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Abstract—We present a space-domain integral-equation method
for the analysis of periodic structures formed by three-dimensional
(3-D) metallic objects arranged in a general skewed two-dimen-
sional lattice. The computation of the space-domain Green’s func-
tion is accelerated using the Ewald transformation. The method is
validated on several periodic structures ranging from planar fre-
quency-selective surfaces to 3-D photonic crystals and metamate-
rials. For these structures, our technique shows a clear advantage
in terms of computational speed when compared with available
commercial softwares.

Index Terms—Frequency-selective surfaces (FSSs), Green’s
functions (GFs), integral equations (IEs), metamaterials, periodic
structures, photonic-bandgap (PBG) materials.

I. INTRODUCTION

P
ERIODIC structures, such as frequency-selective surfaces

(FSSs) and photonic-bandgap (PBG) materials, provide

uninhibited transmission in specific frequency bands while

suppressing transmission in other bands. They have found a

variety of applications in a broad range of the electromagnetic

(EM) spectrum including antenna reflectors, quasi-optical

filters, polarizers, switches, and designing more efficient lasers

[1]. Recently, it has been shown that periodic structures built

from nonmagnetic conducting sheets can exhibit negative real

parts of permittivity and permeability [2]. These materials,

designated as left-handed metamaterials, open new application

fields.

The scattering from doubly periodic arrays of perfect

electric conductor (PEC) objects has been simulated using

source-model [4] or time-domain [5] techniques. Fully three-di-

mensional (3-D) modeling capabilities of periodic structures

can be achieved using finite-element (FE) methods that can

cope with complicated shapes and anisotropic materials. How-

ever, the radiation into unbounded regions asks for either

absorbing boundary conditions (ABCs) or perfectly matched

layers (PMLs) and special measures need to be taken into

account when employing these conditions to the scattered field

formulation [6]. Therefore, hybrid finite-element/boundary-in-

tegral (FE/BI) techniques that are based on FE modeling of
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a unit cell and BI modeling of its top and bottom faces are

introduced. In these methods, the BI fields are expanded using

spectral-domain Floquet modes [7] or using space-domain

Green’s functions (GFs) accelerated applying the Ewald trans-

formation [8].

Periodic structures are advantageously analyzed with inte-

gral-equation (IE) techniques, usually formulated in the spectral

domain, as exemplified by the case of multilayered FSSs [1].

Two approaches can be employed. One is to compute a specific

FSS in its entirety [9] and the other is to cascade the generalized

scattering matrices (GSMs) of the constitutive building blocks

[10]. Recently, the boundary-integral–resonant-mode expansion

(BI-RME), used to compute the entire-domain basis functions

in conjunction with method of moments (MoM), has been ap-

plied to analysis of FSSs [11].

The scope of these IE techniques is limited to planar metallic

scatterers embedded in the planes of periodicity. Moreover, the

involved EM quantities are expressed as Floquet sums with a

slow convergence rate. In this paper, we propose a spatial-do-

main formulation of the IE, which allows us to deal with ar-

bitrary 3-D metallic objects distributed on a two-dimensional

(2-D) generic nonorthogonal lattice. Furthermore, the involved

potential GFs are computed using the Ewald transformation to

accelerate their convergence.

Among the different techniques to speed up the evaluation of

GFs [12], the Ewald transformation has clearly demonstrated

its suitability for periodic problems, efficiently combining the

spectral and spatial formulations of the GFs. It has been suc-

cessfully used in the efficient GF computation of 2-D free-space

periodic structures with rectangular lattices [13]–[15] and mul-

tilayered planar periodic structures [16], where the approach in-

volves the approximation of spectral-domain GFs by the gen-

eralized pencil-of-function (GPOF) method [17]. In [18], a new

acceleration technique with an exponential convergence rate has

been presented, which is easier to implement numerically and

can perform better than Ewald transformation for moderate ac-

curacies. However, the Ewald transformation remains better for

higher accuracy, the only inconvenience being in the computa-

tion of the complementary error functions with complex argu-

ments. Our approach obviates this computational complexity by

storing the GFs into 3-D tables. The GF values needed to com-

pute the numerical integrals are retrieved from the tables using

efficient interpolation routines, which leads to very accurate re-

sults and much faster computation than if the GFs are evaluated

directly.
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Fig. 1. 2-D periodic structure with a general skewed lattice.

We apply the Ewald transformation to 3-D geometries period-

ically repeated along a 2-D skewed lattice. However, this tech-

nique can be easily extended to the case of 3-D metallo-dielec-

tric inclusions in a 2-D lattice either by using the equivalence

theorem and electric and magnetic surface currents or by means

of the volume IEs and polarization currents. Both approaches

have the convenience of dealing with homogeneous GFs where

the Ewald transformation can be easily applied.

II. IE AND MOM

We consider a periodic structure with identical 3-D metallic

objects of arbitrary shape periodically repeated in the -plane

(Fig. 1). The periodic structure has a general skewed lattice de-

fined by primitive vectors and and is illuminated by a

plane wave impinging with the incidence angles . Let

designate the surface of the perfectly conducting 3-D object

within the structure’s unit cell. The analysis is based on the solu-

tion of the following mixed-potential integral equation (MPIE)

[19]:

(1)

obtained by enforcing the boundary conditions (BCs) on the

PEC surface . In (1), is the incident electric field, is the

outside normal to , is the unknown current density on , and

and are the vector and scalar potential GFs that take into

account the periodicity of the problem. Finally, is a shorthand

notation [20] of the surface convolution integral

where primed and unprimed coordinates designate source and

observer positions, respectively.

Equation (1) is solved by applying the MoM in the Galerkin

form. The unknown current density is expanded using a set of

Rao–Wilton–Glisson (RWG) [21] basis functions defined

on triangular subdomains (or facets) of the surface

(2)

where are the unknown coefficients. By substituting (2)

into (1) and testing the IEs by the same set of basis functions ,

for each frequency , the following system of linear equations

is obtained:

(3)

where for

The MPIEs involve potential GFs that have milder singularity

( instead of for field GFs), which allows for the above

integrals to be numerically solved in two possible ways. The

singularity can be extracted, computed analytically [22], [23],

and added to the remaining regular part. Another strategy is to

solve the integral in polar coordinates, where the Jacobian of the

transformation will cancel out the singularity [20].

III. REFLECTION AND TRANSMISSION COEFFICIENTS

OF A PERIODIC STRUCTURE

The components of the total EM field transverse to the prop-

agation direction can be expanded in any plane of the periodic

structure using the transverse vector eigenfunctions, designated

as Floquet modes as [24], [25]

(4a)

(4b)

where goes through all the and modes, and

are the power coefficients of the modes propagating in the

positive and negative -directions, respectively, is the prop-

agation constant, and is the characteristic impedance of the

th mode given by

for mode

for mode.

In the case of oblique incidence , an arbitrary polar-

ized incident plane wave can be expressed as a combination of

the two fundamental Floquet modes, namely, and ,

while in the case of normal incidence , the incident plane

wave is the Floquet TEM mode [26]. The expressions for the

transversal and longitudinal components of the Floquet modes

of a general skewed lattice are compiled in Appendix A.

Suppose that the incident plane wave impinging from below

corresponds to the th Floquet mode, the transverse component

of the electric field of this wave can then be expressed as

(5)

Let be a unit surface in the plane for which the reflec-

tion coefficient is being computed, and let be the surface in
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the plane for which the transmission coefficient is

sought for. The total electric field in consists of the incident

field traveling in the positive -direction and the field scattered

from the metallic objects traveling in the negative -direction,

and its transverse component can be expressed as

(6)

This field can be expanded into Floquet modes using (4a)

(7)

Multiplying both (6) and (7) by , integrating over the surface

of the unit cell , and using the orthonormal property of the

Floquet modes , the reflection coefficient

of the th mode can be expressed in terms of the reflected field

as follows:

(8)

In the same manner, we obtain the transmission coefficient.

The total electric field in consists of the incident electric

field and the scattered field both propagating in the positive

-direction

(9)

In , there are only waves propagating in the positive

-direction so the expansion of the total electric field can be

expressed as

(10)

Multiplying (9) and (10) by , integrating over , and taking

into account the orthonormality of the Floquet modes, for the

transmission coefficient, one obtains

(11)

The transverse component of the scattered electric field can be

expressed as a convolution integral of induced electric currents

and the corresponding GF as

(12a)

The dyadic relates the electric current density to the trans-

verse electric field and is given by

(12b)

where . The spectral domain quantity repre-

sents the voltage at the point along the equivalent transmission

line for a unitary value of the current generator placed at

(12c)

Finally, once the unknowns have been computed by solving

the MoM system of (3), using the orthonormality of the Floquet

modes and (2) and (12a)–(12c), the reflection and transmission

coefficients of any Floquet mode can be found as

(13a)

(13b)

In the case of a periodic structure with identical planar apertures

of arbitrary shape periodically perforated in the plane, the

reflection and transmission coefficients are computed as shown

in [27].

IV. 2-D PERIODIC GFs

A. Image Formulation

Suppose the periodic structure is illuminated by a plane wave

impinging from below with the incident angles , . The prop-

agation vector of this plane wave is defined as

All the cells in the periodic structure are equal, and the field im-

pinging on them is the same, save for a phase shift. This means

that the total EM field (i.e., the solution of the Maxwell’s equa-

tions) will be equal for all the cells, except for the phase shift

that corresponds to that one of the excitation. Therefore, if any

EM-field component is known on the original cell and given by

, it will be known over the entire periodicity plane since it

can be written as

where the exponent reflects the phase shifts imposed by the ex-

citation and is the translation vector of the

lattice.

The same considerations apply to GFs. Function can be

a field component, but also any EM quantity linearly related

to the fields (potentials, surface currents, etc.) Therefore, if
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represents the free-space GF or the GF without periodic BCs,

the GF of a periodic structure can be written as

(14)

where and .

B. Modal Formulation

Let and be the vectors of the reciprocal lattice defined

by

(15)

Applying the Poisson 2-D summation formula to (14), one ob-

tains the modal formulation of the periodic GF

(16)

where represents the surface of the unit cell,

is the translation vector of the reciprocal lat-

tice, , and .

If the periodic structure is in free space, we have the following

Fourier transformation pair:

(17)

and the required GFs are and

for electric scalar and magnetic vector potentials, and

and for magnetic scalar

and electric vector potentials, respectively. In (17), ,

, and .

V. POTENTIAL GFs AND EWALD TRANSFORMATION

Both infinite sums in (14) and (16) are slowly convergent.

The image sum is converging faster when the observer point is

in the source point region since the singularity is perfectly in-

cluded in the expression. However, close to the lateral periodic

walls, the convergence is deteriorated as the periodic BCs are

going to be satisfied only for an infinite number of images taken

into account. Each term of the modal sum, on the other hand,

satisfies the BCs at the lateral walls and, hence, the convergence

of this sum is faster close to the walls. However, taking into ac-

count the singularity at the source point would require an infinite

number of modes leading, therefore, to the slow convergence of

the modal sum in the source point region.

The Ewald method successfully combines both modal and

image formulations into a fast converging series. Here, we

present the details of the Ewald transform used to compute

the potential GFs of a periodic structure with general skewed

lattice. According to (14) and (17), a potential GF of such a

structure is given by the following image sum:

(18)

Following the results of Ewald [13], [28], we use the identity

(19)

where is a complex variable and the path of integration is

chosen such that the integrand remains bounded as and

decays as . Splitting the integration path at in (19),

we can write

(20a)

with

(20b)

and

(20c)

Using the Poisson 2-D summation formula and the following

identity [29]:

(21)

after some algebraic manipulations, (20b) becomes

(22)

where .

A direct application of (21) to (20c) with ,

, and yields

(23)

In the above equations, designates the sum of the terms

with and signs.

VI. OPTIMUM PARAMETER AND THE GF CONVERGENCE

The complementary error function, which appears in both se-

ries and , makes these series converge rapidly. The best

choice for the splitting parameter is the one that balances the

rate of decay of the two series, making and contribute an

equal number of terms to the final value . The approximation
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to the optimal value of for 2-D orthogonal lattices is given

by [13] and it can be shown that this expression

remains valid for skewed lattices as well.

For high frequencies or, equivalently, large periodic spacings,

the complementary error functions in the first terms

of both and will take large imaginary arguments and

behave as . These two terms will have very large

values that are approximately equal in amplitude, but of oppo-

site signs and summing them up will lead to a severe loss of

accuracy due to a finite machine precision. This problem can

be remedied by requiring that be smaller than a max-

imum permitted exponent . In that case, the value of the pa-

rameter has to be chosen as

(24)

Consider a skewed lattice with and

. Let the source position be fixed at

and the observer be at the distance from the source

along the diagonal , . Fig. 2 shows the number

of significant digits of accuracy as the number of terms in both

Ewald sums grows. The reference value for estimating the ac-

curacy was computed for a large number of terms in both sums

(729).

We can observe a very rapid convergence rate for small and

-periodic spacings in both cases when the observer is close to

the source and close to the edge of the unit cell

. Already for 25 terms, both sums achieve more

than eight digits of accuracy as compared to the reference value.

Fig. 3(a) illustrates the case of a large periodic spacing and the

significant loss of accuracy that occurs due to a finite machine

precision when a balanced optimal value of the parameter is

used. However, when the parameter is based on the maximum

exponent permitted, the accurate values of the GF are obtained

[see Fig. 3(b)]. In that case, the sums are unbalanced and the

modal sum needs much more terms to converge [see Fig. 3(c)].

The accurate numerical evaluation of the complex comple-

mentary error function can be done using very efficient numer-

ical algorithms [30], [31]. A computationally efficient way of

implementing GFs in a computer code is to pre-compute them

at each frequency point and tabulate the values in a rectangular

3-D grid along , , and . The GF values needed to

compute the numerical integrals in the MoM matrix are then re-

trieved from the table using interpolation routines (in our case,

quadrature interpolation [31]). With a dense enough grid and

nonuniform (cubic) distribution of points in the source region,

the interpolation leads to very accurate results and much faster

computation than if the GFs are evaluated directly.

VII. NUMERICAL RESULTS

A. Jerusalem Cross

In the first example, we consider the problem of a free-

standing planar array of perfectly conducting Jerusalem-cross

shaped patches. Fig. 4 shows the magnitude and phase of

the reflection coefficient for the Floquet TEM mode with the

electric field oriented in the -direction . The number

Fig. 2. Number of significant digits of accuracy as compared to the reference
value computed using a very large number of terms. Both sums 	 (solid line
�) and 	 (dashed line �) have very fast convergence and need approximately
the same number of terms to achieve a given accuracy. (a) a = a = �=5
and (b) a = a = 0:99� for E = E . R = 0:01a (left) and R = 0:4a
(right).

of terms in both Ewald sums was set to 25. Further increasing

the number of terms did not show any changes in the reflection

coefficient. The whole structure was discretized into 323 tri-

angular cells to ensure accurate results in the entire frequency

band. We compare the results obtained using our approach

(solid line) with the results obtained using the spectral-domain

approach [1] (dashed line) and the results obtained using the

GSM [10] (circles). Good agreement with the reference results

can be observed in both magnitude and phase of the reflection

coefficient.

B. Transmission Through Rectangular Apertures

We calculate the transmission through a perfectly conducting

screen perforated with rectangular apertures. The numerical ex-

ample [26], used as a reference, has the following parameters:
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Fig. 3. (a) For large periodic spacing a = a = 5�, significant loss of accu-
racy is observed if E = E due to a finite machine precision. (b) When the pa-
rameterE = 2:75E is based on the maximum exponent permitted (H = 9),
accurate values of the GF are obtained. (c) In this case, the modal sum needs a
larger number of terms to converge (solid lines with �). R = 0:01a (left) and
R = 0:4a (right).

mm, mm, , mm,

mm, and the lattice vector being in the -direction.

Fig. 4. (a) Magnitude and (b) phase of the reflection coefficient as a function of
frequency for a normal incidence TEM illumination. Results obtained using
the presented theory are denoted via solid lines, the values taken from [1] are
denoted via dashed lines, and the values taken from [10] are denoted via circles.
The inset shows a unit cell of the freestanding array of conducting patches in the
shape of a Jerusalem cross. Dimensions are in millimeters: w = 1:9, l = 3:8,
l = 5:7, a = a = 15:2.

Fig. 5. Transmission coefficients of incident plane wave with the E-field per-
pendicular to the xz-plane and with the incident angle � = 60 . The results
obtained using presented theory are denoted via solid lines and the values taken
from [26] are denoted via dashed lines.

Fig. 5 shows the transmission coefficients of the plane wave that

correspond to the Floquet mode with the incident angle
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Fig. 6. Transmission coefficient of a normal incidence plane wave withE-field
parallel to the y-axis. The results obtained using presented theory (solid lines)
are compared to the simulations (dashed lines) and measured values (+) taken
from [32]. The inset shows the geometry layout of the 2-D array of circular
holes in thin conducting screen. Diameter of the holes D = 12 mm, a =
a = 10

p
3 mm, and � = 60 .

. The results converged for 25 terms in both Ewald

sums and 78 triangular cells used to discretize the geometry.

C. Conducting Screen Perforated With Circular Holes

The transmission of a plane wave incident on a thin perfectly

conducting screen perforated periodically with circular holes is

considered. The geometry of the problem is defined in the inset

of Fig. 6. The reflection and transmission coefficients for a plane

wave with the -field parallel to the -axis at normal incidence

( mode) is plotted as a function of frequency in Fig. 6.

A very good agreement with the measured values [32] can be

noticed. Here, only nine terms in both Ewald sums give already

convergent results for a mesh density with 178 triangular cells.

D. Cross-Shaped Bandpass Filter

Next, we analyze the bandpass filter formed by periodic

cross-shaped holes with a resonance frequency of 280 GHz

[11]. The transmission coefficients for a plane wave with the

-field parallel to the -axis at normal incidence (

mode) is plotted as a function of frequency in Fig. 7. Solid

lines represent the results obtained using our technique, dashed

lines represent the results using the simulation technique of

[11], and the measured values are denoted via pluses . Very

good agreement with the reference results can be observed.

The number of terms in both Ewald sums was set to nine up

to GHz. Above this limit, the balanced value of the

parameter results in loss of accuracy (Section VI). In

order to avoid this, we use that corresponds to the

maximum permitted exponent of . Since the value of

the splitting parameter is now unbalanced, we need more terms

in the modal sum (49) than in the image one (9) to ensure the

GF convergence. The thickness of the metallic foil has not been

taken into account in our simulations.

E. Photonic Crystal of Metallic Rods

Now we consider a photonic crystal structure formed by a

2-D lattice of 3-D finite-length rods, as shown in the inset of

Fig. 7. (a) Magnitude and (b) phase of the filter’s response: our technique (solid
lines), numerical results from [11] (dashed lines), and the measured values from
[11] (+). The inset shows a photograph of a galvanized cross-shaped bandpass
filter [11]. Square lattice period a = a = 810, slot length l = 570, slot width
w = 160, and foil thickness t = 10. All dimensions given in micrometers.

Fig. 8. The structure is infinite in the - and -directions and

can have a finite number of lattice grids in the -direction.

The plane wave is propagating in the positive -direction

and has the electric field parallel to the rods. This excitation

corresponds to the Floquet mode. Fig. 8 presents the

simulated transmission coefficient in the solid line versus the

measured values taken from [33] and denoted by gray lines

for the case of two lattice grids. GFs are tabulated in a rect-

angular 20 10 40 grid and then evaluated using quadratic

interpolation. The convergence of GFs is achieved already for

nine terms in both Ewald sums. Increasing the number of terms

in the Ewald sums only slightly increases the time needed to

fill out the GF table. The mesh density fine enough to give the

accurate results yields 528 unknowns. The time needed to solve

this structure is 6.2 s per frequency point on a PC with Pentium

IV 3.2-GHz processor, 1 GB of RAM, and Microsoft Windows

XP operating system. It can be observed that the resulting

transmission coefficient agrees very well with the experimental

values. We have simulated the same problem using Ansoft’s
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Fig. 8. Transmission coefficient for two layers of metallic photonic crystal
grids. Spacing between the grids in the z-direction h = 6 mm. Zero incident
plane wave has the electric field parallel to the x-axis. The black solid line rep-
resents the simulated values. Gray solid lines represent measurements in 7–16-
and 27–50-GHz ranges taken from [33]. The dashed line is the result of sim-
ulations on HFSS. The inset shows the unit cell of the photonic crystal. The
structure is periodic in the x- and y-directions with rectangular lattice param-
eters a = 6:5 and a = 6. The radius of the rod is r = 0:75 and its length
l = 5. All dimensions given in millimeters [33].

Fig. 9. Unit cell of periodic SRRs. The structure is infinite in the x- and y-di-
rections with periodicity a = 3:33 and a = 3:66, respectively. The height
of a unit layer is h = 3:66. The SRR consists of two split metallic rings with
the following dimensions: l = 3, w = g = 0:33. All dimensions given in
millimeters [34].

High Frequency Structure Simulator (HFSS) and the transmis-

sion coefficient denoted via dashed line in the same figure. The

unit cell has ABCs on its top and bottom faces and they are

placed far enough from the metallic rods (at mm) to

ensure accurate results. The following simulation parameters

were used: ten passes with a convergence of 0.02 per pass and

the adaptive frequency 50 GHz, which leads to 6260 tetrahedra

to achieve the convergence. The corresponding CPU time on

the same PC is 26.1 s per frequency point, which means more

than four times longer simulation as compared to that one of

our approach, and no noticeable improvement in accuracy.

F. Split-Ring Resonators (SRRs)

A 2-D lattice of SRRs has been shown to give an effective

permeability, which can be negative close to its resonance

frequency. The transmission characteristics of arrays of SRRs

have been extensively studied in [34] using the transfer-matrix

method (TMM). Here, we perform the IE numerical analysis

Fig. 10. Effective parameters for one layer of periodic SRRs. Solid lines denote
real parts and dashed lines denote imaginary parts. EM wave propagates along
the z-direction and its electric field is parallel to the x-axis. Note that � can be
negative.

on such a periodic structure, whose geometry and dimensions

are given in Fig. 9. The zero-incident EM plane wave has its

electric field parallel to the -axis. We have computed the

reflection and transmission coefficients for the Floquet

mode again using only nine terms in the Ewald summations.

Supposing that the layer of SRRs behaves as a homogeneous

slab, we have then retrieved the effective permittivity and

permeability of such a structure using the algorithm based on

[35]. These results shown in Fig. 10 agree qualitatively very

well with the results published in [34], and have a resonance

interval in which the real part of the effective permeability

is negative.

VIII. CONCLUSION

We have presented in detail a space-domain IE analysis

for 3-D metallic objects repeated along a 2-D lattice. The

method uses Ewald’s acceleration technique to speed up the

convergence of the GFs. The values of GFs are pre-computed

at each frequency point and tabulated in 3-D grids. The GF

values are then retrieved from the table using 3-D interpolation

routines, yielding very efficient numerical implementations

with simulation times that, for this class of structures, out-

perform an FEM-based commercial software. A number of

periodic structures with general skewed lattices under oblique

and normal incidence plane-wave excitations were studied. The

simulations show that, in most cases, only nine terms in both

Ewald sums suffice to obtain results that agree very well with

the measured or numerical results reported in the literature.

APPENDIX A

FLOQUET MODES FOR GENERAL SKEWED LATTICE

A. Scalar-Mode Functions

Let , be a scalar-mode function that satis-

fies 2-D Helmholtz equation

(A.1)

with the following periodic BCs:

(A.2)
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TABLE I
VECTOR-MODE FUNCTIONS

In the previous equations, , is the

propagation vector, and is the translation

vector of the skewed lattice defined by primitive vectors and

. The solution of this equation is found using the separation

of variables and can be expressed as follows:

(A.3)

where is the surface of the unit cell

and is the translation vector of the reciprocal

lattice.

B. Vector-Mode Functions

Vector-mode functions and

for both TE and TM modes can be derived from

the scalar-mode functions using the formulas from [24]

and the final expressions are compiled in Table I. In the case of

zero incidence , we have a TEM mode, whose electric

vector is given by

(A.4)
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[27] I. Stevanović, P. Crespo-Valero, and J. R. Mosig, “An integral-equa-
tion technique for solving thick irises in rectangular waveguides,”
IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 189–197, Jan.
2006.

[28] P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpo-
tentiale,” Ann. Phys., vol. 64, pp. 253–287, 1921.

[29] W. Gautschi, “Error function and Fresnel integrals,” in Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, M. Abramowitz and I. A. Stegun, Eds. New York: Dover,
1972, ch. 7, pp. 295–329.

[30] G. P. M. Poppe and C. M. J. Wijers, “More efficient computation of the
complex error function,” ACM Trans. Math. Softw., vol. 16, no. 1, pp.
38–46, Mar. 1990.

[31] IMSL Fortran Subroutines for Mathematical Applications. Visual Nu-
merics Inc., Houston, TX, 1997. [Online]. Available: http://vni.com
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