadric Mloc

G of isotropic lines in L is an
étale local model for SK(G,X). In the case where the discriminant of L is square-free, Mloc

G is
regular, and this completes the construction.

The above construction actually works for general lattices L, but then it only gives us access
to a certain open locus of the desired integral model, which we denote by S

pr
K (G,X): this is still

modeled by Mloc
G . In general, the special fiber of this open locus will miss some very important

parts of the expected ‘true’ integral model. For instance, in the situation where L is maximal,
and p is a prime such that p2 divides the discriminant of L, S

pr
K (G,X) will entirely exclude

the part of the supersingular locus with maximal Artin invariant;2 cf. § 6.27 for a discussion of
this phenomenon. In particular, for n = 3, where our Shimura variety is closely related to Siegel
threefolds with parahoric level structure, our theory does not recover the integral models of Chai
and Norman [CN90] and Görtz [Gör03]: the simple local models that we describe are insufficient
for this purpose. We expect to fix this gap in the theory in future work.

Along these lines, we should note that, for other low values of n, there are direct, moduli-
theoretic ways to construct integral models. For the case of Shimura curves, cf. [KRY06], and for

2 We thank the referee for pointing out many subtleties arising in this situation.
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the case of certain Hilbert–Blumenthal surfaces, cf. [DP94, KR99]. Moreover, there is work in
progress by Kisin and Pappas, which will generalize the methods of [Kis10] to construct integral
models of Shimura varieties of abelian type with general parahoric level at p. However, the simple
and direct nature of our construction seems to be quite useful in applications, which include the
Tate conjecture for K3 surfaces in odd characteristic [MaP14], and also forthcoming work, in
collaboration with F. Andreatta, E. Goren and B. Howard, on the arithmetic intersection theory
over these Shimura varieties.

In the body of the paper, we also concurrently consider the case of orthogonal Shimura
varieties. These are Shimura varieties of abelian type, but of a particularly simple nature: they
are finite étale quotients of GSpin Shimura varieties, and we can easily deduce results for them
from corresponding ones for their GSpin counterparts.

Notational conventions

For any prime ℓ, νℓ will be the ℓ-adic valuation satisfying νℓ(ℓ) = 1. We will use Af to denote the

ring of finite adéles over Q, and Ẑ ⊂ Af will be the pro-finite completion of Z. Given a rational
prime p, Ap

f will denote the ring of prime-to-p finite adéles; that is, the restricted product
∏′

ℓ 6=pQℓ.

Moreover, Ẑp ⊂ Ap
f will be the closure of Z. Unless otherwise specified, the letter k will always

represent a perfect field of characteristic p. Given such a k, W (k) will denote its ring of Witt
vectors, and σ : W (k)→ W (k) will be the canonical lift of the Frobenius automorphism of k.
For any group G, G will denote the locally constant étale sheaf (over a base that will be clear
from context) with values in G.

1. Clifford algebras and Spin groups

We will quickly summarize some standard facts about Clifford algebras and the GSpin group. A
good reference is [Bou07, § 9]; cf. also [Bas74].

1.1 Let R be a commutative ring in which 2 is invertible, and let (L,Q) be a quadratic space
over R: by this we mean a projective R-module L of finite rank equipped with a quadratic form
Q : L→ R. We will denote by [· , ·]Q : L ⊗ L→ R the associated symmetric bi-linear form, its
relation with Q being given by the formula [v, w]Q = Q(v + w)−Q(v)−Q(w).

Let C := C(L) be the associated Clifford algebra over R. It is equipped with an embedding
L →֒ C, which is universal for maps f : L→ B into associative R-algebras B satisfying f(v)2 =
Q(v). The algebra C is equipped with a natural Z/2Z-grading C = C+ ⊕ C−, so that C+ is a
sub-algebra of C.

1.2 Suppose now that Q is non-degenerate: that is, it induces an isomorphism L
≃−→ L∨. In this

situation, we will also call the module L itself self-dual, especially when working over discrete
valuation rings.

Then we can use the Clifford algebra to define a reductive group scheme GSpin(L,Q) over
R. For any R-algebra S, we have

GSpin(L,Q)(S) = {x ∈ (C+
S )× : x(LS)x

−1 = LS}.

It is a central extension of the special orthogonal group SO(L,Q) by Gm, and there is a canonical
character, the spinor norm, ν : GSpin(L,Q) → Gm. The spinor norm is defined as follows:
there is a canonical anti-involution ∗ on C: it is the unique anti-automorphism that restricts to
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the identity on L; cf. [Bou07, § 9], where it is termed ‘l’antiautomorphisme principal ’. For any
x ∈ GSpin(L,Q)(S), we set ν(x) = x∗x. It follows from [Bas74, 3.2.1] that this is indeed an
element of S× ⊂ (C+

S )×.
The group scheme GSpin(L,Q) acts naturally on C via left multiplication, and we will denote

the resulting representation by H. The right multiplication action of C on itself endows H with
a GSpin(L,Q)-equivariant right C-module structure, and the grading on C endows it with a
GSpin(L,Q)-stable Z/2Z-grading H = H+ ⊕H−. The action of L on C via left multiplication
provides us with a GSpin(L,Q)-equivariant embedding L →֒ EndC(H).

1.3 Let GL+
R(H) ⊂ GLR(H) be the sub-group3 of automorphisms that preserve the grading

on H: this is the group of units in the algebra End+R(H) of graded endomorphisms of H.
Let U(H) ⊂ GL+

R(H) be the centralizer of the right C-action. Then, for any R-algebra S,
we have U(H)(S) = (End+C(HS))

× = (C+
S )×. By definition, GSpin(L,Q) is a sub-group of U(H).

The pairing [ϕ1, ϕ2] = (1/2n) Tr(ϕ1 ◦ ϕ2) on EndR(H) is symmetric, non-degenerate and
restricts to the pairing [· , ·]Q on L ⊂ C. Choose an R-basis e1, . . . , em of L and let A ∈ GLm(R)
be the matrix whose inverse is ([ei, ej ]Q). We will use the basis {ei} to identify L with Rm and
hence to view A as an automorphism of L. Consider the endomorphism π : EndR(H)→ EndR(H)
given, for ϕ ∈ EndR(H), by

π(ϕ) =
∑

i

[ϕ, ei] ·Aei.

Lemma 1.4.

(i) π is an idempotent endomorphism of EndR(H) with image L ⊂ EndR(H).

(ii) π is the unique projector onto L satisfying

kerπ = {ϕ ∈ EndR(H) : [ϕ, v] = 0 for all v ∈ L}.

In particular, it is independent of the choice of basis.

(iii) GSpin(L,Q) ⊂ U(H) is the stabilizer of π : EndR(H)→ EndR(H).

Proof. For (i), we note that

π(π(ϕ)) =
∑

i,k

[ϕ, ei] · [Aei, ek]Q ·Aek =
∑

i,k

[ϕ, ei] · δi,k ·Aek = π(ϕ).

An easy computation also shows that, for 1 6 k 6 m, π(ek) = ek, so that the image of π is
precisely L.

(ii) is clear.
The stabilizer in U(H) of π must preserve L under the conjugation action on EndR(H); it

must therefore be contained in GSpin(L,Q). On the other hand, for any g ∈ GSpin(L,Q), since
g must preserve L, gπg−1 is again a projector onto L whose kernel agrees with that of π. Hence,
we must have gπg−1 = π. This shows (iii). ✷

Remark 1.5. In the above situation, suppose that R = Z(p) and only that (LQ, Q) is non-
degenerate. If we choose a basis {e1, . . . , em} for L, the corresponding matrix A belongs to
GL(LQ) and A · L ⊂ LQ is precisely the dual lattice L∨. Therefore, the image of EndZ(p)

(H)
under π is exactly L∨ ⊂ LQ.

3 For the rest of the section, the word ‘group’ will mean ‘R-group scheme’.

772

https://doi.org/10.1112/S0010437X1500740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1500740X


Regular integral models

1.6 As shown in [Bou07, § 9, Théorémes 2 and 3], C is an Azumaya algebra over its center
Z(C). Here, Z(C) = R, if m is even, and is finite étale of rank 2 over R, if m is odd. Therefore,
there exists an R-linear reduced trace map Trd : C → R such that the pairing (x, y) 7→ Trd(xy)
is a non-degenerate symmetric bilinear form on C. For any δ ∈ C× such that δ∗ = −δ, the form
ψδ(x, y) = Trd(xδy∗) defines an R-valued symplectic form on H.

Lemma 1.7. For δ as above, the line [ψδ] in Hom(H⊗H,R), spanned by the symplectic form ψδ,
is preserved by GSpin(L,Q). The similitude character of GSpin(L,Q) obtained from its action
on this line agrees with the spinor norm. ✷

Definition 1.8. We will need one further piece of notation: for any pair of positive integers
(r, s), we set

H⊗(r,s) = H∨ ⊗ · · · ⊗H∨
︸ ︷︷ ︸

r times

⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
s times

.

We will also use this notation for objects in other tensor categories without comment.

Note that we can now think of π as an element of H⊗(2,2).

1.9 Let G0 = SO(L,Q). Since there exists a central isogeny G → G0 of reductive groups,
there is a bijective correspondence between parabolic sub-groups of G and those of G0. We
want to make this correspondence explicit on the level of linear algebra for certain parabolic
sub-groups. To each isotropic sub-space L1 ⊂ L, we can attach the parabolic sub-group P0 ⊂ G0

that stabilizes L1. We get a decreasing filtration

0 = F 2L ⊂ F 1L = L1 ⊂ F 0L = (L1)⊥ ⊂ F−1L = L.

Since L1 is isotropic, we have a canonical embedding of R-algebras

∧•L1
→֒ C →֒ EndR(H).

If N ⊂ EndR(H), write imN for the union of the images in H of the endomorphisms in N .
Similarly, write kerN for the intersection of the kernels of the elements of N . Then we have, for
every integer i = 0, . . . , r + 1,

im(∧iL1) = ker(∧r−i+1L1).

Moreover, im(∧iL1) ⊂ im(∧i−1L1). So, we can define a descending filtration F •H on H by

F iH = im(∧iL1).

Suppose that µ0 : Gm→ G0 is a co-character splitting F •L. It gives rise to a splitting

L = L1 ⊕ L0 ⊕ L−1

with F iL =
⊕

j>i L
j and where µ0(z) acts on Li via zi. In particular, L−1 is another isotropic

direct summand of L that pairs non-degenerately with L1.
Take the increasing filtration EiH = ker(∧i+1L−1) = im(∧r−iL−1) and set H i = EiH ∩F iH.

One easily checks that this is a splitting of F •H.
Let µ : Gm → GL(H) be the co-character that acts via zi on H i. By construction, H i is

C-stable and one can check easily that µ(Gm) preserves the grading on H. So, µ must factor
through U(H). Furthermore, we find that, if v ∈ L and i = 0, 1, . . . , r, then

v ·H i ⊂





H i+1 if v ∈ L1,

H i if v ∈ L0,

H i−1 if v ∈ L−1.

773

https://doi.org/10.1112/S0010437X1500740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1500740X


K. Madapusi Pera

This shows that

µ(z)vµ(z)−1 =





z · v if v ∈ L1,

v if v ∈ L0,

z−1 · v if v ∈ L−1.

In other words, µ factors through G and is a lift of µ0. This shows the following result.

Proposition 1.10. The parabolic sub-group P ⊂ G lifting P0 ⊂ G0 is the stabilizer in

G of F •H. ✷

2. Local models

We fix a prime p > 2 for the rest of this paper.

2.1 Suppose that (M, q) is a non-degenerate quadratic space over a field κ and let N ⊂ M

be a sub-space. Set

aN = {f ∈ Hom(N,M) : [f(v), w]q + [v, f(w)]q = 0 for all v, w ∈ N}.

Lemma 2.2. The natural map Lie(SO(M))→ aN induced by restriction to N is surjective.

Proof. We will first consider three special cases.

– q restricted to N is also non-degenerate: in this case, we have an orthogonal decomposition

M = N ⊥ N⊥. So, given f ∈ aN , we can extend it to the element of Lie(SO(M)) which

restricts to 0 on N⊥.

– N is isotropic: in this case, we can find a splittingM = N⊕(N⊕N ′)⊥⊕N ′, where N ′ ⊂M

is also isotropic and pairs non-degenerately with N , and the restriction of q to (N ⊕N ′)⊥ is

non-degenerate. Given f ∈ aN , we can write it in the form f1⊕ f2⊕ f3, where f1 : N → N ,

f2 : N → (N ⊕ N ′)⊥ and f3 : N → N ′. The duality between N ′ and N allow us to view

f∨1 as a map N ′
→ N ′. Similarly, f∨2 can be viewed as a map (N ⊕ N ′)⊥ → N ′, and f∨3

as a map N → N ′. The condition that f ∈ aN simply means that f∨3 = −f3. We can now

extend f to an element X ∈ Lie(SO(N)), which restricts to −f∨2 on (N ⊕ N ′)⊥ and −f∨1
on N ′.

– N contains ⊥ N and the image of f lies in N⊥: again, we can find a splitting M = N ⊕N ′

with N = N⊥ ⊕ (N⊥ ⊕ N ′)⊥. Here, N ′ is isotropic and pairs non-degenerately with N⊥.

Now, f is of the form f1⊕ 0⊕ 0, where f1 : (N
⊥⊕N ′)⊥→ N⊥. Extend this to the element

X ∈ Lie(SO(N)), which restricts to −f∨1 : N ′
→ (N⊥ ⊕N ′)⊥ on N ′ and to 0 on N .

In general, let N0 ⊂ N be the radical. Since N0 is isotropic, by the second case above, we can find

X1 ∈ Lie(SO(M)) such that X1|N0 ≡ f |N0 . Therefore, replacing f with f −X1|N , we can assume

that f |N0 ≡ 0. In this case, the image of f must lie within N⊥
0 . Let f : N/N0→ N⊥

0 /N0 be the

induced map. Now, N/N0 is a non-degenerate sub-space of the non-degenerate quadratic space

N⊥
0 /N0. Therefore, from the first case treated above, we can find X2 ∈ Lie(SO(N⊥

0 /N0)) such

that X2|N/N0
≡ f . Lift X2 to an element X2 ∈ Lie(SO(M)) that stabilizes N0. Then, replacing f

by f−X2|N , we can assume that the image of f lands in N0. Extend f to any map f̃ : N⊥
0 → N0.

Then, by the third case above, we can find X ∈ Lie(SO(M)) such that X|N⊥
0
≡ f̃ . ✷
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2.3 Suppose that we are given a discrete valuation ring O of mixed characteristic (0, p) with

residue field k, and a quadratic space (M, q) over O such that M [p−1] is non-degenerate over the

fraction field O[p−1]. The quadratic form q endows the discriminant disc(M) = M∨/M with a

natural non-degenerate O[p−1]/O-valued quadratic form q.

We say that M is maximal if it is maximal among O-lattices in M [p−1] on which q takes

values in O.

Lemma 2.4.

(i) The following are equivalent.

(a) M is maximal;

(b) disc(M) is a k-vector space and the form q is anisotropic.

(ii) Suppose that (M̃, q̃) is a self-dual quadratic space over O containing (M, q) isometrically

as a direct summand. Then M is maximal if and only if M⊥ ⊂ M̃ is maximal.

Proof. First, we claim thatM is maximal only if disc(M) is a k-vector space. Otherwise, if π ∈ O

is a uniformizer, we can find m ∈M∨ such that π ·m /∈M but π2 ·m ∈M . But then M + 〈π ·m〉
is a lattice bigger than M on which q is O-valued.

To prove (i), we can now assume that disc(M) is a k-vector space. Then the assignment

M ′ 7→M ′/M sets up a bijection between the following two sets.

– Lattices M ′ ⊂M [p−1] containing M and on which q takes values in O.

– Sub-spaces of disc(M) that are isotropic for q.

From this, the claimed equivalence is clear.

For the final assertion, note that the identification M̃
≃−→ M̃∨ induced by q̃ gives us canonical

isomorphisms

disc(M)
≃
←− M̃

M +M⊥

≃−→ disc(M⊥).

This gives us an isomorphism disc(M)
≃−→ disc(M⊥) that preserves quadratic forms up to sign.

We now conclude the proof from (i). ✷

2.5 Let (L,Q) be a quadratic space over Z(p) such that (LQ, Q) is non-degenerate. Suppose that

we are given a self-dual quadratic space (L̃, Q̃) over Z(p) admitting (L,Q) as a direct summand.

Set Λ = L⊥ ⊂ L̃. Set G̃ = GSpin(L̃, Q̃) and let G ⊂ G̃ be the closed sub-group such that, for any

Z(p)-algebra R, we have

G(R) = {g ∈ G̃(R) : g|ΛR
≡ 1}.

Note that the central embedding Gm,Q →֒ GQ = GSpin(LQ, Q) is induced from an embedding

Gm →֒ G. Let G0 (respectively G̃0) be the Z(p)-group scheme G/Gm (respectively G̃/Gm), so

that G0,Q = SO(LQ, Q).

Lemma 2.6. For any flat Z(p)-algebra R, we have

G(R) = G(RQ) ∩ C(L)×R ⊂ C(L)×RQ
,

G0(R) = {g ∈ G0(RQ) : gLR = LR and g acts trivially on L∨
R/LR}.
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Proof. The obvious inclusion L →֒ L̃ →֒ C(L̃) gives rise to a canonical map C(L)→ C(L̃). We
claim that this sets up an identification:

C(L)+ = {z ∈ C(L̃)+ : vz = zv ∈ C(L̃) for all v ∈ Λ}. (2.6.1)

Since both sides of this purported identity are saturated Z(p)-sub-modules of C(L̃)+, it is enough
to show that

C(LQ)
+ = {z ∈ C(L̃Q)

+ : vz = zv ∈ C(L̃Q) for all v ∈ Λ}. (2.6.2)

This is easily checked using the orthogonal decomposition L̃Q = LQ ⊥ ΛQ.
The description of G(R) for a flat Z(p)-algebra R is now clear, since both G(RQ)∩C(L)×R and

G(R) can be identified with the set of elements of G̃(R) that commute with the left multiplication
action of Λ on C(L̃)R.

Proving the corresponding description of G0(R) amounts to checking the following thing:
suppose that we have g ∈ G0(RQ) such that gLR = LR. Then

gL̃R = L̃R ⇔ g acts trivially on L∨
R/LR.

Indeed, suppose that gL̃R = L̃R. Given any v ∈ L∨
R, there exists w ∈ Λ∨

R such that the element

v + w of L̃RQ
= LRQ

⊕ ΛRQ
lies in L̃R. Therefore, since g acts trivially on ΛR, we have

gv − v = g(v + w)− (v + gw) = g(v + w)− (v + w) ∈ L̃R ∩ LRQ
= LR.

This shows that g acts trivially on L∨
R/LR.

On the other hand, suppose that g acts trivially on L∨
R/LR. Every element ṽ ∈ L̃R can

be written uniquely in the form v + w for some v ∈ L∨
R ⊂ LRQ

and w ∈ Λ∨
R ⊂ ΛRQ

. We now
have

gṽ = g(v + w) = gv + w = (gv − v) + v + w = (gv − v) + ṽ ∈ L̃RQ
.

But, by our hypothesis on g, gv − v ∈ LR ⊂ L̃R. Therefore, gṽ ∈ L̃R for all ṽ ∈ L̃R. ✷

Lemma 2.7. Set

aΛ = {f ∈ Hom(Λ, L̃) : [f(v), w]
Q̃
+ [v, f(w)]

Q̃
= 0 for all v, w ∈ Λ}.

Then we have a short exact sequence of finite free Z(p)-modules

0→ LieG0→ Lie G̃0
X 7→X|Λ−−−−−→ aΛ→ 0.

Proof. The only non-obvious part is the surjectivity on the right-hand side. By Nakayama’s
lemma, it suffices to prove this after tensoring with Fp. But then it follows from (2.2). ✷

Lemma 2.8. Write ι0 : Λ →֒ L̃ for the natural embedding. Let R be a Z(p)-algebra. Suppose that

we have another isometric embedding ι : ΛR →֒ L̃R onto a local direct summand of L̃R. Then
the functor Pι on R-algebras given by

Pι(B) = {g ∈ G̃0(B) : g ◦ ι0 = ι}

is represented by a scheme that is affine, smooth and faithfully flat over R.
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Proof. It is clear that Pι is represented by a closed sub-scheme of G̃0,R. Moreover, Witt’s
extension theorem [Bou07, § 4, Theorem 1] shows that Pι(κ) is non-empty for any residue field
κ of R. To finish the proof of the proposition, it suffices to show that Pι is formally smooth
over R.

Let B be an R-algebra, let I ⊂ B be a square-zero ideal and let B0 = B/I. Suppose that we
have g0 ∈ Pι(B0): we want to find g ∈ Pι(B) mapping to g0. Choose any g̃ ∈ G̃0(B) lifting g0.
Consider the assignment on ΛB given by v 7→ v− g̃−1ι(v). This factors through a map U : ΛB0 →

I ⊗B0 L̃B0 :

ΛB → ΛB0

U−→ I ⊗B0 L̃B0

≃−→ I ⊗B L̃B →֒ L̃B.

For v, w ∈ Λ, we have

[U(v), w]
Q̃
+ [v, U(w)]

Q̃
= [v − g̃−1ι(v), w]

Q̃
+ [v, w − g̃−1ι(w)]

Q̃

= [v − g̃−1ι(v), w − g̃−1ι(w)]
Q̃
+ [v, w]

Q̃
− [g̃−1ι(v), g̃−1ι(w)]

Q̃

= [v − g̃−1ι(v), w − g̃−1ι(w)]
Q̃
= 0.

Here, the last equality holds because I2 = 0.
Therefore, U ∈ I⊗Z(p)

aΛ and, by (2.7), we can find X ∈ I⊗Z(p)
Lie(G̃0) such that X|ΛR0

≡ U .
Then g = g̃ ◦ (1−X) is an element of Pι(B) that lifts g0. ✷

Proposition 2.9. The group schemes G and G0 are smooth and faithfully flat over Z(p). In
particular, up to (unique) isomorphism, they do not depend on the choice of self-dual quadratic
space L̃ containing L.

Proof. It is enough to show that G0 is smooth over Z(p). This follows from (2.8) with R = Z(p)

and ι = ι0.
Take R = Znr

(p) to be a strict henselization of Z(p). That G and G0 are independent of the

choice of L̃ is immediate from (2.6) and the following assertion [BT84, 1.7.6]: given a smooth
Q-scheme X, a smooth Z(p)-model X for X is determined up to unique isomorphism by its set
of R-valued points X(R) ⊂ X(RQ). ✷

2.10 Let Mloc
G be the Z(p)-scheme such that, for every Z(p)-algebra R, we have

Mloc
G (R) = {Isotropic lines F 1LR ⊂ LR}.4

Lemma 2.11. Let N ⊂ LFp be the radical. Set r = dimL, t = dimN and s = r − t− 1. We will
assume that N 6= LFp or, equivalently, s > 0.

(i) Mloc
G is flat and projective of relative dimension r − 2 over Z(p).

(ii) The singular locus of Mloc
G,Fp

consists of lines contained in N and so can be identified with

P(N). It has co-dimension s in Mloc
G,Fp

.5

(iii) Mloc
G,Fp

is a local complete intersection (lci) variety. It is reduced if and only if s > 1. It is

normal if and only if s > 2, and smooth if and only if t = 0.

4 A line is an R-sub-module that is locally a direct summand of rank 1.
5 Here, P(N) denotes the space of lines in N .
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Proof. Part (i) is a direct consequence of the hypothesis that N 6= LFp . Part (ii) is an easy fact

about quadrics. Finally, Mloc
G,Fp

, being a quadric, is an lci variety. The remainder of (iii) follows
from (ii) and standard criteria for reducedness and normality. ✷

We now recall some definitions and results from [VZ10].

Definition 2.12. A regular local Z(p)-algebra R with maximal ideal m is quasi-healthy if it is
faithfully flat over Z(p) and if every abelian scheme over Spec R\{m} extends uniquely to an
abelian scheme over Spec R.

A regular Z(p)-scheme X is healthy if it is faithfully flat over Z(p) and if, for every open
sub-scheme U ⊂ X containing XQ and all generic points of XFp , every abelian scheme over U
extends uniquely to an abelian scheme over X. It is locally healthy if, for every point x ∈ XFp of

co-dimension at least 2, the complete local ring ÔX,x is quasi-healthy.

Remark 2.13.

– Any regular, flat Z(p)-scheme of dimension at most 1 is trivially healthy.

– By faithfully flat descent, a regular local ring R is quasi-healthy whenever its completion
R̂ is quasi-healthy.

– IfX is locally healthy, then it is healthy. Indeed, suppose that U ⊂X is as in the definition of
‘healthy’ above; the complement X\U lies entirely in the special fiber and has co-dimension
at least 2 in X. The claim follows by using ascending noetherian induction on the co-
dimension of X\U , and repeatedly using quasi-healthiness of the local rings of X.
We do not know if the converse holds.

Theorem 2.14 (Vasiu–Zink). Let R be a regular local, faithfully flat Z(p)-algebra of dimension
at least 2.

(i) Suppose that there exists a faithfully flat complete local R-algebra R̂ that admits a
surjection R̂։W [|T1, T2|]/(p− h), where h ∈ (T1, T2)W [|T1, T2|] is a power series that does not

belong to the ideal (p, T p
1 , T

p
2 , T

p−1
1 T p−1

2 ). Then R is quasi-healthy.

(ii) Let mR ⊂ R be the maximal ideal and suppose that p /∈ m
p
R. Then R is quasi-healthy.

(iii) If R is a formally smooth complete local Z(p)-algebra, then R is quasi-healthy.

Proof. See [VZ10, Theorem 3 and Corollary 4]. ✷

2.15 Suppose that (L,Q) is maximal. The isomorphism pL∨/pL
≃−→ disc(L) allows us to

identify disc(L) with the radical N ⊂ LFp . By (2.4), disc(L) with its induced form Q has to be an
anisotropic quadratic space over Fp. This implies that t = dimN 6 2. If t = 2, disc(L)Fp2

= NFp2

admits two lines that are Q-isotropic. These lines, since every sub-space of NFp2
is Q-isotropic,

can be viewed as points in Mloc
G (Fp2). We will call these points irregular.

Proposition 2.16. If t 6 1, then Mloc
G is regular and locally healthy. If t = 2, then the same

assertion holds for the complement of the irregular points defined above.

Proof. If t = 0, then Mloc
G is smooth over Z(p) and the result is immediate from Theorem 2.14.

So, we assume that t > 1. The assertions in the proposition can be checked at the complete
local rings of Mloc

G at points valued in algebraically closed fields of characteristic p. As such, it
suffices to prove them after base change to Zp2 =W (Fp2). Now, we can find a basis for Zp2 ⊗ L
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so that the quadratic form has the shape

r−1∑

i=1

X2
i + pY 2 if t = 1,

r−2∑

i=1

X2
i + pY Z if t = 2.

The singular locus of Zp2 ⊗Mloc
G is precisely where p and all the coordinates Xi, 1 6 i 6 r− t,

vanish. When t = 2, the irregular points are precisely those points in the singular locus where

one of Y or Z also vanishes.

Set

U =





Spec
Zp2 [u1, . . . , ur−1]

(
∑

i u
2
i + p)

if t = 1,

Spec
Zp2 [u1, . . . , ur−2, v]

(
∑

i u
2
i + pv)

if t = 2.

Every singular point of Zp2 ⊗Mloc
G has a Zariski open neighborhood isomorphic to U .

It is now an easy observation that U is regular everywhere when t = 1. When t = 2, it is

regular outside of points where all the coordinates u1, . . . , ur−2, v vanish: these are precisely the

irregular points defined above.

When t = 1, the completion of U at its singular point is Zp2 [|u1, . . . , ur−2|]/(
∑

i u
2
i +p). Here,

we assume that r > 3, since otherwise dimM loc
G 6 1, and being healthy is a vacuous condition.

Similarly, when t = 2, the completion of U at any regular Fp-valued point in the singular

locus of the special fiber is isomorphic to W (Fp)[|u1, . . . , ur−2, w|]/(
∑

i u
2
i + pw+ p). Here again,

we assume that r > 3.

We also need to consider the completion of U at the generic point of the singular locus. If we

complete instead at an algebraically closed point over this generic point, a quick computation

shows that we obtain a ring isomorphic to W (k)[|u1, . . . , ur−2|]/(
∑

i u
2
i + pv). Here, k is an

algebraically closed field containing Fp2((v)), and we view v as an element of W (k) via the

Teichmüller lift.

In all three cases, if m is the maximal ideal of the complete local ring, we see that p ∈ m2\m3.

So, we can conclude using Theorem 2.14(ii) that the complete local rings of U at any regular,

singular point are quasi-healthy. Since the complete local rings at the non-singular points are

also quasi-healthy by Theorem 2.14, we see that the regular locus of U is locally healthy. This

proves the proposition. ✷

2.17 Assume that t = 2. We will now construct a regular, locally healthy resolution Mref
G of

Mloc
G . Fix any quadratic extension F/Q in which p is inert. The two isotropic lines in disc(L)Fp2

,

via the correspondence noted in the proof of (2.4), determine two self-dual lattices in LF

containing LOF,(p)
. Fix one of them and denote it by L⋄.

Given a Z(p)-algebra R, we take Mref
G (R) to be the set of pairs (F 1LR, F

1L⋄
R), where the

following hold.

– F 1LR ⊂ LR is an isotropic line.

– F 1L⋄
R ⊂ L⋄

R = L⋄ ⊗Z(p)
R is an isotropic OF,(p) ⊗Z(p)

R-sub-module that is locally a direct

summand of rank 1.

– Under the natural map OF,(p) ⊗Z(p)
LR→ L⋄

R, OF,(p) ⊗ F 1LR maps into F 1L⋄
R.
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Proposition 2.18.

(i) Mref
G is represented by a regular, locally healthy projective Z(p)-scheme of relative dimension

r − 2.

(ii) The natural map q : Mref
G → Mloc

G is G-equivariant and an isomorphism over the regular

locus of the target.

Proof. Let Q(L⋄) be the smooth quadric over OF,(p) attached to L⋄, and let Mloc
G⋄ be the Weil

restriction of Q(L⋄) from OF,(p) to Z(p). By definition, we have an inclusion of functors

Mref
G →֒ Mloc

G ×Z(p)
Mloc

G⋄ .

This is easily seen to be a closed immersion, so that Mref
G is represented by a projective Z(p)-

scheme. Since G acts trivially on disc(L), its action on LF preserves L⋄. This endows Mref
G with

a natural G-action compatible with its projection onto Mloc
G .

Fix an identification of the completion of OF,(p) with Zp2 . Using the isomorphism of Zp2-

algebras Zp2 ⊗Z(p)
OF,(p)

≃−→ Zp2 × Zp2 , we obtain maps

Zp2 ⊗Z(p)
L→ Zp2 ⊗Z(p)

L⋄ = (Zp2 ⊗OF,(p)
L⋄)⊕ (Zp2 ⊗OF,(p)

L⋄). (2.18.1)

As in the proof of (2.16), we can find compatible bases for Zp2 ⊗Z(p)
L and Zp2 ⊗OF,(p)

L⋄

such that the map in (2.18.1) has the shape

Zp2 ⊗Z(p)
L→ (Zp2 ⊗OF,(p)

L⋄)⊕ (Zp2 ⊗OF,(p)
L⋄),

(X1, . . . , Xr−2, Y, Z) 7→ ((X1, . . . , Xr−2, pY, Z), (X1, . . . , Xr−2, Y, pZ)),

and so that the quadratic forms on Zp2 ⊗Z(p)
L and Zp2 ⊗OF,(p)

L⋄ are given by the formulas∑
iX

2
i + pY Z and

∑
iX

2
i + Y Z, respectively.

Let C ⊂ Mloc
G be the irregular locus: then Zp2 ⊗ C ⊂ Zp2 ⊗Mloc

G can be identified with the

locus in the special fiber where the coordinates X1, . . . , Xr−2, as well as (exactly) one of Y or Z,

vanish. Set V1 = Mloc
G \C; then we see that, as open sub-schemes of Zp2 ⊗Mloc

G , we have

Zp2 ⊗ V1 =
r−1⋃

i=1

{Xi 6= 0} ∪ {Y Z 6= 0}.

This immediately shows that, if R is an Z(p)-algebra with F
1LR ∈ V1(R), the image of OF,(p)⊗Z(p)

F 1LR in L⋄
R is locally a direct summand as an OF,(p) ⊗Z(p)

R-module. In other words, the map

q : q−1(V1)→ V1 is an isomorphism. This shows (ii).

Using (2.16), we see that q−1(V1) is regular and locally healthy.

To show that Mref
G is regular and locally healthy, we need to show that its complete local

rings at points in characteristic p are quasi-healthy regular. For this, we can now work in the

neighborhood of a singular point in Zp2 ⊗Mref
G where one of Y or Z vanishes.

Without loss of generality, we can assume that it is the coordinate Y that vanishes, so

that Z 6= 0. If we set xi = Xi/Z and y = Y/Z, just as in the proof of loc. cit. we can

work over a Zariski open affine neighborhood V2 ⊂ Zp2 ⊗ Mloc
G of the form SpecA with

A = Zp2 [x1, . . . , xr−2, y]/(
∑

i x
2
i + py).
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Now, for any Zp2-algebra R, the set q−1(V2)(R) can be identified with the space of pairs
(F 1LR, F

1(R⊗OF,(p)
L⋄)), where:

– F 1LR ⊂ LR is an isotropic line spanned by an element with coordinates (x1, . . . , xr−2, y, 1)
for x1, . . . , xr−2, y ∈ R;

– F 1(R⊗OF,(p)
L⋄) ⊂ R⊗OF,(p)

L⋄ is an isotropic line containing an element with coordinates
(x1, . . . , xr−2, y, p).

Therefore, we find that, as schemes over V2, we have

q−1(V2)
≃−→ ProjA[W1, . . . ,Wr−2, U, T ]/I,

where I is the ideal generated by the elements
∑r−2

k=1W
2
k +UT , xjWi−xiWj , for 1 6 i, j 6 r−2,

pWi − xiU, yWi − xiT , for 1 6 i 6 r − 2, and yU − pT .
The scheme q−1(V2) is covered by three kinds of affine open sub-schemes: one where U 6= 0,

one where T 6= 0 and one where Wi 6= 0 for some i. We will consider each in turn.
Setting wi =Wi/U and t = T/U , we can easily see that q−1(V2) ∩ {U 6= 0} is isomorphic to

Spec
Zp2 [w1, . . . , wr−2, t]

(
∑

k w
2
k + t)

.

This is clearly smooth over Zp2 and is therefore regular and locally healthy.
Similarly, setting wi = Wi/T and u = U/T instead, we find that q−1(V2) ∩ {T 6= 0} is

isomorphic to

Spec
Zp2 [w1, . . . , wr−2, u, y]

(
∑

k w
2
k + u, uy − p)

= Spec
Zp2 [w1, . . . , wr−2, y]

(p+ y(
∑

k w
2
k))

.

This is a regular scheme over Zp2 .
Consider the complete local ring of q−1(V2) ∩ {T 6= 0} at the point where p and all the

coordinates y, w1, . . . , wr−2 vanish. It is

R =
Zp2 [|w1, . . . , wr−2, y|]

(p+ y(
∑

k w
2
k))

.

It admits a surjection to Zp2 [|w1, y|]/(p+ yw2
1) and so we can use Theorem 2.14(i) to conclude

that R is quasi-healthy. One can check that the order of vanishing of p at all other points of
q−1(V2) ∩ {T 6= 0} is at most 2 and so we can use assertion (ii) of Theorem 2.14 to conclude
that all complete local rings of q−1(V2) ∩ {T 6= 0} are quasi-healthy. Hence, this affine open
sub-scheme is also locally healthy.

Finally, setting wj = Wj/W1 for j 6= 1, u = U/W1 and t = T/W1, we find that q−1(V2) ∩
{W1 6= 0} is isomorphic to

Spec
Zp2 [x1, w2, . . . , wr−2, u, t]

(ux1 − p, 1 +
∑r−2

k=1w
2
k + ut)

.

Set B′ = Zp2 [x1, u]/(ux1 − p); then q−1(V2)∩{W1 6= 0} is smooth over SpecB′ and so it suffices to
check the criterion of Theorem 2.14(ii) for the complete local rings of B′, which is easy. This shows
that q−1(V2)∩{W1 6= 0} is locally healthy, and an identical proof shows that q−1(V2)∩{Wi 6= 0}
is locally healthy for any i. ✷

Remark 2.19. The map Mref
G →Mloc

G is, up to unique isomorphism, independent of the choice of
both F and L⋄. In fact, it is simply the blow-up of the singular locus of Mloc

G .
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3. GSpin Shimura varieties

Let (L,Q) be a quadratic space over Z(p) of signature (n, 2) with n > 1. By this, we mean
that the largest positive definite sub-space of LR has dimension n. Let G (respectively G0) be
the smooth Z(p)-group scheme attached to L in § 2.5, so that GQ = GSpin(LQ, Q) (respectively
G0,Q = SO(LQ, Q)).

3.1 LetX be the space of oriented negative definite 2-planes in LR. The points ofX correspond
to certain Hodge structures of weight 0 on the vector space LQ, polarized by Q: fix h ∈ X, and
suppose that (eh, fh) is an oriented, orthogonal basis for the oriented negative definite 2-plane
attached to h with Q(eh) = Q(fh) = −1. Also, fix a square root of −1,

√
−1 ∈ C. Set

Lp,q
h

=





〈eh +
√
−1fh〉 ⊂ LC if (p, q) = (−1, 1),

〈eh, fh〉⊥ ⊂ LC if (p, q) = (0, 0),

〈eh −
√
−1fh〉 ⊂ LC if (p, q) = (1,−1),

0 otherwise.

Then Lh is a Z(p)-Hodge structure of weight 0 with underlying Z(p)-module L; the associated
Q-Hodge structure is polarized by Q. In fact, each h ∈ X gives rise to a unique homomorphism
S→ GR which induces the Hodge structure Lh on L and whose restriction to the diagonal sub-
groupGm,R ⊂ S is the canonical central embeddingGm,R →֒GR. Here, of course, S=ResC/RGm,R

is the Deligne torus.
The map carrying h to the line L1,−1

h
embeds X as an open sub-space of the quadric

X̌ ⊂ P(LC) determined by Q. The two connected components of X are switched by complex
conjugation on X̌. The pairs (GQ, X) and (G0,Q, X) are Shimura data, which, since n > 1, have
reflex field Q.

3.2 Fix a compact open sub-group K ⊂ G(Af ) with image K0 ⊂ G0(Af ), and let ShK :=
ShK(GQ, X) and ShK0 := ShK0(G0,Q, X) be the associated Shimura varieties over Q. We will
assume that K is of the form KpK

p, where Kp = G(Zp) ⊂ G(Qp) and K
p ⊂ G(Ap

f ). We will also
assume that Kp is chosen to be small enough so that ShK is a smooth variety and not just an
algebraic space. By weak approximation for GQ (which can be deduced from weak approximation
for its derived group, which is simply connected [PR94, Theorem 7.8]), we have identifications
of complex analytic varieties:

ShanK,C = G(Z(p))\(X ×G(Ap
f )/K

p), (3.2.1)

ShanK0,C = G0(Z(p))\(X ×G0(A
p
f )/K

p
0 ). (3.2.2)

From this description, we find that the map ShK → ShK0 is a finite (étale) Galois cover with
Galois group

∆(K) := A×
f /Q

>0(K ∩ A×
f ) = Ap,×

f /Z>0
(p)(K

p ∩ Ap,×
f ).

Here, we are viewing A×
f as a central sub-group of G(A×

f ).

3.3 Let R ⊂ R be a Z(p)-algebra. Recall that a variation of (pure) R-Hodge structures over a
smooth complex algebraic variety S is a pair (UB, F

•(UB ⊗ OSan)), where UB is a local system
of finite free R-modules over San and F •(UB ⊗ OSan) is a descending filtration by sub-vector
bundles over San such that, for every point s ∈ S(C), the induced pair (UB,s, F

•(UB,s ⊗R C))
is a pure R-Hodge structure. An algebraic variation of Hodge structures over S is a tuple (UB,
UdR, F

•UdR, ι), where UdR is a vector bundle over S equipped with an integrable connection
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and a filtration F •UdR, and ι : U
an
dR

≃−→ UB ⊗OSan is a parallel isomorphism (the right-hand side
being endowed with the trivial integrable connection) of vector bundles over San such that the
pair (UB, ι(F

•Uan,dR)) is a variation of R-Hodge structures.
There is a natural exact tensor functor from the category of algebraic R-representations

of G (respectively G0) to the category of algebraic variations of R-Hodge structures on ShK,C

(respectively ShK0,C).
6 This is reasonably well known, but, so as to fix notation, we will now

briefly describe it for G and ShK ; the situation for G0 and ShK0 is completely analogous.
Suppose that we are given an algebraic R-representation U of G. We can view the R-module

U as a representation of the discrete group G(Z(p)). Using the uniformization in (3.2.1), we find
that the constant local system U×X×G(Ap

f )/K
p (where we equip U with the discrete topology)

over X ×G(Ap
f )/K

p descends to an R-local system UB over ShanK,C.
We also have the trivial vector bundle (U⊗RC)×X over X, where we equip U⊗RC with the

natural complex topology. This has a natural, G(R)-equivariant descending filtration by vector
sub-bundles F •((U⊗RC)×X) such that, at any point h ∈X, the induced filtration F •(Uh⊗RC)
is simply the Hodge filtration induced by the homomorphism S→GR attached to h. Being G(R)-
equivariant, and in particular G(Z(p))-equivariant, the pair ((U ⊗R C)×X,F •((U ⊗R C)×X))
descends to a filtered vector bundle over ShanK,C; we will denote this descent by (Uan

dR,C, F
•Uan

dR,C).
By construction, Uan

dR,C is canonically isomorphic to UB ⊗R OShanK,C
, and we find that the pair

(UB, F
•Uan

dR,C) is a variation of R-Hodge structures over ShanK,C.

Now, Uan
dR,C algebraizes to an algebraic vector bundle with integrable connection UdR,C. This

is essentially due to Baily and Borel [BB66, Theorem 10.14]; cf. also [Har85, (3.1)]). Moreover,
by the projectivity of Grassmannians, the filtration F •Uan

dR,C algebraizes to a filtration F •UdR,C.
This finishes our construction of the algebraic variation of R-Hodge structures attached to the
representation U : we will denote it by VC(U). One can check that U 7→ VC(U) is functorial,
exact and respects tensor operations.

As shown in [Del79, § 1.1], the variations of Hodge structures obtained in this fashion satisfy
Griffiths’s transversality: the connection on UdR,C carries F iUdR,C to F i−1UdR,C ⊗ Ω1

ShK,C /C.

3.4 Let C = C(L,Q) be the Clifford algebra for (L,Q). The above construction applied to the
representation H = C, on which G acts via left multiplication, produces an algebraic variation
of Z(p)-Hodge structures VC(H) = (HB,HdR,C, F

•HdR,C) over Sh
an
K,C. Since the right C-action

and grading on H are G-equivariant, they are both naturally inherited by VC(H).

The tensor π ∈ H
⊗(2,2)
Q is G-invariant, and we can view it as a map of G-representations

π : Q→ H
⊗(2,2)
Q , with G acting trivially on Q. The functoriality of our construction now shows

that π induces a map of algebraic variations of Q-Hodge structures VC(Q) → VC(H
⊗(2,2)
Q ) =

VC(HQ)
⊗(2,2).

Explicitly, this means that we have a global section πB ∈ H0(ShanK,C,H
⊗(2,2)
B ⊗ Q) and a

section πdR,C ∈ H0(ShK,C, F
0H

⊗(2,2)
dR,C ) that is parallel for the connection on H

⊗(2,2)
dR,C . Moreover,

πB is carried to πdR,C under the comparison isomorphism

H
⊗(2,2)
B ⊗ OShanK,C

≃−→H
⊗(2,2),an
dR,C .

In particular, for every point s ∈ ShK(C), the fiber πB,s ∈ H
⊗(2,2)
B,s ⊗Q is a Hodge tensor.

6 Such a result is true for any Shimura variety.
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We can view π as an idempotent endomorphism of VC(H
⊗(1,1)
Q ) and, by construction,

its image is precisely VC(LQ) = (LB,Q,LdR,C, F
•LdR,C), the algebraic variation of Q-Hodge

structures attached to the representation LQ.

In fact, it follows from (1.5) that the image under π of VC(H
⊗(1,1)) ⊂ VC(H

⊗(1,1)
Q ) is exactly

the variation of Z(p)-Hodge structures VC(L
∨).

Moreover, the G-equivariant map LQ → L∨
Q induced by the pairing gives rise to an

isomorphism VC(LQ)
≃−→ VC(L

∨
Q). This corresponds to a pairing VC(LQ) ⊗ VC(LQ) → VC(Q),

which is in fact a polarization of variations of Hodge structures. VC(L) is precisely the pre-image
of VC(L

∨) under this isomorphism.
In sum, we find that we can recover the tuple VC(L) = (LB,LdR,C, F

•LdR,C) from the data

of VC(H) and the idempotent operator π ∈ VC(H
⊗(2,2)
Q ).

3.5 For δ ∈ C∩C×
Q satisfying δ∗ = −δ, set Gδ,Q = GSp(HQ, ψδ), so that we have an embedding

GQ →֒ Gδ,Q. Let X be the space of lagrangian sub-spaces W ⊂ HC (with respect to the form ψδ)
such that the hermitian form

√
−1ψδ(w1, w̄2) restricts to a (positive or negative) definite form

on W : this is simply the union of the Siegel half-spaces attached to (H,ψδ).

Lemma 3.6. One can choose δ so that the embedding GQ →֒ Gδ,Q induces an embedding of
Shimura data (GQ, X) →֒ (Gδ,Q,X ). ✷

Let Kp ⊂ Gδ,Q(Qp) be the stabilizer of HZp . Then we haveKp ⊂ Kp∩G(Qp). LetK =KpK
p ⊂

G(Af ) be as above; then, for any compact open Kp ⊂ Gδ(A
p
f ) containing Kp, we have a finite,

unramified7 map of canonical models of Shimura varieties over Q:

ShK → ShK(Gδ,Q,X ).

Here, K = KpKp. We will call this a Kuga–Satake map.

3.7 The scheme ShK := ShK(Gδ,Q,X ) has a natural moduli description. To describe this,
we will work with abelian schemes up to prime-to-p isogeny. More precisely, given a scheme T ,
the category AV(p)(T ) of abelian schemes up to prime-to-p isogeny has for its objects abelian
schemes A over T , where, for two abelian schemes A and B over T , the space of morphisms from
A to B is the Z(p)-module

Hom(A,B)(p) = Hom(A,B)⊗ Z(p).

Given an abelian scheme A over T , a quasi-polarization (or simply polarization) of A in AV(p)(T )
will be an element λ ∈ Hom(A,A∨)(p) that is a positive multiple of a polarization λ′ : A→ A∨.

Given any scheme T , a prime ℓ 6= p invertible in T and an abelian scheme f : A → T , we
can consider the associated relative first ℓ-adic cohomology sheaf R1f∗Qℓ

. If p is invertible in

T , we can also consider the p-adic sheaf R1f∗Zp. Both of these constructions are invariants of
the prime-to-p isogeny class of A. Let Q

ℓ
(−1) be the Tate twist: it is the relative first ℓ-adic

cohomology of Gm,T over T .
Given an abelian scheme f : A → T over a Z(p)-scheme T , the following constructions are

invariants of its prime-to-p isogeny class: the p-divisible group A[p∞]; the p-adic étale cohomology
R1f∗Zp; for ℓ 6= p, the rational ℓ-adic cohomology R1f∗Qℓ

; and the Ap
f -adic cohomology R1f∗A

p
f .

If T is an Fp-scheme, we also have the degree 1 crystalline cohomology of A over T : for instance,
this can be viewed as the Dieudonné crystal associated with the p-divisible group A[p∞].

7 Note that, over C and locally in the complex analytic topology, this map is isomorphic to the closed immersion
X →֒ X .
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3.8 For some purposes, it is useful to embed AV(p)(T ) in the category of group schemes over
T . We will follow [Har, § 1] for this. Given an abelian scheme A→ T , let T p(A) be the inverse
system consisting of prime-to-p isogenies8 B→ A. Then T p(A) has a co-final system consisting
of the finite étale multiplication-by-n endomorphisms [n] : A→ A for n ∈ Z with p ∤ n. Therefore,
the inverse limit

Â(p) = lim
←−

(B→A)∈T p(A)

B

exists in the category of group schemes over T . One sees that A 7→ Â(p) is a fully faithful functor
from AV (p)(T ) to the category of T -group schemes.

The main purpose of this construction is the following abuse of terminology: given A ∈
AV (p)(T ) and a T -scheme T ′, we will write H0(T ′, A) for the Z(p)-module H0(T ′, Â(p)). This
allows us to speak of ‘sections of A’.

From now on we will suppress the qualifying phrase ‘up to prime-to-p isogeny’: all
abelian schemes will only be considered in the prime-to-p isogeny category. The cohomological
constructions we are concerned with will all be invariants of the prime-to-p isogeny class.

3.9 Suppose that T is a Z(p)-scheme and f : A→ T is an abelian scheme. Given a polarization
λ : A→ A∨, we get an induced non-degenerate Poincaré pairing of Ap

f -sheaves

ψλ : R1f∗A
p
f ⊗R1f∗A

p
f → Ap

f (−1).

Suppose that we are also given an isomorphism

η : H ⊗ Ap
f

≃−→ R1f∗A
p
f

of Ap
f -sheaves over T . Then we obtain two different non-degenerate pairings on H ⊗Ap

f : the first

is the constant pairing into Ap
f arising from ψδ, which we will again call ψδ; and the second is the

pairing η∗ψλ into Ap
f (−1) obtained by pulling back ψλ along η. In particular, the existence of

η implies that Ap
f (−1) is trivializable over T . We say that η preserves polarizations if, for some

choice of isomorphism Ap
f (−1)

≃−→ Ap
f , the pairings η∗ψλ and ψδ agree.

In the above situation, we will consider the étale sheaf Ip(A, λ) over T , whose sections are

polarization preserving isomorphisms of Ap
f -sheaves η : H ⊗ Ap

f

≃−→ R1f∗A
p
f . Note that Ip(A, λ)

is a pseudo-torsor under Gδ(A
p
f ) via its action through pre-composition.

For any Z(p)-scheme T , let SK(T ) be the set of isomorphism classes of tuples (A, λ, [η]),
where:

– (A, λ) is a polarized abelian scheme over T ;

– [η] is a Kp-level structure: it is a section of the quotient sheaf Ip(A, λ)/Kp.

For K sufficiently small, the functor SK is (represented by) a quasi-projective scheme over Z(p),
whose generic fiber is canonically identified with ShK := ShK(Gδ,Q,X ).

3.10 Over SK, we have the tautological tuple (A, λ, [η]). Let (A
KS
ShK

, λKS
ShK

, [ηKS]) be the induced

tuple over ShK . We will refer to AKS
ShK

as the Kuga–Satake abelian scheme over ShK .

The identification of ShK with the generic fiber of the moduli scheme SK has the following
property: over ShanK,C, the algebraic variation of Z(p)-Hodge structures obtained from the degree 1

cohomology of AKS
ShanK,C

is canonically identified with VC(H).

8 These are finite, flat homomorphisms, whose kernel is an étale group scheme of order not divisible by p.
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Since VC(H) carries a Z/2Z-grading and a right C-action, we conclude that AKS
ShanK,C

, and

hence AKS
ShK,C

, admits a canonical Z/2Z-grading and a (left) C-action.9 Here, we are using the

(anti-)equivalence of categories between abelian schemes over ShK,C and polarizable variations
of Z(p)-Hodge structures over ShK,C of weight 1.

The above implies that the degree 1 relative Betti cohomology of AKS
ShanK,C

with coefficients in

Z(p) can be identified with HB as a Z(p)-local system. Similarly, the degree 1 relative de Rham

cohomology of AKS
ShK,C

can be identified with (HdR,C, F
•HdR,C) as a filtered vector bundle with

integrable connection.
Let Hℓ (respectively Hp) be the relative degree 1 étale cohomology of AKS

ShK
over ShK with

coefficients in Qℓ for ℓ 6= p (respectively Zp). Then, over Sh
an
K,C, Artin’s comparison theorem gives

us canonical isomorphisms of local systems:

αℓ : HB ⊗Qℓ
≃−→Hℓ|ShanK,C

for ℓ 6= p, (3.10.1)

αp : HB ⊗ Zp
≃−→Hp|ShanK,C

. (3.10.2)

Let (HdR,Q, F
•HdR,Q) be the relative degree 1 de Rham cohomology of AKS

ShK
over ShK : this is

equipped with the Hodge filtration and the Gauss–Manin connection. Over ShanK,C, there now
exists a canonical de Rham comparison isomorphism, parallel for the trivial connection on the
left-hand side:

αdR : HB ⊗ OShanK,C

≃−→Han
dR,C

≃−→HdR,Q|ShanK,C
. (3.10.3)

Note that the first isomorphism in this composition carries πB ⊗ 1 to πdR,C.

Proposition 3.11.

(i) The structures of the Z/2Z-grading and the C-action on AKS
ShK,C

descend (necessarily

uniquely) to AKS
ShK

.

(ii) For any prime ℓ, the global section αℓ(πB ⊗ 1) of H
⊗(2,2)
ℓ ⊗ Q over ShanK,C arises from a

(necessarily unique) section

πℓ ∈ H0(ShK ,H
⊗(2,2)
ℓ ⊗Q).

(iii) The section πdR,C of H
⊗(2,2)
dR,C descends (necessarily uniquely) to a parallel section

πdR,Q ∈ H0(ShK , F
0H

⊗(2,2)
dR,Q ).

Proof. This can be extracted from [Kis10, § 2.2]. We sketch the proof.
There is a canonical pro-finite Galois cover ShKp → ShK with Galois group Kp:

ShKp = lim
←−

K′
p⊂Kp

ShK′
pK

p .

Here, K ′
p runs over the compact open sub-groups of Kp.

If we fix a connected component S ⊂ ShK and a geometric point s → S, pulling the pro-
finite cover ShKp back over S gives us a Kp-torsor over S, which in turn corresponds to a map
π1(S, s)→Kp. The restriction of Hp to S is precisely the p-adic sheaf attached to the composite
representation

π1(S, s)→ Kp = G(Zp) ⊂ Aut(H ⊗ Zp).

9 The right action is converted to a left, because cohomology is a contravariant functor.
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Since the Z/2Z-grading and the C-action on H ⊗ Zp are Kp-invariant, and hence π1(S, s)-
invariant, we find that the corresponding structures on HB⊗Zp over S

an
C must in fact descend to

structures on Hp over S. From this, one can deduce (i). The essential point is the following simple
consequence of Galois descent: suppose that A and B are abelian varieties over a characteristic
0 field κ, and f : Aκ→ Bκ is a map of abelian varieties over an algebraic closure κ/κ such that
the induced map on p-adic Tate modules Tp(f) : Tp(Aκ)→ Tp(Bκ) is equivariant for the action
of the absolute Galois group Gal(κ/κ). Then f is defined over κ.

Similarly, since the tensor π ∈ H⊗(2,2) ⊗ Qp is also Kp-invariant, αp(πB ⊗ 1) must descend

to a section πp ∈ H0(ShK ,H
⊗(2,2)
p ⊗ Qp). This shows the case ℓ = p of (ii). The de Rham case

(iii) and the ℓ 6= p case of (ii) follow from this and the fact that all Hodge cycles on abelian
varieties are absolutely Hodge [DMOS82, Ch. I]; cf. the proof of [Kis10, 2.2.2]. There are two
main points [DMOS82, § I.2].

– Given a projective varietyX over κ and an algebraically closed overfieldK ⊃ κ, any absolute
Hodge cycle β over XK is already defined over Xκ; that is, the de Rham realization βdR of
β lies in H•

dR(Xκ/κ)
⊗.

– If one cohomological realization of β is fixed by Gal(κ/κ), then all of its realizations are.

We apply this to the situation where κ is the function field of an irreducible component S as
above, K is the function field of an irreducible component of SC, X is the fiber of AKS

ShK
over κ

and β is the Hodge (hence absolutely Hodge) cycle over XK obtained from the fiber of the Betti
realization πB. ✷

3.12 The descent of the realizations of π proven above now allows us to descend VC(L) over
ShK .

For a prime ℓ 6= p, let Lℓ ⊂ H
⊗(1,1)
ℓ be the image of the idempotent operator πℓ. Then Lℓ is

a Qℓ-local system over ShK equipped with a non-degenerate pairing Lℓ×Lℓ→ Q
ℓ
. Over ShanK,C,

we have a canonical comparison isomorphism (respecting pairings)

LB ⊗Qℓ
≃−→ Lℓ|ShanK,C

.

For ℓ = p, as in § 3.4, we can show that the image of H
⊗(1,1)
p under πp is a descent L∨

p of
the Zp-local system L∨

B ⊗Zp over ShanK,C. It is equipped with a quadratic form with values in Q
p
,

and Lp ⊂ L∨
p is recovered as the largest sub-local system whose pairing with L∨

p takes values in
Zp. Again, we have a canonical isometric comparison isomorphism

LB ⊗ Zp
≃−→ Lp|ShanK,C

.

Similarly, let LdR,Q ⊂ H
⊗(1,1)
dR,Q be the image of the idempotent operator πdR,Q. By

construction, πdR,Q respects the Hodge filtration and is parallel for the Gauss–Manin connection.
Therefore, LdR,Q inherits the connection as well as a filtration F •LdR,Q, and (LdR,Q, F

•LdR,Q)
is a descent of (LdR,C, F

•LdR,C) as a filtered vector bundle with flat connection.

3.13 Let HAp
f
be the Ap

f -valued degree 1 étale cohomology of AKS
ShK

: it can be viewed as a
descent of the analytic local system HB ⊗Z(p)

Ap
f . There is a unique idempotent operator πAp

f
on

H
⊗(1,1)

Ap
f

such that, for any prime ℓ 6= p, the ℓ-adic component of πAp
f
is πℓ. Let LAp

f
⊂ H

⊗(1,1)

Ap
f

be the image of πAp
f
: its ℓ-adic component for any ℓ 6= p is simply Lℓ.
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Let IpG be the sub-sheaf of Ip(AKS
ShK

, λKS
ShK

) consisting of C-equivariant, Z/2Z-graded
isomorphisms

η : H ⊗ Ap
f

≃−→HAp
f

that carry L ⊗ Ap
f ⊂ H⊗(1,1) ⊗ Ap

f onto LAp
f
⊂ H

⊗(1,1)

Ap
f

. Note that G(Ap
f ) naturally acts on the

right on IpG via pre-composition, making it a torsor under G(Ap
f ). We have a natural map of

quotient sheaves
IpG/K

p
→ Ip(AKS

ShK
, λKS

Q )/Kp.

A section of IpG/K
p will be called a Kp-level structure.

Proposition 3.14. There is a canonical Kp-level structure [ηG] ∈ H0(ShK , I
p
G/K

p) such that
[ηKS] is its image in Ip(AKS

ShK
, λKS

ShK
)/Kp.

Proof. Consider the pro-étale cover SKp → SK. Here,

SKp = lim
←−

K
′,p⊂Kp

SKpK
′,p ,

where K′,p varies over the compact open sub-groups of Kp. Then there is a canonical isomorphism
of Gδ(A

p
f )-torsors:

Ip(A, λ)
≃−→ SKp ×Kp Gδ(A

p
f ) := (SKp × Gδ(A

p
f ))/Kp.

The canonical K-level structure [η] over SK is now obtained from the tautological section η ∈
H0(SKp , I

p(A, λ)).
Similarly, the G(Ap

f )-torsor I
p
G over ShK has a canonical reduction of structure group to a

Kp-torsor pro-represented by the pro-finite cover ShKp → ShK , where

ShKp = lim
←−

K
′,p⊂Kp

ShKpK
′,p .

Here, K
′,p varies over the compact open sub-groups of Kp.

Therefore, the image [ηG] ∈ H0(ShK , I
p
G/K

p) of the tautological section ηG ∈ H0(ShKp , I
p
G)

is the Kp-level structure we seek. ✷

3.15 Notice that, for any algebraic representation U of G, the G(Ap
f )-torsor I

p
G allows us to

functorially descend the Ap
f -adic local system UB⊗Ap

f over ShK . We take it to be the contraction
product:

UAp
f
:= IpG ×G(Ap

f ) U(Ap
f ).

Similarly, the Kp-torsor Ip,G := ShKp → ShK used in the proof of (3.11) allows us to
functorially descend the p-adic sheaf UB ⊗ Zp:

Up := Ip,G ×G(Zp) U(Zp).

We can also descend the filtered vector bundle with connection (UdR,C, F
•UdR,C) canonically

to a pair (UdR,Q, F
•UdR,Q) over ShK . To do this, consider the functor PdR,Q on ShK-schemes

that assigns to any ShK-scheme T the set

PdR,Q(T ) =




C-equivariant Z/2Z-graded OT -module isomorphisms

ξ : H ⊗Z(p)
OT

≃−→HdR,Q,T

carrying L⊗ OT ⊂ H⊗(2,2) ⊗ OT onto LdR,Q,T ⊂ H
⊗(2,2)
dR,Q,T


.
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The algebraic group GQ acts on PdR,Q by pre-composition. By working over ShanK,C, we can show
that PdR,Q is a GQ-torsor over ShK . Observe that the connection on HdR,Q equips PdR,Q with
an integrable connection. For any representation U as above, we can now take UdR,Q to be the
contraction product:

UdR,Q = PdR,Q ×GQ U := (PdR,Q ×SpecQ U)/GQ.

Here, we are viewing U as a vector bundle over SpecQ, and GQ acts diagonally on the product
PdR,Q × U .

To construct the filtration F •UdR,Q, we fix an isotropic line F 1L ⊂ L. The stabilizer of this
line is a parabolic sub-group PQ ⊂ GQ. Now, consider the sub-functor PdR,PQ

⊂ PdR,Q given by

PdR,PQ
(T ) = (ξ ∈ PdR,Q(T ) : ξ(F

1L⊗ OT ) = F 1LdR,Q,T ).

This is a PQ-torsor over ShK .
Choose any co-character µ : Gm,Q → PQ splitting the two-step filtration 0 ⊂ F 1HQ ⊂ HQ

with F 1HQ = ker(F 1LQ) (cf. 1.9). On all GQ-representations U , the action of µ(Gm) produces
a grading and hence a filtration F •UQ that is stabilized by PQ, and is independent of the choice
of µ. We now set

F •UdR,Q := PdR,PQ
×PQ F •U.

The pair (UdR,Q, F
•UdR,Q) is the descent that we seek.

It is easy to check that when U = H (for which it is essentially tautological) or U = L, these
constructions agree with the ones already given above.

In sum, we have defined a functor VQ from the category of algebraic representations U of G
to the category of tuples

(UB, (Up, αp), (UAp
f
, αAp

f
), (UdR,Q, F

•UdR,Q, αdR)),

where UB is a local system over ShanK,C; Up (respectively UAp
f
) are locally constant sheaves over

ShK equipped with comparison isomorphisms:

αp : UB ⊗ Zp
≃−→ Up|ShanK,C

,

αAp
f
: UB ⊗ Ap

f

≃−→ UAp
f
|ShanK,C

.

Moreover, (UdR,Q, F
•UdR,Q) is a filtered vector bundle over ShK with integrable connection,

equipped with a parallel comparison isomorphism:

αdR : UB ⊗ OShanK,C

≃−→ UdR,Q|ShanK,C
.

Finally, we require that (UB, α
−1
dR(F

•UdR,Q|ShanK,C
)) is a variation of Hodge structures over ShanK,C.

The functor VC from § 3.3 factors through VQ in the obvious way.

4. Integral canonical models I: the self-dual case

Throughout this section, we will assume that (L,Q) is a self-dual quadratic space over Z(p).

4.1 We return now to the Kuga–Satake map ShK → ShK. We will always assume that Kp

and Kp are chosen such that ShK admits the above description as a fine moduli scheme over Q
with integral model SK over Z(p).
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Definition 4.2. A pro-scheme X over Z(p) satisfies the extension property if, for any regular,
locally healthy Z(p)-scheme S, any map S ⊗Q→ X extends to a map S → X.

Let ShKp (respectively ShK0,p) be the pro-variety attached to the inverse system {ShKpKp}
(respectively {ShK0,pK

p
0
}); here, Kp varies over the compact open sub-groups of G(Ap

f ).

Definition 4.3. A model SKp (respectively SK0,p) for ShKp (respectively ShK0,p) over Z(p) is
an integral canonical model if it is regular, locally healthy and has the extension property. If
SKp is an integral canonical model for ShKp , and if K = KpK

p is a compact open sub-group
in G(Af ), then we will call SK := SKp/Kp the integral canonical model for ShK . A similar
convention will hold for quotients SK0 := SK0,p/K

p
0 by compact open sub-groups Kp

0 ⊂ G0(A
p
f ).

For any compact open sub-group K′ ⊂ K, with K′
p = Kp, set K

′ = K′ ∩G(Af ). Let SK′ be
the normalization of the Zariski closure of ShK′ in SK′ . Consider the pro-scheme

SKp = lim
←−

K′⊂K

SK′ .

Here, K ′ varies over compact open sub-groups of K with K ′
p = Kp.

We have the following result, due (independently) to Kisin [Kis10, 2.3.8 and 3.4.14] and
Vasiu [Vas99].

Theorem 4.4. The scheme SKp is a smooth integral canonical model for ShKp over Z(p).
Moreover, the finite Galois cover ShKp → ShK0,p extends to a pro-finite Galois cover SKp →

SK0,p , where SK0,p is a smooth integral canonical model for ShK0,p over Z(p). ✷

Though we will not present the proof in its entirety, we will need some of its ingredients,
which we describe now. They are extracted mainly from [Kis10].

4.5 By construction, the polarized abelian scheme (AKS
ShK

, λKS
ShK

) extends to a polarized abelian

scheme (AKS, λKS) over SK . By the theory of Nerón models (cf. [FC90, I.2.7]), AKS has a unique
Z/2Z-grading and a C-action extending those on AKS

ShK
.

For any Fp-scheme S, let (S/Zp)cris be the big crystalline site for S over Spec Zp (cf. [BM90,
p. 178]) and let Ocris

S be the structure sheaf of (S/Zp)cris. Recall that an object in (S/Zp)cris is
a triple (U, T, γ), where U is an S-scheme, U →֒ T is a nilpotent thickening of Zp-schemes with
ideal of definition J(U →֒T ) and γ is a divided power structure on J(U →֒T ) that is compatible
with the natural divided power structure on the ideal pOT . For any sheaf G over (S/Zp)cris, and
any object (U, T, γ) in (S/Zp)cris, we denote by GT the restriction of G to the fppf site over T .

Let AKS
Fp

be the fiber of AKS over SK,Fp . Let Hcris be the first crystalline cohomology of AKS
Fp

over SK,Fp . This is a crystal of locally free Ocris
SK,Fp

-modules over (SK,Fp/Zp)cris. Let ŜK,Zp be

the completion of SK along its special fiber. We then have a natural identification

HdR|ŜK,Zp
= lim
←−
n

Hcris,SK,Z/pn

of coherent sheaves over ŜK,Zp . In other words, for any SK-scheme T in which p is nilpotent,
we have a canonical identification of coherent sheaves

HdR|T = Hcris,T .

The crystal Hcris has more structure: it is an F -crystal. More precisely, let Fr be the absolute
Frobenius endomorphism on SK,Fp . Then Fr∗Hcris is identified with the relative crystalline
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cohomology of the Frobenius pull-back Fr∗AKS
Fp

, and the relative Frobenius map AKS
Fp
→ Fr∗AKS

Fp

induces a map of crystals

F : Fr∗Hcris→Hcris.

If T is any SK,Fp-scheme, we get an induced map of coherent sheaves

F : Fr∗HdR|T →HdR|T .

The kernel of this map is precisely the Hodge filtration Fr∗ F 1HdR|T ⊂ Fr∗HdR|T .

4.6 Suppose that we have a point s ∈ SK(k), where k is a perfect field of characteristic p. Set

W = W (k); then the restriction Hcris (respectively H
⊗(1,1)
cris ) to (Spec k/Zp)cris corresponds to

the W -module H1
cris(A

KS
s /W ) (respectively End(H1

cris(A
KS
s /W ))). If σ is the canonical Frobenius

lift on W , F induces a map

Fs : σ
∗Hcris,s→Hcris,s,

giving Hcris,s the structure of an F -crystal over W . Conjugation by Fs induces an F -isocrystal

structure on Hcris,s[p
−1]⊗(1,1).

Proposition 4.7. Assume that W admits an embedding into C. Then there exists a canonical

F -invariant tensor πcris,s ∈ H
⊗(2,2)
cris,s such that, given any finite extension E/WQ, an algebraic

closure E/E of E and any lift s̃ ∈ SK(OE) of s, the following properties hold.

(i) Let s̃E ∈ ShK(E) be the attached E-valued point. Under the Berthelot–Ogus comparison

isomorphism

HdR,s̃E
≃−→Hcris,s ⊗W E,

πdR,Q,s̃E ⊗ 1 is carried to πcris,s ∈ H
⊗(2,2)
cris,s .

(ii) Let s̃E ∈ ShK(E) be the attached E-valued point. The crystalline comparison

isomorphism

Hp,s̃E
⊗Zp Bcris

≃−→Hcris,s ⊗W Bcris

respects grading, is C-equivariant and carries πp,s̃E
⊗ 1 to πcris,s ⊗ 1.

(iii) There exists a C-equivariant isomorphism of Z/2Z-graded W -modules

H ⊗Z(p)
W

≃−→Hcris,s

carrying π to πcris,s.

(iv) πcris,s is an idempotent projector on H
⊗(1,1)
cris,s . Set

Lcris,s = im πcris,s ⊂ H
⊗(1,1)
cris,s .

Then Lcris,s is a self-dual quadratic space over W that is isometric to L⊗W .

(v) Set LdR,s = Lcris,s⊗k; then the Hodge filtration F 1HdR,s ⊂ HdR,s is GSpin(LdR,s)-split.

More precisely, there exists a canonical isotropic line F 1LdR,s ⊂ LdR,s such that

F 1HdR,s = ker(F 1LdR,s) = im(F 1LdR,s).
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Proof. Fix E/Qp and s̃ as in the proposition. Then πp,s̃E
is a Galois-invariant tensor in H

⊗(2,2)
p,s̃E

.

Therefore, under the crystalline comparison isomorphism, it is carried to an F -invariant tensor

πcris,s ∈ H
⊗(2,2)
cris,s [p−1]. In fact, πcris,s belongs to H

⊗(2,2)
cris,s [Kis10, 1.3.6(1) and 1.4.3(1)]. We have

to show that it has the desired properties.
The comparison isomorphisms are functorial and are therefore C-equivariant and respect

gradings. The de Rham comparison isomorphism

Hp,s̃E
⊗Zp BdR

≃−→HdR,s̃E ⊗E BdR

respects Z/2Z-grading, is C-equivariant and carries πp,s̃E ⊗ 1 to πdR,Q,s̃E ⊗ 1. This is a result of
Blasius and Wintenberger [Bla94], when s̃E arises from a point valued in a number field. For the
generality we need, cf. [Moo98, 5.6.3].

The crystalline and de Rham comparison isomorphisms are compatible with the Berthelot–
Ogus isomorphism. This implies that the isomorphism in (i) carries πdR,Q,s̃E to πcris,s. In
particular, (i) holds for all lifts s̃ if and only if (ii) does. That (i) is true for all lifts follows
from a parallel transport argument; cf. the proof of [Kis10, 2.3.5].

Now, [Kis10, 1.4.3(3)] shows that there exists a C-equivariant Z/2Z-graded isomorphism

Hp,s̃E
⊗Zp W

≃−→Hcris,s

carrying πp,s̃E
to πcris,s. The main input is (1.4), which shows that GSpin(L) is the point-wise

stabilizer in GL+
C(H) of π.

So, to show (iii), we only have to observe that there exists a C-equivariant graded
isomorphism

H ⊗Z(p)
Zp

≃−→Hp,s̃E

carrying π to πp,s̃E
. Indeed, we can fix an embedding σ : E →֒ C and identify Hp,s̃E

with the
Betti cohomology HB,σ(s̃E) ⊗ Zp. Now the assertion is clear from the construction of the sheaf
HB in § 3.3.

Part (iv) is immediate from (iii), and the first assertion of (v) follows from [Kis10, 1.4.3(4)].
The second assertion of (v) follows from the discussion in § 1.9. Note that we are viewing LdR,s as

a sub-space of H
⊗(1,1)
dR,s via the canonical identification Hcris,s⊗k =HdR,s, and we are identifying

GSpin(LdR,s) with the sub-group of C-equivariant, graded isomorphisms ofHdR,s, which preserve
LdR,s under conjugation. ✷

4.8 Suppose that we are given a lift s̃ ∈ SK(W ). This equips Hcris,s with a filtration F 1Hcris,s:
it is the pull-back of the Hodge filtration F 1HdR,s̃ ⊂ HdR,s̃. This filtration is strongly divisible.
That is, we have

Fs(σ
∗(p−1F 1Hcris,s +Hcris,s)) = Hcris,s.

This is equivalent to the assertion that Fr∗ F 1HdR,s is the kernel of the mod-p Frobenius
Fr∗HdR,s→HdR,s.

If we now endow H
⊗(1,1)
cris,s with its induced filtration and H

⊗(1,1)
cris,s [p−1] with the conjugation

action of Fs, then we again obtain a strongly divisible module, in the sense that the following
identity holds (cf. [Laf80, 4.2]):

Fs(σ
∗(p−1F 1H

⊗(1,1)
cris,s + F 0H

⊗(1,1)
cris,s + pH

⊗(1,1)
cris,s )) = H

⊗(1,1)
cris,s . (4.8.1)

Applying the F -equivariant, filtration preserving projector πcris,s to (4.8.1) now gives us

Fs(σ
∗(p−1F 1Lcris,s + F 0Lcris,s + pLcris,s)) = Lcris,s. (4.8.2)

792

https://doi.org/10.1112/S0010437X1500740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1500740X


Regular integral models

4.9 Choose any co-character µ0 : Gm ⊗ k→ GSpin(LdR,s) splitting the Hodge filtration and
let µ : Gm ⊗W → GSpin(Lcris,s) be any lift of µ0. It determines a lift F 1Hcris,s ⊂ Hcris,s of the

Hodge filtration as well as a splitting Hcris,s = F 1Hcris,s ⊕ F
1
Hcris,s. Since µ factors through

GSpin(Lcris,s), it induces a splitting

Lcris,s = F 1Lcris,s ⊕L0
cris,s ⊕ F

1
Lcris,s,

where F 1Lcris,s ⊂ Lcris,s is an isotropic line lifting F 1LdR,s. We again have

F 1Hcris,s = ker(F 1Lcris,s) = im(F 1Lcris,s).

As usual, we are viewing Lcris,s as a space of endomorphisms of Hcris,s.
Let U ⊂ GL(Hcris,s) be the opposite unipotent attached to this splitting: namely, it is the

unipotent radical of the parabolic sub-group attached to the filtration F
1
Hcris,s. Its intersection

UG with GSpin(Lcris,s) is again the unipotent radical of a parabolic sub-group of GSpin(Lcris,s).

Let Û (respectively ÛG) be the completion of U (respectively UG) along the identity section.
Let R (respectively RG) be the ring of formal functions on Û (respectively ÛG); then we have a
surjection R։ RG of formally smooth W -algebras.

Set HR = Hcris,s ⊗W R, and equip it with the constant filtration arising from the filtration
F 1Hcris,s. Choose compatible isomorphisms

R
≃−→W [|t1, . . . , tr|], RG

≃−→W [|t1, . . . , td|]

such that the identity sections are identified with the maps ti 7→ 0. Equip R with the Frobenius
lift ϕ : ti 7→ tpi . Equip HR with the map

FR : ϕ∗HR = σ∗Hcris,s ⊗W R
Fs⊗1−−−→Hcris,s ⊗W R = HR

g−→HR,

where g ∈ Û(R) is the tautological element.
By [Moo98, Theorem 4.4], there is a unique topologically quasi-nilpotent integrable

connection ∇R : HR → HR ⊗R Ω̂1
R/W for which FR is parallel. The tuple (HR,FR,∇R)

determines, and is determined by, a unique F -crystal over (Spec(R ⊗ Fp)/Zp)cris, which
we will denote by H. The evaluation of H on the pro-nilpotent divided power thickening
Spec(R ⊗ Fp) →֒ Spf R is identified with HR. Similarly, a change of scalars along R → RG

gives us a tuple (HRG
,FRG

,∇RG
, F 1HRG

) over RG. This corresponds to a unique F -crystal HG

over (Spec(RG ⊗ Fp)/Zp)cris.
Observe that HRG

= Hcris,s⊗W RG is equipped with the constant tensor πRG
= πcris,s⊗1 ∈

H
⊗(2,2)
RG

. We can view πRG
as an idempotent operator on H

⊗(1,1)
RG

. Write LRG
for its image: this

is a direct summand of H
⊗(1,1)
RG

, which can be identified with Lcris,s ⊗RG.

Proposition 4.10.

(i) The tensor πRG
∈ H

⊗(2,2)
RG

is parallel, lies in F 0H
⊗(2,2)
RG

and is F -invariant in H
⊗(2,2)
RG

[p−1].

(ii) The direct summand LRG
⊂ H

⊗(1,1)
RG

is stable under the connection ∇RG
and LRG

[p−1] is
stable under the conjugation action of FRG

. Furthermore, LRG
with its induced filtration

F •LRG
is strongly divisible:

FRG
(ϕ∗(p−1F 1LRG

+ F 0LRG
+ pLRG

)) = LRG
.
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Proof. Part (i) is essentially by construction; cf. [Moo98, 4.8]. Part (ii) also follows by
construction: we can identify (LRG

, F •LRG
) with (Lcris,s, F

•Lcris,s) ⊗W RG, so that FRG
is

identified with g ◦ (Fs ⊗ 1). Here, g ∈ UG(RG) is the tautological element. The result now is a
consequence of (4.8.2). ✷

4.11 Now assume that k = Fp, so that s is a closed point. Set Rs = ÔSK ,s and let Ûs be

the completion of SK at s. Let Û ′ = Spf R′ be the universal deformation space for the abelian
variety AKS

s ; then Ûs is naturally identified with a closed formal sub-scheme of Û ′. Restricting
Hcris to Spec(R′ ⊗ Fp) gives rise to an F -crystal H ′ over (Spec(R′ ⊗ Fp)/Zp)cris. Evaluating
H ′ along the pro-nilpotent divided power thickening Spec(R′ ⊗ Fp) →֒ Spf(R′) gives us a finite
free R′-module HR′ , which can be identified with the evaluation of HdR on SpecR′. The Hodge
filtration on HdR equips HR′ with a direct summand F 1HR′ ⊂ HR′ .

The W -algebra R admits the identity section j : R → W with ti 7→ 0 for all i. Also, by
Grothendieck–Messing theory [Mes72, V.1.6], the lift F 1Hcris,s ⊂ Hcris,s corresponds to a lift s̃ :

SpfW → Spf(R′) of s. In fact, we have a canonical isomorphism of W -modules HdR,s̃
≃−→Hcris,s

that identifies F 1HdR,s̃ with F 1Hcris,s. Write j′ : R′
→ W for the section corresponding to the

lift s̃.
By construction, we now have canonical isomorphisms ι0 : HR ⊗R,j W

≃−→ Hcris,s and ι′0 :

HR′ ⊗R′,j′ W
≃−→Hcris,s.

Theorem 4.12.

(i) There exists an isomorphism (necessarily unique) of augmented W -algebras f : (R, j)
≃−→

(R′, j′) with the following property: let f∗ : (Spec(R⊗Fp)/Zp)cris→ (Spec(R′⊗Fp)/Zp)cris
be the induced map on crystalline sites. Then there exists an isomorphism (necessarily

unique) of F -crystals α : f∗H
≃−→H ′ such that:

(a) the induced isomorphism αR : HR⊗R,f R
′ ≃−→HR′ carries F 1HR⊗R,f R

′ onto F 1HR′ ;

(b) the induced isomorphism j∗αR : HR ⊗R,j W
≃−→HR′ ⊗R′,j′ W is equal to (ι′0)

−1 ◦ ι0.

(ii) The induced isomorphism Spf(f) : Û ′ ≃−→ Û carries Ûs onto ÛG.

(iii) The restriction of the tensor πdR,Q to Spec(Rs ⊗Q) extends to a parallel section

πdR,Rs ∈ H0(SpecRs, F
0H

⊗(2,2)
dR )∇=0.

πdR,Rs is an idempotent operator on H
⊗(1,1)
dR |SpecRs .

Proof. Part (i) is due to Faltings; cf. [Fal99, § 7]. Part (ii) is shown during the course of the proof
of [Kis10, 2.3.5].

Part (iii) is a special case of [Kis10, 2.3.9]. We sketch the proof: from f and αR, we obtain

isomorphisms fG : RG
≃−→ Rs and αRG

: HRG
⊗RG,fG Rs

≃−→HdR,Rs . From (4.10), we then obtain
a parallel tensor:

αRG
(πRG

) ∈ H0(SpecRs, F
0H

⊗(2,2)
dR )∇=0.

By construction, the evaluation of this tensor along the map Rs
s̃−→ W →֒ WQ agrees with

that of πdR,Q. Therefore, αRG
(πRG

)|Spec(Rs⊗Q) and πdR,Q|Spec(Rs⊗Q) are both parallel tensors in

H
⊗(2,2)
dR |Spec(Rs⊗Q) that agree at a point. They must therefore agree everywhere. Thus, πdR,Rs :=

αRG
(πRG

) is the extension we seek in (iii). ✷
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Corollary 4.13.

(i) πdR,Q extends to a parallel section πdR of F 0H
⊗(2,2)
dR over SK . Moreover, πdR is an

idempotent projector on H
⊗(1,1)
dR , whose image is a vector sub-bundle LdR extending LdR,Q.

(ii) Consider the functor PdR on SK-schemes given by

PdR(T ) =



C-equivariant Z/2Z-graded OT -module isomorphisms

ξ : H ⊗Z(p)
OT

≃−→HdR,T

carrying L⊗ OT ⊂ H⊗(1,1) ⊗ OT onto LdR ⊂ H
⊗(1,1)
dR


.

Then PdR is a G-torsor over SK with generic fiber PdR,Q.

Proof. We only need to prove these properties over the formal completion Ûs at a point s ∈
SK(Fp). Part (i) is immediate from (4.12)(iii).

To prove (ii), it is enough to show that, if we view SpecRG as an SK-scheme via the maps

SpecRG
≃−→ SpecRs→ SK of (4.12), the set PdR(SpecRG) is non-empty.

In other words, we have to show that there exists a C-equiviariant, graded isomorphism of

RG-modules H ⊗Z(p)
RG

≃−→ HRG
carrying L ⊗ RG onto LRG

:= im(πRG
). This is immediate

from (4.7)(iii) and the very construction of HRG
. ✷

4.14 Since SK,Zp is smooth over Zp, as a crystal, Hcris is determined by HdR|ŜK,Zp
equipped

with its Gauss–Manin connection. In particular, evaluation along the formal PD thickening
SK,Fp →֒ ŜK,Zp gives us a canonical isomorphism

H0((SK,Fp/Zp)cris,H
⊗
cris)

≃−→ H0(ŜK,Zp ,H
⊗
dR)

∇=0.

Therefore, there exists a unique global section

πcris ∈ H0((SK,Fp/Zp)cris,H
⊗(2,2)
cris ),

whose evaluation at SK,Fp →֒ ŜK,Zp is the restriction of the parallel section πdR ∈ H0(SK ,

H
⊗(2,2)
dR ).

Again, we can view πcris as an idempotent endomorphism of the crystal H
⊗(1,1)
cris , and we

denote by Lcris the image of πcris in H
⊗(1,1)
cris . If s→ SK,Fp is a point valued in an algebraically

closed field k(s), then the restriction of πcris to (Spec k(s)/Zp)cris determines and is determined
by its evaluation along the formal thickening Spec k(s) →֒ SpfW (k(s)).

Suppose that we have a lift s̃ ∈ SK(W ) of s. Then there is a natural isomorphism Hcris,s
≃−→

HdR,s̃. By the definition of πcris, its evaluation over Spec k(s) →֒ SpfW (k(s)) must map to the

tensor πdR,s̃ ∈ H
⊗(2,2)
dR,s̃ under this isomorphism. In particular, we find that this evaluation is

exactly the tensor πcris,s defined in (4.7). Similarly, the restriction of Lcris to (Spec k(s)/Zp)cris
determines and is determined by the F -isocrystal Lcris,s seen in loc. cit.

4.15 The Gauss–Manin connection on H
⊗(2,2)
dR restricts to a connection on LdR. The filtration

F •LdR on LdR satisfies Griffith’s transversality. That is, for any integer i, we have

∇(F iLdR) ⊂ F i−1LdR ⊗ Ω1
SK/Z(p)

.
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Indeed, this can be checked over C, where it holds by construction. Thus, we obtain OSK
-linear

Kodaira–Spencer maps:

gr0F LdR→ gr−1
F LdR ⊗ Ω1

SK/Z(p)
, (4.15.1)

F 1LdR→ gr0F LdR ⊗ Ω1
SK/Z(p)

. (4.15.2)

Proposition 4.16. The map in (4.15.1) is an isomorphism and the map in (4.15.2) is injective
with image a local direct summand of the right-hand side.

Proof. Both statements can be studied over the complete local ring Rs at a point s ∈ SK(Fp).
As in the proof of (4.13), we can work instead over the ring RG, and study the Kodaira–Spencer
maps induced by ∇RG

:

gr0F LRG
→ gr−1

F LRG
⊗ Ω̂1

RG/W , F 1LRG
→ gr0F LRG

⊗ Ω̂1
RG/W .

We can identify Ω̂1
RG/W canonically with Hom(LieUG, RG), and so we can rewrite these maps

equivalently as

LieUG ⊗RG→ Hom(gr0F LRG
, gr−1

F LRG
), LieUG ⊗RG→ Hom(F 1LRG

, gr0F LRG
).

The proposition now amounts to showing that both of these maps are isomorphisms. By
Nakayama’s lemma, it suffices to do so after a change of scalars along the augmentation map
j : RG→W . But then we obtain maps:

LieUG→ Hom(gr0F Lcris,s, gr
−1
F Lcris,s), LieUG→ Hom(F 1Lcris,s, gr

0
F Lcris,s).

We claim that the second of these maps is (up to sign) the natural map obtained by the action
of UG on Lcris,s, and that the first is obtained from the second via the self-duality of Lcris,s. The
proposition will follow immediately from this claim.

Consider instead the Kodaira–Spencer map on HRG
: F 1HRG

→ gr1F HRG
⊗ Ω̂1

RG/W , which
we can view as a map:

LieUG ⊗RG→ Hom(F 1HRG
, gr1F HRG

). (4.16.1)

Tensoring (4.16.1) along j gives us

LieUG→ Hom(F 1Hcris,s, gr
1
F Hcris,s).

To prove our claim, it is enough to show that, up to sign, this map is identified with the canonical
inclusion LieUG →֒ Hom(F 1Hcris,s, gr

1
F Hcris,s) induced by the action of UG on Hcris,s. This last

assertion can be extracted from [Moo98, 4.5]; cf. also [MaS11, 1.4.2.2(3)]. ✷

4.17 Over SK , we now have two tautological line bundles: first, we have the Hodge or
canonical bundle ωKS attached to the top exterior power of the sheaf of differentials Ω1

AKS/SK
.

Second, we have the line bundle F 1LdR. These are closely related, as the next result shows.
We will need a little preparation. Fix an isotropic line F 1L ⊂ L, and let P ⊂ G be the

parabolic sub-group stabilizing it. Let F 1H = ker(F 1L) ⊂ H be the corresponding isotropic
sub-space of H. The G-torsor PdR introduced in (4.13)(ii) has a natural reduction of structure
group to a P -torsor PdR,P . Indeed, we can take PdR,P to be the sub-functor of PdR such that,
for any SK-scheme T , we have

PdR,P (T ) = {ξ ∈ PdR(T ) : ξ(F
1H ⊗ OT ) = F 1HdR,T }.
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The proof of loc. cit. shows that this is indeed a P -torsor. Given such a torsor, one immediately
gets a functor from Z(p)-representations of the group scheme P to vector bundles over SK . More
precisely, given a Z(p)-representation U of P , we can view it as a trivial vector bundle over
SpecZ(p) with a P -action, and then take the corresponding SK-vector bundle to be the quotient
(PdR,P ×SpecZ(p)

U)/P , where P acts diagonally.

Proposition 4.18. There exists a canonical isomorphism of line bundles:

ωKS,⊗2 ≃−→ ((F 1LdR)(−1))⊗2n+1
.

Here, the (−1) denotes the twist by the (trivial) line bundle attached to the spinor character
ν : P → Gm. In particular, F 1LdR is a relatively ample line bundle for SK over Z(p).

Proof. This follows from an argument of Maulik [Mau14, § 5]. The main point is that both
bundles involved are canonical extensions over the integral canonical model of automorphic line
bundles.

The line bundle ωKS is attached via PdR,P to the P -representation det(F 1H), and F 1LdR(−1)
is the line bundle attached to the representation F 1L(ν).

The left multiplication map L⊗H → H induces an isomorphism of P -representations

gr−1
F L⊗ F 1H

≃−→ gr0F H.

Therefore, we have a canonical isomorphism of P -representations

det(H)
≃−→ det(F 1H)⊗ det(gr0F H)

≃−→ det(F 1H)⊗2 ⊗ (gr−1
F L)⊗2n+1

.

Since (gr−1
F L)

∨ ≃−→ F 1L, this gives us a canonical isomorphism of P -representations

det(F 1H)⊗2 ≃−→ (F 1L)⊗2n+1 ⊗ det(H).

On the other hand, the symplectic form ψδ on H induces a canonical isomorphism of P -
representations

grF0 H
≃−→ (F 1H)

∨
(ν).

This shows that we have
det(H)

≃−→ Z(p)(ν
2n+1

),

completing the proof of the claimed isomorphism.
The last statement of the lemma follows, since it is known that the bundle ω̃KS is relatively

ample; cf. for example [Lan08, 7.2.4.1(2)]. ✷

4.19 Fix a perfect field k of characteristic p as usual, and set W = W (k). Fix a point
s ∈ SK(k), and consider the Frobenius map F : Fr∗HdR,s → HdR,s: its image is a sub-space
C1

s ⊂ HdR,s. We claim that there exists an isotropic line N1
s ⊂ LdR,s such that, in the notation

of § 1.9, C1
s = ker(N1

s ).
Indeed, fix a lift s̃ ∈ SK(W ), and let µ be a co-character of GSpin(LdR,s̃) that splits the

Hodge filtration on HdR,s̃. We obtain a decomposition into weight spaces for µ:

HdR,s̃ = F 1HdR,s̃ ⊕H0
dR,s̃,

LdR,s̃ = F 1LdR,s̃ ⊕L0
dR,s̃ ⊕L−1

dR,s̃.
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By strong divisibility § 4.8, C1
s is simply the image in LdR,s of Fs(σ

∗H0
dR,s). Now, L

−1
dR,s̃ is

an isotropic line satisfying
ker(L−1

dR,s̃) = H0
dR,s̃.

Moreover, by (4.8.2), Fs(pσ
∗L−1

dR,s̃) is an isotropic line in LdR,s̃. One can now easily check

that the image of this line in LdR,s is our desired N1
s .

Lemma 4.20. With the notation as above, let Λ ⊂ LdR,s̃ be a direct summand satisfying Fs(Λ) =
Λ. Let Λ be the image of Λ in LdR,s. Then N1

s is contained in Λ only if F 1LdR,s is also contained
in Λ.

Proof. Choose a generator w for L−1
dR,s̃; then, by the construction above, the image of Fs(pw) in

LdR,s is a generator for N1
s . Therefore, if N

1
s is contained in Λ, then we can find v ∈ Λ such

that Fs(pw)− v ∈ pLdR,s̃.
But, by our hypothesis, v = Fs(v

′) for v′ ∈ Λ. Then, by (4.8.2), we must have

pw − v′ ∈ F 1LdR,s̃ + pLdR,s̃.

This implies that F 1LdR,s is generated by the image of v′ ∈ Λ. ✷

5. Special endomorphisms

We will now drop the self-duality assumption on (L,Q) until further notice.

5.1 Let T be an ShK,C-scheme; then functoriality of cohomology gives us a natural map

End(AKS
T )(p)→ H0(T an,H

⊗(1,1)
B ).

Definition 5.2. An endomorphism f ∈ End(AKS
T )(p) is special if it gives rise to a section of

LB ⊂ H
⊗(1,1)
B under the above map. It follows from the definition that f is special if and only

if its fiber fs at every point s→ T is special. In fact, it is enough to require this for one point s
in each connected component of T an.

Let T be any ShK-scheme; then, for any prime ℓ, we have a natural map

End(AKS
T )(p)→ H0(T,H

⊗(1,1)
ℓ ).

Definition 5.3. Fix a prime ℓ 6= p. An endomorphism f ∈ End(AKS
T )(p) is ℓ-special if it gives

rise to a section of Lℓ ⊂ H
⊗(1,1)
ℓ under the above map. We say that f is p-special if it gives rise

to a section of Lp ⊂ H
⊗(1,1)
p under the corresponding p-adic realization map.

For any prime ℓ, we denote the space of ℓ-special endomorphisms by Lℓ(A
KS
T ).

One immediately sees that f is ℓ-special if and only if, in every connected component of T ,
there exists a point s such that the fiber fs at s is ℓ-special. In particular, ℓ-specialness is a
condition that can be checked at geometric points.

Lemma 5.4. Suppose that T is an ShK-scheme and that f ∈ End(AKS
T )(p). Then the following

are equivalent:

(i) f is ℓ-special for all primes ℓ;

(ii) f is ℓ-special for some prime ℓ;

(iii) the restriction of f over T ⊗Q C is special.
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Proof. Let s→ T be any C-valued point. Then it is clear from the definitions that fs is special
if and only if it is ℓ-special for some (and hence any) prime ℓ. Using this, the lemma easily
follows. ✷

Definition 5.5. Let T and f be as above. Then we say that f is special if it satisfies any of the
equivalent conditions of (5.4). We denote the space of special endomorphisms of AKS

T by L(AKS
T ).

Over C, L(AKS
s ) can be described purely Hodge theoretically, as follows.

Proposition 5.6. If s ∈ ShK(C), then

L(AKS
s ) = LB,s ∩ (LB,s ⊗ C)0,0.

In particular, for any ShK-scheme T , rkZ(p)
L(AKS

T ) 6 n.

Proof. This is clear from the definitions. ✷

5.7 We now assume that (L,Q) is self-dual, and turn to the investigation of specialness
over the integral canonical model SK . For any SK-scheme T and any ℓ 6= p, the definition of
an ℓ-special endomorphism carries over directly from (5.3). We will now develop a version of
p-specialness that works also over the integral model.

Definition 5.8. Suppose that s→ SK,Fp is a k-valued point. Then we obtain a map

End(AKS
s )(p)→ End(Hcris,s).

An endomorphism f ∈ End(AKS
s )(p) is p-special if it gives rise to an element of Lcris,s under the

above map.

Lemma 5.9. Let T be a SK-scheme in which p is locally nilpotent, and suppose that we have
f ∈ End(AKS

T )(p). Then the following are equivalent.

(i) For every point s→ T valued in a perfect field, the fiber fs ∈ End(AKS
s )(p) is p-special.

(ii) In every connected component of T , there exists a point s valued in a perfect field such
that the fiber fs is p-special.

Proof. This is an immediate consequence of the definition, the fact that the endomorphism
scheme End(AKS)(p) of AKS is locally noetherian and (5.10) below, applied to the crystal

H
⊗(1,1)
cris /Lcris. ✷

Lemma 5.10. Suppose that T is a connected, locally noetherian Fp-scheme, and that M is a
crystal of vector bundles over T equipped with a global section e ∈ Γ((T/Zp)cris,M). Suppose
that, for some point x→ T , the induced global section

ex ∈ Γ((Spec k(x)/Zp)cris,M |x)

vanishes. Then, for every point y→ T , the induced global section

ey ∈ Γ((Spec k(y)/Zp)cris,M |y)

also vanishes.

Proof. Since T is connected and locally noetherian, the lemma will follow if we can prove the
following claim.
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Claim. Suppose that x and y are points of T such that x is a specialization of y, and such
that the prime ideal corresponding to y has height 1 in OT,x; then ex vanishes if and only if ey
vanishes.

Let xperf be the point attached to a perfect closure of k(x). By [BM90, 1.3.5], ex vanishes if
and only if experf vanishes. So, we can assume that k = k(x) is perfect.

Let py ⊂ OT,x be the prime ideal corresponding to y, and let R be the completion of the
normalization of OT,x/py. By our hypotheses, R is an equicharacteristic complete DVR with
residue field k, and so is isomorphic to k[|t|]. By pulling M back to SpecR, we are further
reduced to the situation where T = Spec k[|t|], x = Spec k and y = Spec k((t)).

Let M be the evaluation of M along the formal divided power thickening Spec k[|t|] →֒
SpfW [|t|]: it is equipped with a flat, topologically quasi-nilpotent connection ∇ : M → M ⊗
Ω̂1
W (k)[|t|]. In other words, we have a derivationD :M →M over d/dt such that a sufficiently large

iteration ofD carriesM into pM . The crystalM is determined by the finite freeW (k)[|t|]-module
M and the connection ∇. In particular, the global sections of M are identified with the module
of horizontal elements M∇=0.

The corresponding crystal over x is the one attached to the W (k)-module M0 =M/tM . The
restriction from global sections over T to global sections over x is just the reduction-mod-t map
M∇=0

→M0. It is easy to see that this map is injective: indeed, suppose that we have m ∈ tM
such that D(m) = 0, and suppose that n ∈ Z>0 is the largest integer such that m ∈ tnM (such
an n exists if and only if m is non-zero). Write m = tnm′ for some m′ /∈ tM . We then have

0 = D(m) = D(tnm′) = ntn−1m′ + tnD(m′).

Dividing by tn−1, this gives us nm′ ∈ tM , which implies that m′ ∈ tM , contradicting our
assumption that m is non-zero. So, we find that a global section of a crystal over T is 0 precisely
if it restricts to 0 over x.

By [BM90, 1.3.5] again, restriction from global sections over T to global sections over y is
injective. Therefore, a global section of a crystal over T is 0 precisely when it restricts to 0 over y.
This proves the claim and the lemma. ✷

Definition 5.11. Let T be an SK-scheme and let f ∈ End(AKS
T )(p). If pOT = 0, we will say

that f is p-special if it satisfies the equivalent conditions of (5.9). In general, we will say that f
is p-special if its restrictions to T ⊗ Fp and T ⊗Q are both p-special.

We will say that f is special if it is ℓ-special for every prime ℓ.
Given any prime ℓ, write Lℓ(A

KS
T ) for the space of ℓ-special endomorphisms, and L(AKS

T ) for
the space of special endomorphisms. By definition, we have

L(AKS
T ) =

⋂

ℓ prime

Lℓ(A
KS
T ).

Lemma 5.12. The space L(AKS
T ) ⊂ End(AKS

T )(p) is point-wise fixed by the Rosati involution

induced from the polarization λKS. In particular, f 7→ f ◦ f defines a positive definite Z(p)-

quadratic form on L(AKS
T ).

Proof. Consider the G-equivariant symplectic pairing ψδ : HQ ⊗ HQ → Q(ν): by construction,
for any prime ℓ 6= p, the corresponding pairing of ℓ-adic sheaves Hℓ ⊗ Hℓ → Q

ℓ
(−1) is, up to

scalars, identified with the polarization pairing induced from λKS.
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The character ψδ gives rise to an isomorphism of G-representations λ(ψδ) : HQ
≃−→ H∨

Q(ν). If

we identify H⊗(1,1) with End(H), we now obtain a G-equivariant involution:

iδ : H
⊗(1,1)
Q → H

⊗(1,1)
Q ,

f 7→ λ(ψδ)
−1 ◦ f∨(ν) ◦ λ(ψδ).

Further, for every v ∈ LQ, v
∗ = v ∈ CQ. Therefore, for z1, z2 ∈ HQ, we have

ψδ(vz1, z2) = Trd(vz1δz
∗
2) = Trd(z1δz

∗
2v) = Trd(z1δ(vz2)

∗) = ψδ(z1, vz2).

This shows that iδ(v) = v for all v ∈ LQ.
For any prime ℓ 6= p, the G-equivariant map iδ induces a map of sheaves over ShK (and hence

SK): iδ : H
⊗(1,1)
ℓ →H

⊗(1,1)
ℓ . By construction, iδ|Lℓ

≡ 1.
Now, the restriction of iδ to the ℓ-adic realization of any endomorphism of AKS is exactly

the Rosati involution arising from λKS. This gives us the first assertion. The second follows from
the positivity of the Rosati involution. ✷

We have the following result.

Lemma 5.13. Let T be an SK-scheme such that every generic point of T⊗Fp is the specialization
of a point in T ⊗Q. Then an endomorphism f ∈ End(AKS

T )(p) is p-special over T ⊗Q if and only
if it is p-special over T ⊗ Fp. In particular, in this situation, if f is p-special, then it is in fact
special.

Proof. First, assume that T = SpecOE , for some complete discrete valuation ring OE with
characteristic 0 fraction field E and characteristic p perfect residue field k. Let s = Spec k,
and let η = SpecE, for some algebraic closure E/E. Then the result holds because the p-adic
comparison isomorphism for AKS

T carries Lp,η ⊗Bcris into Lcris,s ⊗Bcris (cf. (4.7)(ii)).
For general T , in every connected component of T ⊗ Fp, we can find a point s valued in

an algebraically closed field that is the specialization of a point valued in a complete discrete
valuation field of mixed characteristic (0, p). Now we can apply the result of the previous
paragraph to s.

The last assertion follows because ℓ-specialness is independent of the prime ℓ in
characteristic 0. ✷

5.14 Fix a point x0 ∈ SK(k), where, as always, k is a perfect field of characteristic p. Set
W = W (k), and let Rx0 be the complete local ring of SK,W at x0; let m ⊂ Rx0 be its maximal

ideal. Also, let Û = Spf Rx0 be the corresponding formal scheme over W .
Let Λ be a quadratic space over Z(p); we assume that Λ is finite free over Z(p). Suppose that

we have an isometric map ι0 : Λ0→ L(AKS
x0

). We will consider the deformation functor Def(x0,ι0),
defined as follows: for any B ∈ ArtW , we have

Def(x0,ι0)(B) = {(x, ι) : x ∈ Û(B), ι : Λ0→ L(AKS
x ) isometric map lifting ι0}.

Here, ArtW is the category of local artinian W -algebras with residue field k.
If Λ = {v} consists of a single element, and if ι0(v) = f0, we will write Def(x0,f0) for the

corresponding deformation functor.
The functor Def(x0,ι0) is represented by a closed formal sub-scheme Ûι0 ⊂ Û . This can be

seen from the fact that the endomorphism scheme of an abelian scheme is representable and
unramified over the base. Again, if Λ = {v} is a singleton with ι0(v) = f0, we will write Ûf0 for
the corresponding formal sub-scheme.
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5.15 Suppose that we have a surjection O → O in ArtW , whose kernel I admits nilpotent
divided powers. Suppose also that we have (x, ι) ∈ Ûι0(O) giving rise to an abelian scheme AKS

x

over O equipped with an isometric map ι : Λ→ L(AKS
x ) lifting ι0.

Let HO be the O-module obtained by evaluating Hcris,SpecO
on SpecO, and let LO ⊂

End(HO) be the corresponding quadratic space. Denote by H
O

and L
O

the induced modules
over O; then H

O
= HdR,x is equipped with its Hodge filtration F 1H

O
.

The crystalline realization L(AKS
x )→ LO composed with ι gives us a map ιO : Λ→ LO . The

image of ιO(Λ) in L
O
preserves the Hodge filtration F 1H

O
and so lands in F 0L

O
.

By Serre–Tate (cf. [Kat81, 1.2.1]) and Grothendieck–Messing (cf. [Mes72, V.1.6]), we have a
natural bijection:

(
Isomorphism classes of

abelian schemes over O lifting AKS
x

)
≃−→

(
Direct summands F 1HO ⊂ HO

lifting F 1H
O

)
.

This works as follows: for any lift Ax of AKS
x , we have a canonical identificationH1

dR(Ax/O) =HO

that carries the Hodge filtration on H1
dR(Ax/O) to the corresponding summand F 1

xHO ⊂ HO .

Proposition 5.16. The bijection above induces further bijections:

(
Lifts x ∈ Û(O) of x

) ≃−→
(
Isotropic lines F 1LO ⊂ LO lifting F 1L

O

)
,

(
Lifts (x, ι) ∈ Ûι0(O) of (x, ι)

) ≃−→
(
Isotropic lines F 1LO ⊂ LO lifting F 1L

O

and orthogonal to the sub-space ιO(Λ)

)
.

In particular, both of the sets in the latter bijection are empty, unless F 1L
O
lies in the image in

L
O
of the sub-module ιO(Λ)

⊥ ⊂ LO .

Proof. In the first of the claimed bijections, there is a natural map in one direction: given a lift
x ∈ Û(O) and the identification LdR,x = LO , the Hodge filtration F 1LdR,x gives us an isotropic
line F 1LO lifting F 1L

O
. Further, an endomorphism f ∈ L(AKS

x ) lifts to an endomorphism of
AKS

x if and only if its crystalline realization fO ∈ LO preserves the Hodge filtration F 1HO . Since
F 1HO is the kernel of any generator of F 1LO , it is easy to see that fO preserves F 1HO if and
only if it is orthogonal to F 1LO .

So, it is enough to show that the first map is a bijection. For this, we can work successively
with the thickenings O/I [r−1] ։ O/I [r] (where I [r] denotes the rth-divided power of I), and
assume that I2 = 0. If mO ⊂ O is the maximal ideal, we can even work successively with the
thickenings O/mr−1

O
I ։ O/mr

O
I, and further assume that mOI = 0. In this case, we find that both

sides of the map in question are vector spaces over k of the same dimension, namely n · dimk I,
and that the map is a map of k-vector spaces. Since it is clearly injective, we see that the map
must in fact be a bijection.

As for the final assertion, we have only included it to highlight the fact that, when ιO(Λ) is
not a direct summand of LO , the formation of its orthogonal complement is not well behaved
with respect to arbitrary base change. So, even though F 1L

O
is orthogonal to ι

O
(Λ), it need not

be in the image of the orthogonal complement of ιO(Λ). ✷

Corollary 5.17. Let the notation be as above. Suppose that we have a lift x ∈ Û(O) of x
corresponding to an isotropic line F 1LO ⊂ LO . Let J ⊂ O be the smallest ideal such that ι lifts
to an isometric map Λ→ L(AKS

x ⊗O (O/J)). Then J is generated by the elements [ι(v), w], where
v varies over the elements of Λ and w is any basis element of F 1LO . In particular, Ûι0 ⊂ Û is
cut out by r = rank ι0(Λ) equations.
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Proof. The assertion about J is immediate.
Set R = ÔSK ,x0 . Let I ⊂ R be the ideal defining Ûι0 . Applying the first assertion with

O = R/mI and O = k shows that I/mI is generated by r elements. Now the last assertion
follows from Nakayama’s lemma. ✷

5.18 Assume that ι0 maps Λ injectively onto a direct summand of L(AKS
s0 ). Let ιdR : Λ⊗Rι0 →

LdR,Rι0
be the de Rham realization of the universal isometry ι : Λ → L(AKS|

Ûι0
): it factors

through F 0LdR,Rι0
. Write ΛdR for the image of this map, and let ΛdR be the image of ΛdR in

gr0F LdR,Rι0
.

The Kodaira–Spencer map over R restricts to a map

gr0F LdR,Rι0
→ gr−1

F LdR,Rι0
⊗ Ω̂1

Rι0/W
.

Since ΛdR is generated by sections that are parallel for the connection, this map factors as

gr0F LdR,Rι0

ΛdR

→ gr−1
F LdR,Rι0

⊗ Ω̂1
Rι0/W

. (5.18.1)

As a direct consequence of (5.16) (use O = k[ǫ] and O = k), we have the following result.

Corollary 5.19. The formal scheme Ûι0 is formally smooth over W if and only if ΛdR

maps isomorphically onto ΛdR. In this case, the Kodaira–Spencer map in (5.18.1) is an
isomorphism. ✷

5.20 Assume that Λ = {v} is a singleton with ι0(v) = f0 6= 0. For simplicity, set R = Rx0 ,
let If0 ⊂ R be the ideal defining Ûf0 ⊂ Û and set Rf0 = R/If0 , so that Ûf0 = Spf Rf0 . It follows
from (5.17) that If0 is principal, generated by a single element af0 . Let f0,dR ∈ LdR,x0 be the de
Rham realization of f0. Most of the following result is essentially a retread of [Del81, Proposition
1.5].

Proposition 5.21.

(i) Ûf0 is flat over Zp; that is, p ∤ af0 ;

(ii) if f0,dR 6= 0 and νp(f0 ◦ f0) 6= 1, then Ûf0 is formally smooth.

Proof. For the first statement, we use the argument from the proof of [Del81, 1.6]. As in
loc. cit., we reduce immediately to the following assertion: f0 does not propagate to a special
endomorphism of ÃKS

R⊗Fp
. Suppose that such a propagation did exist; then we can consider its

crystalline realization fR ∈ LdR,R. Choose k ∈ Z>0 minimal with respect to the condition that
p−kfR belongs to LdR,R.

Fix a Frobenius lift ϕ : R→ R; this, combined with the F -crystal structure onHdR,R, endows
LdR,R[p

−1] with a ϕ-semi-linear Frobenius endomorphism F . Now, F (fR) = fR, which implies
that F (p−kfR) = p−kfR. By strong divisibility (4.10)(ii), p−kfR lies in F 0LdR,R + pLdR,R.
In particular, the image f̄R of p−kfR in LdR,R⊗Fp is a non-zero horizontal element that lies in
F 0LdR,R⊗Fp .

But (4.16) shows that the connection on LdR,R⊗Fp induces an R-linear Kodaira–Spencer
isomorphism

gr0F LdR,R⊗Fp

≃−→ gr−1
F LdR,R⊗Fp ⊗ Ω̂1

R⊗Fp/k
.
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This shows that f̄R must actually lie in F 1LdR,R⊗Fp . But once again the connection on LdR,R⊗Fp

sets up an R-linear embedding:

F 1LdR,R⊗Fp →֒ gr0F LdR,R⊗Fp ⊗ Ω̂1
R⊗Fp/k

.

This shows that f̄R = 0, which is a contradiction.

We move on to (ii): since it is defined by a single equation within the formally smooth formal

scheme Û , Ûf0 is formally smooth precisely when the map on tangent spaces

Ûf0(k[ǫ])→ Û(k[ǫ])

is not bijective.

Therefore, by applying (5.16) with O = k[ǫ], O = k and Λ = {v}, with ι0(v) = f0, we see that

Ûf0 fails to be formally smooth precisely when every isotropic lift F 1(LdR,x0 ⊗ k[ǫ]) of F 1LdR,x0

is orthogonal to f0,dR. It is easy to check that this can happen if and only if F 1LdR,x0 contains

f0,dR.

Suppose therefore that f0,dR is contained in F 1LdR,x0 . Choose any isotropic line F 1Lcris,x0 ⊂
Lcris,x0 lifting F 1LdR,x0 . If f0,cris ∈ Lcris,x0 is the crystalline realization of f0, then F

1Lcris,x0 is

generated by an element w of the form f0,cris + pv for some v ∈ Lcris,x0 . We have

w − pv = f0,cris = F (f0,cris) = F (w)− pF (v). (5.21.1)

By strong admissibility of Lcris,x0 , we have F (w) ∈ pLcris,x0 . This shows that

F (v) =
1

p
F (w) + v − 1

p
w ∈ p−1Lcris,x0\Lcris,x0 . (5.21.2)

Applying strong admissibility once again, we conclude that v /∈ F 0Lcris,x0 + pLcris,x0 ; here,

F 0Lcris,x0 = (F 1Lcris,x0)
⊥. In particular, [f0,cris, v] belongs to W

×.

We now have

0 = [f0,cris + pv, f0,cris + pv] = [f0,cris, f0,cris] + 2p[f0,cris, v] + p2[v, v]. (5.21.3)

Since [f0,cris, v] is a unit, this implies that νp(f0 ◦ f0) = 1. ✷

Corollary 5.22. For every SK-scheme T and every prime ℓ, we have

Lp(A
KS
T ) →֒ Lℓ(A

KS
T ).

In particular, L(AKS
T ) = Lp(A

KS
T ).

Proof. It follows from the definitions that it suffices to prove the corollary when T is a point

x0 : Spec k → SK . If f0 ∈ Lp(A
KS
x0

), then, by (5.21), Ûf0 is flat. This implies that there exists

a finite extension E/WQ and a lift x : SpecOE → SK of x0 such that f0 lifts to a special

endomorphism f of AKS
x . Now (5.13) shows that f , and hence f0, is ℓ-special for every ℓ. ✷

Remark 5.23. From now on, we will refer to p-special endomorphisms simply as special

endomorphisms.
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5.24 The special endomorphisms are, in a precise sense, objects defined over the integral

model SK0 of the orthogonal Shimura variety ShK0 . Let ∆(K) be as in § 3.2: it is the Galois

group of the finite étale cover SK → SK0 . Given [z] ∈ ∆(K) attached to an element z ∈ Ap,×
f ,

its action on SK carries (AKS, [ηKS
G ]) to (AKS, [ηKS

G ◦ z]). Here, [ηKS
G ] is the canonical Kp-level

structure on AKS (cf. 3.14).

On the other hand, viewing z as a tuple (zℓ)ℓ6=p, we can construct the element n(z) =∏
ℓ 6=p ℓ

−νℓ(z) ∈ Z×
(p). This acts on A

KS by multiplication and induces an isomorphism of pairs

(AKS, [ηKS
G ◦ z]) ≃−→ (AKS, [ηKS

G ]).

Conjugation by n(z) now produces a canonical identification between the endomorphism sheaves

End([z]∗AKS)(p) and End(AKS)(p). This gives us a canonical descent datum that allows us to

descend the sheaf End(AKS)(p) to a sheaf E of Z(p)-algebras over SK0 .

It follows now that, given a map T → SK0 , we can always attach to it the ‘endomorphism’

algebra E(T ). Moreover, E comes equipped with canonical realization functors into H
⊗(1,1)
p

over the generic fiber, and into H
⊗(1,1)
cris over the special fiber. In particular, we can speak of the

space of ‘special endomorphisms’ L(T ) ⊂ E(T ), whose realizations at every closed point land in

L? ⊂ H
⊗(1,1)
? , where ? = p, for a point in the generic fiber, and ? = cris, for a point in the special

fiber. If T is in fact an SK-scheme, then we will have L(T ) = L(AKS
T ).

6. Cycles defined by special endomorphisms

In this section, (L,Q) will be a quadratic space over Z(p) of signature (n, 2). We will not assume

it to be self-dual.

6.1 Suppose that (L̃, Q̃) is another Z(p)-quadratic space of signature (n+ d, 2) equipped with

an embedding

(L,Q) →֒ (L̃, Q̃),

so that L is a direct summand of L̃. Let Λ = L⊥ ⊂ L̃; by our assumptions, it is positive definite

over R. Consider the Shimura datum (G̃Q, X̃), where G̃ is the smooth Z(p)-group scheme attached

to L̃: we have an embedding

(GQ, X) →֒ (G̃Q, X̃).

Set K̃p = G̃(Zp), and let K̃p ⊂ G̃(Ap
f ) be a compact open sub-group with Kp ⊂ K̃p. We then

get a map

ShK → Sh
K̃
(G̃Q, X̃)

of Shimura varieties over Q, which is finite and unramified. Here, as usual, K̃ = K̃pK̃
p. For

simplicity, write Sh
K̃

for the second Shimura variety. We will also assume that K̃p is small

enough, so that Sh
K̃

is an algebraic variety, and so that we have the polarized Kuga–Satake

abelian scheme (ÃKS
Sh

K̃
, λ̃KS) over it.

6.2 We will need to briefly review the Serre tensor construction. Let B be a semi-simple

associative algebra over Q, and let O ⊂ B be a Z(p)-order. Let M be a finitely generated,

projective O-module. Suppose that we are given a Z(p)-scheme S and an abelian scheme A→ S
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equipped with an action of O. Then there is a canonical abelian scheme HomO(M,A) over
S with the property that, for any S-scheme T , we have an identification of Z(p)-modules (cf. 3.8):

H0(T,HomO(M,A)) = HomO(M,H0(T,A)).

This essentially follows from [Lan08, 5.2.3.9]. We will only need the construction when M is in
fact a free O-module, in which case HomO(M,A) can be constructed as a product of rankO M
copies of A.

Let H(A) be a degree-1 (de Rham, p-adic, ℓ-adic or crystalline) cohomology sheaf over S
attached to A: it has a right action by O. Then we have a canonical isomorphism

H(A)⊗O M
≃−→H(HomO(M,A)).

6.3 Now, C̃ = C(L̃) is a free module over C via the left multiplication action (this follows for
instance from [Bou07, § 9, Corollaire 3, n◦ 3]). So, we can apply the Serre tensor construction to
obtain the abelian scheme HomC(C̃, A

KS
ShK

).

Lemma 6.4. The sheaf HomC(C̃, A
KS
ShK

) has a natural Z/2Z-grading, as well as a C̃ action

compatible with the grading. Moreover, there exists a canonical C̃-equivariant isomorphism of
Z/2Z-graded abelian schemes over ShK :

i : ÃKS
ShK

≃−→ HomC(C̃, A
KS
ShK

).

Proof. The Z/2Z-grading is simply the diagonal grading, and the action of C̃ is via pre-
composition by right multiplication.

The proof is now quite standard, and essentially comes down to the existence of the
C̃-equivariant isomorphism of Z/2Z-graded G-representations:

H ⊗C C̃ → H̃, (6.4.1)

w ⊗ z 7→ w · z. (6.4.2)

It gives rise to an isomorphism of tuples VQ(H ⊗C C̃)
≃−→ VQ(H̃). Over ShK,C, VC(H ⊗C C̃)

(respectively VC(H̃)) is the Z(p)-variation of Hodge structures obtained from the cohomology of

HomC(C̃, A
KS
ShK,C

) (respectively ÃKS
ShK,C

). So, the induced isomorphism VC(H ⊗C C̃)
≃−→ VC(H̃)

gives us an isomorphism of abelian schemes

i : ÃKS
ShK,C

≃−→ HomC(C̃, A
KS
ShK,C

).

But, by the functoriality of VQ, the p-adic realization of i is defined over ShK . From this, as in
the proof of (3.11), we conclude that i must be defined over ShK . ✷

Proposition 6.5. There exists a canonical isometric embedding Λ →֒ L(ÃKS
ShK

) mapping onto
a direct summand. Furthermore, for any ShK-scheme T , there exists a canonical embedding
L(AKS

T ) →֒ L(ÃKS
T ) also mapping onto the direct summand. Under the canonical bilinear pairing

f 7→ f ◦ f on L(ÃKS
T ), L(AKS

T ) is identified with the orthogonal complement of Λ.

Proof. Viewing Λ as a trivial representation of G, the natural embedding Λ →֒ L̃ is a map of
G-representations. Applying the functor VQ, we obtain a map VQ(Λ) →֒ VQ(L̃) and thus an
embedding:

Λ →֒ Hom(VQ(Z(p)),VQ(L̃)) = L(ÃKS
ShK

).
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Given an ShK-scheme T , we obtain an embedding of Z(p)-algebras:

End(AKS
T )(p) →֒ End(ÃKS

T )(p).

This is defined as follows: given an endomorphism f of AKS
T , we obtain an endomorphism of ÃKS

T

carrying a map ϕ : C̃ → H0(T,AKS) to the map f ◦ ϕ. Here, we are using (6.4) to identify
ÃKS

T with HomC(C̃, A
KS
T ). This embedding is compatible under cohomological realizations with

the map VQ(H
⊗(1,1)) →֒ VQ(H̃

⊗(1,1)) obtained from the inclusion ofG-representationsH⊗(1,1)
→֒

H⊗(1,1) ⊗C C̃
≃−→ H̃⊗(1,1).

In fact, this embedding carries L(AKS
T ) onto Λ⊥ ⊂ L̃(AKS

T ). To see this, observe that the

embedding L →֒ L̃ of G-representations gives us a canonical map of p-adic sheaves Lp→ L̃p|ShK .
We can now identify both L(AKS

T ) and Λ⊥ with those elements of L̃(AKS
T ) whose p-adic realization

is a section of Lp ⊂ L̃p|ShK . ✷

6.6 Recall from § 3.13 that, over Sh
K̃

(respectively ShK), we have the canonical G̃(Ap
f )-

torsor Ip
G̃

(respectively G(Ap
f )-torsor I

p
G). There is a canonical G(Ap

f )-equivariant map IpG →

Ip
G̃
|ShK , which we can describe explicitly. Recall that IpG parameterizes C-equivariant graded

isomorphisms

η : H ⊗ Ap
f

≃−→HAp
f

carrying L⊗ Ap
f onto LAp

f
.

Tensoring both sides of such an isomorphism with C̃ over C and using the isomorphisms

H ⊗C C̃
≃−→ H̃ and HAp

f
⊗C C̃

≃−→ H̃Ap
f
, we obtain a C̃-equivariant graded isomorphism

η̃ : H̃ ⊗ Ap
f

≃−→ H̃Ap
f
.

It carries L ⊗ Ap
f ⊂ H̃⊗(1,1) ⊗ Ap

f onto LAp
f
⊂ H̃

⊗(1,1)

Ap
f

. Moreover, if ι0 : Λ →֒ L̃ is the natural

inclusion, η̃ carries ι0 ⊗ 1 to the isometry ιAp
f
: Λ ⊗ Ap

f →֒ L̃ ⊗ Ap
f induced by the inclusion

Λ →֒ L(ÃKS
ShK

). This essentially shows the following result.

Proposition 6.7. There is a canonical map IpG → Ip
G̃
|ShK . It identifies IpG with the sub-sheaf

Ipι ⊂ Ip
G̃
|ShK consisting of the trivializations

η̃ : H̃ ⊗ Ap
f

≃−→ H̃Ap
f
,

which carry ι0 ⊗ 1 to ιAp
f
.

Proof. We will only need the fact that IpG maps naturally to Ipι , which we have already seen.
The remainder of the proof is left to the reader. ✷

Lemma 6.8. There exists a self-dual quadratic lattice (L̃, Q̃) over Z(p) and an embedding

(L,Q) →֒ (L̃, Q̃)

of quadratic lattices carrying L onto a direct summand of L̃ such that Λ = L⊥ is positive definite.
If disc(L) is a cyclic abelian group, we can choose L̃ such that rank L̃ 6 rankL+ 1.
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Proof. For any a ∈ Z(p), let 〈a〉 be the rank-1 quadratic Z(p)-module Z(p) equipped with the
quadratic form with value a on 1.

Let v ∈ L be such that νp(Q(v)) is minimal. Then one easily checks that νp([w1, w2]Q) >
νp(Q(v)) for all w1, w2 ∈ L. In particular, for any w ∈ L, the projection w − (2[w, v]Q/[v, v]Q)v
onto 〈v〉⊥ ⊂ L is well defined, and we obtain an orthogonal decomposition

L = 〈v〉 ⊕ 〈v〉⊥.

Applying this iteratively, we find that (L,Q) can be diagonalized, so that it is isometric to a
lattice of the form ( n⊕

i=1

〈ai〉
)

⊕
( 2⊕

j=1

〈−bj〉
)
,

where ai and bj positive integers for varying i and j.
For any b ∈ Z(p), the quadratic space 〈b〉 embeds as a direct summand spanned by the element

e + 1
2b · f within the hyperbolic plane U = Z(p)e ⊕ Z(p)f with e2 = f2 = 0 and [e, f ] = 1. Also,

given any positive element a ∈ Z>0
(p), we can find a self-dual positive definite quadratic space

E+(a) over Z(p) such that 〈a〉 embeds as a direct summand of E+(a). In other words, we need
a binary quadratic form over Z(p), which primitively represents a and whose discriminant is a

negative element of Z×
(p). Take the form to be ax2 + xy+ cy2 with c = pc′ for c′ ∈ Z>0

(p) satisfying

1− 4ac′ < 0. The discriminant is then 1− 4pac′, which is negative and a unit in Z(p).

We now find that L embeds isometrically as a direct summand of L̃ = (
⊕n

i=1E+(ai))⊕H⊕2.
Suppose now that disc(L) is cyclic. This implies that at most one element in the set {ai : 1 6

i 6 n} ∪ {b1, b2} is a non-unit. If every element is a unit, then we can take L̃ = L. Otherwise,
without loss of generality, we can assume that exactly one of a1 or b1 is a non-unit. In the
former case, we set L̃ = E+(a1) ⊕ (

⊕n
i=2〈ai〉) ⊕ (

⊕2
j=1〈−bj〉). In the latter, we can take L̃ =

(
⊕n

i=1〈ai〉)⊕ 〈−b2〉 ⊕ U . ✷

6.9 We will now fix an embedding (L,Q) →֒ (L̃, Q̃) as in (6.8). In the case where disc(L) is
cyclic, we will assume in addition that L̃ has been chosen so that rankΛ 6 1.

Let S
K̃

(respectively S
K̃0

) be the integral canonical model for Sh
K̃

(respectively Sh
K̃0

) over

Z(p) (cf. 4.1). Assume that K̃ is small enough. Then, over S
K̃
, we have the Kuga–Satake abelian

scheme (ÃKS, λ̃KS, [η̃KS]). Since S
K̃

is smooth, and in particular normal, both the G̃(Ap
f )-torsor

Ip
G̃

and the canonical Kp-level structure [η̃
G̃
] ∈ H0(Sh

K̃
, Ip

G̃
/K̃p) (cf. 3.13) extend over SK :

we will denote these extensions by the same symbols.
TheG0(A

p
f )-torsor I

p

G̃
/Gm(Ap

f ) has a canonical descent I
p

G̃0
over S

K̃0
: it parameterizes certain

orientation preserving isometries

η̃0 : L̃⊗ Ap
f

≃−→ L̃Ap
f
.

Again, we have a canonical section [η̃
G̃0

] of Ip
G̃0
/K̃p

0 over S
K̃0

.

6.10 For any S
K̃0

-scheme T , write L̃(T ) for the group of special endomorphisms defined as

in § 5.24; in particular, if T is actually a scheme over S
K̃
, we will have L̃(T ) = L(ÃKS

T ).

Let ι0 : Λ →֒ L̃ be the natural embedding. Suppose that we are given an isometric map
ι : Λ→ L(T ); since Λ is positive definite, any such map has to be an embedding. Let Ipι,0 ⊂ Ip

G̃0
|T
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be the sub-sheaf of isomorphisms η̃0 that carry ι0 to ι; then, by Witt’s extension theorem, Ipι,0 is
a torsor over T under G0(A

p
f ).

If the map T → S
K̃0

arises from a lift T → S
K̃
, then one can also define a sub-sheaf

Ipι ⊂ Ip
G̃
|T : this is the pre-image of Ipι,0 under the natural quotient map Ip

G̃
|T → Ip

G̃0
|T , and is

thus a G(Ap
f )-torsor over T .

Definition 6.11. For any S
K̃0

-scheme T , a Λ-structure for T is an isometric map ι : Λ→ L(T ).
Given an S

K̃
-scheme T and a Λ-structure ι for T , a Kp-level structure on (T, ι) is a section [ηι]

of Ipι /Kp over T mapping to [η̃
G̃
] under the obvious map

Ipι /K
p
→ (Ip

G̃
/K̃p)|T .

Completely analogously, supposing only that T is a S
K̃0

-scheme, one can also define the notion

of a Kp
0 -level structure on (T, ι) as a section [ηι,0] of I

p
ι,0/K

p
0 mapping to [η̃

G̃0
] in H0(T, Ip

G̃0
/K̃p

0 ).

6.12 Let ZKp(Λ) be the functor on S
K̃
-schemes whose value on any S

K̃
-scheme T is given

by
ZKp(Λ)(T ) = {(ι, [ηι]) : ι a Λ-structure for T ; [ηι] a K

p-level structure for (T, ι)}.
Similarly, one defines a functor ZKp

0
(Λ) on S

K̃0
-schemes employing Kp

0 -level structures.

Proposition 6.13. The functor ZKp(Λ) (respectively ZKp
0
(Λ)) is represented by a scheme finite

and unramified over S
K̃

(respectively over S
K̃0

). Moreover, the natural map ZKp(Λ)→ ZKp
0
(Λ)

is finite étale.

Proof. It is clear from the definitions that the map ZKp(Λ) → ZKp
0
(Λ) is finite étale, so it is

enough to prove the remaining assertions for ZKp(Λ). To show representability, we first note
that End(ÃKS)(p) is representable over S

K̃
by an inductive limit of schemes that are locally of

finite type. Indeed, if we fix a representative Ã in the prime-to-p isogeny class of ÃKS, then the
endomorphism scheme End(Ã) is known to representable by a scheme locally of finite type over
S

K̃
, and we can identify End(ÃKS)(p) with the inductive limit of the system {End(Ã)}m∈Z\pZ,

where, for m1 | m2, the transition map from the copy of End(Ã) in the m1th position to that
in the m2th position is given by multiplication by m2/m1. Since the property of being a special
endomorphism is a closed condition on the base, we see that ZKp(Λ) is also represented by an
inductive scheme. To show that it is in fact represented by a scheme, it is enough to show that
it is finite and unramified over S

K̃
.

The unramifiedness is a consequence of the fact that endomorphisms of abelian schemes lift
uniquely (if at all) over nilpotent thickenings. The nerónian property of abelian schemes over
discrete valuation rings combines with the valuative criterion to show that ZKp(Λ) is proper.

Thus, it only remains to show quasi-finiteness. For this, take any geometric point s→ S
K̃
.

We view [η̃
G̃0,s

] as a K̃p
0 -orbit of isometries

η̃0,s : L̃⊗ Ap
f

≃−→ L̃Ap
f ,s
.

If ι is a Λ-structure for s such that (s, ι) admits a Kp
0 -level structure, then, for any v ∈ Λ, the

pre-image of the Ap
f -realization of ι(v) under η̃0,s must lie within the set L̃ ∩Kp

0 · ι0(v). Since L̃
is a discrete sub-group of L̃Ap

f ,s
, this set is finite. So, we see that the possible Λ-structures for s

(admitting a Kp
0 -level structure) are finite in number. From this, it follows easily that the fiber

of ZKp(Λ) over s is finite. ✷
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The following result is presumably well known, but we include it for lack of a reference.

Lemma 6.14. LetW =W (k) and let E/WQ be a finite extension of ramification index e 6 p−1.
Let A be an abelian scheme over OE with special fiber A0. Then End(AE) ⊗ W embeds in

EndW (H1
cris(A0/W )) as a direct summand. In particular, End(AE) ⊗ k maps injectively into

Endk(H
1
dR(A0/k)).

Proof. Without loss of generality, we can assume that k is algebraically closed. There is a

canonical comparison isomorphism

H1
cris(A0/W )⊗W OE

≃−→ H1
dR(A/OE). (6.14.1)

Note that this is where we need the hypothesis e 6 p− 1, which ensures that the map OE → k

is a divided power thickening.

Set M = EndW (H1
cris(A0/W )): we have a direct summand M0 ⊂ M consisting of

endomorphisms that preserve the Hodge filtration F 1H1
dR(A/OE). Here, we use the canonical

isomorphism (6.14.1) to view M as a group of endomorphisms of H1
dR(A/OE). The conjugation

action of the semi-linear Frobenius on H1
cris(A0/W ) induces an isomorphism F : σ∗M [1/p]

≃−→
M [1/p] such that F (σ∗M0) ⊂M . The last condition holds because the image of F 1H1

dR(A/OE)

in H1
dR(A0/k) has the following property: its pull-back via σ is precisely the kernel of the map

F : Fr∗H1
dR(A0/k)→ H1

dR(A0/k).

One can deduce from classical Dieudonné theory and Grothendieck–Messing theory that
there is a canonical isomorphisms of Zp-modules:

End(A[p∞])
≃−→ (M0)F=1.

Moreover, by the nerónian property, End(AE) = End(A). Also, End(A)⊗Zp is a direct summand

of End(A[p∞]), since any element of End(A) that kills the p-torsion A[p] has to be divisible by p.

So, to finish the proof, we have to show that (M0)F=1 ⊗W maps onto a direct summand of

M . For this, set

M ′ = {m ∈M0 : F i(m) ∈M0, for all i ∈ Z>0}.

We need to explain what we mean by F i(m). One defines this inductively: we set F (m) = F (σ∗m)

and F i(m) = F (σ∗F i−1(m)), where we are using the assumption that F i−1(m) ∈ M0 in each
inductive step.

Now, F restricts to a (necessarily injective) map σ∗M ′
→ M ′. Moreover, M ′ is a direct

summand of M , and (M0)F=1 ⊗W clearly maps into M ′. It follows from the Dieudonné–Manin
classification of F -crystals over W [Man62] that there exists a largest F -stable direct summand

M ét ⊂ M ′ such that F induces an isomorphism σ∗M ét ≃−→ M ét. Moreover, it is known [Kat73,
4.1.1] that the map

(M ét)F=1 ⊗Zp W →M ét

is an isomorphism. It follows a fortiori that the map (M0)F=1 ⊗W → M identifies its source
with the direct summand M ét ⊂M . ✷

6.15 The map ShK0 → Sh
K̃0

canonically lifts to a map ShK0 → ZKp
0
(Λ). Indeed, it is

enough to show that ShK → Sh
K̃

lifts canonically to a map ShK → ZKp(Λ). This follows
from (6.5) and (6.7).
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Let ι be the tautological Λ-structure over ZKp
0
(Λ) and let ΛdR = Λ ⊗ OZ

K
p
0
(Λ). The map ι

induces a map of vector bundles:

ιdR : ΛdR→ L̃dR|Z
K

p
0
(Λ).

Lemma 6.16. (i) There exists an open sub-scheme Zpr
Kp

0
(Λ) ⊂ ZKp

0
(Λ) such that T → ZKp

0
(Λ)

factors through Zpr
Kp

0
(Λ) if and only if the restriction of coker ιdR to T is a vector bundle of rank

n+ 2.

(ii) Zpr
Kp

0
(Λ) contains the generic fiber ZKp

0
(Λ)Q.

(iii) LetW =W (Fp), and suppose that we have s̃ : SpecW → ZKp
0
(Λ) such that the restriction

to SpecWQ factors through ShK0 . Then s̃ factors through Zpr
Kp

0
(Λ).

(iv) Suppose that T is smooth over Z(p) and that f : T → ZKp
0
(Λ) is such that f |TQ

factors

through ShK0 . Then f factors through Zpr
Kp

0
(Λ).

(v) If L has square-free discriminant, then Zpr
Kp

0
(Λ) = ZKp

0
(Λ).

Proof. We begin with (i): choose a basis element for the top exterior power ∧dΛ, identifying it
with Z(p). Then the map ιdR induces a map

OZ
K

p
0
(Λ) = ∧dΛdR

∧d
ιdR−−−→ ∧dL̃dR

and hence a section e ∈ H0(ZKp
0
(Λ),∧dL̃dR). One easily checks now that Zpr

Kp
0
(Λ) is the open

locus where this section does not vanish.
To prove (ii), it suffices to show that Zpr

Kp
0
(Λ) contains every point s ∈ ZKp

0
(Λ)(C). But the

map ΛdR,s→ L̃dR,s arises from an isometric embedding of Z(p)-Hodge structures ιs : Λ →֒ L̃B,s.
In particular, it has to be an embedding of C-vector spaces.

Define Zpr
Kp(Λ) to be the pre-image in ZKp(Λ) of Zpr

Kp
0
(Λ). It suffices to prove the remaining

assertions for S
K̃
-schemes with Zpr

Kp
0
(Λ) replaced everywhere by Zpr

Kp(Λ).

We will now consider (iii). Choose an algebraic closure E/W (k)Q. By (6.14), it suffices to

show that the étale realization of ι(Λ) generates a direct summand of L̃p,s̃E
. But, over ShK0 , the

sub-space generated by this realization is globally a direct summand of L̃p. Indeed, its inclusion

in the latter is induced by the map of G0-representations Λ →֒ L̃.
Part (iv) now follows: indeed, (i) and (iii) show that U := f−1(Zpr

Kp(Λ)) is an open sub-scheme
of T containing TQ, and through which all the W (Fp)-valued points of T factor. Since T is
smooth over Z(p), this implies that all the Fp-points of T factor through U , and so U must be
all of T .

Now assume that L has square-free discriminant; then disc(Λ) is either trivial or isomorphic
to Z/pZ. In the first case, ZKp

0
(Λ) is smooth, and so we are done by (iv). In the second case,

by our assumptions, Λ is of rank 1, and is generated by an element v satisfying ordp(Q(v)) = 1.
In particular, given any Fp-point x0 of ZKp(Λ), the crystalline realization of the associated

special endomorphism f0 ∈ L(ÃKS
x0

) must necessarily generate a direct summand of Lcris,x0 . This
shows (v). ✷

The following result is directly inspired by [Ogu79, Theorem 2.9].
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Proposition 6.17. Let Zsm be the complement in ZKp(Λ) of the non-smooth locus in ZKp(Λ)Fp .
Let η be a generic point of Zsm

Fp
with algebraically closed residue field. Suppose that n > r =

rank(Λ). Then the abelian variety ÃKS
η is ordinary and the map

ι : Λ→ L(ÃKS
η )

is an isomorphism.

Proof. It follows from 5.19 that Λ ⊗ k(η) maps injectively into gr0F L̃dR,η. Therefore, over a
sufficiently small étale neighborhood Z0 of η in Zsm

Fp
, the de Rham realization ΛdR of ι(Λ) will

map isomorphically onto a direct summand ΛdR of gr0F L̃dR|Z0 .
Now, consider the Frobenius map Fr∗HdR|Z0 →HdR|Z0 : its image is a lagrangian sub-space

C ⊂ HdR|Z0 , and the locus where ÃKS|Z0 is ordinary is precisely the open sub-space where
C + F 1HdR|Z0 = HdR|Z0 . By the discussion in § 4.19, after localizing on Z0 if required, the

annihilator of C is a parallel isotropic lineN ⊂ L̃dR|Z0 . So, we can also describe the non-ordinary
locus as the closed sub-space where we have

F 1L̃dR|Z0 ⊂ F 0L̃dR|Z0 ∩Λ⊥
dR ∩N⊥.

Now, by 4.20, we can assume that N + ΛdR is a horizontal direct summand of rank r + 1
in L̃dR|Z0 . Then, arguing as in the proof of [Ogu79, Theorem 2.9], we find that the locus where
F 1LdR|Z0 is contained in this direct summand has dimension at most r. Since n > r, we can
throw this locus out and assume that the summand does not contain F 1LdR|Z0 .

Equivalently, we can assume that N is not contained in F 1LdR|Z0+ΛdR; or that F
0LdR|Z0∩

Λ⊥
dR is not contained in N⊥. Again, arguing as in [Ogu79, Theorem 2.9], we now find that the

non-ordinary locus is smooth of dimension n− 1. This proves that ÃKS
η must be ordinary.

Suppose that ι is not an isomorphism. Then we can find a non-zero element f ∈ L(ÃKS
η ) such

that ι(Λ) + 〈f〉 ⊂ L(ÃKS
η ) is a direct summand of rank r + 1.

Now, by shrinking Z0 if necessary, we can assume that f extends to an element in L(ÃKS
Z0

).

Let fdR be the de Rham realization of f , and let ΛdR ⊂ L̃dR|Z0 be that of ι(Λ).
Since ÃKS

η is ordinary, the map

L(ÃKS
η )⊗ k(η)→ L̃dR,η (6.17.1)

is injective. Therefore, after further localizing on Z0, we can assume that the sub-sheaf

ΛdR + 〈fdR〉 ⊂ L̃dR|Z0

is a local direct summand of rank r + 1.
Using 5.19 and [Ogu79, Remark 2.8], we find that the locus in Z0 where F 1L̃dR is contained

in ΛdR + 〈fdR〉 is a closed sub-space of dimension at most 1(r + 1 − 1) = r. Since n > r by
hypothesis, and since dimZ0 = n, this implies that we can shrink Z0 further and assume that
F 1L̃dR|Z0 is not contained in ΛdR + 〈fdR〉. Since F 1L̃dR|Z0 and 〈fdR〉 are both local direct

summands in L̃dR|Z0 of rank 1, it follows that 〈fdR〉 is not contained in F 1L̃dR|Z0 +ΛdR.

Therefore, if ΛdR is the image of ΛdR in gr0F L̃dR|Z0 , we see that the map

〈fdR〉→
gr0F L̃dR|Z0

ΛdR
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is non-zero. But, on the other hand, fdR is horizontal for the Gauss–Manin connection, which
contradicts the fact (5.19) that the Kodaira–Spencer map

gr0F L̃dR|Z0

ΛdR

→ gr−1
F L̃dR ⊗ Ω1

Z0/Fp

is an isomorphism. ✷

Corollary 6.18. Set Λ′ = Λ⊥ 〈m〉 for somem ∈ Z>0
(p). The map ZKp(Λ′)→S

K̃
factors through

ZKp(Λ) in the obvious way. Suppose that n > rank(Λ); then the scheme

ZKp(Λ′)×ZKp (Λ) Z
sm

is flat over Z(p).

Proof. Let Z ′ be the fiber product under consideration: it is, étale locally on Z ′, an effective
Cartier divisor on Zsm. Since Zsm is smooth over Z(p), Z

′ fails to be flat precisely when its image
in Zsm contains an irreducible component Z0 ⊂ Zsm

Fp
. Suppose that this is the case, and let η be

a geometric generic point of Z0. Then we find that the map Λ→ L(ÃKS
η ) extends to an isometry

on Λ′. But, by (6.17), this is impossible. ✷

6.19 Recall from (4.13) that we have a canonical G̃-torsor P̃dR over S
K̃

consisting of G̃-

structure preserving trivializations of H̃dR. Let ι be the tautological Λ-structure over Z(Λ), and
let ιdR : ΛdR →֒ L̃dR be the de Rham realization of ι. Define PdR,Λ ⊂ P̃dR,ZKp (Λ) to be the
G-equivariant sub-functor such that, for any ZKp(Λ)-scheme T , we have

PdR,Λ(T ) = {ξ ∈ P̃dR(T ) : ξ ◦ (ι0 ⊗ 1) = ιdR}.

Proposition 6.20.

(i) The restriction of PdR,Λ over Zpr
Kp(Λ) is a G-torsor.

(ii) The map p2 : PdR,Λ→ Mloc
G , given, for any Z(p)-scheme T , by

PdR,Λ(T )→ Mloc
G (T ),

(x, ξ) 7→ ξ−1(F 1L̃dR,x),

is G-equivariant and smooth of relative dimension dimGQ. Here, (x, ξ) ∈ PdR,Λ(T ) lies over
a point x ∈ ZKp(Λ)(T ).

(iii) Around any point x ∈ Zpr
Kp(Λ) there exist an étale neighborhood U → Zpr

Kp(Λ) and a section
s : U → PdR,Λ of the G-torsor PdR,Λ such that the induced map p2 ◦ s : U → Mloc

G is étale.

Proof. We first note that the basic ideas for the proof can already be found in [RZ96, § 3]
and [Pap00, Theorem 2.2].

Part (i) is an easy consequence of the definition of Zpr
Kp(Λ) and (2.8). Part (ii) is essentially

a consequence of (5.16) and the formal lifting criterion for smoothness of a finitely presented
morphism. Here are the details: it is enough to check that p2 is smooth over the closed points
of Mloc

G . Suppose therefore that we are given a surjection of Z/pnZ-algebras O → O with square
zero kernel. We need to show that the map

ϕ : PdR,Λ(O)→ PdR,Λ(O)×Mloc
G (O) M

loc
G (O) (6.20.1)
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is surjective. So, suppose that we have a pair (x, ξ) ∈ PdR,Λ(O). We obtain an isotropic line

F 1L
O
= ξ

−1
(F 1L̃dR,x) ⊂ L

O
.

Let H̃O is the evaluation of the crystal H̃cris on SpecO →֒ SpecO. As usual, if L̃O is

the evaluation of the crystal L̃cris along the same thickening, we obtain an embedding L̃O ⊂
End(H̃O). We also have the crystalline realization ιO : Λ⊗O →֒ L̃O of ι; write ι

O
for its change

of scalars along O → O.

There is a canonical isomorphism H̃dR,x
≃−→ H̃O ⊗O O. Composing this with the trivialization

ξ gives us a G̃-structure preserving isomorphism ξ
O
: H̃ ⊗ O

≃−→ H̃
O
carrying ι0 ⊗ 1 to ι

O
.

Suppose now that we are also given F 1LO ∈ Mloc
G (O) lifting F 1L

O
. Let P(O → O) be the

set of G̃-structure preserving isomorphisms ξO : H̃ ⊗O
≃−→ H̃O carrying ι0 ⊗ 1 to ιO , and lifting

ξ
O
.

Observe now that this set is non-empty: we can lift x to any O-valued point x′ ∈ S
K̃
(O).

This gives a canonical identification H̃dR,x′

≃−→ H̃
O
. Since P̃dR is a G̃-torsor over S

K̃
, there now

exists a G̃-structure preserving trivialization ξ′
O
: H̃ ⊗ O

≃−→ H̃O lifting ξ
O
. If ξ′

O
carries ι0 ⊗ 1

to ιO , we are done. Otherwise, it follows from (2.8) that we can compose it with an element of

G̃(O) to ensure that it lies in P(O→ O). In fact, loc. cit. implies that P(O→ O) is a non-empty

torsor under ker(G(O)→ G(O)).

We claim that P(O → O) is in canonical bijection with the fiber ϕ−1((x, ξ), F 1LO). This

will show that ϕ is smooth. If we set O = k[ǫ] and O = k, we find that the fiber of ϕ over any

k-valued point is a torsor under ker(G(k[ǫ])→ G(k)) = LieG⊗k. So, our claim would also show

that ϕ has relative dimension dimGQ.

Let us prove the claim: given such any ξO ∈ P(O → O), ξO(F
1LO) ⊂ L̃O is an isotropic line

lifting F 1L̃dR,x and isotropic to the image of ιO . By (5.16), this determines a lift x ∈ Zpr
Kp(Λ)(O)

of x. Furthermore, there exists a canonical isomorphism H̃O

≃−→ H̃dR,x carrying F 1L̃O onto

F 1L̃dR,x. The composition ξ of this isomorphism with ξO gives us a lift (x, ξ) ∈ ϕ−1((x, ξ), F 1LO).

Using the bijectivity of the correspondence in (5.16), one can check that the assignment defined

in this fashion is in fact a bijection from P(O → O) to ϕ−1((x, ξ), F 1LO).

For (iii), it suffices to prove the result in a neighborhood of a closed point x ∈ Zpr
Kp(Λ)(Fp).

Fix any section s0 : SpecFp→ PdR,Λ over x, and let ξ0 : H̃ ⊗ Fp
≃−→ H̃dR,x be the corresponding

G̃-structure preserving isomorphism. The point y = p2(s0(x)) ∈ Mloc
G (Fp) corresponds to the

isotropic line ξ−1
0 (F 1L̃dR,x) ⊂ L⊗ Fp.

Let T = SpecR (respectively T ′ = SpecR′) be the henselization of Zpr
Kp(Λ) at x (respectively

Mloc
G at y). It is enough to show that there exists a section s : T → PdR,Λ lifting s0 such that the

induced map p2 ◦ s : T → T ′ is an isomorphism.

Let mR ⊂ R (respectively mR′ ⊂ R′) be the maximal ideal, and set R1 = R/(m2
R + (p))

(respectively R′
1 = R′/(m2

R′ + (p))). Also, set T1 = SpecR1 and T ′
1 = SpecR′

1.

By [RZ96, 3.33], it is enough to find a section s as above such that the induced map T1→ T ′
1

is an isomorphism.10

By Hensel’s lemma, it now suffices to find a section s1 : T1→ PdR,Λ lifting s0 such that the

induced map p2 ◦ s1 : T1→ T ′
1 is an isomorphism.

Composing the isomorphism ξ0 with the obvious identification H̃dR,x ⊗k R1 = H̃dR,R1 gives

10 In the language of [RZ96], such a section is ‘rigid of the first order’.

814

https://doi.org/10.1112/S0010437X1500740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1500740X


Regular integral models

us a G̃-structure preserving isomorphism

ξ1 : H̃ ⊗R1
≃−→ H̃dR,R1 ,

which corresponds to a section s1 : T1 → PdR,Λ lifting s0. It now follows from (5.16) that the
induced map q ◦ s1 : T1→ T ′

1 is an isomorphism. ✷

Remark 6.21. The proposition gives us a local model diagram in the terminology of [RZ96, DP94,
Pap00].

Corollary 6.22. Zpr
Kp(Λ), and hence Zpr

Kp
0
(Λ), is lci and flat of relative dimension n over Z(p).

Moreover, Zpr
Kp(Λ)Fp is reduced if n > t, where t is the dimension of the radical of LFp . It is

normal if n > t+ 1, and is smooth if t = 0. In particular, if n > t, then Zpr
Kp(Λ) is normal.

Proof. This follows from (2.11) and (6.20). ✷

Corollary 6.23. Suppose that L is maximal with t 6 1. Then ZKp(Λ) (and hence ZKp
0
(Λ)) is

regular and locally healthy.

Proof. This is clear from (2.16) and (6.20). ✷

6.24 Assume now that L is maximal with t = 2. As in § 2.17, we will fix a quadratic extension
F/Q in which p is inert, but we will place the additional constraint that F be real.

Fix a self-dual OF,(p)-lattice L
⋄ ⊂ F ⊗ L containing OF,(p) ⊗ L. By loc. cit., this gives us a

proper G-equivariant map Mref
G → Mloc

G , whose source is regular and locally healthy.

Proposition 6.25. There exist an algebraic space Zref
Kp(Λ) over Z(p) and a proper morphism

Zref
Kp(Λ) → Zpr

Kp(Λ), determined uniquely up to unique isomorphism, with the following
properties.

(i) There exists a G-equivariant isomorphism

PdR,Λ ×Zpr
Kp (Λ)

Zref
Kp(Λ)

≃−→ PdR,Λ ×Mloc
G

Mref
G .

Here, the G-action on the left-hand side is via its action on PdR,Λ, and the action on the right
is the diagonal action.

(ii) Every point of Zref
Kp(Λ) has an étale neighborhood U → Zref

Kp(Λ) equipped with a section
s : U → PdR,Λ ×Zpr

Kp (Λ)
Zref
Kp(Λ) such that the composition

U
s−→ PdR,Λ ×Zpr

Kp (Λ)
Zref
Kp(Λ)

≃−→ PdR,Λ ×Mloc
G

Mref
G → Mref

G

is étale.

In particular, Zref
Kp(Λ) is regular and locally healthy, and the map Zref

Kp(Λ)→ Zpr
Kp(Λ) is an

isomorphism over the regular locus of the target.

Proof. This is a consequence of (6.20) and [Pap00, Proposition 2.4]. The statement of the cited
result does not apply directly in our setting, but it is easily seen that its proof does. ✷

Remark 6.26. The morphism Zref
Kp(Λ)→ Zpr

Kp(Λ) is a linear modification in the sense of [Pap00,
2.6]. Although our construction does not fit strictly within the framework of loc. cit., it is inspired
by obvious analogy.
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6.27 We will continue with the assumption that t = 2. As explained in the introduction,
in this situation, Zpr

Kp(Λ) is strictly contained in ZKp(Λ). In other words, there exist points in

ZKp(Λ)(Fp) lying over s0 ∈ S
K̃
(Fp) such that the image of the associated map ι0 : Λ→ L(ÃKS

s0 )

does not generate a saturated sub-space of L̃cris,s0 .
To understand this phenomenon, it will be helpful to have a better handle on the structure

of L̃cris,s0 . In the language of [Ogu79, § 3], this is (up to twist) a K3 crystal of rank ñ+ 2: that
is, it is strongly divisible in the sense of § 4.8, and it carries an Fs0-invariant self-dual quadratic
form.

The structure of such objects is well understood. For simplicity, set L̃ = L̃cris,s0 and L̃p(s0) =

L̃Fs0=1. One associates with L̃ a Hodge polygon and a Newton polygon; cf. [Kat79, (1.2) and

(1.3)]. Essentially, the Hodge polygon encodes information about the Hodge filtration on L̃dR,s0

and the Newton polygon encodes information about the slopes of Fs0 . Both polygons are convex
by construction and, by a theorem of Mazur [Kat79, Theorem 1.4.1], they have the same end
points and the Newton polygon lies above the Hodge polygon.

In our situation, the Hodge polygon is very simple: it begins at (0, 0) and ends at (ñ+ 2, 0),
and the slope-0 segment has length ñ. This reflects the fact that F 1L̃dR,s0 has rank 1 and that

grF0 L̃dR,s0 has rank ñ.
There are now two possibilities for the Newton polygon, with different flavors.

– The Newton polygon is non-constant: in this case, it admits a break at x-coordinate h,
where h is an integer between 1 and ⌊(ñ+ 2)/2⌋. We say then that L̃ has finite height h.
By a theorem of Katz [Kat79, 1.6.1], L̃ admits a Newton–Hodge decomposition

L̃ = L̃−h ⊕ L̃0 ⊕ L̃h,

where each of the summands is Fs0-stable after inverting p. The summand L̃−h has rank h
and the quadratic form on L̃ induces a perfect pairing between L̃−h and L̃h. The summand
L̃0 is a unit root F -crystal (that is, it is generated as a W -module by its Fs0-invariant
elements) orthogonal to L̃−h ⊕ L̃h.
We have L̃p(s0) = L̃Fs=1

0 , and W ⊗Zp L̃p(s0) = L̃0 is a direct summand of L̃. In particular,
any point of ZKp(Λ) lying above s0 will be in Zpr

Kp(Λ).

– The Newton polygon has constant slope 0: in this case, we say that L̃ is supersingular. By
a result of Ogus [Ogu79, Theorem 3.4], L̃ admits an orthogonal decomposition

L̃ = L̃1 ⊥ L̃0,

which is again Fs0-stable after inverting p. In this decomposition, L̃0 is a unit root F -crystal,
which is self-dual with respect to the quadratic form. Moreover, L̃p(s0) is a free module of
rank ñ+ 2 over Zp, and it inherits an orthogonal decomposition

L̃p(s0) = L̃1 ⊥ L̃0,

where L̃i = L̃
Fs0=1
i for i = 0, 1. The quadratic form on L̃1 is p-times a self-dual form.

We can say more: the sub-space W ⊗Zp L̃p(s0) ⊂ L̃ has index pσ, where 2σ = rank L̃1, and

the discriminant of L̃p(s0) has p-adic valuation σ. The integer σ, which lies between 1 and

⌊(ñ+ 2)/2⌋, is the Artin invariant of L̃.
Now, since Λ∨/Λ is isomorphic to Z/pZ⊕ Z/pZ, we can find an orthogonal decomposition
Λ = Λ1 ⊥ Λ0, where Λ0 is self-dual, Λ1 has rank 2 and the restriction of the quadratic form
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to Λ1 is divisible by p. If 2σ > ñ, then one can check that there can never be an isometric
embedding Λ1 →֒ L̃p(s0) whose image generates a direct summand of L̃. Therefore, any
point of ZKp(Λ) lying above s0 will be outside of Zpr

Kp(Λ).

6.28 Consider the special case where ñ = 3, d = 2 and L̃ admits a maximal isotropic sub-space
of rank 2: in this situation, S

K̃
is a moduli space of polarized abelian surfaces (the Kuga–Satake

abelian scheme ÃKS is isomorphic to a power of the universal abelian surface), and ZKp(Λ) is a
union of integral models for compact Shimura curves with non-maximal parahoric level structure.
The Artin invariant σ is either 1 or 2: it is 1 when ÃKS

s0 is isomorphic to a product of supersingular
elliptic curves (the superspecial case), and it is 2 if AKS

s0 is supersingular, but not superspecial,
which should be the ‘generic’ situation on ZKp(Λ). The above discussion shows that the open
locus Zpr

Kp(Λ) will not contain any of the non-superspecial points, and so misses out on what
should be the most interesting part of the geometry of ZKp(Λ). Similar caveats apply in higher
dimensions. We intend to return to the general question of the structure of ZKp(Λ) in future
work.

7. Integral canonical models II

The notation will be as in the previous section. Recall from § 6.15 that we have canonical maps
ShK0 → ZKp

0
(Λ)Q and ShK → ZKp(Λ)Q.

Lemma 7.1. Both of these maps are isomorphisms onto open and closed sub-schemes of the
targets.

Proof. By construction, it is enough to prove this for ShK → ZKp(Λ)Q. Since both varieties in
question are smooth of dimension n and are unramified over Sh

K̃
, it is enough to show that the

map is injective on C-valued points.
Pick a point x ∈ ShK(C) and let (h, g) ∈ X × G(Ap

f ) be a lift of x. We can describe the

corresponding point of ZKp(Λ)(C) as follows: first, we can view (h, g) as a point in X̃ × G̃(Ap
f );

write x̃ for its image in Sh
K̃
(C). Then h induces a Hodge structure H̃h on H̃, which preserves

L̃ ⊂ H̃⊗(1,1) and is such that the induced Hodge structure on Λ ⊂ L̃ is trivial. There is a

G̃-structure preserving isomorphism of Hodge structures jx : H̃h

≃−→ H̃B,x̃ and the composition

ιx : Λ →֒ L̃h ∩ (L̃h ⊗ C)0,0
jx−→ L̃B,x̃ ∩ (L̃B,x̃ ⊗ C)0,0 = L(ÃKS

x̃ ) (7.1.1)

is the Λ-structure attached to x. Further, the Kp-level structure on (x̃, ιx) attached to x is the
Kp-orbit [η̃x] of the isomorphism

η̃x : H̃ ⊗ Ap
f

g−→
≃
H̃ ⊗ Ap

f

jx⊗1−−−→
≃

H̃B,x̃ ⊗ Ap
f

≃−→ H̃Ap
f ,x̃
. (7.1.2)

Note that the triple (x̃, ιx, [η̃x]) determines the image of x in ZKp(Λ)(C).
Suppose that x′ ∈ ShK(C) lifts to (h′, g′) ∈ X × G(Ap

f ) and is such that (x̃, ιx, [η̃x]) = (x̃′,

ιx′ , [η̃x′ ]). Then, using (7.1.1), we find that h′ = γ · h, where γ = j−1
x′ ◦ jx ∈ G(Z(p)). Also, using

(7.1.2), we see that γg and g′ are in the same Kp-orbit in G(Ap
f ). This shows that x′ = x and

finishes the proof of the lemma. ✷

Definition 7.2. Let S
pr
K be the Zariski closure of ShK in Zpr

Kp(Λ). If L is maximal with t 6 1,
set SK := S

pr
K . If L is maximal and t = 2, fix F and L⋄ as in § 6.24 and let S ref

K be the proper
resolution of S

pr
K obtained by taking the Zariski closure of ShK in Zref

Kp(Λ).
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7.3 We will now assume that L is maximal with t 6 1.
We set

SKp = lim
←−

Kp⊂K̃p

SKpKp .

In this inverse system, for Kp
1 ⊂ Kp

2 , the map SKpK
p
1
→ SKpK

p
2
is induced by the obvious map

ZKp
1
(Λ)→ ZKp

2
(Λ). Then SKp is actually the projective limit of quasi-projective Z(p)-schemes

along finite étale morphisms, and so is itself a scheme over Z(p).

Theorem 7.4.

(i) SKp (respectively SK0,p) is an integral canonical model for the pro-Shimura variety ShKp

(respectively ShK0,p). The map SKp → SK0,p is a pro-étale cover.

(ii) For any neat compact open K ⊂ G(Ap
f ) with p-primary part Kp, there exist a projective

regular Z(p)-scheme S K and a fiberwise dense open immersion SK →֒S K . Moreover, S K

has reduced special fiber.

Proof. By (7.1), (6.23) and (6.25), SKp is regular and locally healthy. We need to show that it
has the extension property. We already know that S

K̃p
has the extension property by [Kis10,

2.3.8]. So, using [FC90, I.2.7], we find that SKp also has the extension property. If t 6 1, we are
now done.

Now, let SK0,p be the Zariski closure of ShK0,p in

lim
←−

Kp
0⊂G0(A

p
f )

ZKp
0
(Λ).

Then there is a pro-finite, pro-étale map SKp → SK0,p .
To show that SK0,p has the extension property, we can use the argument from the proof

of [Moo98, 3.21.4]: given a regular, locally healthy Z(p)-scheme S0 and a map f0 : S0,Q→ ShK0,p ,
it follows from the Nagata–Zariski purity theorem that there exist a pro-finite pro-étale cover S
of S0 and a map f : SQ→ ShKp lifting f0. Now, S is also regular and locally healthy, so, by the
extension property of SKp , f extends to a map S → SKp that descends to a map S0→ SK0,p .

The existence of the regular projective compactification S K is a special case of [MaP15,
Theorem 1], which says the following: suppose that we have a symplectic embedding (GQ, X) →֒
(GSp(U),X (U)) of Shimura data, and suppose that U(p) ⊂ U is a symplectic lattice such that
G(Zp) is the stabilizer of U(p)⊗Zp in G(Qp). Fix K(U) ⊂GSp(U)(Af ) such thatK maps to K(U).
Let SK(U) be the associated Mumford integral model over Z(p) for the Siegel Shimura variety
ShK(U).

11 Let S be the unique normal integral model for ShK over Z(p) such that ShK → ShK(U)

extends to a finite map S → SK(U): it does not depend on the choice of K(U). Then S admits a

fiberwise dense open immersion S →֒ S , where S is projective over Z(p) and with singularities

no worse than those of S . In particular, S is regular (respectively has reduced special fiber)
whenever S is regular (respectively has reduced special fiber).

The required hypothesis holds for the model SK in our situation: we take U(p) = H.
To finish, it is now enough to show that SK has reduced special fiber. This follows from (6.22).

✷

Remark 7.5. In particular, SKp and SK0,p are uniquely determined by their generic fibers: they

depend only on L and not on the choice of self-dual quadratic space L̃ containing L.

11 This is defined as a moduli space of polarized abelian schemes as in § 3.7.
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Corollary 7.6. Suppose that n > t; then, for any neat compact open sub-group K ⊂ G(Ap
f )

with p-primary part Kp, there is a canonical bijection between the connected components of
ShK,Q (respectively ShK0,Q

) and SK,Fp
(respectively SK0,Fp

).

Proof. Since SK0 is a finite étale quotient of SK , the result for the latter implies that for the
former. For SK , it is enough to check that the components of S K,Q and S K,Fp

are in bijection.
But, in general, given any flat, projective map X → SpecZ(p) with reduced special fiber,

there is a canonical bijection between the components of XQ and XFp
. Indeed, using Stein

factorization, we reduce to the case where X is finite flat over Z(p). Having reduced special fiber
implies that X is actually finite étale over Z(p) and so the result is immediate. ✷

For applications, we will need a different kind of canonical model that makes sense in some
non-maximal cases.

Definition 7.7. A pro-scheme X over Z(p) satisfies the smooth extension property if, for any
regular, formally smooth Z(p)-scheme S, any map S ⊗Q→ X extends to a map S → X.

Suppose that L is non-maximal with cyclic discriminant. We still have the pro-Shimura
variety ShKp over Q, where Kp = G(Zp), with G the smooth group scheme attached to L.

Definition 7.8. In analogy with (4.3), we will define a smooth integral canonical model of ShKp

to be a regular, formally smooth model S sm
Kp

(respectively S sm
K0,p

) which has the smooth extension
property.

Proposition 7.9. The pro-Shimura variety ShKp (respectively ShK0,p) admits a smooth
canonical model S sm

Kp
(respectively S sm

K0,p
) such that the map S sm

Kp
→ S sm

K0,p
is pro-étale.

Proof. By (5.21)(ii), we find that, for any level sub-group Kp ⊂ G(Ap
f ) contained in K̃p, the

S
K̃pK̃p-scheme Zpr

Kp(Λ) is smooth at all of its Fp-valued points. In particular, S sm
KpKp := S

pr
KpKp

must be smooth over Z(p). Now set

S
sm
Kp

:= lim
←−

Kp⊂K̃p

S
sm
KpKp .

It remains to show that S sm
Kp

has the smooth extension property. Since S
K̃p

has the extension

property, by [FC90, I.2.7], the inverse limit

lim
←−

Kp⊂G(Ap
f )

ZKp(Λ)

also has the extension property.
It is therefore sufficient to make the following observation, which is immediate from (6.16)(iv):

suppose that we are given a map x : S→ ZKp(Λ), with S smooth over Z(p). Suppose also that the
restriction of x to SQ factors through ShKpKp . Then x must necessarily factor through Zpr

Kp(Λ).
The construction of S sm

K0,p
from S sm

K0,p
proceeds as in the maximal case. ✷

7.10 Fix Kp ⊂ G(Ap
f ) sufficiently small with image Kp

0 ⊂ G0(A
p
f ). Set K = KpK

p and

K0 =K0,pK
p
0 and write S = SK (respectively S0 = SK0) if L is maximal with t 6 1, S = S ref

K

(respectively S ref
K0

) if L is maximal with t = 2; and S = S sm
K (respectively S0 = S sm

K0
) for

non-maximal L with cyclic discriminant. All these schemes are regular and locally healthy.
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Set LdR = Λ⊥
dR ⊂ L̃dR|S and Lcris = Λ⊥

cris ⊂ L̃cris. Here, Λcris is the sub-crystal of L̃cris|S
generated by the crystalline realization of ι(Λ).

Suppose that we are given a point s ∈ S (k). The evaluation of Lcris along Spec k →֒ SpfW (k)
is a direct summand Lcris,s = Λ⊥

cris,s ⊂ L̃cris,s. Moreover, the F -isocrystal structure on L̃cris[p
−1]

induces one on Lcris,s[p
−1].

SetW =W (k), let E/WQ be a finite extension and suppose that s̃ ∈ S (OE) is a lift of s. Let
E/E be an algebraic closure and let s̃E be the geometric generic fiber of s̃. From the definition
of the sheaves, (4.7)(ii) and the functoriality of the comparison isomorphism, we obtain the
following result.

Proposition 7.11. There is a canonical isometric comparison isomorphism compatible with
additional structures:

Lp,s̃E
⊗Zp Bcris

≃−→ Lcris,s ⊗W Bcris. ✷

7.12 Consider the ‘intrinsic’ Kuga–Satake abelian scheme AKS
ShK

over ShK : we claim that it

extends uniquely to an abelian scheme AKS over S . Indeed, since S is locally healthy and hence
healthy, it suffices to show the following result.

Let x→ S be a co-dimension-1 point such that OSK ,x is a discrete valuation ring of mixed
characteristic (0, p). Set T = SpecOS ,x. Then A

KS
TQ

has good reduction over T .

To show this, we first observe that, for ℓ 6= p, the ℓ-adic cohomology Hℓ of AKS
ShK

is related

to H̃ℓ via the formula (cf. proof of (6.4))

Hℓ ⊗C(L) C(L̃)
≃−→ H̃ℓ|ShK .

Since ÃKS
TQ

extends to an abelian scheme over T , the restriction of H̃ℓ over TQ is unramified,
which implies that the restriction of Hℓ to TQ is also unramified. Our claim now follows from
the usual criterion for good reduction of abelian varieties.

7.13 By [FC90, I.2.7], the isomorphism from (6.4) extends to an isomorphism of abelian
schemes over S :

i : ÃKS
S

≃−→ HomC(C̃, A
KS). (7.13.1)

If HdR is the degree-1 de Rham cohomology of AKS over S , the de Rham realization of i
gives us a canonical isomorphism of vector bundles with integrable connection:

idR : HdR ⊗C C̃
≃−→ H̃dR|S . (7.13.2)

Similarly, if Hcris is the F -crystal over (SFp/Zp)cris obtained from the degree-1 crystalline

cohomology of AKS
Fp

, then we have a canonical C̃-equivariant, Z/2Z-graded isomorphism of
F -crystals:

icris : Hcris ⊗C C̃
≃−→ H̃cris|(SFp/Zp)cris . (7.13.3)

It follows from the argument in (2.6) that we have

C = {z+ + z− ∈ C̃+ ⊕ C̃− = C̃ : v · (z+ + z−) = (z+ − z−) · v, for all v ∈ Λ}. (7.13.4)
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We can view H̃
⊗(1,1)
cris as the internal endomorphism object End(H̃cris) within the category

of crystals over SFp . As such, within it we have the sub-object End
C̃
(H̃cris) of C̃-equivariant

endomorphisms. Similarly, within H
⊗(1,1)
cris we have the sub-object EndC(Hcris) of C-equivariant

endomorphisms. Using (7.13.4) and (7.13.3), we find that we can exhibit EndC(Hcris) as the

sub-crystal of End
C̃
(H̃cris)|SFp

that consists of endomorphisms that anti-commute with Λcris.

By its definition, Lcris anti-commutes with Λcris within End
C̃
(H̃cris)|SFp

. Therefore, we obtain

a commutative diagram of embeddings of crystals as follows.

Lcris
� � //

≃

��

H
⊗(1,1)
cris
_�

��

Λ⊥
cris

� � // L̃cris|SFp

� � // H̃
⊗(1,1)
cris |SFp

(7.13.5)

7.14 Given (7.13.5), the notions of ℓ-specialness and p-specialness for an endomorphism of AKS

carry over verbatim from § 5. For any S -scheme T , denote the space of ℓ-special endomorphisms

of AKS
T by Lℓ(A

KS
T ). Let L(AKS

T ) be the space of special endomorphisms, where ‘special’ means

ℓ-special for every ℓ. As in (6.5), we obtain the following result.

Proposition 7.15. For any scheme T → S , there exists a canonical isometry

L(AKS
T )

≃−→ ι(Λ)⊥ ⊂ L(ÃKS
T )

compatible with all cohomological realizations. ✷

Remark 7.16. Just as in § 5.24, the sheaf of endomorphism algebras End(AKS)(p) canonically

descends to a sheaf E over S0. Suppose now that T0 is a scheme over S0. Then one can

canonically attach to T0 a group of ‘special endomorphisms’ L(T0) ⊂ E(T0) such that, if T0 is in

fact an S -scheme, then L(T0) = L(AKS
T0

).

7.17 Given that we have the notion of a special endomorphism of AKS, for any m ∈ Z>0
(p),

just as in § 6.12, we can define the finite unramified schemes ZKp(m)→ S and ZKp
0
(m)→ S0,

which parameterize special endomorphisms of AKS of degree m. From the construction of the

schemes S , (7.15) and (5.17), we find that the deformation theory of a special endomorphism

of AKS is locally governed by a single equation. In particular, étale locally on S , ZKp(m) is

actually an effective Cartier divisor.

Proposition 7.18. Suppose that n > 2. Then the schemes ZKp(m) and ZKp
0
(m) are flat

over Z(p).

Proof. It is enough to show that ZKp(m) is flat over Z(p). Since, étale locally on S , ZKp(m)

is an effective Cartier divisor, if it were not Z(p)-flat, its image in S would contain an entire

component of SFp .

On the other hand, it is clear from the description of the local properties of S via local

models that the smooth locus of SFp is a dense open sub-scheme in SFp . So, it suffices to show

that the restriction of ZKp(m) to the complement of the non-smooth locus in SFp is flat over

Z(p). This follows directly from (6.18) ✷
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Bou07 N. Bourbaki, Éléments de mathématique. Algèbre (Springer, Berlin, 2007), ch. 5 (in French);
reprint of the 1959 original; MR 2325344 (2008f:15001).
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