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Integral canonical models for Spin Shimura varieties

Keerthi Madapusi Pera

ABSTRACT

We construct regular integral canonical models for Shimura varieties attached to Spin
and orthogonal groups at (possibly ramified) primes p > 2 where the level is not
divisible by p. We exhibit these models as schemes of ‘relative PEL type’ over integral
canonical models of larger Spin Shimura varieties with good reduction at p. Work of
Vasiu-Zink then shows that the classical Kuga—Satake construction extends over the
integral models and that the integral models we construct are canonical in a very precise
sense. Our results have applications to the Tate conjecture for K3 surfaces, as well as
to Kudla’s program of relating intersection numbers of special cycles on orthogonal
Shimura varieties to Fourier coefficients of modular forms.

Introduction

The objects of study in this paper are certain Shimura varieties attached to GSpin and special
orthogonal groups. More precisely, we will consider the Q-algebraic stack Shg, .. := Shg, .. (G,
X), where G = GSpin(V, Q) is attached to a quadratic space (V,Q) over Q of signature (n,2)
and X is the space of oriented negative definite planes in V. The level sub-group Kpnax C G(Ay)
is attached to a lattice L C V: it is the intersection of G(Ay) with C(L ® Z)X, the unit group
of the Clifford algebra of L ® Z. The image of Kpay in SO(V)(Ay) is the discriminant kernel:
the largest sub-group of SO(L)(Z) that acts trivially on the discriminant LY /L. Here, LY C V
is the dual lattice for L.

Our results can be summarized by the following theorem.

THEOREM. Assume that L has square-free discriminant. Then, over Z[3], Shg,... admits a
regular canonical model with a regular compactification.

The precise meaning of the word ‘canonical’ is explained in §4. In the body of the paper,
we will isolate a prime p > 2 and work with finite quasi-projective covers Shx — Shg . , where
K C Kpax is of the form K,K? with K, = G(Qp) N C(L ® Zp)* and K? C G(A?) is a small
enough compact open sub-group. We will then build canonical models over Z, for the tower of
such covers.

The basic idea of the proof is quite simple and involves exhibiting the model as the solution
to a ‘relative PEL’ problem® over the smooth integral model of a larger Shimura variety attached
to a self-dual lattice. To explain this, we work over Z, for some odd prime p. When the lattice

Received 4 December 2012, accepted in final form 19 December 2014, published online 7 December 2015.
2010 Mathematics Subject Classification 11G18 (primary).
Keywords: Shimura varieties, integral canonical models, Spin groups.

This work was partially supported by NSF Postdoctoral Research Fellowship DMS-1204165.
This journal is © Foundation Compositio Mathematica 2015.
! We thank an anonymous referee for pointing us to [Vas14], where Vasiu has introduced the same terminology in
a different context.

https://doi.org/10.1112/50010437X1500740X Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X1500740X

K. MADAPUSI PERA

L is self-dual at a prime p, K, is hyperspecial and the results of [Kis10] already give us a smooth
integral canonical model over Z,) (compactifications are dealt with in [MaP15]). In general, we

can exhibit L as a sub-lattice of a bigger lattice L that is self-dual at p and is such that the
associated quadratic space (L, Q) over Q again has signature (m,2) for some m € Zxq. If Sh i

is the Shimura variety attached to a L and a compact open K C CNJ(AZ}) containing K, this
allows us to exhibit Shx as an intersection of divisors in Sh. Let .}z be the integral canonical
model for Sh over Z,). We show that the divisors have a moduli interpretation and we use
this interpretation to define models for them as schemes over .#z. We then construct our regular
models as intersections (over .#};) of the integral models of these divisors.

The moduli interpretation of the divisors can be described as follows: the classical Kuga—
Satake construction, combined with Kisin’s construction, gives us a natural polarized abelian
scheme (AKS \KS) over - Let Lp be the Zg,)-local system over 7% .. attached to Lz, .

Let H B be the first Betti cohomology of /Tgs over Y% ~ with coefficients in Z,). Then the

construction allows us to view iB as a sub-local system of H, B ® ﬁ]\é Given an Shf{—scheme
T, we say that an endomorphism f of A%s is special if over T¢ it induces a section of Lpg.

Then the divisors mentioned above can be viewed as the loci where AKS inherits certain special
endomorphisms of fixed degree. So, we obtain a moduli interpretation for Shx — Shz: it is

the locus over which AKS inherits a certain family of special endomorphisms. For an analytic
viewpoint of all this in the case of orthogonal Shimura varieties, cf. [Kud97].
Let H,,s be the first crystalline cohomology of AIIE?(pS over .z .. . Then Kisin’s work provides

KFp
us with a canonical sub-crystal Leys C Hepis ® H(\:/ris attached to the quadratic space L. This

allows us to give a definition of specialness in characteristic p as well: for any ./} . -scheme T,
P

an endomorphism f of ggs is special if its crystalline realization is a section of L. at every
point of T. We can patch together the two notions of specialness to get the notion of a special
endomorphism of AKS ip general.

The moduli interpretation for Shx (G, X) as a scheme over Shf((é, X) can now be extended
over Z, to obtain a natural integral model .# (G, X). To study its local properties, we study

the problem of deforming special endomorphisms of ZKS, using ideas of Deligne [Del81] and
Ogus [Ogu79]. These methods help us show that the quadric MIGOC of isotropic lines in L is an
étale local model for ., (G, X). In the case where the discriminant of L is square-free, MIGOC is
regular, and this completes the construction.

The above construction actually works for general lattices L, but then it only gives us access
to a certain open locus of the desired integral model, which we denote by YIIQY(G, X): this is still
modeled by Ml(‘;)c. In general, the special fiber of this open locus will miss some very important
parts of the expected ‘true’ integral model. For instance, in the situation where L is maximal,
and p is a prime such that p? divides the discriminant of L, S (G, X) will entirely exclude
the part of the supersingular locus with maximal Artin invariant;? cf. § 6.27 for a discussion of
this phenomenon. In particular, for n = 3, where our Shimura variety is closely related to Siegel
threefolds with parahoric level structure, our theory does not recover the integral models of Chai
and Norman [CN90] and Gortz [Gor03]: the simple local models that we describe are insufficient
for this purpose. We expect to fix this gap in the theory in future work.

Along these lines, we should note that, for other low values of n, there are direct, moduli-
theoretic ways to construct integral models. For the case of Shimura curves, cf. [KRY06], and for

2 We thank the referee for pointing out many subtleties arising in this situation.
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the case of certain Hilbert—Blumenthal surfaces, cf. [DP94, KR99]. Moreover, there is work in
progress by Kisin and Pappas, which will generalize the methods of [Kis10] to construct integral
models of Shimura varieties of abelian type with general parahoric level at p. However, the simple
and direct nature of our construction seems to be quite useful in applications, which include the
Tate conjecture for K3 surfaces in odd characteristic [MaP14], and also forthcoming work, in
collaboration with F. Andreatta, E. Goren and B. Howard, on the arithmetic intersection theory
over these Shimura varieties.

In the body of the paper, we also concurrently consider the case of orthogonal Shimura
varieties. These are Shimura varieties of abelian type, but of a particularly simple nature: they
are finite étale quotients of GSpin Shimura varieties, and we can easily deduce results for them
from corresponding ones for their GSpin counterparts.

Notational conventions

For any prime ¢, v, will be the -adic valuation satisfying v,(¢) = 1. We will use Ay to denote the
ring of finite adéles over Q, and 7 C Ay will be the pro-finite completion of Z. Given a rational
prime p, A? will denote the ring of prime-to-p finite adéles; that is, the restricted product H%&p Qy.

Moreover, /X A’} will be the closure of Z. Unless otherwise specified, the letter k will always
represent a perfect field of characteristic p. Given such a k, W (k) will denote its ring of Witt
vectors, and o : W (k) — W (k) will be the canonical lift of the Frobenius automorphism of k.
For any group G, G will denote the locally constant étale sheaf (over a base that will be clear
from context) with values in G.

1. Clifford algebras and Spin groups

We will quickly summarize some standard facts about Clifford algebras and the GSpin group. A
good reference is [Bou07, §9]; cf. also [Bas74].

1.1  Let R be a commutative ring in which 2 is invertible, and let (L, Q) be a quadratic space
over R: by this we mean a projective R-module L of finite rank equipped with a quadratic form
Q@ : L — R. We will denote by [-,:]g : L ® L — R the associated symmetric bi-linear form, its
relation with @ being given by the formula [v, w]g = Q(v + w) — Q(v) — Q(w).

Let C' := C(L) be the associated Clifford algebra over R. It is equipped with an embedding
L — C, which is universal for maps f : L — B into associative R-algebras B satisfying f(v)? =
Q(v). The algebra C is equipped with a natural Z/2Z-grading C = C* & C~, so that C" is a
sub-algebra of C.

1.2  Suppose now that @ is non-degenerate: that is, it induces an isomorphism L = LV. In this
situation, we will also call the module L itself self-dual, especially when working over discrete
valuation rings.

Then we can use the Clifford algebra to define a reductive group scheme GSpin(L, Q) over
R. For any R-algebra S, we have

GSpin(L, Q)(S) = {z € (CI)* : x(Lg)z™! = Lg}.

It is a central extension of the special orthogonal group SO(L, Q) by G, and there is a canonical
character, the spinor norm, v : GSpin(L,Q) — G,,. The spinor norm is defined as follows:
there is a canonical anti-involution * on C': it is the unique anti-automorphism that restricts to
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the identity on L; cf. [Bou07, §9], where it is termed ‘l’antiautomorphisme principal’. For any
x € GSpin(L, Q)(S5), we set v(x) = z*z. It follows from [Bas74, 3.2.1] that this is indeed an
element of 5* C (CJ)*.

The group scheme GSpin(L, Q) acts naturally on C' via left multiplication, and we will denote
the resulting representation by H. The right multiplication action of C on itself endows H with
a GSpin(L, Q)-equivariant right C-module structure, and the grading on C endows it with a
GSpin(L, Q)-stable Z/2Z-grading H = H™ & H~. The action of L on C via left multiplication
provides us with a GSpin(L, Q)-equivariant embedding L — End¢(H).

1.3 Let GLf(H) C GLg(H) be the sub-group® of automorphisms that preserve the grading
on H: this is the group of units in the algebra EndE(H ) of graded endomorphisms of H.
Let U(H) C GL}(H) be the centralizer of the right C-action. Then, for any R-algebra S,
we have U(H)(S) = (End/,(Hg))* = (C&)*. By definition, GSpin(L, Q) is a sub-group of U(H).

The pairing [p1, 2] = (1/2") Tr(¢1 © w2) on Endg(H) is symmetric, non-degenerate and
restricts to the pairing [-,-Jo on L C C. Choose an R-basis ey, ..., e, of L and let A € GL,(R)
be the matrix whose inverse is ([e;, e;]g). We will use the basis {e;} to identify L with R™ and
hence to view A as an automorphism of L. Consider the endomorphism 7 : Endr(H) — Endgr(H)
given, for ¢ € Endgr(H), by

m(p) = Z[%ez‘] - Ae;.

)

LEMMA 1.4.

(i) 7 is an idempotent endomorphism of Endr(H) with image L C Endr(H).
(ii) 7r is the unique projector onto L satisfying

kerm = {p € Endr(H) : [p,v] =0 for all v € L}.

In particular, it is independent of the choice of basis.
(iii) GSpin(L,Q) C U(H) is the stabilizer of w : Endr(H) — Endgr(H).

Proof. For (i), we note that

m(m(p) = Y lp,eil - [Aei,erlq - Aer =) [p,ei] - i - Aey, = ().
ik ik

An easy computation also shows that, for 1 < k < m, mw(ex) = ek, so that the image of 7 is
precisely L.

(ii) is clear.

The stabilizer in U(H) of 7 must preserve L under the conjugation action on Endg(H); it
must therefore be contained in GSpin(L, Q). On the other hand, for any g € GSpin(L, @), since
g must preserve L, gmwg~! is again a projector onto L whose kernel agrees with that of 7. Hence,
we must have gwg~! = . This shows (iii). O

Remark 1.5. In the above situation, suppose that R = Z, and only that (Lg, Q) is non-
degenerate. If we choose a basis {e1,...,e,} for L, the corresponding matrix A belongs to
GL(Lg) and A - L C Lg is precisely the dual lattice LY. Therefore, the image of Endg,, (H)
under 7 is exactly LY C Lg.

3 For the rest of the section, the word ‘group’ will mean ‘R-group scheme’.
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1.6  As shown in [Bou07, §9, Théorémes 2 and 3|, C' is an Azumaya algebra over its center
Z(C). Here, Z(C) = R, if m is even, and is finite étale of rank 2 over R, if m is odd. Therefore,
there exists an R-linear reduced trace map Trd : C'— R such that the pairing (z,y) — Trd(zy)
is a non-degenerate symmetric bilinear form on C. For any § € C'* such that §* = —4, the form
Ys(x,y) = Trd(xdy*) defines an R-valued symplectic form on H.

LEMMA 1.7. For ¢ as above, the line [¢5] in Hom(H ® H, R), spanned by the symplectic form s,
is preserved by GSpin(L, Q). The similitude character of GSpin(L, ()) obtained from its action
on this line agrees with the spinor norm. O

DEFINITION 1.8. We will need one further piece of notation: for any pair of positive integers
(r,s), we set
He0S) — V..o HoH® - @ H.

r times s times

We will also use this notation for objects in other tensor categories without comment.
Note that we can now think of 7 as an element of H®22),

1.9 Let Gp = SO(L, Q). Since there exists a central isogeny G — Gg of reductive groups,

there is a bijective correspondence between parabolic sub-groups of G and those of Gy. We

want to make this correspondence explicit on the level of linear algebra for certain parabolic

sub-groups. To each isotropic sub-space L' C L, we can attach the parabolic sub-group Py C Gg

that stabilizes L'. We get a decreasing filtration

0=F)LcF'L=L'cFL=(IY cF'L=L.
Since L' is isotropic, we have a canonical embedding of R-algebras
ALY < C — Endg(H).
If N C Endgr(H), write im N for the union of the images in H of the endomorphisms in N.
Similarly, write ker IV for the intersection of the kernels of the elements of N. Then we have, for
every integer ¢+ =0,...,7 4+ 1, A A
im(A‘LY) = ker(ATHLLY).
Moreover, im(A*LY) C im(A*"1L!). So, we can define a descending filtration F'*H on H by
F'H =im(A'LY).
Suppose that g : G, = Gq is a co-character splitting F'* L. It gives rise to a splitting
L=L'e9Ll’eoL™!

with F'L = D,
direct summand of L that pairs non-degenerately with L'.

Take the increasing filtration E;H = ker(A™H'L™1) = im(A""L~!) and set H' = E;HNF'H.
One easily checks that this is a splitting of F'*H.

Let p : G,, — GL(H) be the co-character that acts via z* on H’. By construction, H' is
C-stable and one can check easily that p(G,,) preserves the grading on H. So, u must factor
through U(H). Furthermore, we find that, if v € L and i = 0,1,...,r, then

L7 and where ug(z) acts on L? via z'. In particular, L™! is another isotropic

H*Y ifve L,
v-H' ' c{ H! if v e LY,
Hi=' ifvelL L
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This shows that
Z-v if v e LY,
w(2)op(z) ™t =L w if ve LO,
2 b.v ifveL L

In other words, p factors through G and is a lift of ug. This shows the following result.

ProposiTioN 1.10. The parabolic sub-group P C G lifting Py C Gq is the stabilizer in
G of F*H. O

2. Local models

We fix a prime p > 2 for the rest of this paper.

2.1 Suppose that (M, q) is a non-degenerate quadratic space over a field k and let N C M
be a sub-space. Set

ay = {f € Hom(N, M) : [f(v),w]q + [v, f(w)]q = 0 for all v,w € N}.
LEMMA 2.2. The natural map Lie(SO(M)) — ay induced by restriction to N is surjective.

Proof. We will first consider three special cases.

— q restricted to N 1is also non-degenerate: in this case, we have an orthogonal decomposition
M = N L N+t. So, given f € ay, we can extend it to the element of Lie(SO(M)) which
restricts to 0 on Nt.

— N is isotropic: in this case, we can find a splitting M = N@ (N @ N')- @ N’, where N’ ¢ M
is also isotropic and pairs non-degenerately with N, and the restriction of ¢ to (N & N’ )L is
non-degenerate. Given f € ay, we can write it in the form f; & fo @ f3, where f; : N - N,
fo: N = (N@ N')!t and f3: N — N'. The duality between N’ and N allow us to view
fY as a map N’ — N’. Similarly, fy can be viewed as a map (N @ N)* — N’, and fy

as a map N — N'. The condition that f € ay simply means that fy’ = —f3. We can now
extend f to an element X € Lie(SO(N)), which restricts to —fy on (N @ N')* and —f
on N'.

— N contains L N and the image of f lies in N+: again, we can find a splitting M = N @ N’
with N = Nt @ (N+ @ N')*. Here, N’ is isotropic and pairs non-degenerately with N=.
Now, f is of the form f; ©0@®0, where f; : (N* @ N’)* — N1, Extend this to the element
X € Lie(SO(N)), which restricts to —f : N’ — (N+ @ N’)* on N’ and to 0 on N.

In general, let Ng C N be the radical. Since Ny is isotropic, by the second case above, we can find
X1 € Lie(SO(M)) such that X1|n, = f|n,- Therefore, replacing f with f — X;|y, we can assume
that f|n, = 0. In this case, the image of f must lie within Nj-. Let f: N/Nyg — Ng-/No be the
induced map. Now, N/Nj is a non-degenerate sub-space of the non-degenerate quadratic space
Ng-/No. Therefore, from the first case treated above, we can find Xo € Lie(SO(Ng-/Np)) such
that YQ‘N/NO = f. Lift X5 to an element X5 € Lie(SO(M)) that stabilizes No. Then, replacing f
by f— Xa|n, we can assume that the image of f lands in Ny. Extend f to any map f: Ng- — No.
Then, by the third case above, we can find X € Lie(SO(M)) such that X|N0l =7 O

e
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2.3  Suppose that we are given a discrete valuation ring & of mixed characteristic (0,p) with
residue field k, and a quadratic space (M, q) over & such that M [p~!] is non-degenerate over the
fraction field &'[p~!]. The quadratic form ¢ endows the discriminant disc(M) = M"Y /M with a
natural non-degenerate &[p~']/&-valued quadratic form g.

We say that M is mazimal if it is maximal among O-lattices in M[p~!] on which ¢ takes
values in &'.

LEMMA 2.4.
(i) The following are equivalent.

(a) M is maximal;

(b) disc(M) is a k-vector space and the form q is anisotropic.

(ii) Suppose that (M,q) is a self-dual quadratic space over O containing (M, q) isometrically
as a direct summand. Then M is maximal if and only if M+ C M is maximal.

Proof. First, we claim that M is maximal only if disc(M) is a k-vector space. Otherwise, if 7 € &
is a uniformizer, we can find m € M" such that 7-m ¢ M but 72-m € M. But then M + (7 -m)
is a lattice bigger than M on which ¢ is &-valued.
To prove (i), we can now assume that disc(M) is a k-vector space. Then the assignment
M’ — M'/M sets up a bijection between the following two sets.
— Lattices M’' C M[p~!] containing M and on which q takes values in ©.
— Sub-spaces of disc(M) that are isotropic for g.
From this, the claimed equivalence is clear.
For the final assertion, note that the identification M = MY induced by ¢ gives us canonical
isomorphisms
~ M

disc(M) < [Ty = dise(M™).

This gives us an isomorphism disc(M) = disc(M*) that preserves quadratic forms up to sign.
We now conclude the proof from (i). O

2.5 Let (L, Q) be a quadratic space over Z,) such that (Lg, Q) is non-degenerate. Suppose that
we are given a self-dual quadratic space (E, @) over Z,y admitting (L, Q) as a direct summand.

Set A=LLt C L.Set G = GSpin(z, @) and let G C G be the closed sub-group such that, for any
Zp)y-algebra R, we have

G(R) = {9 € G(R) : gla, = 1}.

Note that the central embedding G,, g — Gg = GSpin(Lg, Q) is induced from an embedding
Gy — G. Let Gy (respectively Go) be the Z,-group scheme G /G, (respectively G/Gyy,), so
that GO’Q = SO(LQ, Q)

LEMMA 2.6. For any flat Z,)-algebra R, we have

G(R) = G(Rg) N C(L); © C(L)},.
Go(R) = {g € Go(Rq) : gLr = Ly and g acts trivially on L},/Lr}.
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Proof. The obvious inclusion L < L <> C(L) gives rise to a canonical map C(L) — C(L). We
claim that this sets up an identification:

(L)t ={ze C(L)* :vz=zv e C(L) for all v € A}. (2.6.1)

Since both sides of this purported identity are saturated Z,)-sub-modules of C' (E)“‘, it is enough
to show that

CLo)t={z¢ C(E@)Jr tvz =20V € C(EQ) for all v € A}. (2.6.2)

This is easily checked using the orthogonal decomposition E@ = Lg 1 Ag.
The description of G(R) for a flat Z,)-algebra R is now clear, since both G(Rg)NC(L)y and

G(R) can be identified with the set of elements of G(R) that commute with the left multiplication
action of A on C(L)g.

Proving the corresponding description of Go(R) amounts to checking the following thing:
suppose that we have g € Go(Rg) such that gLr = Lg. Then

gLr = L < g acts trivially on LY,/Lg.

Indeed, suppose that gLg = Lg. Given any v € LY,, there exists w € A}, such that the element
v+w of Lry, = Lg, ® AR, lies in Lg. Therefore, since g acts trivially on Ag, we have

gv—v:g(v+w)—(v+gw):g(U‘HU)_(U‘HU)EERHLRQ:LR‘

This shows that g acts trivially on L},/Lr.

On the other hand, suppose that g acts trivially on L},/Lg. Every element ¢ € ER can
be written uniquely in the form v 4+ w for some v € L}, C Lp, and w € AY, C ARy. We now
have B

gt =g(v+w) =gv+w=(gv—v)+v+w=(9v—2v)+ € Lg,.

But, by our hypothesis on g, gv —v € Lr C ER. Therefore, gv € ER for all v € ZR. |
LEMMA 2.7. Set

ay = {f € Hom(A, L) : [f(v), wls + [v, f(w)lg = 0 for all v,w € A},
Then we have a short exact sequence of finite free Z,-modules

~ X=X
0 - LieGy — Lie Gy —‘A> ap — 0.

Proof. The only non-obvious part is the surjectivity on the right-hand side. By Nakayama’s
lemma, it suffices to prove this after tensoring with F,,. But then it follows from (2.2). O

LEMMA 2.8. Write 1o : A — L for the natural embedding. Let R be a Z,)-algebra. Suppose that

we have another isometric embedding ¢ : Ap — ER onto a local direct summand of ER. Then
the functor P, on R-algebras given by

P.(B)={g € éO(B) igoly =1}

is represented by a scheme that is affine, smooth and faithfully flat over R.
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Proof. 1t is clear that P, is represented by a closed sub-scheme of 607R. Moreover, Witt’s
extension theorem [Bou07, §4, Theorem 1] shows that P,(x) is non-empty for any residue field
k of R. To finish the proof of the proposition, it suffices to show that P, is formally smooth
over R.

Let B be an R-algebra, let I C B be a square-zero ideal and let By = B/I. Suppose that we
have go € P,(Bo): we want to find g € P,(B) mapping to go. Choose any § € Go(B) lifting go.
Consider the assignment on Ap given by v — v — g~ 1u(v). This factors through a map U : Ag, —
I® Bo L Bo:

U =~ ~ ~
AB—>ABO —)I@BOLBO - 1I®pLg — Lp.
For v, w € A, we have

U@),wlg+ [0, Uw)g = —§

Here, the last equality holds because 12 = 0. B
Therefore, U € I®z, ax and, by (2.7), we can find X € I®z , Lie(Go) such that X[y, =U.
Then g = go (1 — X) is an element of P,(B) that lifts go. O

PROPOSITION 2.9. The group schemes G and Gq are smooth and faithfully flat over Z. In
particular, up to (unique) isomorphism, they do not depend on the choice of self-dual quadratic
space L containing L.

Proof. Tt is enough to show that G is smooth over Z,y. This follows from (2.8) with R = Z,)
and ¢ = 1.

Take R = Z% to be a strict henselization of Z,). That G and G¢ are independent of the

choice of L is immediate from (2.6) and the following assertion [BT84, 1.7.6]: given a smooth
Q-scheme X, a smooth Z,)-model X for X is determined up to unique isomorphism by its set
of R-valued points X(R) C X (Rg). O

2.10  Let MIC‘;’C be the Z;,)-scheme such that, for every Z,-algebra R, we have
MES(R) = {Isotropic lines F*Lp C Lg}.*
LEMMA 2.11. Let N C Lg, be the radical. Set r = dim L, t = dim N and s =7 —t — 1. We will
assume that N # Ly, or, equivalently, s > 0.
(1) MY is flat and projective of relative dimension r — 2 over Z

p):
(ii) The singular locus of Mg%p consists of lines contained in N and so can be identified with

P(N). It has co-dimension s in MIG"?FP.E’

(iii) MIGOCF is a local complete intersection (Ici) variety. It is reduced if and only if s > 1. It is
normal if and only if s > 2, and smooth if and only if t = 0.

4 A line is an R-sub-module that is locally a direct summand of rank 1.
5 Here, P(N) denotes the space of lines in .
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Proof. Part (i) is a direct consequence of the hypothesis that N # L . Part (ii) is an easy fact
about quadrics. Finally, MIGO’CIFP, being a quadric, is an lci variety. The remainder of (iii) follows

from (ii) and standard criteria for reducedness and normality. O

We now recall some definitions and results from [VZ10].

DEFINITION 2.12. A regular local Z,)-algebra R with maximal ideal m is quasi-healthy if it is
faithfully flat over Z(,) and if every abelian scheme over Spec R\{m} extends uniquely to an
abelian scheme over Spec R.

A regular Z,)-scheme X is healthy if it is faithfully flat over Z,) and if, for every open
sub-scheme U C X containing Xq and all generic points of Xp,, every abelian scheme over U
extends uniquely to an abelian scheme over X. It is locally healthy if, for every point z € Xp, of

co-dimension at least 2, the complete local ring 0 X,z is quasi-healthy.
Remark 2.13.

— Any regular, flat Z,)-scheme of dimension at most 1 is trivially healthy.

— By faithfully flat descent, a regular local ring R is quasi-healthy whenever its completion
R is quasi-healthy.

— If X is locally healthy, then it is healthy. Indeed, suppose that U C X is as in the definition of
‘healthy’ above; the complement X\U lies entirely in the special fiber and has co-dimension
at least 2 in X. The claim follows by using ascending noetherian induction on the co-
dimension of X\U, and repeatedly using quasi-healthiness of the local rings of X.

We do not know if the converse holds.

THEOREM 2.14 (Vasiu-Zink). Let R be a regular local, faithfully flat Z,)-algebra of dimension
at least 2.

(i) Suppose that there exists a faithfully flat complete local R-algebra R that admits a
surjection R — W/||T1,T»|]/(p — h), where h € (T1, To)W{|T1,T3|] is a power series that does not

belong to the ideal (p, TP, T¢, TP~ TP~ ). Then R is quasi-healthy.
ii) Let mp C R be the maximal ideal and suppose that p ¢ mb,. Then R is quasi-healthy.
R
iii) If R is a formally smooth complete local Z,)-algebra, then R is quasi-healthy.
()

Proof. See [VZ10, Theorem 3 and Corollary 4]. O

2.15 Suppose that (L,Q) is maximal. The isomorphism pL"/pL 5 disc(L) allows us to
identify disc(L) with the radical N C Lg,. By (2.4), disc(L) with its induced form @ has to be an
anisotropic quadratic space over F,,. This implies that t = dim N < 2. If t = 2, disc(L)]Fp2 = N]Fp2
admits two lines that are Q-isotropic. These lines, since every sub-space of N]Fp2 is Q-isotropic,

can be viewed as points in MICO;C(IFPQ). We will call these points irregular.

ProposiTION 2.16. Ift < 1, then MIGOC is regular and locally healthy. If t = 2, then the same
assertion holds for the complement of the irregular points defined above.

Proof. If t = 0, then MIGOC is smooth over Z,) and the result is immediate from Theorem 2.14.
So, we assume that ¢ > 1. The assertions in the proposition can be checked at the complete
local rings of MlGOC at points valued in algebraically closed fields of characteristic p. As such, it

suffices to prove them after base change to Z,2» = W (F,2). Now, we can find a basis for Z,> ® L
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so that the quadratic form has the shape

r—1 r—2
SNoOXF4pY? ift=1, Y XP+pYZ ift=2
i=1 i=1

The singular locus of Z,. ®M1G°C is precisely where p and all the coordinates X;, 1 < ¢ < r—t,
vanish. When ¢ = 2, the irregular points are precisely those points in the singular locus where
one of Y or Z also vanishes.

Set
Lplugy ... up_1]
Spec —Z ift=1,
U— (3 uf +p)
Lplug, ... up—2,v]
Spec if t =2.

(32 uf +pv)

Every singular point of Z,> ® MIC?C has a Zariski open neighborhood isomorphic to U.

It is now an easy observation that U is regular everywhere when t = 1. When ¢t = 2, it is
regular outside of points where all the coordinates w1, ..., u,_o,v vanish: these are precisely the
irregular points defined above.

When ¢ = 1, the completion of U at its singular point is Z2[Ju1, . .., u,—2|]/(3; u +p). Here,
we assume that r > 3, since otherwise dim Mg’c < 1, and being healthy is a vacuous condition.

Similarly, when ¢ = 2, the completion of U at any regular F,-valued point in the singular
locus of the special fiber is isomorphic to W (Fp)[|u1, . .., ur—2, w|]/(3; u? + pw + p). Here again,
we assume that r > 3.

We also need to consider the completion of U at the generic point of the singular locus. If we
complete instead at an algebraically closed point over this generic point, a quick computation
shows that we obtain a ring isomorphic to W (k)[|u1,...,ur,—2|]/(3> ; u? + pv). Here, k is an
algebraically closed field containing F,2((v)), and we view v as an element of W (k) via the
Teichmiller lift.

In all three cases, if m is the maximal ideal of the complete local ring, we see that p € m?\m3.
So, we can conclude using Theorem 2.14(ii) that the complete local rings of U at any regular,
singular point are quasi-healthy. Since the complete local rings at the non-singular points are
also quasi-healthy by Theorem 2.14, we see that the regular locus of U is locally healthy. This
proves the proposition. O

2.17  Assume that ¢ = 2. We will now construct a regular, locally healthy resolution MrGef of
Mlaoc. Fix any quadratic extension F'/Q in which p is inert. The two isotropic lines in disc(L)sz,
via the correspondence noted in the proof of (2.4), determine two self-dual lattices in Lp
containing Lg,, . Fix one of them and denote it by L°.

Given a Z,-algebra R, we take MEF(R) to be the set of pairs (F'Lg, F'L%), where the
following hold.
— F'Lp C Lg is an isotropic line.
— FIL% c L% =1L1° ®z,,, 1 is an isotropic OF,p) Rz, R-sub-module that is locally a direct
summand of rank 1.

— Under the natural map O, ®z,, Lr — L%, Op gy ® F'Lk maps into FlL}}.
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PROPOSITION 2.18.

(i) Mgf is represented by a regular, locally healthy projective Z,)-scheme of relative dimension
r—2.

(ii) The natural map q : MrGef — MY is G-equivariant and an isomorphism over the regular
locus of the target.

Proof. Let Q(L°) be the smooth quadric over O, attached to L°, and let MIGOS be the Weil
restriction of Q(L°) from OF ) to Z,). By definition, we have an inclusion of functors

ref loc loc
MG —> MG XZ(p) MGQ .

This is easily seen to be a closed immersion, so that Mgff is represented by a projective Z,)-
scheme. Since G acts trivially on disc(L), its action on L preserves L°. This endows MrGef with
a natural G-action compatible with its projection onto MIGOC.

Fix an identification of the completion of O, with Z,2. Using the isomorphism of Z,,2-

algebras Z,. Rz, OF(p) = L2 X L2, we obtain maps

p?
sz ®Z(p) L — sz ®Z(p) I° = (sz ®@>F7(p) LO) &) (sz ®ﬁFy(p) LO). (2.18.1)

As in the proof of (2.16), we can find compatible bases for Z;» ®z, L and Z,> ®¢, , L°
such that the map in (2.18.1) has the shape

Zp2 ®Z(p) L — (sz ®ﬁF’(p) LO) @ (sz ®/}"F7(p> LO),
(X1ro o Xe 2, Y, 2) > (X1 s Xe 2,0V, Z), (Xn, .., Xy2, Y, pZ),

and so that the quadratic forms on Z,. Rz, L and Zy> ®@gy, ) L° are given by the formulas
S, X2+ pYZ and Y, X2 + Y Z, respectively.

Let C C MIGOC be the irregular locus: then Z,» ® C' C Z,2 ® MIGOC can be identified with the
locus in the special fiber where the coordinates X7, ..., X, _o, as well as (exactly) one of Y or Z,
vanish. Set 17 = Ml(c;’c \C; then we see that, as open sub-schemes of Z,» ® Mlgc, we have

r—1

Zp Vi = | J{Xi# 0} U{YZ #0}.
i=1

This immediately shows that, if R is an Z,)-algebra with F 'Lk € Vi(R), the image of O F\(p) OZ
F'Lgp in L%, is locally a direct summand as an & F,(p) QL R-module. In other words, the map
q:q '(V1) — V4 is an isomorphism. This shows (ii).

Using (2.16), we see that ¢~!(V7) is regular and locally healthy.

To show that Mg?f is regular and locally healthy, we need to show that its complete local
rings at points in characteristic p are quasi-healthy regular. For this, we can now work in the
neighborhood of a singular point in Z,> ® MIGQf where one of Y or Z vanishes.

Without loss of generality, we can assume that it is the coordinate Y that vanishes, so
that Z # 0. If we set z; = X;/Z and y = Y/Z, just as in the proof of loc. cit. we can

loc

work over a Zariski open affine neighborhood Va2 C Z,» ® Mg® of the form Spec A with
A= Zp2[$1, o 7x7"72ay]/(2i ‘1712 +py)
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Now, for any Z,:-algebra R, the set ¢ '(V2)(R) can be identified with the space of pairs
(F'Lp, FX(R Q0 ,y L°)), where:

— F'Lgk C Lp is an isotropic line spanned by an element with coordinates (z1,...,z,_2,%,1)
for x1,..., T2,y € R;

- FY(R oy, L°) C R®gy ,, L is an isotropic line containing an element with coordinates
(T1,. -, Tr—2,Y,D)-

Therefore, we find that, as schemes over V5, we have
¢ (Vo) = Proj A[Wh,...,W,_o,U,T)/I,

where [ is the ideal generated by the elements 7,;;21 W,? +UT, ojW; —x;W;, for 1 <i,j <r—2,
pW; — ;U yW; — a1, for 1 < ¢ < r— 2, and yU — pT.

The scheme ¢—!(V4) is covered by three kinds of affine open sub-schemes: one where U # 0,
one where T # 0 and one where W; # 0 for some i. We will consider each in turn.

Setting w; = W; /U and t = T/U, we can easily see that ¢~ (V) N {U # 0} is isomorphic to

Zp2 [wl, ce ,w,«,g,t]
(Cpw +1)

This is clearly smooth over Z,> and is therefore regular and locally healthy.
Similarly, setting w; = W;/T and v = U/T instead, we find that ¢~ 1(V5) N {T # 0} is
isomorphic to

Spec

Zp2[w17"'7w7"—27u7y] ZpQ[wlv"'awT—ny]
Spec 5 = Spec 5
(> wj; + u,uy — p) (p+y(>pwi))
This is a regular scheme over Z2.
Consider the complete local ring of ¢~ ' (V) N {T' # 0} at the point where p and all the

coordinates ¥y, w1, ..., w,_o vanish. It is

_ Zp2[|w1, w2, Y]
(p+y(>ywd)

It admits a surjection to Z,:2[Jwi,y|]/(p + ywi) and so we can use Theorem 2.14(i) to conclude
that R is quasi-healthy. One can check that the order of vanishing of p at all other points of
q t(Va) N {T # 0} is at most 2 and so we can use assertion (i) of Theorem 2.14 to conclude
that all complete local rings of ¢~!(V2) N {T # 0} are quasi-healthy. Hence, this affine open
sub-scheme is also locally healthy.

Finally, setting w; = W;/W; for j # 1, u = U/W; and t = T/W, we find that ¢~1(V3) N
{W7 # 0} is isomorphic to

sz [:L’l,wg, e ,wr,g,u,t]

(uzy —p, 1+ Z’,;j w2 + ut)

Spec

Set B' = Z2[x1,u]/(uz1 — p); then ¢~ (Vo) N{W # 0} is smooth over Spec B' and so it suffices to
check the criterion of Theorem 2.14(ii) for the complete local rings of B’, which is easy. This shows
that ¢~ (Vo) N {W; # 0} is locally healthy, and an identical proof shows that ¢~ (V2) N {W; # 0}
is locally healthy for any 1. O

Remark 2.19. The map Mré?f — Ml(‘jc is, up to unique isomorphism, independent of the choice of
both F' and L°. In fact, it is simply the blow-up of the singular locus of MIC‘;)C.
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3. GSpin Shimura varieties

Let (L,Q) be a quadratic space over Z, of signature (n,2) with n > 1. By this, we mean
that the largest positive definite sub-space of Lg has dimension n. Let G (respectively Gy) be
the smooth Z,-group scheme attached to L in §2.5, so that Gg = GSpin(Lg, Q) (respectively

GO,@ = SO(LQ’ Q))

3.1 Let X be the space of oriented negative definite 2-planes in Lg. The points of X correspond
to certain Hodge structures of weight 0 on the vector space Lg, polarized by Q: fix h € X, and
suppose that (en, fn) is an oriented, orthogonal basis for the oriented negative definite 2-plane
attached to h with Q(en) = Q(fn) = —1. Also, fix a square root of —1, y/—1 € C. Set

(en +V—1fu) C Lc if (p,q) = (—1,1),

Lp,q — <6h)fh>L C L(C lf (p7 Q) = (070)5
b (en —vV—1fn) C Lc if (p,q) = (1,-1),
0 otherwise.

Then Ly, is a Z,)-Hodge structure of weight 0 with underlying Z,)-module L; the associated
Q-Hodge structure is polarized by Q. In fact, each h € X gives rise to a unique homomorphism
S — GRr which induces the Hodge structure Ly on L and whose restriction to the diagonal sub-
group G, g C S is the canonical central embedding G;, x — Gr. Here, of course, S = Resc/r Gm r
is the Deligne torus.

The map carrying h to the line Llll’_1 embeds X as an open sub-space of the quadric
X c P(Lc) determined by Q. The two connected components of X are switched by complex
conjugation on X. The pairs (Gg,X) and (Go,qg, X) are Shimura data, which, since n > 1, have
reflex field Q.

3.2 Fix a compact open sub-group K C G(Ay) with image Ky C Go(Ay), and let Shg :=
Shi (G, X) and Shg, = Shg,(Go,g,X) be the associated Shimura varieties over Q. We will
assume that K is of the form K,K?, where K, = G(Z,) C G(Q,) and K? C G(A?). We will also
assume that K? is chosen to be small enough so that Shx is a smooth variety and not just an
algebraic space. By weak approximation for Gg (which can be deduced from weak approximation
for its derived group, which is simply connected [PR94, Theorem 7.8]), we have identifications
of complex analytic varieties:

Shig'c = G(Z))\(X x G(A})/KP), (3.2.1)
Shig, ¢ = Go(Z)\(X x Go(A})/KF). (3.2.2)
From this description, we find that the map Shx — Shg, is a finite (étale) Galois cover with

Galois group . . . y
A(K) = A;/Q> (KQA;) = A? /Z(;)(Kp QA? ).

Here, we are viewing AJT as a central sub-group of G(A;).

3.3 Let R C R be a Z-algebra. Recall that a variation of (pure) R-Hodge structures over a
smooth complex algebraic variety S is a pair (Up, F*(Up ® Ogan)), where Up is a local system
of finite free R-modules over S*" and F*(Up ® Ogan) is a descending filtration by sub-vector
bundles over S*" such that, for every point s € S(C), the induced pair (Up s, F*(Ups @r C))
is a pure R-Hodge structure. An algebraic variation of Hodge structures over S is a tuple (Up,
Ugr, F*Uqg, ), where Ugg is a vector bundle over S equipped with an integrable connection
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and a filtration F*Ugr, and ¢ : Ui} S5 Up® Ogan is a parallel isomorphism (the right-hand side
being endowed with the trivial integrable connection) of vector bundles over S?" such that the
pair (Ug, o( F*UR)) is a variation of R-Hodge structures.

There is a natural exact tensor functor from the category of algebraic R-representations
of G (respectively Gy) to the category of algebraic variations of R-Hodge structures on Shg c
(respectively ShK(L((;).6 This is reasonably well known, but, so as to fix notation, we will now
briefly describe it for G and Shg; the situation for Gg and Shg, is completely analogous.

Suppose that we are given an algebraic R-representation U of G. We can view the R-module
U as a representation of the discrete group G(Zy)). Using the uniformization in (3.2.1), we find
that the constant local system U x X x G (Afc) /KP (where we equip U with the discrete topology)
over X x G(A’})/Kp descends to an R-local system Up over Shif .

We also have the trivial vector bundle (U ®rC) x X over X, where we equip U ® g C with the
natural complex topology. This has a natural, G(R)-equivariant descending filtration by vector
sub-bundles F'*((U ® g C) x X) such that, at any point h € X, the induced filtration F**(Up ®C)
is simply the Hodge filtration induced by the homomorphism S — Gp attached to h. Being G(R)-
equivariant, and in particular G(Z)-equivariant, the pair ((U ®r C) x X, F*((U ®g C) x X))
descends to a filtered vector bundle over Shi ¢; we will denote this descent by (Ujg ¢, F*Udg ¢)-
By construction, Ugy, ¢ is canonically isomorphic to Up ®g ﬁSh?C, and we find that the pair
(Up, F*UER ) is a variation of R-Hodge structures over Shilc.

Now, gﬁ,c algebraizes to an algebraic vector bundle with integrable connection Ugg c. This
is essentially due to Baily and Borel [BB66, Theorem 10.14]; cf. also [Har85, (3.1)]). Moreover,
by the projectivity of Grassmannians, the filtration FUJ; . algebraizes to a filtration F*Ugg c.
This finishes our construction of the algebraic variation of R-Hodge structures attached to the
representation U: we will denote it by V¢(U). One can check that U — V¢ (U) is functorial,
exact and respects tensor operations.

As shown in [Del79, §1.1], the variations of Hodge structures obtained in this fashion satisfy
Griffiths’s transversality: the connection on Ugg ¢ carries FiUdR,(C to FiflUdRﬁc ® Qéhxc /c

3.4 Let C =C(L,Q) be the Clifford algebra for (L, Q). The above construction applied to the
representation H = C, on which G acts via left multiplication, produces an algebraic variation
of Z,)-Hodge structures Vc(H) = (Hp, Hyr,c, F'*Hqgr,c) over Shig c. Since the right C-action
and grading on H are G-equivariant, they are both naturally inherited by V¢ (H).

The tensor 7 € Hg 22 45 G-invariant, and we can view it as a map of G-representations

T:Q— HS (22) , with G acting trivially on Q. The functoriality of our construction now shows
that 7 induces a map of algebraic variations of Q-Hodge structures V¢ (Q) — VC(H(S) (2’2)) =
Ve(Hg)®2).

Explicitly, this means that we have a global section wp € HY(S %?’(C’Hg(l?) ® Q) and a

section mar,c € H O(Sh Kk, F OHS%QQ’?Q)) that is parallel for the connection on Hg?gg). Moreover,
g is carried to wyr c under the comparison isomorphism

®(2,2) ~ ®(2,2),an
HB X ﬁShé}?’C — HdR,(C .

(2,2)

,S

In particular, for every point s € Shi (C), the fiber wp , € Hg ® Q is a Hodge tensor.

6 Such a result is true for any Shimura variety.
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We can view w as an idempotent endomorphism of V(C(Hg(l’l)) and, by construction,
its image is precisely Vc(Lg) = (Lp,g, Lar,c, F*Lar,c), the algebraic variation of Q-Hodge
structures attached to the representation L.

In fact, it follows from (1.5) that the image under 7 of V¢ (H®1D) ¢ V@(Hg(l’l)) is exactly
the variation of Z,)-Hodge structures V¢ (LY).

Moreover, the G-equivariant map Lg — Lé induced by the pairing gives rise to an

isomorphism V¢(Lg) — Ve(Lg)- This corresponds to a pairing Ve(Lg) ® Ve(Lg) — Ve(Q),
which is in fact a polarization of variations of Hodge structures. V¢ (L) is precisely the pre-image
of V¢(LY) under this isomorphism.

In sum, we find that we can recover the tuple V¢ (L) = (Lp, Lar,c, F'* Lar,c) from the data

of Ve (H) and the idempotent operator 7 € VC(HS(Q’z)).

3.5 TForde C’ﬂC@ satisfying 0* = —4, set G5 o = GSp(Hg, 15), so that we have an embedding
Go — Gs0- Let X be the space of lagrangian sub-spaces W C Hc (with respect to the form )
such that the hermitian form /—14s(w1, W) restricts to a (positive or negative) definite form
on W: this is simply the union of the Siegel half-spaces attached to (H,y).

LEMMA 3.6. One can choose § so that the embedding Gg — Gsq Induces an embedding of
Shimura data (Gg, X) — (G50, X). O

Let IC, C G5,0(Qp) be the stabilizer of Hz,,. Then we have K, C K,NG(Qy). Let K = K,K? C
G(Ay) be as above; then, for any compact open KP C QJ(A?) containing K, we have a finite,

unramified” map of canonical models of Shimura varieties over Q:
Shg — Shx (G50, X).
Here, K = K,KP. We will call this a Kuga—Satake map.

3.7 The scheme Shi := Shi (G50, &) has a natural moduli description. To describe this,
we will work with abelian schemes up to prime-to-p isogeny. More precisely, given a scheme T,
the category AV(y) (T') of abelian schemes up to prime-to-p isogeny has for its objects abelian
schemes A over T', where, for two abelian schemes A and B over T, the space of morphisms from
A to B is the Z,)-module

Hom(A, B)(p) = Hom(A, B) & Z(p)

Given an abelian scheme A over T', a quasi-polarization (or simply polarization) of A in AV, (T
will be an element A € Hom(A, AY),) that is a positive multiple of a polarization X' : A — AY.

Given any scheme T, a prime ¢ # p invertible in 7" and an abelian scheme f : A — T, we
can consider the associated relative first /-adic cohomology sheaf R' [+Q,. If p is invertible in
T, we can also consider the p-adic sheaf R! J+Z,,. Both of these constructions are invariants of
the prime-to-p isogeny class of A. Let @e(_l) be the Tate twist: it is the relative first ¢-adic
cohomology of G, 7 over T

Given an abelian scheme f : A — T over a Z,-scheme T', the following constructions are
invariants of its prime-to-p isogeny class: the p-divisible group A[p>°]; the p-adic étale cohomology
R! [+Z,y; for £ # p, the rational (-adic cohomology R! [+Q,; and the A?—adic cohomology R! f*A?.
If T is an Fj,-scheme, we also have the degree 1 crystalline cohomology of A over T': for instance,
this can be viewed as the Dieudonné crystal associated with the p-divisible group A[p®°].

" Note that, over C and locally in the complex analytic topology, this map is isomorphic to the closed immersion
X — X.
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3.8  For some purposes, it is useful to embed AV(,)(T’) in the category of group schemes over
T. We will follow [Har, §1] for this. Given an abelian scheme A — T, let TP(A) be the inverse
system consisting of prime-to-p isogenies® B — A. Then TP(A) has a co-final system consisting
of the finite étale multiplication-by-n endomorphisms [n] : A — A for n € Z with p { n. Therefore,
the inverse limit
APV = lim B

<—

(B—A)eTP(A)

exists in the category of group schemes over 7. One sees that A — A®) is a fully faithful functor
from AV ®)(T) to the category of T-group schemes.

The main purpose of this construction is the following abuse of terminology: given A €
AV®)(T) and a T-scheme T’, we will write H(T”, A) for the Zp)-module HO(T', A®)). This
allows us to speak of ‘sections of A’.

From now on we will suppress the qualifying phrase ‘up to prime-to-p isogeny’: all
abelian schemes will only be considered in the prime-to-p isogeny category. The cohomological
constructions we are concerned with will all be invariants of the prime-to-p isogeny class.

3.9  Suppose that T'is a Z,)-scheme and [ : A — T'is an abelian scheme. Given a polarization
A:A— AY, we get an induced non-degenerate Poincaré pairing of A?—sheaves

U : RULAL @ RULAL — AR(-1).
Suppose that we are also given an isomorphism
n:HeAL = R'fA}

of A?—Sheaves over T'. Then we obtain two different non-degenerate pairings on H ® Aﬁ’c: the first
is the constant pairing into A? arising from 15, which we will again call 15; and the second is the
pairing n*v, into A?(—l) obtained by pulling back 1, along 7. In particular, the existence of
7 implies that A?(—l) is trivializable over T'. We say that n preserves polarizations if, for some
choice of isomorphism A?(—l) 5 A?, the pairings 7%y and )5 agree.

In the above situation, we will consider the étale sheaf IP(A, ) over T, whose sections are
polarization preserving isomorphisms of Az;—sheaves n:H® A’} 5 R! f*AZ;. Note that IP(A, \)
is a pseudo-torsor under gg(Aii) via its action through pre-composition.

For any Z-scheme T, let Sx(T) be the set of isomorphism classes of tuples (A, A, [n]),
where:

— (A, )\) is a polarized abelian scheme over T
— [n] is a KP-level structure: it is a section of the quotient sheaf IP(A, \)/KP.

For K sufficiently small, the functor Sk is (represented by) a quasi-projective scheme over Z),
whose generic fiber is canonically identified with Shi := Shx(Gsq, X).

3.10 Over Sk, we have the tautological tuple (A, A, [n]). Let (AIS(hSK, )\ghSK, [7%5]) be the induced
tuple over Shx. We will refer to Agth as the Kuga—Satake abelian scheme over Shy.

The identification of Shx with the generic fiber of the moduli scheme Sk has the following
property: over Shi ¢, the algebraic variation of Z,)-Hodge structures obtained from the degree 1
cohomology of AIS<hS§2C is canonically identified with V¢ (H).

8 These are finite, flat homomorphisms, whose kernel is an étale group scheme of order not divisible by p.
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Since V¢ (H) carries a Z/2Z-grading and a right C-action, we conclude that Alsf??c, and

hence AgthC, admits a canonical Z/2Z-grading and a (left) C-action.” Here, we are using the
(anti—)equix;alence of categories between abelian schemes over Shx ¢ and polarizable variations
of Z)-Hodge structures over Shg ¢ of weight 1.

The above implies that the degree 1 relative Betti cohomology of AIs(thgC with coefficients in
Z(p) can be identified with Hp as a Z(p)
cohomology of AIS<}§KC can be identified with (Hgr,c, F*Hgr,c) as a filtered vector bundle with
integrable connection.

Let Hy (respectively H)) be the relative degree 1 étale cohomology of Agth over Shy with
coefficients in Qg for £ # p (vespectively Z,). Then, over Shi ¢, Artin’s comparison theorem gives
us canonical isomorphisms of local systems:

-local system. Similarly, the degreé 1 relative de Rham

ap: Hg ® Qy = HZ‘Sh*}(r"C for ¢ # p, (3.10.1)
ap: Hp ® Z = Hplspan,.. (3.10.2)

Let (Hgr,g, F*Hgr,g) be the relative degree 1 de Rham cohomology of AIS(hSK over Shy: this is
equipped with the Hodge filtration and the Gauss-Manin connection. Over Shy, there now
exists a canonical de Rham comparison isomorphism, parallel for the trivial connection on the
left-hand side:

agr : Hp ® ﬁSh?{n,(c = Hgﬁ’(c = Hir g ShiP e (3.10.3)

Note that the first isomorphism in this composition carries 7p ® 1 to mqr.c.
ProrosiTION 3.11.

(i) The structures of the Z/2Z-grading and the C-action on AghSK,(C descend (necessarily
uniquely) to AISilSK.
(

. ) . ®(2,2) an .
(ii) For any prime ¢, the global section ay(mp ® 1) of H, ® Q over Shi' ¢ arises from a

(necessarily unique) section

m € HO(Shy, H'®? © Q).

(iii) The section mgr,c of H?gg) descends (necessarily uniquely) to a parallel section

marg € HO(Shi, FPH ).

Proof. This can be extracted from [Kis10, §2.2]. We sketch the proof.
There is a canonical pro-finite Galois cover Shx» — Shi with Galois group Kp:

Sth = Lin Sth’,KP .
K,CKp

Here, K;D runs over the compact open sub-groups of K.

If we fix a connected component S C Shx and a geometric point § — S, pulling the pro-
finite cover Shg, back over S gives us a K)-torsor over S, which in turn corresponds to a map
71(S5,5) = K. The restriction of H), to S is precisely the p-adic sheaf attached to the composite
representation

m1(5,5) = K, = G(Zy) C Aut(H ® Zp).

9 The right action is converted to a left, because cohomology is a contravariant functor.
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Since the Z/27Z-grading and the C-action on H ® Z,, are K,-invariant, and hence (S, 5)-
invariant, we find that the corresponding structures on Hp ®Z, over S&" must in fact descend to
structures on H), over S. From this, one can deduce (i). The essential point is the following simple
consequence of Galois descent: suppose that A and B are abelian varieties over a characteristic
0 field k, and f : Ax — Bg is a map of abelian varieties over an algebraic closure %/x such that
the induced map on p-adic Tate modules T},(f) : T,,(Ax) — T,(Bx) is equivariant for the action
of the absolute Galois group Gal(k/k). Then f is defined over k.

Similarly, since the tensor = 6 H®(22) & Q, is also K-invariant, a,(mp ® 1) must descend
to a section m, € HY(Shg, H® ) ® Qp). This shows the case £ = p of (ii). The de Rham case
(iii) and the ¢ # p case of (11) follow from this and the fact that all Hodge cycles on abelian
varieties are absolutely Hodge [DMOS82, Ch. IJ; cf. the proof of [Kis10, 2.2.2]. There are two
main points [DMOS82, §1.2].

— Given a projective variety X over x and an algebraically closed overfield K D &, any absolute
Hodge cycle g over X is already defined over X%; that is, the de Rham realization B4r of
B lies in H3p (X7/R)®

— If one cohomological realization of /5 is fixed by Gal(k/k), then all of its realizations are.

We apply this to the situation where x is the function field of an irreducible component S as
above, K is the function field of an irreducible component of S¢, X is the fiber of ASh over K
and f is the Hodge (hence absolutely Hodge) cycle over X obtained from the fiber of the Betti
realization 7pg. O

3.12  The descent of the realizations of 7w proven above now allows us to descend V¢ (L) over
Shpg.

For a prime £ # p, let Ly, C Hf(l’l) be the image of the idempotent operator 7ry. Then Ly is
a Qg-local system over Shy equipped with a non-degenerate pairing Ly x Ly — Q,. Over Shidc,
we have a canonical comparison isomorphism (respecting pairings)

Lp ®Qr — Lylsnge .-

For ¢ = p, as in §3.4, we can show that the image of H®(1’1) under 7, is a descent Lv of
the Zy,-local system LY, ® Zj, over Sh¥, #.c- It is equipped with a quadratic form with values in Q ,

and L, C Lp is recovered as the largest sub-local system whose pairing with LV takes values in
Z,,. Again, we have a canonical isometric comparison isomorphism

Lp® Zp — Lp’Sh%“,C-

Similarly, let Lgrg C H?é}@l) be the image of the idempotent operator mgrqg. By
construction, wgr g respects the Hodge filtration and is parallel for the Gauss-Manin connection.
Therefore, Lqr g inherits the connection as well as a filtration F'*Lgr g, and (L4r,Q, F*L4r,Q)
is a descent of (Lgr,c, F'*Lqgr,c) as a filtered vector bundle with flat connection.

3.13 Let H AT be the A?—Valued degree 1 étale cohomology of A '+ 1t can be viewed as a
descent of the analytlc local system Hp Rz, A There is a unique 1dempotent operator Typ o0

ng(l Y such that, for any prime £ # p, the ¢-adic component of TpP is mwy. Let LA? - pr(l )
f

f
be the image of Ty its £-adic component for any ¢ # p is simply Ly.
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Let I7. be the sub-sheaf of Ip(AIg}lSK,)\ghSK) consisting of C-equivariant, Z/2Z-graded
isomorphisms
n:H® A? S H AT

that carry L ® A% C H®L) A’} onto Ly C pr(l’l). Note that G(A") naturally acts on the
s

right on I7, via pre-composition, making it a torsor under G(AZ}). We have a natural map of

quotient sheaves
I2/KP — IP(A§  A§°)/KP.
A section of I,/ K? will be called a KP?-level structure.
PROPOSITION 3.14. There is a canonical KP-level structure [ng] € H°(Shg, I%/KP) such that

[n%5] is its image in IP(AIS<118K7 )‘ghsx)/lcp'

Proof. Consider the pro-étale cover Sk, — Si. Here,

Sk, = Im - Sp s
K'-pcKr

where K’ varies over the compact open sub-groups of KP. Then there is a canonical isomorphism
of Gs(A)-torsors:

IP(A,0) = Sk, x™ G5(AR) := (Sk, x Gs(AD))/KCp.
The canonical K-level structure [n] over Sk is now obtained from the tautological section n €
HO(Sk,), IP(A, V).
Similarly, the G(A?)—torsor I?, over Shi has a canonical reduction of structure group to a
KP-torsor pro-represented by the pro-finite cover Shg, — Shg, where

Shg, = l(gn SthK/,p.
K pCKP
7 .
Here, K P varies over the compact open sub-groups of KP.

Therefore, the image [ng] € H°(Shg, IZ,/KP) of the tautological section ng € H%(Shg,, I%)
is the KP-level structure we seek. a

3.15  Notice that, for any algebraic representation U of G, the G(A?)—torsor I7, allows us to
functorially descend the A?—adic local system Up ®A§Z over Shx. We take it to be the contraction
product:
G(AF
Uy = I B UA).

Similarly, the K,-torsor I, := Shgr — Shg used in the proof of (3.11) allows us to
functorially descend the p-adic sheaf Up ® Z,:

U, :=I,c x°®) U(z,).

We can also descend the filtered vector bundle with connection (Uqgr,c, F*Uqr,c) canonically
to a pair (Ugr,g, F*Uqr,g) over Shi. To do this, consider the functor Pyr g on Shg-schemes
that assigns to any Shy-scheme T the set

C-equivariant Z/2Z-graded ¢p-module isomorphisms
Paro(T) = §:H®gz, Or > Haror
carrying L ® O ¢ H®®2) © Or onto Lsror C H(%(Q@z)T
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The algebraic group Gg acts on PR, g by pre-composition. By working over Sh"}éc, we can show
that Pyr,g is a Gg-torsor over Shg. Observe that the connection on Hgr g equips Pqr,g with
an integrable connection. For any representation U as above, we can now take Uggr g to be the
contraction product:

UdR,@ = PdR,Q ><G([J2 U := (PdR,Q Xspec(@ U)/GQ.

Here, we are viewing U as a vector bundle over Spec Q, and G acts diagonally on the product
Par,go x U.

To construct the filtration F*Ugr @, we fix an isotropic line F’ 1, ¢ L. The stabilizer of this
line is a parabolic sub-group Py C Gg. Now, consider the sub-functor Pyr, p, C Pdar,q given by

PdR,PQ (T) = (f € 'PdR’Q(T) : E(FlL ® ﬁT) = FlLdRQ,T).

This is a Pg-torsor over Shg.

Choose any co-character u : G,, o — Fgp splitting the two-step filtration 0 C F 'Hg C Hg
with F1Hg = ker(F'Lg) (cf. 1.9). On all Gg-representations U, the action of u(G,,) produces
a grading and hence a filtration F'*Ug that is stabilized by FPp, and is independent of the choice
of . We now set

F.UdR’Q = PdR,PQ ><PQ Fu.

The pair (Ugr,g, F*Uqr,q) is the descent that we seek.

It is easy to check that when U = H (for which it is essentially tautological) or U = L, these
constructions agree with the ones already given above.

In sum, we have defined a functor Vg from the category of algebraic representations U of G
to the category of tuples

(U, (Up, ayp), (UA§,QA7), (Udr,0, F*Uqdr,0, 2dR)),

where Up is a local system over Shig¢; U, (respectively UA?) are locally constant sheaves over
Shx equipped with comparison isomorphisms:

ap : Up @ Zp = Uplsnzz,.,
. P =
OJAII} :Up ®Af — UA?’Sh?C-

Moreover, (Uqr,g, F*Uq4r,g) is a filtered vector bundle over Shi with integrable connection,
equipped with a parallel comparison isomorphism:

aqr : Up @ Ospgn . = Udar,glsnge .-

Finally, we require that (Up, a;ﬁ(F *Udr,glshaz ) is a variation of Hodge structures over Shig .
The functor V¢ from § 3.3 factors through Vg in the obvious way.

4. Integral canonical models I: the self-dual case
Throughout this section, we will assume that (L, Q) is a self-dual quadratic space over Z,).
4.1 We return now to the Kuga—Satake map Shx — Shx. We will always assume that KP

and P are chosen such that Shx admits the above description as a fine moduli scheme over Q
with integral model S over Z,).
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DEFINITION 4.2. A pro-scheme X over Z, satisfies the extension property if, for any regular,
locally healthy Z,-scheme S, any map S ® Q — X extends to a map S — X.

Let Shg, (respectively Shp, ,) be the pro-variety attached to the inverse system {Shg,x»}
(respectively {Shg, Kg}); here, KP varies over the compact open sub-groups of G(A?).

DEFINITION 4.3. A model .k, (respectively #f, ) for Shy, (respectively Shg, ,) over Z, is
an integral canonical model if it is regular, locally healthy and has the extension property. If
7k, 1s an integral canonical model for Shg,, and if K = K,K? is a compact open sub-group
in G(Ay), then we will call Sk = Sk»/KP the integral canonical model for Shx. A similar
convention will hold for quotients .y, := .7k, ,/ K} by compact open sub-groups K}y C GO(AI}).

For any compact open sub-group K’ C K, with K}, = K, set K’ = K' N G(Ay). Let Sk be
the normalization of the Zariski closure of Shg- in Sks. Consider the pro-scheme

pr = LiI_n yK”
K'CK

Here, K’ varies over compact open sub-groups of K with KI’) = K.
We have the following result, due (independently) to Kisin [Kis10, 2.3.8 and 3.4.14] and
Vasiu [Vas99].

THEOREM 4.4. The scheme Yk, is a smooth integral canonical model for Shg, over Zy.
Moreover, the finite Galois cover Shi, — Shg, , extends to a pro-finite Galois cover S, —
SKo,p» Where Sk, is a smooth integral canonical model for Sh, , over Z,). O

Though we will not present the proof in its entirety, we will need some of its ingredients,
which we describe now. They are extracted mainly from [Kis10].

4.5 By construction, the polarized abelian scheme (Agth, )\IS(EK) extends to a polarized abelian
scheme (AKS) \KS) gver .7k By the theory of Nerén models (cf. [FC90, 1.2.7]), AXS has a unique
7./27-grading and a C-action extending those on AIS<hSK.

For any Fj-scheme S, let (S/Zy)ais be the big crystalline site for S over Spec Z,, (cf. [BM90,
p. 178]) and let OF* be the structure sheaf of (S/Zj)cris. Recall that an object in (S/Zp)eris 18
a triple (U,T,~), where U is an S-scheme, U — T is a nilpotent thickening of Z,-schemes with
ideal of definition J(yy—.1) and v is a divided power structure on Jy. 1) that is compatible
with the natural divided power structure on the ideal p@r. For any sheaf G over (S/Z;)qis, and
any object (U,T,~) in (S/Zp)eris, we denote by Gr the restriction of G to the fppf site over 7.

Let Aﬁ?{ps be the fiber of AXS over Sk, Let Heis be the first crystalline cohomology of AIIF(pS
over Sk r,. This is a crystal of locally free @%ﬁ;FP—modules over (Skr,/Zp)eris- Let yK,ZI, be
the completion of .7k along its special fiber. We then have a natural identification

HdR’jK,zp - 1<1_111Hcris,fK7Z/pn
n

of coherent sheaves over jK,Zp- In other words, for any .#k-scheme T in which p is nilpotent,
we have a canonical identification of coherent sheaves

HdR‘T = Hcris,T-

The crystal H.s has more structure: it is an F-crystal. More precisely, let Fr be the absolute
Frobenius endomorphism on . r,. Then Fr* H.s is identified with the relative crystalline

790

https://doi.org/10.1112/50010437X1500740X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500740X

REGULAR INTEGRAL MODELS

cohomology of the Frobenius pull-back Fr* AIIF(pS, and the relative Frobenius map AIIF{pS — Fr* Aﬁs
induces a map of crystals

F :Fr* Hgis — Hgis.

If T is any .k ,-scheme, we get an induced map of coherent sheaves
F : " Hyr|r — Har|7-

The kernel of this map is precisely the Hodge filtration Fr* F1 Hyr|r C Fr* Hgg|7.

4.6  Suppose that we have a point s € S, (k), where k is a perfect field of characteristic p. Set
W = W(k); then the restriction He;s (respectively H®(1’1)) to (Speck/Zy)eris corresponds to

cris
the W-module HL. (AXS /W) (respectively End(HJ (AXS/W))). If & is the canonical Frobenius

lift on W, F induces a map
. *
F;:o Hcris,s - Hcris,s>

giving H s s the structure of an F-crystal over W. Conjugation by Fy induces an F-isocrystal
structure on s s[p~1] 20D,

PROPOSITION 4.7. Assume that W admits an embedding into C. Then there exists a canonical
F-invariant tensor meriss € Hgl(j ;,2)
closure E/E of E and any lift 5 € Sk (0g) of s, the following properties hold.

(i) Let sg € Shi(F) be the attached E-valued point. Under the Berthelot—-Ogus comparison

isomorphism

such that, given any finite extension E /Wy, an algebraic

HdR,éE E’ Hcris,s w E7
H®(272)

T4R,Q5, @ 1 Is carried to Teris,s € cris.s -

(ii) Let sz € Shi(E) be the attached E-valued point. The crystalline comparison
isomorphism

Hp,gﬁ ®ZP Beris — Hcris,s Qw Beris

respects grading, is C-equivariant and carries Tpis ® 1 0 Teris s ® 1.

(iii) There exists a C-equivariant isomorphism of Z/27Z-graded W -modules
H ®Z(p) w E) Hcris,s

carrying m to Teris s-

(iv) reris,s Is an idempotent projector on Hgi(s{’sl). Set

H®(1,1)

Lcrls,s = 1M Tcris,s C cris,s -

Then L s s is a self-dual quadratic space over W' that is isometric to L @ W.

(v) Set Lar s = Leris;s @ k; then the Hodge filtration F*Hqg s C Har, s is GSpin(Lqr,s)-split.
More precisely, there exists a canonical isotropic line F1Lqr s C Lar.s such that
p Y P ) )

F'Hyg s = ker(F'Lygr ¢) = im(F'LqR ).
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®(2 2)
SE .
Therefore, under the crystalline comparison isomorphism, it is carried to an F-invariant tensor

Teris,s € H?;l(ff)[p 1. In fact, Teris,s belongs to Hffl(szf) [Kis10, 1.3.6(1) and 1.4.3(1)]. We have
to show that it has the desired properties.
The comparison isomorphisms are functorial and are therefore C-equivariant and respect

gradings. The de Rham comparison isomorphism

Proof. Fix E£/Q, and s as in the proposition. Then m, g isa Galois-invariant tensor in H

H,s_ ®z, Bir = Har,s, ®F Bar

respects Z/27Z-grading, is C-equivariant and carries Tpsz @ 110 Tar,Q5, ® 1. This is a result of
Blasius and Wintenberger [Bla94], when Sg arises from a point valued in a number field. For the
generality we need, cf. [Mo098, 5.6.3].

The crystalline and de Rham comparison isomorphisms are compatible with the Berthelot—
Ogus isomorphism. This implies that the isomorphism in (i) carries mqr g3, tO Teriss- In
particular, (i) holds for all lifts s if and only if (ii) does. That (i) is true for all lifts follows
from a parallel transport argument; cf. the proof of [Kis10, 2.3.5].

Now, [Kis10, 1.4.3(3)] shows that there exists a C-equivariant Z/2Z-graded isomorphism

prgf Rz, W — Hpis s

carrying m, 5 t0 Weriss. The main input is (1.4), which shows that GSpin(L) is the point-wise
stabilizer in GL(H) of 7.
So, to show (iii), we only have to observe that there exists a C-equivariant graded
isomorphism
H @z, Zyp S5 H

P5E
carrying 7 to 7, 5. Indeed, we can fix an embedding o : E — C and identify H sy With the
Betti cohomology H Bo(sz) ® Zy,. Now the assertion is clear from the construction of the sheaf
Hp in §3.3.

Part (iv) is immediate from (iii), and the first assertion of (v) follows from [Kis10, 1.4.3(4)].
The second assertion of (v) follows from the discussion in § 1.9. Note that we are viewing Lqg s as

a sub-space of H ®( Y Via the canonical identification H cris,s @k = Hggr s, and we are identifying
GSpin(Lgg,s) w1th the sub-group of C-equivariant, graded isomorphisms of Hgg s, which preserve
L4r s under conjugation. O

4.8  Suppose that we are given a lift 5 € .7 (W). This equips Heyis s with a filtration Fchris,sf
it is the pull-back of the Hodge filtration FlHng C Hgg s This filtration is strongly divisible.
That is, we have

FS(U*(pilFchris,s + Hcris,s)) = Hcris,s-

This is equivalent to the assertion that Fr* F' 1HdR75 is the kernel of the mod-p Frobenius
Fr* HdRs g HdRs

If we now endow HZ"Y with its induced filtration and HZ" )[p 1 with the conjugation

CrlS S CI‘IS S
action of F, then we again obtain a strongly divisible module, in the sense that the following

identity holds (cf. [Laf80, 4.2]):

(1,1 ® ® ®(1,1
FS( ( 1F1Hcr1(ss) FOHcrl(ss) + HCI"I(SS))) Hcrl(ss)‘ (481)
Applying the F-equivariant, filtration preserving projector meis,s to (4.8.1) now gives us
FS(U* (pilFchris,s + FOLcris,s +chris,s)) - Lcris,s- (4-8-2)
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4.9  Choose any co-character g : Gy, ® k — GSpin(Lqgg,s) splitting the Hodge filtration and
let i : Gy, @ W — GSpin(Leis s) be any lift of 119. It determines a lift Flﬂcris,s C H s s of the
Hodge filtration as well as a splitting Heriss = Fchri&s ® Fchris,s. Since p factors through
GSpin(Leyis,s), it induces a splitting
1 0 Tl
Lcris,s =F Lcris,s @®©L o F Lcris,87

cris, s

where F 1LcriS,3 C Leis s is an isotropic line lifting F' 1LdR, s- We again have
Fchris,s = ker(Fchris,s) == im(Fchris,s)-

As usual, we are viewing Lgs s as a space of endomorphisms of H g .
Let U C GL(H;is,s) be the opposite unipotent attached to this splitting: namely, it is the

unipotent radical of the parabolic sub-group attached to the filtration flﬂcrisys. Its intersection
Ug with GSpin(Leis,s) is again the unipotent radical of a parabolic sub-group of GSpin(Lcyis,s)-
Let U (respectively Ug) be the completion of U (respectively Ug) along the identity section.
Let R (respectively R¢) be the ring of formal functions on U (respectively Ug); then we have a
surjection R — R¢g of formally smooth W-algebras.
Set Hr = His s @w R, and equip it with the constant filtration arising from the filtration
F 1Hcris,s- Choose compatible isomorphisms

RS Wlt,....tr]], Ra > Wit tal]

such that the identity sections are identified with the maps t; — 0. Equip R with the Frobenius
lift ¢ : t; — 7. Equip Hp with the map

* k Fs®1
Fr:p"Hp=0 Hcris,s Qw R —— Hcris,s Qw R=Hp i) Hp,

where g € U (R) is the tautological element.

By [Moo098, Theorem 4.4], there is a unique topologically quasi-nilpotent integrable
connection Vi : Hgp — Hp ®p Q}%/W for which Fp is parallel. The tuple (Hg, Fr,VR)
determines, and is determined by, a unique F-crystal over (Spec(R ® Fp)/Zp)cris, which
we will denote by H. The evaluation of H on the pro-nilpotent divided power thickening
Spec(R ® F,) — Spf R is identified with Hp. Similarly, a change of scalars along R — Rg
gives us a tuple (Hg,,, Fr,, VRg, F1HRG) over R¢g. This corresponds to a unique F-crystal Hg
over (Spec(Rg ® IFp)/Zy) cris-

Observe that Hg, = His s @w R is equipped with the constant tensor g, = meris s @1 €

2,2 . . 11
Hgé 2 We can view TR, as an idempotent operator on ch(; 1)

is a direct summand of Hgg’l), which can be identified with Lis s ® Rg.

. Write Lg,, for its image: this

ProrosiTION 4.10.

(i) The tensor wg, € H§é2’2) is parallel, lies in FOHgC(fQ)

(ii) The direct summand Lg, C Hgg’l) is stable under the connection Vg, and Lg,[p~'] is

stable under the conjugation action of Fg,. Furthermore, Lg, with its induced filtration
F*Lg, is strongly divisible:

and is F-invariant in H%S’Q) [p’l].

Fr.(¢p*(p"'F'Lg, + F°Lg, + pLr.)) = Lz,
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Proof. Part (i) is essentially by construction; cf. [Moo98, 4.8]. Part (ii) also follows by
construction: we can identify (Lg,,F*Lpg,) with (Leyis s, F'*Laiss) @w Ra, so that Fg, is
identified with g o (Fs ® 1). Here, g € Ug(R¢q) is the tautological element. The result now is a
consequence of (4.8.2). O

4.11 Now assume that k& = E,, so that s is a closed point. Set R = &\yK’s and let (78 be

the completion of S, at s. Let U = Spf R’ be the universal deformation space for the abelian
variety AES; then U, is naturally identified with a closed formal sub-scheme of U’. Restricting
H.,is to Spec(R' ® FF,) gives rise to an F-crystal H' over (Spec(R' ® F,)/Zy)cris. Evaluating
H' along the pro-nilpotent divided power thickening Spec(R' ® F),) < Spf(R’) gives us a finite
free R'-module H g/, which can be identified with the evaluation of Hgg on Spec R’. The Hodge
filtration on Hgg equips Hp with a direct summand F'Hp C Hp.

The W-algebra R admits the identity section j : R — W with ¢; — 0 for all i. Also, by
Grothendieck—Messing theory [Mes72, V.1.6], the lift Fchris’s C Hjs s corresponds to a lift 5 :

Spt W — Spf(R’) of s. In fact, we have a canonical isomorphism of W-modules Hgg 3 = H. s s
that identifies F'Hgg 5 with F!Heys 5. Write j/ : R — W for the section corresponding to the
lift 3.

By construction, we now have canonical isomorphisms ¢y : Hr ®pg;j W — H,js s and L6 :
HR’ ®R’,j’ W — Hcris,s-
THEOREM 4.12.

(i) There exists an isomorphism (necessarily unique) of augmented W-algebras f : (R, j) =
(R',j") with the following property: let f* : (Spec(R®TF,)/Zp)cris = (Spec(R' @ Fy)/Zyp) cris
be the induced map on crystalline sites. Then there exists an isomorphism (necessarily
unique) of F-crystals o : f*H = H' such that:

(a) the induced isomorphism ag : HrR ®@p s R = Hp carries F'Hp ®g,s R onto F1Hp;
(b) the induced isomorphism j*agr : Hr @ ; W = Hp ®Qpr y W is equal to (1)1 o 1.

(ii) The induced isomorphism Spf(f) : U' S U carries U, onto Ug.
(ili) The restriction of the tensor w4g g to Spec(Rs ® Q) extends to a parallel section

T4R,R, € HO(Spec Ry, FOH(?SQ))V:O.

. . 1,1
T4R,R, 1S an idempotent operator on H?PE ’ )|Spec R~

Proof. Part (i) is due to Faltings; cf. [Fal99, § 7]. Part (ii) is shown during the course of the proof
of [Kis10, 2.3.5].

Part (iii) is a special case of [Kis10, 2.3.9]. We sketch the proof: from f and ag, we obtain
isomorphisms fg : Rg = R, and Rt Hp, ®pq, 1o Rs = Hgg r,. From (4.10), we then obtain
a parallel tensor:

arg(Tr.) € H(Spec Ry, FOH%LZ%)V:O.

By construction, the evaluation of this tensor along the map Ry - W —> Wq agrees with
Spec(Rs®Q) are both parallel tensors in

that of wgr . Therefore, ag, (WRG)|SpeC(RS®Q) and TJR,Q

H(?szz)‘spec( R.0Q) that agree at a point. They must therefore agree everywhere. Thus, mqr g, =
AR (TR, ) is the extension we seek in (iii). O
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COROLLARY 4.13.

(i) mqr,@ extends to a parallel section mqr of FOH(%Q’Q) over .Yi. Moreover, mqr Iis an
idempotent projector on Hff}gl’l), whose image is a vector sub-bundle Lqr extending Lyr .

(ii) Consider the functor Pqr on .k -schemes given by

C-equivariant Z/27-graded Op-module isomorphisms
PdR(T) = & H ®Z<p) Or — HdR,T
carrying L ® Op C H®U) @ 0 onto Lag C HotV

Then Pgr is a G-torsor over .k with generic fiber Pyr q.

Proof. We only need to prove these properties over the formal completion (75 at a point s €
Sk (Fp). Part (i) is immediate from (4.12)(iii).

To prove (ii), it is enough to show that, if we view Spec Rg as an .#k-scheme via the maps
Spec R — Spec Ry — Sk of (4.12), the set Pqr(Spec Rg) is non-empty.

In other words, we have to show that there exists a C-equiviariant, graded isomorphism of
Ra-modules H @z, Ra = Hp,, carrying L ® Rg onto Lp,, := im(mp,). This is immediate
from (4.7)(iii) and the very construction of Hp,,. O

4.14  Since Sk z, is smooth over Z,, as a crystal, Hes is determined by Hggr equipped

Y?K,Zp
with its Gauss—Manin connection. In particular, evaluation along the formal PD thickening

yKJFp — yKZp gives us a canonical isomorphism

HO((yK,Fp/Zp)criSa H®

cris

= 170/ V=0
) = H( Sk, Hog) =",
Therefore, there exists a unique global section

Teris € HO((yK,IFp/Zp)cri& H®(2’2))7

cris

whose evaluation at Sk, — fK,ZP is the restriction of the parallel section wqr € H 0(5”;@
H™?).

Again, we can view mis as an idempotent endomorphism of the crystal
denote by Ls the image of mepis in H gi(sl’l). If s > yK,Fp is a point valued in an algebraically
closed field k(s), then the restriction of mreyis to (Speck(s)/Zy)cris determines and is determined
by its evaluation along the formal thickening Spec k(s) < Spf W (k(s)).

H®(1,1)

s and we

Suppose that we have a lift 5 € .7x (W) of s. Then there is a natural isomorphism Hyis =
H g 5. By the definition of s, its evaluation over Spec k(s) < Spf W (k(s)) must map to the
tensor wyr 3 € H(ﬁggg) under this isomorphism. In particular, we find that this evaluation is
exactly the tensor 7r’cris75 defined in (4.7). Similarly, the restriction of Leis to (Speck(s)/Zy)cris

determines and is determined by the F-isocrystal Les s seen in loc. cit.

4.15 The Gauss—Manin connection on H (%2,2) restricts to a connection on Lggr. The filtration
F*Lgr on Lgg satisfies Griffith’s transversality. That is, for any integer i, we have

V(F'Lar) C F"'Lar ® Qi 7, -
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Indeed, this can be checked over C, where it holds by construction. Thus, we obtain &, -linear
Kodaira—Spencer maps:

grh Lar — g7 Lar ® Uy gz, (4.15.1)
F'Lar — gry Lar ® Q7 - (4.15.2)

PROPOSITION 4.16. The map in (4.15.1) is an isomorphism and the map in (4.15.2) is injective
with image a local direct summand of the right-hand side.

Proof. Both statements can be studied over the complete local ring Rs at a point s € .Zk (F,).
As in the proof of (4.13), we can work instead over the ring R¢, and study the Kodaira—Spencer
maps induced by Vg, :

gr% Lg, — grgl Lk, ® QJIQG/Wﬂ FlLRG - gr% Lg, ® Q}Rc/W'

We can identify Q}%G W canonically with Hom(Lie Ug, R¢), and so we can rewrite these maps
equivalently as

LieUg ® Rg — Hom(grOF Lp,, gr;l Lr.), LieUg® Rg — Hom(FlLRG, gr% Lg,).

The proposition now amounts to showing that both of these maps are isomorphisms. By
Nakayama’s lemma, it suffices to do so after a change of scalars along the augmentation map
7 : Rg — W. But then we obtain maps:

Lie Ug — Hom(gr% Leris s, 817" Lexis,s), Lie Ug — Hom(F! Legis s, 81'% Lexis,s)-

We claim that the second of these maps is (up to sign) the natural map obtained by the action
of Ug on Leis s, and that the first is obtained from the second via the self-duality of Less. The
proposition will follow immediately from this claim.

Consider instead the Kodaira-Spencer map on Hp,,: F'H R —> gr}J Hp, ® Q}{G W which
we can view as a map:

LieUg ® Rg — Hom(F'Hg,,grp Hr,,). (4.16.1)
Tensoring (4.16.1) along j gives us
LieUg — Hom(Fchriw, gr}; Hs s).

To prove our claim, it is enough to show that, up to sign, this map is identified with the canonical
inclusion Lie Ug — Hom(FlHCm,s7 gr}; H_s ) induced by the action of Ug on H s s. This last
assertion can be extracted from [Moo98, 4.5]; cf. also [MaS11, 1.4.2.2(3)]. O

4.17 Over .Yk, we now have two tautological line bundles: first, we have the Hodge or
canonical bundle w’® attached to the top exterior power of the sheaf of differentials ths I
Second, we have the line bundle F!'Lgg. These are closely related, as the next result shows.
We will need a little preparation. Fix an isotropic line F1L C L, and let P C G be the
parabolic sub-group stabilizing it. Let F'H = ker(F'L) C H be the corresponding isotropic
sub-space of H. The G-torsor Pggr introduced in (4.13)(ii) has a natural reduction of structure
group to a P-torsor Pyr, p. Indeed, we can take Pqr p to be the sub-functor of Pyqr such that,

for any k-scheme T, we have

Par,p(T) = {§ € Par(T) : {(F'H ® Or) = F'Har 1}
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The proof of loc. cit. shows that this is indeed a P-torsor. Given such a torsor, one immediately
gets a functor from Z,-representations of the group scheme P to vector bundles over . More
precisely, given a Z,-representation U of P, we can view it as a trivial vector bundle over
Spec Z,y with a P-action, and then take the corresponding .-vector bundle to be the quotient
(Par.,P XSpec Zy) U)/P, where P acts diagonally.

PROPOSITION 4.18. There exists a canonical isomorphism of line bundles:
~ n+1
wKS,®2 = ((FlLdR)(_l))®2 _

Here, the (—1) denotes the twist by the (trivial) line bundle attached to the spinor character
v: P — G,,. In particular, F'Lgy is a relatively ample line bundle for .k over Lp)-

Proof. This follows from an argument of Maulik [Maul4, §5]. The main point is that both
bundles involved are canonical extensions over the integral canonical model of automorphic line
bundles.

The line bundle w3 is attached via Pgr_p to the P-representation det(F1H), and F'Lqg(—1)
is the line bundle attached to the representation F'L(v).

The left multiplication map L ® H — H induces an isomorphism of P-representations

ot Lo F1H S gl H.
Therefore, we have a canonical isomorphism of P-representations
det(H) > det(F'H) ® det(gr%h H) = det(F'H)®? © (grp! L)
Since (gr}_;,1 L)V = F'L, this gives us a canonical isomorphism of P-representations
det(FLH)®2 5 (F'L)®2" @ det(H).

On the other hand, the symplectic form s on H induces a canonical isomorphism of P-
representations

ol HS (F'H) (v).
This shows that we have X

det(H) = Zgy ("),

completing the proof of the claimed isomorphism.
The last statement of the lemma follows, since it is known that the bundle @3 is relatively
ample; cf. for example [Lan08, 7.2.4.1(2)]. O

S

4.19 Fix a perfect field k of characteristic p as usual, and set W = W (k). Fix a point
s € Sk (k), and consider the Frobenius map F : Fr* Hqr s — Hggs: its image is a sub-space
C!lc Hggr s. We claim that there exists an isotropic line IV, 1c Lgr s such that, in the notation
of §1.9, C! = ker(ND).

Indeed, fix a lift 5 € .#K (W), and let p be a co-character of GSpin(Lqgrs) that splits the
Hodge filtration on Hgr ;. We obtain a decomposition into weight spaces for p:

Hggrs = F'Hag s ® Hig ;.
Lars = F'Lars ® Lig s ® Lgﬁ,g-
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By strong divisibility §4.8, C! is simply the image in Lar s of Fs(c*H3g ,). Now, L3 ; is

an isotropic line satisfying
-1 0
ker(LdR,g) = HdR,g-

Moreover, by (4.8.2), Fj (po*Lgﬁg) is an isotropic line in Lgg 3. One can now easily check
that the image of this line in Lgg , is our desired IV, 31
LEMMA 4.20. With the notation as above, let A C Lgg 3 be a direct summand satisfying Fy(A) =
A. Let A be the image of A in Lqr . Then N, 51 is contained in A only if FlLdR, s Is also contained
in A.
Proof. Choose a generator w for LgFl{ s then, by the construction above, the image of Fy(pw) in

Lgg s is a generator for IV, L. Therefore, if N} is contained in A, then we can find v € A such
that Fy(pw) — v € pLgr 3.
But, by our hypothesis, v = F(v') for v' € A. Then, by (4.8.2), we must have

pw — D= FlLng —l—pLdR’g.

This implies that FlLdRﬁ is generated by the image of v/ € A. |

5. Special endomorphisms

We will now drop the self-duality assumption on (L, Q) until further notice.

5.1  Let T be an Shg c-scheme; then functoriality of cohomology gives us a natural map
End(A¥S),) - HO(T™, H"Y).

DEFINITION 5.2. An endomorphism f € End(A?S)(p) is special if it gives rise to a section of

Ly C Hg(l’l) under the above map. It follows from the definition that f is special if and only
if its fiber f5 at every point s — T is special. In fact, it is enough to require this for one point s
in each connected component of 12",

Let T be any Shg-scheme; then, for any prime ¢, we have a natural map

End(A¥S) ) — HO(T, HP"Y).

(»

DEFINITION 5.3. Fix a prime ¢ # p. An endomorphism f € End(A%s)(p) is £-special if it gives

(1,1)

rise to a section of L, C H, gz) under the above map. We say that f is p-special if it gives rise

to a section of L, C Hz? D ynder the corresponding p-adic realization map.
For any prime ¢, we denote the space of /-special endomorphisms by Lg(A%S).

One immediately sees that f is f-special if and only if, in every connected component of T,
there exists a point s such that the fiber fs at s is f-special. In particular, /-specialness is a
condition that can be checked at geometric points.

LEMMA 5.4. Suppose that T is an Shi-scheme and that f € End(A%S)(p). Then the following
are equivalent:

(i) f is L-special for all primes ¢;
(ii) f is ¢-special for some prime ¢;
(iii) the restriction of f over T ®q C is special.
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Proof. Let s — T be any C-valued point. Then it is clear from the definitions that f; is special
if and only if it is ¢-special for some (and hence any) prime ¢. Using this, the lemma easily
follows. O

DEFINITION 5.5. Let T and f be as above. Then we say that f is special if it satisfies any of the
equivalent conditions of (5.4). We denote the space of special endomorphisms of AXS by L(AXS).

Over C, L(AXS) can be described purely Hodge theoretically, as follows.
PROPOSITION 5.6. If s € Shi(C), then

L(A®S) = Lpsn (Lps®C)°0.
In particular, for any Shg-scheme T, rkz(m L(A%S) < n.

Proof. This is clear from the definitions. O

5.7 We now assume that (L, Q) is self-dual, and turn to the investigation of specialness
over the integral canonical model .#kx. For any .#k-scheme T and any ¢ # p, the definition of
an f-special endomorphism carries over directly from (5.3). We will now develop a version of
p-specialness that works also over the integral model.

DEFINITION 5.8. Suppose that s — Sk, is a k-valued point. Then we obtain a map
End(A5%)(,) — End(Hesis,s)-

An endomorphism f € End(AES)(p) is p-special if it gives rise to an element of Lcyis s under the

above map.

LEMMA 5.9. Let T be a .Yk-scheme in which p is locally nilpotent, and suppose that we have
fe End(A%s)(p). Then the following are equivalent.

(i) For every point s — T valued in a perfect field, the fiber f, € End(AES)(p) is p-special.

(ii) In every connected component of T, there exists a point s valued in a perfect field such
that the fiber f; is p-special.

Proof. This is an immediate consequence of the definition, the fact that the endomorphism

scheme End(AKS)(p) of AKS is locally noetherian and (5.10) below, applied to the crystal
HEY /L. O

cris

LEMMA 5.10. Suppose that T is a connected, locally noetherian IF,-scheme, and that M is a
crystal of vector bundles over T' equipped with a global section e € I'((T'/Zy)cis, M ). Suppose
that, for some point x — T', the induced global section

ez € I'((Speck(x)/Zp)cris, M |2)
vanishes. Then, for every point y — T, the induced global section

ey € D((Speck(y)/Zp)eris, M1y)
also vanishes.

Proof. Since T is connected and locally noetherian, the lemma will follow if we can prove the
following claim.
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CLAIM. Suppose that x and y are points of T such that x is a specialization of y, and such
that the prime ideal corresponding to y has height 1 in Or,; then e, vanishes if and only if e,
vanishes.

Let 2Pt be the point attached to a perfect closure of k(z). By [BM90, 1.3.5], e, vanishes if
and only if e perr vanishes. So, we can assume that k = k(z) is perfect.

Let p, C Or, be the prime ideal corresponding to y, and let R be the completion of the
normalization of Or,/p,. By our hypotheses, R is an equicharacteristic complete DVR with
residue field k, and so is isomorphic to k[|t|]. By pulling M back to Spec R, we are further
reduced to the situation where T' = Spec k[|t|], x = Speck and y = Spec k((¢)).

Let M be the evaluation of M along the formal divided power thickening Speckl[|t|] —
Spf W(|t|]: it is equipped with a flat, topologically quasi-nilpotent connection V : M — M ®
Q‘I,V( IR In other words, we have a derivation D : M — M over d/dt such that a sufficiently large
iteration of D carries M into pM. The crystal M is determined by the finite free W (k)[|¢|]-module
M and the connection V. In particular, the global sections of M are identified with the module
of horizontal elements M Y=0.

The corresponding crystal over z is the one attached to the W (k)-module My = M/tM. The
restriction from global sections over T to global sections over x is just the reduction-mod-¢ map
MV=0 - M. It is easy to see that this map is injective: indeed, suppose that we have m € tM
such that D(m) = 0, and suppose that n € Z~ is the largest integer such that m € t" M (such
an n exists if and only if m is non-zero). Write m = ¢"m/ for some m’ ¢ tM. We then have

0= D(m) = D(t"m/) = nt"'m/ +t"D(m/).

Dividing by #"~!, this gives us nm/ € tM, which implies that m’ € tM, contradicting our
assumption that m is non-zero. So, we find that a global section of a crystal over T is 0 precisely
if it restricts to 0 over .

By [BM90, 1.3.5] again, restriction from global sections over T' to global sections over y is
injective. Therefore, a global section of a crystal over T is 0 precisely when it restricts to 0 over y.
This proves the claim and the lemma. O

DEFINITION 5.11. Let T be an .#k-scheme and let f € End(A%S)(p). If pOr = 0, we will say
that f is p-special if it satisfies the equivalent conditions of (5.9). In general, we will say that f
is p-special if its restrictions to T'® [F,, and T'® Q are both p-special.

We will say that f is special if it is ¢-special for every prime /.

Given any prime ¢, write Ly(AXS) for the space of ¢-special endomorphisms, and L(AXS) for
the space of special endomorphisms. By definition, we have

L(AT®) = (7] Le(AF®).

¢ prime

LEMMA 5.12. The space L(AXS) c End(A%S)(p) is point-wise fixed by the Rosati involution

)\KS

induced from the polarization . In particular, f — f o f defines a positive definite Z,)-

quadratic form on L(AXS).

Proof. Consider the G-equivariant symplectic pairing 15 : Hg ® Hg — Q(v): by construction,
for any prime ¢ # p, the corresponding pairing of ¢-adic sheaves Hy @ Hy — @Z(_l) is, up to
scalars, identified with the polarization pairing induced from A\XS.
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The character 5 gives rise to an isomorphism of G-representations A(1;) : Hg — Hg(v). I
we identify H®(LD with End(H), we now obtain a G-equivariant involution:

is : Ho"Y — HGMY,
f= Maps) ™o fY(v) 0 Als),
Further, for every v € Lg, v* = v € Cg. Therefore, for z1, 22 € Hg, we have
Y5(vz1, 29) = Trd(vz1025) = Trd(21025v) = Trd(z10(v22)*) = ¥s(21,v22).

This shows that i5(v) = v for all v € Lg.

For any prime ¢ # p, the G-equivariant map ¢5 induces a map of sheaves over Shy (and hence
TK): s Hf)(l’l) — Hf(l’l). By construction, 5|, = 1.

Now, the restriction of i5 to the f-adic realization of any endomorphism of A¥S is exactly
the Rosati involution arising from A\XS. This gives us the first assertion. The second follows from
the positivity of the Rosati involution. O

We have the following result.

LEMMA 5.13. Let T be an .k -scheme such that every generic point of T®IF), is the specialization
of a point in T'® Q. Then an endomorphism f € End(A%S)(p) is p-special over T'® Q if and only
if it is p-special over T'® ). In particular, in this situation, if f is p-special, then it is in fact
special.

Proof. First, assume that T" = Spec O, for some complete discrete valuation ring Op with
characteristic 0 fraction field F and characteristic p perfect residue field k. Let s = Speck,
and let 77 = Spec E, for some algebraic closure E/E. Then the result holds because the p-adic
comparison isomorphism for A%s carries Ly 5 ® Beris into Leyis,s @ Beris (cf. (4.7)(ii)).

For general T, in every connected component of 7' ® IF,,, we can find a point s valued in
an algebraically closed field that is the specialization of a point valued in a complete discrete
valuation field of mixed characteristic (0,p). Now we can apply the result of the previous
paragraph to s.

The last assertion follows because F-specialness is independent of the prime ¢ in
characteristic 0. O

5.14 Fix a point z¢g € ki (k), where, as always, k is a perfect field of characteristic p. Set
W = W (k), and let R;, be the complete local ring of .k w at zo; let m C R, be its maximal
ideal. Also, let U= Spf Rz, be the corresponding formal scheme over W.

Let A be a quadratic space over Zy); we assume that A is finite free over Z,). Suppose that
we have an isometric map ¢o : Ag — L(AEOS). We will consider the deformation functor Def(
defined as follows: for any B € Artyy, we have

Def (3,0 (B) = {(z,t) : x € U(B),v: Ay — L(AES) isometric map lifting 19}

LIJ(),Lo)v

Here, Artyy is the category of local artinian W-algebras with residue field k.

If A = {v} consists of a single element, and if 1o(v) = fo, we will write Def ,, 1) for the
corresponding deformation functor.

The functor Def,, ) is represented by a closed formal sub-scheme ﬁLO C U. This can be
seen from the fact that the endomorphism scheme of an abelian scheme is representable and
unramified over the base. Again, if A = {v} is a singleton with ¢o(v) = fo, we will write Uy, for
the corresponding formal sub-scheme.
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5.15 Suppose that we have a surjection & — € in Arty, whose kernel I admits nilpotent
divided powers. Suppose also that we have (z,7) € ﬁLO (0) giving rise to an abelian scheme AI%S
over 0 equipped with an isometric map 7 : A — L(AXS) lifting ¢o.

Let Hy be the O-module obtained by evaluating Hcris,specﬁ on Spec, and let Ly C
End(Hy) be the corresponding quadratic space. Denote by H and L, the induced modules
over O; then H; = Hgygrz is equipped with its Hodge filtration F 1H5.

The crystalline realization L(A%S) — L composed with 7 gives us a map ¢ty : A - Lg. The
image of 15(A) in L preserves the Hodge filtration F' H and so lands in F°L.

By Serre-Tate (cf. [Kat81, 1.2.1]) and Grothendieck—Messing (cf. [Mes72, V.1.6]), we have a
natural bijection:

Isomorphism classes of ~ (Direct summands F'Hy C Hy
abelian schemes over ¢ lifting A%(S lifting FIHE '

This works as follows: for any lift A, of AKS, we have a canonical identification Hlz(A4,/0) = Hg
that carries the Hodge filtration on Hlg(A,/0) to the corresponding summand F!Hy C Hy.

PROPOSITION 5.16. The bijection above induces further bijections:

(Lifts T E ﬁ(ﬁ’) of E) = (Isotropic lines F'L, C Ly lifting FlLﬁ),

Isotropic lines F1Ls C Ly lifting F ILE
and orthogonal to the sub-space tg(A) /-

~

(Lifts (,0) € Uy (0) of (z,7)) — (

In particular, both of the sets in the latter bijection are empty, unless F' ng lies in the image in
L of the sub-module 15(A)* C L.

Proof. In the first of the claimed bijections, there is a natural map in one direction: given a lift
x € U(0) and the identification Lqr , = L4, the Hodge filtration F 1LdR7$ gives us an isotropic
line F'Ly lifting F 'L. Further, an endomorphism f € L(AES) lifts to an endomorphism of
AKS if and only if its crystalline realization fs € Ly preserves the Hodge filtration F'! H . Since
F'H, is the kernel of any generator of F' L, it is easy to see that fs preserves F'Hy if and
only if it is orthogonal to F1L,.

So, it is enough to show that the first map is a bijection. For this, we can work successively
with the thickenings ¢ /I'=1 — @ /1" (where Il denotes the rth-divided power of I), and
assume that I2 = 0. If my C € is the maximal ideal, we can even work successively with the
thickenings &/m’; 1T — & /m?,I, and further assume that ms 7 = 0. In this case, we find that both
sides of the map in question are vector spaces over k of the same dimension, namely n - dimyg, 1,
and that the map is a map of k-vector spaces. Since it is clearly injective, we see that the map
must in fact be a bijection.

As for the final assertion, we have only included it to highlight the fact that, when tg(A) is
not a direct summand of L, the formation of its orthogonal complement is not well behaved
with respect to arbitrary base change. So, even though F' lLﬁ is orthogonal to t(A), it need not
be in the image of the orthogonal complement of ¢z (A). O

COROLLARY 5.17. Let the notation be as above. Suppose that we have a lift x € ﬁ(ﬁ) of T
corresponding to an isotropic line F'L, C L. Let J C O be the smallest ideal such that T lifts
to an isometric map A — L(AXS®, (0/J)). Then J is generated by the elements [i(v), w], where
v varies over the elements of A and w is any basis element of F'L. In particular, ao cUis
cut out by r = rank ¢o(A) equations.
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Proof. The assertion about J is immediate.

Set R = 0 im0 Let I C R be the ideal defining UL0 Applying the first assertion with
0 = R/mI and O = k shows that I/ml is generated by 7 elements. Now the last assertion
follows from Nakayama’s lemma. O

5.18 Assume that g maps A injectively onto a direct summand of L(A?OS). Let tqr : A®R,, —
Lar,r,, be the de Rham realization of the universal isometry ¢ : A — L(AKS|[7 ): it factors
)

through F OLdR’ R, - Write Aqr for the image of this map, and let Aqr be the image of Agg in

grOF LdR, Ry-
The Kodaira—Spencer map over R restricts to a map

gtr Lar,r,, = &7 Larr, ® Qi -
Since Agr is generated by sections that are parallel for the connection, this map factors as

0
gy Lar,r,,

-1 Ol
Ao — gty Lar.r, @ Qp, w- (5.18.1)

As a direct consequence of (5.16) (use & = k[e] and & = k), we have the following result.

COROLLARY 5.19. The formal scheme (ZO is formally smooth over W if and only if Aggr
maps isomorphically onto Agr. In this case, the Kodaira—Spencer map in (5.18.1) is an
isomorphism. O

5.20  Assume that A = {v} is a singleton with (o(v) = fo # 0. For simplicity, set R = Ry,
let Iy, C R be the ideal defining ﬁfo C U and set R; = R/Iy,, so that ﬁfo = Spf Ry,. It follows
from (5.17) that Iy, is principal, generated by a single element ay,. Let fo.4r € Lar,q, be the de
Rham realization of fy. Most of the following result is essentially a retread of [Del81, Proposition
1.5].

PROPOSITION 5.21.

(i) ﬁfo is flat over Zy; that is, p{ aj,;
(ii) if foar # 0 and vp(fo o fo) # 1, then Uy, is formally smooth.

Proof. For the first statement, we use the argument from the proof of [Del81, 1.6]. As in
loc. cit., we reduce immediately to the following assertion: fy does not propagate to a special
endomorphism of ZII%%FP. Suppose that such a propagation did exist; then we can consider its
crystalline realization fgr € Lqr,g. Choose k € Z>o minimal with respect to the condition that
p~ ¥ fr belongs to Lyr r-

Fix a Frobenius lift ¢ : R — R; this, combined with the F-crystal structure on Hgyg g, endows
Lgg, r[p~!] with a @-semi-linear Frobenius endomorphism F. Now, F(fr) = fr, which implies
that F(p~*fgr) = p~*fr. By strong divisibility (4.10)(ii), p~*fg lies in FLar r + pLar.R-
In particular, the image fr of p~*fr in Lgg ,R@F, 1S a non-zero horizontal element that lies in
FOLgr, rer,-

But (4.16) shows that the connection on L4r rer, induces an R-linear Kodaira—Spencer
isomorphism

0 = —1 Al
grr LdR7R®]Fp — 8'p LdR,R@IFp & QR@IFP/k'
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This shows that fr must actually lie in F'Lgg_ ReF,- But once again the connection on Lqr reF,
sets up an R-linear embedding:

1 0 ol
F" Lar,reF, = 8'F Lar,rew, @ Qpgp /i

This shows that fr = 0, which is a contradiction.
We move on to (ii): since it is defined by a single equation within the formally smooth formal
scheme U, Uy, is formally smooth precisely when the map on tangent spaces

~

U, (k[e]) — U(k[e])

is not bijective.

Therefore, by applying (5.16) with & = kle], 0 = k and A = {v}, with o(v) = fo, we see that
U f, fails to be formally smooth precisely when every isotropic lift Fl(LdR,gc0 ® kle]) of F 1LdR7x0
is orthogonal to foqr. It is easy to check that this can happen if and only if FlLdR’gEO contains

Jo,dr-

Suppose therefore that fy qr is contained in F 1LdR7xO. Choose any isotropic line F 1Lcris7x0 -
Ly 1, lifting FlLdRJO. If focris € Leris,eo is the crystalline realization of fy, then Fchrim0 is
generated by an element w of the form fq cris + pv for some v € Leyis 2, We have

w—pv = fo.cris = F(fo,eris) = F(w) — pF(v). (5.21.1)

By strong admissibility of Leyis ., we have F'(w) € pLeyis z,- This shows that
1 1
F(U) = BF(w) +v— Ew cp Lcris,xo\Lcris,xO- (5212)

Applying strong admissibility once again, we conclude that v ¢ FOLCMM0 + pLcris zy; here,
FOLcriS,m0 = (Fchris,mo)L. In particular, [fo cris, v] belongs to W*.
We now have

0 = [fo,cris + P, focris + V] = [focris, focris] + 2p[fo.eris, v] + p*[v, 0], (5.21.3)
Since [fo,cris; v] is a unit, this implies that v,(fo o fo) = 1. O
COROLLARY 5.22. For every .Yk-scheme T" and every prime £, we have
LP(A¥S) = Lg(A?S)_
In particular, L(AXS) = L,(AKS).

Proof. Tt follows from the definitions that it suffices to prove the corollary when T is a point
zo : Speck — Sk If fo € Ly(AED), then, by (5.21), fjfo is flat. This implies that there exists
a finite extension E/Wq and a lift « : Spec Op — K of z¢ such that fy lifts to a special
endomorphism f of AXS. Now (5.13) shows that f, and hence fo, is £-special for every £. a

Remark 5.23. From now on, we will refer to p-special endomorphisms simply as special
endomorphisms.
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5.24 The special endomorphisms are, in a precise sense, objects defined over the integral
model .“k, of the orthogonal Shimura variety Shg,. Let A(K) be as in §3.2: it is the Galois
group of the finite étale cover S — Sk,. Given [z] € A(K) attached to an element z € A?’X,
its action on .7 carries (AXS, [nE5]) to (AKS, 985 o 2]). Here, [nK®] is the canonical KP-level
structure on AKS (cf. 3.14).

On the other hand, viewing z as a tuple (2¢)rxp, Wwe can construct the element n(z) =
H#p adONS Z(Xp X This acts on A¥S by multiplication and induces an isomorphism of pairs

(A5, [nf® 0 2]) = (A", [nE®).

Conjugation by n(z) now produces a canonical identification between the endomorphism sheaves
LM([Z]*AKS)(p) and LM(AKS)(p). This gives us a canonical descent datum that allows us to
descend the sheaf LM(AKS)(p) to a sheaf E of Z,)-algebras over Y.

It follows now that, given a map 7' — .k, we can always attach to it the ‘endomorphism’

algebra E(T'). Moreover, E comes equipped with canonical realization functors into H;? 1)

over the generic fiber, and into H ?;i(sl’l) over the special fiber. In particular, we can speak of the
space of ‘special endomorphisms’ L(T") C E(T'), whose realizations at every closed point land in

L, C Hr.(?(l’l), where 7 = p, for a point in the generic fiber, and ? = cris, for a point in the special
fiber. If T'is in fact an .#k-scheme, then we will have L(T) = L(AXS).

6. Cycles defined by special endomorphisms

In this section, (L, Q) will be a quadratic space over Zp) of signature (n,2). We will not assume
it to be self-dual.

6.1  Suppose that (Z, @) is another Z,-quadratic space of signature (n + d, 2) equipped with
an embedding

(L.Q) = (L, Q)

so that L is a direct summand of L. Let A = Lt C E;~ by our assumptions, it is positive definite
over R. Consider the Shimura datum (Gg, X ), where G is the smooth Z,,)-group scheme attached

to L: we have an embedding

(GQ’ X) — (éQv)?)

Set I~(p = é(Zp), and let KP C é(A’;) be a compact open sub-group with K? ¢ K?. We then
get a map
Shg — Shf{(GQ,X)

of Shimura varieties over Q, which is finite and unramified. Here, as usual, K = IN(pf(p. For
simplicity, write Shz for the second Shimura variety. We will also assume that K? is small
enough, so that Shz is an algebraic variety, and so that we have the polarized Kuga—Satake

abelian scheme (gng,XKS) over it.

6.2 We will need to briefly review the Serre tensor construction. Let B be a semi-simple
associative algebra over Q, and let & C B be a Z,-order. Let M be a finitely generated,
projective &-module. Suppose that we are given a Z,)-scheme S and an abelian scheme 4 — S
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equipped with an action of ¢. Then there is a canonical abelian scheme Hom, (M, A) over
S with the property that, for any S-scheme T', we have an identification of Z,y-modules (cf. 3.8):

H°(T,Hom,(M, A)) = Homg (M, HO(T, A)).

This essentially follows from [Lan08, 5.2.3.9]. We will only need the construction when M is in
fact a free &-module, in which case Hom, (M, A) can be constructed as a product of ranks M
copies of A.

Let H(A) be a degree-1 (de Rham, p-adic, f-adic or crystalline) cohomology sheaf over S
attached to A: it has a right action by &'. Then we have a canonical isomorphism

H(A)®s M = H(Hom, (M, A)).

6.3 Now, C = C(L) is a free module over C via the left multiplication action (this follows for
instance from [Bou07, §9, Corollaire 3, n° 3]). So, we can apply the Serre tensor construction to
obtain the abelian scheme Hom(C, AIS%SK).

LEMMA 6.4. The sheaf Homc(é,AIgth) has a natural 7./2Z-grading, as well as a C action

compatible with the grading. Moreover, there exists a canonical é—equivarjant isomorphism of
Z/2Z-graded abelian schemes over Shy:

i: /A%?K = Hom(C, AIS<IISK).

Proof. The 7Z/27Z-grading is simply the diagonal grading, and the action of C is via pre-
composition by right multiplication.

_ The proof is now quite standard, and essentially comes down to the existence of the
C-equivariant isomorphism of Z/27Z-graded G-representations:

H®cC — H, (6.4.1)

WR 2 Ww:- 2.

It gives rise to an isomorphism of tuples Vo(H ®¢ c) > VQ(I;T). Over Shk ¢, Ve(H ®¢ 0)
(respectively Vc(H)) is the Z;,)-variation of Hodge structures obtained from the cohomology of
Homc(é,AIS(hSK’C) (respectively AVIS{hSK,(C)' So, the induced isomorphism V¢ (H ®¢ C) = Ve (H)
gives us an isomorphism of abelian schemes

- . AKS = ~ KS
7 AShK,(C — HomO<C7AShK,C)'

But, by the functoriality of Vg, the p-adic realization of 7 is defined over Shx. From this, as in
the proof of (3.11), we conclude that i must be defined over Shg. O

PROPOSITION 6.5. There exists a canonical isometric embedding A — L(fTIS{hSK) mapping onto
a direct summand. Furthermore, for any Shy-scheme T, there exists a canonical embedding
L(AXS) — L(AXS) also mapping onto the direct summand. Under the canonical bilinear pairing

fr fofon L(K%S), L(AXS) is identified with the orthogonal complement of A.

Proof. Viewing A as a trivial representation of GG, the natural embedding A ~'—>~f is a map of
G-representations. Applying the functor Vg, we obtain a map Vg(A) < Vg(L) and thus an
embedding;: N N

A — Hom(Vg(Z(,), Vo(L)) = L(AP ).
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Given an Shg-scheme T', we obtain an embedding of Z,)-algebras:
End(A%S)(p) — End(ﬁ%s)(p)

This is defined as follows: given an endomorphism f of A%S, we obtain an endomorphism of /T%S
carrying a map ¢ : C — HO(T, AXS) to the map f o . Here, we are using (6.4) to identify
AKS with Hom(C, AXS). This embedding is compatible under cohomological realizations with
the map Vo (H®MD) — VQ(IA{T(@(LU) obtained from the inclusion of G-representations H®(:1) <
HEOD g 0 5 FE0),

In fact, this embedding carries L(AXS) onto AL C E(A%S) To see this, observe that the
embedding L — L of G-representations gives us a canonical map of p-adic sheaves L, — f/p|sh P
We can now identify both L(AXS) and A+ with those elements of E(Ags) whose p-adic realization
is a section of L, C f/p]ShK. O

6.6 Recall from §3.13 that, over Shi (respectively Shy), we have the canonical é(A?)—
torsor Ig (vespectively G/(A)-torsor If;). There is a canonical G(A))-equivariant map I¢, —
I%\ShK, which we can describe explicitly. Recall that I, parameterizes C-equivariant graded
isomorphisms

carrying L ® Ap onto L AT

Tensorlng both sides of such an isomorphism with C over C and using the isomorphisms
H ®c C> Hand H AP ®c C5 H, A, We obtain a C- equivariant graded isomorphism

It carries L ® Ap c H®WY) g Ap onto LAp C ﬁ®(1’1). Moreover, if ¢y : A = L is the natural
inclusion, 7 carries 19 ® 1 to the isometry La A ® Ap > L® Ap induced by the inclusion

A — L(Agth). This essentially shows the followmg result.

PROPOSITION 6.7. There is a canonical map I, — Ipé|ShK. It identifies I}, with the sub-sheaf
I’cr g|ShK consisting of the trivializations

77 A i) AP,
which carry 1o ® 1 to ¢ AZ-

Proof. We will only need the fact that I, maps naturally to I}, which we have already seen.
The remainder of the proof is left to the reader. O

LEMMA 6.8. There exists a self-dual quadratic lattice (Z, @) over Z,y and an embedding

(L,Q) = (L,Q)

of quadratic lattices carrying L onto a direct summand of L such that A = L™t is positive definite.
If disc(L) is a cyclic abelian group, we can choose L such that rank L < rank L + 1.
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Proof. For any a € Z,), let {(a) be the rank-1 quadratic Z,)-module Z,, equipped with the
quadratic form with value a on 1.

Let v € L be such that v,(Q(v)) is minimal. Then one easily checks that v,([w1,ws]g) >
vp(Q(v)) for all wy,ws € L. In particular, for any w € L, the projection w — (2[w,v]g/[v,v]g)v
onto (v)*+ C L is well defined, and we obtain an orthogonal decomposition

L={0)® ()"

Applying this iteratively, we find that (L, Q) can be diagonalized, so that it is isometric to a

lattice of the form . ,
(Gju) o (Dr-n),

j=1

where a; and b; positive integers for varying 7 and j.
For any b € Z,), the quadratic space (b) embeds as a direct summand spanned by the element
e+ %b - f within the hyperbolic plane U = Zye ® Z,) f with e? = f2=0and [e, f] = 1. Also,
given any positive element a € Z(>p()), we can find a self-dual positive definite quadratic space

Ey(a) over Z,) such that (a) embeds as a direct summand of Ey(a). In other words, we need
a binary quadratic form over Z,), which primitively represents a and whose discriminant is a
negative element of Z(Xp - Take the form to be ax? + zy + cy? with ¢ = pc for ¢ € ZZS satisfying
1 —4ac’ < 0. The discriminant is then 1 — 4pac’, which is negative and a unit in Z,).

We now find that L embeds isometrically as a direct summand of L = (@, E (a;)) ® H®2.

Suppose now that disc(L) is cyclic. This implies that at most one element in the set {a; : 1 <
i < n}U{by, b2} is a non-unit. If every element is a unit, then we can take L = L. Otherwise,
without loss of generality, we can assume that exactly one of a; or by is a non-unit. In the

former case, we set L = B (a1) © (D, (a;)) @ (@?:1<—bj>). In the latter, we can take L =

(Dii(ai) © (o) B U. O

6.9  We will now fix an embedding (L, Q) — (L, Q) as in (6.8). In the case where disc(L) is

cyclic, we will assume in addition that L has been chosen so that rank A < 1.
Let % (respectively . ) be the integral canonical model for Shj (respectively Shz ) over

Zpy (cf. 4.1). Assume that K is small enough. Then, over %%, we have the Kuga-Satake abelian
scheme (AKS XS [7K5)) Since % is smooth, and in particular normal, both the C:*(A?)-torsor

I% and the canonical KP-level structure [7z] € HO(Shf(,I%/I?p) (cf. 3.13) extend over Yk
we will denote these extensions by the same symbols.
The GO(AZ;)—torsor 1 g /G, (Nf’) has a canonical descent I % over yf(o: it parameterizes certain
0
orientation preserving isometries
Mo : L®AZ; - LA?.

. . . ~ D 7D
Again, we have a canonical section [z ] of Iéo/ Ky over S .

6.10 For any ygo—scheme T, write Z}(T ) for the group of special endomorphisms defined as
in §5.24; in particular, if 7" is actually a scheme over ., we will have L(T) = L(AKS).
Let 1 : A — L be the natural embedding. Suppose that we are given an isometric map
t: A — L(T); since A is positive definite, any such map has to be an embedding. Let I”, C Ig |7
’ 0
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be the sub-sheaf of isomorphisms 79 that carry tg to ¢; then, by Witt’s extension theorem, [ f 0 18
a torsor over 7' under Go(A%).
If the map T" — yfc@ arises from a lift 7" — %7, then one can also define a sub-sheaf
I c I%]T: this is the pre-image of I’ under the natural quotient map I’é\T — Ig |7, and is
’ 0
thus a G(A%)-torsor over T.

DEFINITION 6.11. For any .%% -scheme T', a A-structure for T is an isometric map ¢ : A — L(T').
Given an .#-scheme T and a A-structure ¢ for T', a KP-level structure on (T, 1) is a section [,]
of I /KP over T mapping to [15] under the obvious map

IP/K? — (I%/KP)|r.

Completely analogously, supposing only that T is a Y]}O—scheme, one can also define the notion

of a K{-level structure on (T',¢) as a section [, 0] of I}/ K§ mapping to [7jz ] in HO(T, Ig /KL,
’ 0

6.12  Let Zg»(A) be the functor on .#%-schemes whose value on any .#%-scheme T is given
by
Zre(A)(T) = {(t,[n.]) : ¢ a A-structure for T'; [n,] a KP-level structure for (7',¢)}.

Similarly, one defines a functor Z KP (A) on Yf(o—schemes employing K/-level structures.

PROPOSITION 6.13. The functor Zi»(A) (respectively Zr(A)) is represented by a scheme finite
and unramified over . (respectively over Ygo). Moreover, the natural map Zgr(A) — ZK(’)’(A)
is finite étale.

Proof. Tt is clear from the definitions that the map Zg»(A) - Z Kg(A) is finite étale, so it is
enough to prove the remaining assertions for Zx»(A). To show representability, we first note
that End(AKS)(p) is representable over %% by an inductive limit of schemes that are locally of

finite type. Indeed, if we fix a representative A in the prime-to-p isogeny class of KKS, then the
endomorphism scheme End(A) is known to representable by a scheme locally of finite type over

%, and we can identify End(ZKS)(p) with the inductive limit of the system {End(A)},,ez:\pz;

where, for m; | mg, the transition map from the copy of End(A) in the mith position to that
in the math position is given by multiplication by mg/m;. Since the property of being a special
endomorphism is a closed condition on the base, we see that Zx»(A) is also represented by an
inductive scheme. To show that it is in fact represented by a scheme, it is enough to show that
it is finite and unramified over ..

The unramifiedness is a consequence of the fact that endomorphisms of abelian schemes lift
uniquely (if at all) over nilpotent thickenings. The nerdénian property of abelian schemes over
discrete valuation rings combines with the valuative criterion to show that Zx»(A) is proper.

Thus, it only remains to show quasi-finiteness. For this, take any geometric point s — /%.

We view [z ] as a KE-orbit of isometries
s LOAL S Ly

If ¢ is a A-structure for s such that (s,¢) admits a KJ-level structure, then, for any v € A, the
pre-image of the A%-realization of ¢(v) under 7jo,s must lie within the set L N K¢ - to(v). Since L
is a discrete sub-group of L AT s this set is finite. So, we see that the possible A-structures for s

(admitting a K{-level structure) are finite in number. From this, it follows easily that the fiber
of Zk»(A) over s is finite. O
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The following result is presumably well known, but we include it for lack of a reference.

LEMMA 6.14. Let W = W (k) and let E/Wg be a finite extension of ramification index e < p—1.
Let A be an abelian scheme over O with special fiber Ay. Then End(Ag) ® W embeds in
Endyw (HL, (Ag/W)) as a direct summand. In particular, End(Ag) ® k maps injectively into

Endy (Hlg (Ao/k)).

Proof. Without loss of generality, we can assume that k is algebraically closed. There is a
canonical comparison isomorphism

HYi(Ao/W) @w O = Hig(A/OF). (6.14.1)
Note that this is where we need the hypothesis e < p — 1, which ensures that the map O — k
is a divided power thickening.

Set M = Endw(HL, (Ag/W)): we have a direct summand M® C M consisting of
endomorphisms that preserve the Hodge filtration F1HJ;(A/OF). Here, we use the canonical
isomorphism (6.14.1) to view M as a group of endomorphisms of H}(A/Ok). The conjugation
action of the semi-linear Frobenius on H}. (Ay/W) induces an isomorphism F : o*M][1/p] =
M{[1/p] such that F(o* M) C M. The last condition holds because the image of F1H}(A/OFk)
in H éR(AO /k) has the following property: its pull-back via o is precisely the kernel of the map
F:F* Hlig(Ao/k) = Hig(Ao/k).

One can deduce from classical Dieudonné theory and Grothendieck—Messing theory that
there is a canonical isomorphisms of Z,-modules:

End(A[p™]) = (M°)F=1,

Moreover, by the nerénian property, End(Ag) = End(A). Also, End(A)®Z, is a direct summand
of End(A[p™>]), since any element of End(A) that kills the p-torsion A[p] has to be divisible by p.
So, to finish the proof, we have to show that (M°)F"=! ® W maps onto a direct summand of
M. For this, set
M ={me M°: Fi(m) € MY, for all i € Z>¢}.

We need to explain what we mean by F'(m). One defines this inductively: we set F(m) = F(c*m)
and Fi(m) = F(o*F'"1(m)), where we are using the assumption that F*~'(m) € M? in each
inductive step.

Now, F' restricts to a (necessarily injective) map o*M’' — M’. Moreover, M’ is a direct
summand of M, and (M®)F=! @ W clearly maps into M’. It follows from the Dieudonné-Manin
classification of F-crystals over W [Man62] that there exists a largest F-stable direct summand
M® ¢ M’ such that F induces an isomorphism o*M¢ = M¢. Moreover, it is known [Kat73,
4.1.1] that the map

(Mét)F:I ®Zp W — Mét

is an isomorphism. It follows a fortiori that the map (M%)F=! @ W — M identifies its source
with the direct summand M c M. O

6.15 The map Shg, — Shg, ~canonically lifts to a map Shx, — Zgr(A). Indeed, it is

enough to show that Shyx — Shz lifts canonically to a map Shx — Z Kop (A). This follows
from (6.5) and (6.7).
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Let ¢ be the tautological A-structure over Z K? (A) and let Agr = A ® ﬁZKp(A)' The map ¢
0

induces a map of vector bundles:
LdR AdR — LdR’ZKp(A)‘
0

LEMMA 6.16. (i) There exists an open sub-scheme Z}',(A) C Zgcp (M) such that T — Zgp(A)
0

factors through Zf(rp (A) if and only if the restriction of coker tqr to T is a vector bundle of rank
0
n+ 2.
(i) Z3»(A) contains the generic fiber Zgr (M-
0

(ili) Let W =W (IFy), and suppose that we have s : Spec W — Zy» (A) such that the restriction
to Spec Wq factors through Shg,. Then s factors through Z?g (A).

(iv) Suppose that T' is smooth over Z,) and that f : T — Zyr (A) is such that f|r, factors
through Shg,. Then f factors through Zf(rp (A).
0

(v) If L has square-free discriminant, then Z;rg (A) = Zgp(A).

Proof. We begin with (i): choose a basis element for the top exterior power A?A, identifying it
with Z,). Then the map tgr induces a map

A ~
ﬁZKg (A) = /\dAdR SARCLN /\deR
and hence a section e € HO(ZKg (A), A’Lqg). One easily checks now that Z;%(A) is the open

locus where this section does not vanish.
To prove (ii), it suffices to show that Z}’,(A) contains every point s € Zgr(A)(C). But the
0

map Agr,s — idR,s arises from an isometric embedding of Z(p)—Hodge structures ¢s : A — L B,s-
In particular, it has to be an embedding of C-vector spaces.

Define Z},(A) to be the pre-image in Zg»(A) of Zi’(rg (A). It suffices to prove the remaining
assertions for .#z-schemes with Zf;g (A) replaced everywhere by Z7,(A).

We will now consider (iii). Choose an algebraic closure E/W (k)g. By (6.14), it suffices to
show that the étale realization of ¢(A) generates a direct summand of f/p’gﬁ. But, over Shg,, the
sub-space generated by this realization is globally a direct summand of ip. Indeed, its inclusion
in the latter is induced by the map of Gy-representations A — L.

Part (iv) now follows: indeed, (i) and (iii) show that U := f~1(Z%,(A)) is an open sub-scheme
of T containing Tg, and through which all the W (F,)-valued points of T factor. Since T is
smooth over Z,), this implies that all the Fp—points of T factor through U, and so U must be
all of T'.

Now assume that L has square-free discriminant; then disc(A) is either trivial or isomorphic
to Z/pZ. In the first case, Zg»(A) is smooth, and so we are done by (iv). In the second case,
by our assumptions, A is of rank 1, and is generated by an element v satisfying ord,(Q(v)) = 1.
In particular, given any F,-point xg of Zgr(A), the crystalline realization of the associated

special endomorphism fy € L(K?OS) must necessarily generate a direct summand of L »,. This
shows (v). O

The following result is directly inspired by [Ogu79, Theorem 2.9].
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PROPOSITION 6.17. Let Z5™ be the complement in Zg»(A) of the non-smooth locus in Zg»(A)g,, .
Let i be a generic point of ZISF‘; with algebraically closed residue field. Suppose that n > r =

rank(A). Then the abelian variety K%(S is ordinary and the map
t: A — L(E%S)
is an isomorphism.

Proof. Tt follows from 5.19 that A ® k(%) maps injectively into grl f/dp@. Therefore, over a
sufficiently small étale neighborhood Zy of 7 in ZH?-?, the de Rham realization Agg of ¢(A) will
map isomorphically onto a direct summand Aggr of gr% idR| Zo-

Now, consider the Frobenius map Fr* Hygr|z, — Hdr|z,: its image is a lagrangian sub-space
C C Hgrlz,, and the locus where AXS|z, is ordinary is precisely the open sub-space where
C + F'Hyrl|z, = Hgr|z,- By the discussion in §4.19, after localizing on Zj if required, the
annihilator of C is a parallel isotropic line N C idR| Z,- S50, we can also describe the non-ordinary
locus as the closed sub-space where we have

FIEdR|ZO C FoidR|ZO N Aé_R NN .

Now, by 4.20, we can assume that N + Agg is a horizontal direct summand of rank r + 1
in Lgr|z,- Then, arguing as in the proof of [Ogu79, Theorem 2.9], we find that the locus where
F'Lgr|z, is contained in this direct summand has dimension at most r. Since n > r, we can
throw this locus out and assume that the summand does not contain F!Lgg| Zo-

Equivalently, we can assume that N is not contained in F! Lyg| Zo +Agr; or that FOL4R| ZoN
A is not contained in Nt. Again, arguing as in [Ogu79, Theorem 2.9], we now find that the
non-ordinary locus is smooth of dimension n — 1. This proves that Z%{S must be ordinary.

Suppose that ¢ is not an isomorphism. Then we can find a non-zero element f € L(g%(s) such
that «(A) + (f) C L(E%S) is a direct summand of rank r + 1.

Now, by shrinking Zj if necessary, we can assume that f extends to an element in L(EIZ%S)

Let fqr be the de Rham realization of f, and let Aqr C idR|Zo be that of ¢t(A).
Since A%(S is ordinary, the map

L(AS) ® k() — Lary (6.17.1)
is injective. Therefore, after further localizing on Zy, we can assume that the sub-sheaf

Adr + (far) € Lar|z

is a local direct summand of rank r + 1. N
Using 5.19 and [Ogu79, Remark 2.8], we find that the locus in Zy where F! Ly is contained
in Agr + (far) is a closed sub-space of dimension at most 1(r + 1 — 1) = r. Since n > r by
hypothesis, and since dim Zp = n, this implies that we can shrink Zy further and assume that
F'Lgr|z, is not contained in Agr + (f4r). Since F'Lgr|z, and (f4r) are both local direct
summands in idR| 7, of rank 1, it follows that (fg4r) is not contained in F’ 1idR| Zo + Adr.
Therefore, if Agg is the image of Agg in grUF idR\ Z,, We see that the map

.
gry Lar|z,

<.de> g KdR
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is non-zero. But, on the other hand, fyr is horizontal for the Gauss—Manin connection, which
contradicts the fact (5.19) that the Kodaira-Spencer map

.
gry Lar|z,

17 1
Adr — 8 Lar ® 8z,

is an isomorphism. O

COROLLARY 6.18. Set A’ = A L (m) for some m € Z(>p()]. The map Zgr(A') — . factors through

Zgr(A) in the obvious way. Suppose that n > rank(A); then the scheme
Zier(N') X g7,y () 2™
is flat over Z).

Proof. Let Z' be the fiber product under consideration: it is, étale locally on Z’, an effective
Cartier divisor on Z*™. Since Z*" is smooth over Z,), Z' fails to be flat precisely when its image
in Z%™ contains an irreducible component Zy C ZISFI;. Suppose that this is the case, and let 7 be

a geometric generic point of Zy. Then we find that the map A — L(ﬁ%{s) extends to an isometry
on A’. But, by (6.17), this is impossible. O

6.19 Recall from (4.13) that we have a canonical G-torsor Pgg over S consisting of G-

structure preserving trivializations of HdR Let ¢ be the tautological A-structure over Z(A), and
let tqr : Aqr = Lgr be the de Rham realization of ¢. Define Pyra C PdR Zp(n) b0 be the
G-equivariant sub-functor such that, for any Zx»(A)-scheme T', we have

ParA(T) = {€ € Par(T) : €0 (10 ® 1) = tar}-
PRrRoOPOSITION 6.20.

i) The restriction of Pag n over Z%,(A) is a G-torsor.
9 Kp

(ii) The map ps : Par,a — MIGOC, given, for any Z,)-scheme T', by

Para(T) = ME(T),
(wvf) = 5_1(F1idR71‘)7
is G-equivariant and smooth of relative dimension dim Gq. Here, (z,£) € Par,a(T') lies over
a point x € Zgr(A)(T).

(iii) Around any point x € Zy;,(A) there exist an étale neighborhood U — Z},(A) and a section
: U — Pgr,a of the G-torsor Pyr s such that the induced map ppos: U — MlOC is étale.

Proof. We first note that the basic ideas for the proof can already be found in [RZ96, § 3]
and [Pap00, Theorem 2.2].

Part (i) is an easy consequence of the definition of Z}7,(A) and (2.8). Part (ii) is essentially
a consequence of (5.16) and the formal lifting criterion for smoothness of a finitely presented
morphism. Here are the details: it is enough to check that py is smooth over the closed points
of MIC‘;’C. Suppose therefore that we are given a surjection of Z/p"Z-algebras & — € with square
zero kernel. We need to show that the map

¢ : Par,a(0) = Para(0) Xypioe (@ ) Mg (0) (6.20.1)
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is surjective. So, suppose that we have a pair (Z,€) € Par.a(€). We obtain an isotropic line
17 _ 7 limy
F Lg =¢ (F LdR,E) C LE'

Let ﬁﬁ’ is the evaluation of the crystal ﬁcris on Spec @ — Spec 0. As usual, if f/ﬁ is
the evaluation of the crystal icris along the same thickening, we obtain an embedding f/ﬁ C
End(H ). We also have the crystalline realization ¢ty : A® 0 — i@’ of ¢; write ¢ for its change
of scalars along & — 0.

There is a canonical isomorphism H dRT =y = 66 0. Composmg this with the trivialization

£ gives us a G-structure preserving isomorphism & : H® 0 > H- 7 carrying 1o ® 1 to ¢5.
Suppose now that we are also given F'Ly € M¢(0) lifting F'Lz. Let P(0 — 0) be the

set of G-structure preserving isomorphisms &g : He oS H, ¢ carrying 1o ® 1 to tg, and lifting
5.

’ Observe now that this set is non-empty: we can lift T to any &-valued point z’ € S#(0).
This gives a canonical identification ﬁdR’x/ = ﬁﬁ. Since fﬁdR is a G-torsor over S, there now
exists a G-structure preserving trivialization &), : H® 0SS ﬁﬁ lifting &5. If &, carries 1o ® 1
to tg, we are done. Otherwise, it follows from (2.8) that we can compose it with an element of
G(0) to ensure that it lies in P(& — €). In fact, loc. cit. implies that P(& — €) is a non-empty
torsor under ker(G(0) — G(0)).

We claim that P(€ — ©) is in canonical bijection with the fiber ¢~ '((%, &), F'Ly). This
will show that ¢ is smooth. If we set & = k[e] and & = k, we find that the fiber of  over any
k-valued point is a torsor under ker(G(k[e]) — G(k)) = Lie G ® k. So, our claim would also show
that ¢ has relative dimension dim Gg.

Let us prove the claim: given such any {» € P(0 — 0),¢0(F'Lg) C Ly is an isotropic line
lifting FlLdR 7 and isotropic to the image of t¢. By (5.16), this determines a lift z € Z}7,(A)(0)
of T. Furthermore, there exists a canonical isomorphism Hg = Hde carrying F' 1L/; onto
F! LdR’z. The composition ¢ of this isomorphism with {4 gives us a lift (x, &) € o1 (%, £), F1 Ly).
Using the bijectivity of the correspondence in (5.16), one can check that the assignment defined
in this fashion is in fact a bijection from P(0 — &) to o~ ((7, &), F'Lg).

For (iii), it suffices to prove the result in a neighborhood of a closed point z € Z%,(A)(F,).
Fix any section sq : SpecF — Par,a over x, and let & : H® IF = HdR « be the corresponding
G-structure preserving isomorphism. The point y = pa(so(x)) € MES(F,) corresponds to the
isotropic line §al(F1idR$) C L®F,.

Let T' = Spec R (respectively T’ = Spec R') be the henselization of Z},(A) at z (respectively
1\/[10C at y). It is enough to show that there exists a section s : ' — Pqg a lifting so such that the
induced map pyos: T — T’ is an isomorphism.

Let mp C R (respectively mp C R') be the maximal ideal, and set Ry = R/(m% + (p))
(respectively R = R'/(m%, + (p))). Also, set Ty = Spec Ry and T] = Spec R}.

By [RZ96, 3.33], it is enough to find a section s as above such that the induced map Ty — T}
is an isomorphism. '’

By Hensel’s lemma, it now suffices to find a section s1 : T1 — Pgr,a lifting sp such that the
induced map pg o s; : Ty — T is an isomorphism.

Composing the isomorphism &y with the obvious identification ﬁdR,x R R = If\{/d}{’ R, gives

10In the language of [RZ96], such a section is ‘rigid of the first order’.
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us a G-structure preserving isomorphism
§1:H®Ry — Hgrg,,

which corresponds to a section s : Ty — Pgg,a lifting so. It now follows from (5.16) that the
induced map g o s; : 71 — T} is an isomorphism. O

Remark 6.21. The proposition gives us a local model diagram in the terminology of [RZ96, DP94,

Pap00].

COROLLARY 6.22. Zp,(A), and hence Z}, (M), is Ici and flat of relative dimension n over Zy,).
0

Moreover, Z};, (M), is reduced if n > t, where t is the dimension of the radical of Lg,. It is
normal if n >t + 1, and is smooth if t = 0. In particular, if n > t, then Z};,(A) is normal.

Proof. This follows from (2.11) and (6.20). O

COROLLARY 6.23. Suppose that L is maximal with t < 1. Then Zg»(A) (and hence Zger(A)) is
regular and locally healthy.

Proof. This is clear from (2.16) and (6.20). O

6.24  Assume now that L is maximal with £ = 2. Asin §2.17, we will fix a quadratic extension
F/Q in which p is inert, but we will place the additional constraint that F' be real.
Fix a self-dual O ,)-lattice L° C F' ® L containing O,y ® L. By loc. cit., this gives us a

proper G-equivariant map MrGef — MIGOC, whose source is regular and locally healthy.

PROPOSITION 6.25. There exist an algebraic space Z}glf,(A) over Z,) and a proper morphism
ZrE(A) — Z%,(A), determined uniquely up to unique isomorphism, with the following
properties.

(i) There exists a G-equivariant isomorphism

f = f
PdR,A XZ?;p(A) Z;?p(A) — PdR,A XMlgc Mg’ .

Here, the G-action on the left-hand side is via its action on Pgr a, and the action on the right
is the diagonal action.

ref

(ii) Every point of Zi¢5(A) has an étale neighborhood U — ZiL(A) equipped with a section
§: U = Par.A X707, (p) Z'E(A) such that the composition
U > Par.a Xz () ZEE(A) S Para X nlge Mt — Mt

is étale.

In particular, Z}?f,(A) is regular and locally healthy, and the map Zﬁ(ef? (A) — ZV,(A) is an
isomorphism over the regular locus of the target.

Proof. This is a consequence of (6.20) and [Pap00, Proposition 2.4]. The statement of the cited
result does not apply directly in our setting, but it is easily seen that its proof does. O

Remark 6.26. The morphism Z}gf, (A) = Z%7,(A) is a linear modification in the sense of [Pap00,
2.6]. Although our construction does not fit strictly within the framework of loc. cit., it is inspired
by obvious analogy.
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6.27 We will continue with the assumption that ¢ = 2. As explained in the introduction,
in this situation, Z}7,(A) is strictly contained in Zg»(A). In other words, there exist points in
Zgr(N)(Fp) lying over s € .7%(F,) such that the image of the associated map ¢ : A — L(g?os)
does not generate a saturated sub-space of icriS,SO.

To understand this phenomenon, it will be helpful to have a better handle on the structure
of Lyis,s- In the language of [Ogu79, § 3], this is (up to twist) a K3 crystal of rank n + 2: that
is, it is strongly divisible in the sense of §4.8, and it carries an F§ -invariant self-dual quadratic
form. L B

The structure of such objects is well understood. For simplicity, set L = Leyig 5, and Ly(so) =
LF0=1, One associates with L a Hodge polygon and a Newton polygon; cf. [Kat79, (1.2) and
(1.3)]. Essentially, the Hodge polygon encodes information about the Hodge filtration on idR’ 50
and the Newton polygon encodes information about the slopes of Fy,. Both polygons are convex
by construction and, by a theorem of Mazur [Kat79, Theorem 1.4.1], they have the same end
points and the Newton polygon lies above the Hodge polygon.

In our situation, the Hodge polygon is very simple: it begins at (0,0) and ends at (7 +2,0),
and the slope-0 segment has length 7. This reflects the fact that F1Lgg s, has rank 1 and that
grOF idR,so has rank 7.

There are now two possibilities for the Newton polygon, with different flavors.

— The Newton polygon is non-constant: in this case, it admits a break at z-coordinate h,
where h is an integer between 1 and [(n + 2)/2]. We say then that L has finite height h.
By a theorem of Katz [Kat79, 1.6.1], L admits a Newton—-Hodge decomposition

L:L,h@ig@ih,

where each of the summands is Fy,-stable after inverting p. The summand i_h has rank h
and the quadratic form on L induces a perfect pairing between L_j, and Lp. The summand
Lg is a unit root F-crystal (that is, it is generated as a W-module by its Fy,-invariant
elements) orthogonal to L_j & Ly. N _
We have Ly(so) = LE*=!, and W ®z, Lp(so) = Lo is a direct summand of L. In particular,
any point of Zg»(A) lying above sy will be in Z7,(A).

— The Newton polygon has constant slope 0: in this case, we say that L is supersingular. By
a result of Ogus [Ogu79, Theorem 3.4, L admits an orthogonal decomposition

L=1L, L Ly,

which is again F -stable after inverting p. In this decomposition, 120 is a unit root F-crystal,
which is self-dual with respect to the quadratic form. Moreover, Ly(so) is a free module of
rank n + 2 over Zjp, and it inherits an orthogonal decomposition

Ep(S()) = fl 1 Eo,

NFSOZ

where Ez =L, ! for i = 0, 1. The quadratic form on El is p-times a self-dual form.
We can say more: the sub-space W ®z, Ly(s0) C L has index p?, where 20 = rank L1, and

the discriminant of zp(so) has p-adic valuation o. The integer o, which lies between 1 and
|(7 +2)/2], is the Artin invariant of L.

Now, since AY /A is isomorphic to Z/pZ & Z/pZ, we can find an orthogonal decomposition
A = Ay L Ag, where A is self-dual, A has rank 2 and the restriction of the quadratic form
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to Ay is divisible by p. If 20 > n, then one can check that there can never be an isometric
embedding A; — L,(sg) whose image generates a direct summand of L. Therefore, any
point of Zg»(A) lying above so will be outside of Z}",(A).

6.28  Consider the special case where n = 3, d = 2 and L admits a maximal isotropic sub-space
of rank 2: in this situation, .#% is a moduli space of polarized abelian surfaces (the Kuga—Satake
abelian scheme AXS is isomorphic to a power of the universal abelian surface), and Zx»(A) is a
union of integral models for compact Shimura curves with non-maximal parahoric level structure.
The Artin invariant o is either 1 or 2: it is 1 when A?OS is isomorphic to a product of supersingular
elliptic curves (the superspecial case), and it is 2 if A?OS is supersingular, but not superspecial,
which should be the ‘generic’ situation on Zg»(A). The above discussion shows that the open
locus Z},’fp (A) will not contain any of the non-superspecial points, and so misses out on what
should be the most interesting part of the geometry of Zx»(A). Similar caveats apply in higher
dimensions. We intend to return to the general question of the structure of Zx»(A) in future
work.

7. Integral canonical models I1
The notation will be as in the previous section. Recall from §6.15 that we have canonical maps
ShKo — ZKS(A)Q and ShK — ZKP(A)Q.

LEMMA 7.1. Both of these maps are isomorphisms onto open and closed sub-schemes of the
targets.

Proof. By construction, it is enough to prove this for Shx — Zg»(A)g. Since both varieties in
question are smooth of dimension n and are unramified over Shz, it is enough to show that the
map is injective on C-valued points.

Pick a point z € Shg(C) and let (h,g) € X x G(Al}) be a lift of x. We can describe the

corresponding point of Zx»(A)(C) as follows: first, we can view (h, g) as a point in X x é(A?);
write & for its image in Shz(C). Then h induces a Hodge structure Hy, on fI which preserves

L c H®WD and is such that the induced Hodge structure on A C L is trivial. There is a
G-structure preserving isomorphism of Hodge structures j, : Hh = H B,z and the composition

2 iAo InN(@p®C)®0 5 Lpan(Lps ®C)0 = L(AKS) (7.1.1)

is the A-structure attached to z. Further, the KP-level structure on (Z, ;) attached to x is the
KP-orbit [n;] of the isomorphism

nx:H®A§Z;)H@A?—:—)HB@@)AI}—)HA?@. (7.1.2)

Note that the triple (Z, ¢4, [1]z]) determines the image of z in Zx»(A)(C).
Suppose that 2/ € Shg(C) lifts to (h',¢’) € X x G(AZ}) and is such that (Z,ts, [17:]) = (&,
tg's [Me]). Then, using (7.1.1), we find that h' =~ - h, where v = j;,l 0 ju € G(Z(p)). Also, using

(7.1.2), we see that vg and ¢’ are in the same KP-orbit in G(A’}). This shows that 2’ = z and
finishes the proof of the lemma. o

DEFINITION 7.2. Let . be the Zariski closure of Shg in Z};,(A). If L is maximal with ¢ < 1,
set S =75 . If L is maximal and t = 2, fix F' and L° as in §6.24 and let .7+ be the proper
resolution of 5”}; obtained by taking the Zariski closure of Shx in ZI¢h(A).
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7.3 We will now assume that L is maximal with ¢ < 1.
We set
pr = 1(21 prKp.
KPCKP

In this inverse system, for K7 C K3, the map i xr — S, gz is induced by the obvious map
Zyr(A) = Zgp(A). Then S, is actually the projective limit of quasi-projective Z,)-schemes

along finite étale morphisms, and so is itself a scheme over Z,).

THEOREM 7.4.

(i) Sk, (respectively Sk, ) is an integral canonical model for the pro-Shimura variety Shp,
(respectively Shy, ,). The map .Y, — Sk, , is a pro-étale cover.
(ii) For any neat compact open K C G(A?) with p-primary part K, there exist a projective

regular Z(p) -scheme . i and a fiberwise dense open immersion .Y, — .. Moreover, . i
has reduced special fiber.

Proof. By (7.1), (6.23) and (6.25), .k, is regular and locally healthy. We need to show that it
has the extension property. We already know that 5”~ has the extension property by [Kis10,
2.3.8]. So, using [FC90, 1.2.7], we find that .“,, also has the extension property. If t < 1, we are
now done.

Now, let ¥k, , be the Zariski closure of Shg, , in

lim Zgp(A).
K(I;CG()(A?)

Then there is a pro-finite, pro-étale map ./, - Yk, -

To show that .k, , has the extension property, we can use the argument from the proof
of [Mo0098, 3.21.4]: given a regular, locally healthy Zpy-scheme Sp and a map fo : So,@ = Shk,,,
it follows from the Nagata—Zariski purity theorem that there exist a pro-finite pro-étale cover S
of Sp and a map f : Sg — Shg,, lifting fo. Now, S is also regular and locally healthy, so, by the
extension property of .k, f extends to a map S — Sk, that descends to a map Sy — Sk, -

The existence of the regular projective compactification .7 is a special case of [MaP15,
Theorem 1], which says the following: suppose that we have a symplectic embedding (Gg, X) —
(GSp(U), X(U)) of Shimura data, and suppose that U, C U is a symplectic lattice such that
G(Zp) is the stabilizer of U, ®Z, in G(Qy). Fix K(U) C GSp(U)(Ay) such that K maps to K(U).
Let Si(u) be the associated Mumford integral model over Z,) for the Siegel Shimura variety
Sh;C(U).H Let . be the unique normal integral model for Shx over Z, such that Shx — Shyc(r
extends to a finite map %" — Sy (y: it does not depend on the choice of K(U). Then . admits a
fiberwise dense open immersion . — .7, where .7 is projective over Zpy and with singularities
no worse than those of .. In particular, .7 is regular (respectively has reduced special fiber)
whenever .7 is regular (respectively has reduced special fiber).

The required hypothesis holds for the model #k in our situation: we take U, = H.

To finish, it is now enough to show that . has reduced special fiber. This follows from (6.22).

O

Remark 7.5. In particular, Sk, and Sk, , are uniquely determined by their generic fibers: they
depend only on L and not on the choice of self-dual quadratic space L containing L.

1 This is defined as a moduli space of polarized abelian schemes as in §3.7.

818

https://doi.org/10.1112/50010437X1500740X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1500740X

REGULAR INTEGRAL MODELS

COROLLARY 7.6. Suppose that n > t; then, for any neat compact open sub-group K C G(Ap)
with p-primary part K, there is a canonical bijection between the connected components of
Shy g (respectively Shy ) and YK, (respectively fKoﬁp).

Proof. Since .k, is a finite étale quotient of .k, the result for the latter implies that for the
former. For #k, it is enough to check that the components of ?K,@ and ?K,E, are in bijection.

But, in general, given any flat, projective map X — SpecZ,) with reduced special fiber,
there is a canonical bijection between the components of Xa and Xy . Indeed, using Stein
factorization, we reduce to the case where X is finite flat over Z(p) Havmg reduced special fiber
implies that X is actually finite étale over Z,) and so the result is immediate. O

For applications, we will need a different kind of canonical model that makes sense in some
non-maximal cases.

DEFINITION 7.7. A pro-scheme X over Z,) satisfies the smooth extension property if, for any
regular, formally smooth Z,)-scheme S, any map S ® Q — X extends to a map S — X.

Suppose that L is non-maximal with cyclic discriminant. We still have the pro-Shimura
variety Shg, over Q, where K, = G(Z,), with G the smooth group scheme attached to L.

DEFINITION 7.8. In analogy with (4.3), we will define a smooth integral canonical model of Shg,
to be a regular, formally smooth model yf(‘: (respectively Yfg;lp) which has the smooth extension

property.
PROPOSITION 7.9. The pro-Shimura variety Shg, (respectively Shpy, ) admits a smooth
canonical model yf(r;‘ (respectively Y[S(Iélp) such that the map Yf(r;l — Y[S(I;‘p is pro-étale.

Proof. By (5.21)(ii), we find that, for any level sub-group K? C G(A’}) contained in K?, the

R R
must be smooth over Z(p). Now set

pr : e TR : : sm — pr
-scheme Z}-,(A) is smooth at all of its [F,-valued points. In particular, YKP Ky = K, Kr

It remains to show that . fg: has the smooth extension property. Since .z has the extension
P
property, by [FC90, 1.2.7], the inverse limit

im  Zo(A)
KPCG(A?)

also has the extension property.

It is therefore sufficient to make the following observation, which is immediate from (6.16)(iv):
suppose that we are given a map x : S — Zg»(A), with S smooth over Z(p)- Suppose also that the
restriction of  to Sg factors through Shg, g». Then x must necessarily factor through Z7), (A).

The construction of Yls(rgp from yfggp proceeds as in the maximal case. O

7.10 Fix K? C G(A}) sufficiently small with image Kj C Go(A%}). Set K = K,KP and
Ko = Ko, K} and write . = ) (respectively % = ., ) if L is maximal with t < 1, . = 75!
(respectively .7 ref) if L is maximal with ¢ = 2; and & = SF" (respectively S = S3) for
non-maximal L Wlth cyclic discriminant. All these schemes are regular and locally healthy.
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Set Lgr = AdLR C idRL;ﬂ and Lis = AL

cris
generated by the crystalline realization of ¢(A).
Suppose that we are given a point s € (k). The evaluation of Le,is along Spec k — Spf W (k)

is a direct summand Leyis s = Aéis’ s C Lyis,s. Moreover, the F-isocrystal structure on Lyis [p~1]

C icris. Here, Ayis is the sub-crystal of icris| b

induces one on Lcrisys[pfl].

Set W =W (k), let E/Wg be a finite extension and suppose that 5 € .7(0F) is a lift of s. Let
E/E be an algebraic closure and let 5z be the geometric generic fiber of 5. From the definition
of the sheaves, (4.7)(ii) and the functoriality of the comparison isomorphism, we obtain the
following result.

PropoSITION 7.11. There is a canonical isometric comparison isomorphism compatible with
additional structures:

Lp,'svf ®Zp Bcris — Lcris,s Qw Bcris- g

7.12 Consider the ‘intrinsic’ Kuga—Satake abelian scheme Agth over Shy: we claim that it
extends uniquely to an abelian scheme AXS over .. Indeed, since .7 is locally healthy and hence
healthy, it suffices to show the following result.

Let x — . be a co-dimension-1 point such that &y, , is a discrete valuation ring of mixed
characteristic (0,p). Set T'= Spec 0% ;. Then A%s has good reduction over T

To show this, we first observe that, for ¢ # p, the f-adic cohomology Hjy of Ag(hSK is related

to Hy via the formula (cf. proof of (6.4))
H; ®¢ ) C(L) = Hylshy-

Since 21?5 extends to an abelian scheme over T, the restriction of ﬁg over T is unramified,
which implies that the restriction of Hy to Tg is also unramified. Our claim now follows from
the usual criterion for good reduction of abelian varieties.

7.13 By [FC90, 1.2.7], the isomorphism from (6.4) extends to an isomorphism of abelian
schemes over .:

i: ABS S Hom (C, A%S). (7.13.1)

If Hyg is the degree-1 de Rham cohomology of AXS over .7, the de Rham realization of i
gives us a canonical isomorphism of vector bundles with integrable connection:

iqr : Har ®c C = Hag|». (7.13.2)

Similarly, if Heys is the F-crystal over (F,/Zp)ais obtained from the degree-1 crystalline

cohomology of A%ps, then we have a canonical C-equivariant, Z/2Z-graded isomorphism of

F-crystals:
beris + Horis ®c C = ﬁcris|(yFP/Zp)cris- (7.13.3)
It follows from the argument in (2.6) that we have
C={zt+2eCTaC =C:v-(zt+27)= (2" —27) v, forall v e A}. (7.13.4)
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. (1,1
We can view H®( 1)

cris

of crystals over ./F,. As such, within it we have the sub-object Endé(ﬁcris) of 6’—equivariant

as the internal endomorphism object End(ﬁcris) within the category

endomorphisms. Similarly, within H 21(8171) we have the sub-object End(His) of C-equivariant
endomorphisms. Using (7.13.4) and (7.13.3), we find that we can exhibit End(His) as the
sub-crystal of Endz(Hcris)
By its definition, L¢s anti-commutes with A¢ys within Enda(ﬁcris)\ Sy Therefore, we obtain
a commutative diagram of embeddings of crystals as follows.

Sy that consists of endomorphisms that anti-commute with Acs.

LcrisC Hégr)i(:’l)
~ 1 (7.13.5)
T Tr®(1,1
lxchisC—> LCriS’y]FpC—> Hgl(s )’y]Fp

7.14  Given (7.13.5), the notions of /-specialness and p-specialness for an endomorphism of AXS
carry over verbatim from § 5. For any .%’-scheme T, denote the space of £-special endomorphisms
of A%s by Lg(A%S). Let L(A%S) be the space of special endomorphisms, where ‘special’ means
¢-special for every £. As in (6.5), we obtain the following result.

PROPOSITION 7.15. For any scheme T — ., there exists a canonical isometry
L(AFS) S o(A)* C L(AF®)

compatible with all cohomological realizations. O

Remark 7.16. Just as in §5.24, the sheaf of endomorphism algebras LM(AKS)(p) canonically
descends to a sheaf E over .#,. Suppose now that Tj is a scheme over .¥). Then one can
canonically attach to Ty a group of ‘special endomorphisms’ L(Ty) C E(Tp) such that, if Ty is in
fact an .#-scheme, then L(Tp) = L(A?OS).

7.17 Given that we have the notion of a special endomorphism of AXS, for any m € Z?p?,
just as in §6.12, we can define the finite unramified schemes Zg»(m) — . and Zyr (m) - S,
which parameterize special endomorphisms of AXS of degree m. From the construction of the
schemes ., (7.15) and (5.17), we find that the deformation theory of a special endomorphism
of AXS is locally governed by a single equation. In particular, étale locally on ., Zg»s (m) is
actually an effective Cartier divisor.

PROPOSITION 7.18. Suppose that m > 2. Then the schemes Zgp(m) and ZKg(m) are flat
over Z).

Proof. 1t is enough to show that Z»(m) is flat over Z,. Since, étale locally on ., Zk»(m)
is an effective Cartier divisor, if it were not Z,)-flat, its image in .¥" would contain an entire
component of S, .

On the other hand, it is clear from the description of the local properties of . via local
models that the smooth locus of 7, is a dense open sub-scheme in .#,. So, it suffices to show
that the restriction of Zg»(m) to the complement of the non-smooth locus in %, is flat over
Zp)- This follows directly from (6.18) O
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