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Integral equation analysis of an arbitrary-profile
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illuminated by an E-polarized complex-source-
point beam
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A two-dimensional reflector with resistive-type boundary conditions and varying resistivity is considered. The
incident wave is a beam emitted by a complex-source-point feed simulating an aperture source. The problem is
formulated as an electromagnetic time-harmonic boundary value problem and cast into the electric field inte-
gral equation form. This is a Fredholm second kind equation that can be solved numerically in several ways.
We develop a Galerkin projection scheme with entire-domain expansion functions defined on an auxiliary circle
and demonstrate its advantage over a conventional moment-method solution in terms of faster convergence.
Hence, larger reflectors can be computed with a higher accuracy. The results presented relate to the elliptic,
parabolic, and hyperbolic profile reflectors fed by in-focus feeds. They demonstrate that a partially or fully re-
sistive parabolic reflector is able to form a sharp main beam of the far-field pattern in the forward half-space;
however, partial transparency leads to a drop in the overall directivity of emission due to the leakage of the
field to the shadow half-space. This can be avoided if only small parts of the reflector near the edges are made
resistive, with resisitivity increasing to the edge. © 2009 Optical Society of America

.
OCIS codes: 050.1755, 050.1940

t
a
c
c
F
t
b
e
M
fl
a
c
f
c
l
o
t
P
o

g
c
P
l
b
n
a

. INTRODUCTION
ccurate characterization of the scattering of waves by

hree-dimensional (3-D) and two-dimensional (2-D) im-
erfect [i.e., not perfectly electric conducting (PEC) but
artially transparent or lossy] reflectors and mirrors oc-
upy a remarkable place in the electromagnetics across a
ide range of frequencies from the visible to microwaves.

mperfection of materials for reflectors is especially im-
ortant in optics where even noble metals display finite
alues of both dielectric permittivity and losses. Also, fre-
uently the metals are deposited on flat or curved optical
urfaces in the form of very thin and hence penetrable
ayers [1]. In the microwave range, where the losses are
egligible, an improvement of metal reflector perfor-
ance can be achieved by making its rim transparent, ab-

orptive, or serrated [2–4] . More recently the weight re-
trictions imposed on flight-mission antennas have led to
evelopment of inflatable microwave reflectors made of
hin metallized films [5]. Therefore the scattering and
eam forming by a thin penetrable reflector made of di-
lectric or thinner-than-skin-depth metal is an interest-
ng research problem having important applications in
ptical and microwave imaging systems and antennas.

Today, full-wave modeling of optical and quasioptical
eflectors using common finite-difference time-domain
FDTD) codes is not realistic because of the huge size of
iscrete models and correspondingly huge computation
1084-7529/09/071525-8/$15.00 © 2
ime. Singular integral equation (SIE) based algorithms
re more economic as they discretize only the surface or
ontour of the reflector. They also satisfy the radiation
ondition in the explicit manner that is impossible with
DTD codes. The most well-known way of SIE discretiza-

ion is the method of moments (MoM) with local or global
asis and testing functions [6–9]. Closer inspection, how-
ver, shows that within reasonable computation time
oM can be applied only to small- and medium-size re-

ectors (roughly up to 10 wavelengths) and provides the
ccuracy of computing the surface current only within a
ouple of digits. Numerical examples of this sort can be
ound in Fig. 5 of [10]. If a larger geometry or better ac-
uracy is a goal, conventional MoM algorithms quickly
ead to nonrealistic computer time requirements. More-
ver, the convergence of the MoM solutions, if applied to
he so-called SIE of the first kind that are common for
EC reflectors, is not guaranteed and strongly depends
n the implementation.

Alternatives are the high-frequency techniques such as
eometrical optics (GO), physical optics (PO), and physi-
al theory of diffraction (PTD), especially for the larger
EC reflectors [11–14]. They have long histories, and the

atest sophisticated versions combine PO with Gaussian-
eam field decompositions [15–19]. Being powerful engi-
eering tools, these asymptotic techniques are still only
pproximations of the actual solution; all of them fail
009 Optical Society of America
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ear caustics and in the focal domain. PO fails in and
ear the main beam axis, and GO fails in the complemen-
ary domain. They show noticeable errors if a reflector is
ocated near a subreflector, radome, or the Earth’s sur-
ace. More advanced and mathematically grounded high-
requency analysis could be done with the modified

iener—Hopf approach [20], but this is still in the future.
To overcome these deficiencies, it has been proposed to

se SIEs together with the method of analytical regular-
zation (MAR) [21]. The MAR can be considered as a judi-
ious version of MoM, the difference being in the selection
f the expansion functions. With MAR, the original SIE
ernel is separated into two parts, namely, the more sin-
ular (usually static) part and the remainder. For in-
tance, the former can be the logarithmic part of the 2-D
reen’s (i.e., Hankel) function. If the expansion functions
re chosen as the orthogonal set of eigenfunctions of the
ore singular part of the kernel, then their use in the
alerkin-type MoM discretization scheme leads to the
nalytical inversion of the more singular part of the origi-
al SIE, and the remainder leads to the Fredholm second-
ind matrix equation that provides a convergent numeri-
al solution. This technique, combined with the dual-
eries equations [22] and a wave beam as the incident
eld, was first applied to a 2-D antenna with reflector
haped as a circularly curved PEC strip [23]. Later it has
een extended to the beam-fed 2-D circular PEC reflectors
n more complicated near-field environments, including
ircular dielectric radomes [24] and the flat, imperfect
arth’s surface [25]. Here, the background idea is that

hese inhomogeneous host media also have analytically
erivable Green’s functions which have the same logarith-
ic singularities, so that a similar SIE-MAR scheme

ould be used. Note, however, that a circular arc can ap-
roximate only quite shallow parabolic profiles so that
eep reflectors and other shapes needed additional ef-
orts. In the later work, the SIE-MAR technique has been
xtended to the 2-D PEC reflectors of noncircular con-
ours. As a result, single conical-section-profile reflectors
ed with beam sources were computed in the E- and
-polarization cases in [26,10], respectively.
It should be noted that besides MAR, competitive nu-
erical solutions of the same SIEs have been recently de-

eloped by using a Nystrom-type interpolation technique
27]. One has been successfully used not only in the
nalysis but also in the synthesis of 2-D PEC reflectors
28] in the E-polarization case.

As for the imperfect 2-D reflectors, a PO treatment has
een presented in [29] for the resistive half-plane illumi-
ated by a plane wave and, more recently, by a wave
eam in [30]. For the curved-screen-like scatterers, a
odified-PO study of a 2-D parabolic impedance reflector

ed by a line current has been published in [16]. A full-
ave numerical analysis has been done with SIE-MAR
nly for circular-arc 2-D reflectors: a uniform-resistivity
ne illuminated by a plane wave in [31] and a variable-
esistivity one fed by a beam in [32]. The latter analysis
onfirmed that a noticeable reduction of the penumbral
idelobes could be achieved by loading a PEC reflector
ith 1—2-wavelength-wide variable-resistivity edges.
he spillover lobes are also reduced by a few decibels com-
ared to the PEC case. In fact, such an edge-loaded reflec-
or serves as a simplified model of a serrated reflector.

In the present study, we combine previous 2-D solu-
ions of [26,32] and study beam forming by the uniformly
nd nonuniformly resistive (e.g., edge-loaded) parabolic
eflectors fed by beams. Similar to [10,23–28,30,32], we
imulate a directive incident beam field by using the
omplex-source-point (CSP) feed. We also compare perfor-
ance of different reflector surface profiles. Here the

roblem is considered in the E-polarization case; there-
ore the SIE obtained is of the Fredholm second kind be-
ause of the nonzero jump of the tangential component of
he magnetic field across the contour and the logarithmic
ingularity in the kernel function. Hence, the inversion of
his part of SIE is not a necessary procedure. A direct nu-
erical solution, if one uses Galerkin projection to a suit-

ble set of expansion functions, leads to a Fredholm sec-
nd kind matrix equation and provides a convergent
olution with controlled accuracy.

Thus a MoM-like discrete scheme with local basis func-
ions is theoretically sufficient. However, using a set of
lobal expansion functions may provide a more economic
umerical solution beyond the limits of conventional
oM. This is important when studying quasioptical-size

eflectors. We will develop such an algorithm and analyze
asic mechanisms underlying scattering and beam-
orming by resistive reflectors of practical shapes.

. FORMULATION
he problem geometry associated with a zero-thickness
urved resistive reflector symmetrically illuminated by a
irective feed is shown in Fig. 1. The 2-D contour of the
eflector’s cross-section M can be an elliptic, parabolic, or
yperbolic arc, i.e., an arbitrary conical-section profile. All
hese curves can be characterized with the same equa-
ion, which can be found elsewhere [26]. Here we note
nly that they differ in the value of the so-called eccen-
ricity e so that e�1 for an ellipse, e=1 for a parabola,
nd e�1 for a hyperbola.

ig. 1. Problem geometry for the finite parabolic-profile reflec-
or. Thick dashed straight lines centered at reflector’s edges
ark the corresponding tangents. Zigzag line centered at �L ,0�
arks the branch cut associated with the CSP source.
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The feed is assumed a CSP source; certain restrictions
n its location will appear later due to the singularities of
he corresponding field function. In computations, the
eed will be placed in the geometrical focus of the reflec-
or, as shown in Fig. 1. When building the solution, the
pen arc of the reflector contour M will be completed to
he closed contour C with a circular arc S of a certain ra-
ius a. Therefore we will use polar coordinates �r ,�� with
he origin at this circle’s center, shifted from the focus of
eflector by the distance L.

The rigorous formulation of the considered boundary
alue problem can be stated in terms of the Helmholtz
quation of M, the Sommerfeld radiation condition far
rom the reflector and source, the resistive boundary con-
ition on M, and an edge condition such that the field en-
rgy is limited in any finite domain around the reflector
dge. Collectively, these conditions guarantee the unique-
ess of the problem solution [33].
The resistive boundary condition is a well-established
odel of a thin penetrable material sheet (see, for in-

tance, [34,35]). It can be written as the following pair of
quations:

�E� T
+�r�� + E� T

−�r��� = 2R�r��n� �r�� � �H� T
+�r�� − H� T

−�r���,

E� T
+�r�� = E� T

−�r��, r� = �r,�� � M, �1�

here E� and H� are electric and magnetic field functions,
espectively; the coefficient R is called resistivity, sub-
cript T indicates the tangential field, the superscripts
�” and “�” relate to the front and rear faces of the re-
ector, respectively; and the unit normal vector n� is di-
ected from the “�” to the “�” face. Condition (1) enables
ne to exclude from consideration the field inside the ma-
erial sheet.

The resistivity R in Eq. (1) can be complex-valued and
osition-dependent on M. The two most frequently met
xamples of resistive surfaces are a thin dielectric sheet of
hickness h and relative permittivity εr and a metal sheet
ith thinner-than-skin-depth thickness h and electron

onductivity �. They are characterized by the following
xpressions, respectively [34,35]:

Rdiel =
iZ0

kh�εr − 1�
, Rmetal =

1

h�
, �2�

here Z0 is the free space impedance, and k is the free-
pace wavenumber. Further note that a complex or real-
alued R such as Rmetal in (2) corresponds to a lossy sheet,
nd a purely imaginary R such as Rdiel with a real εr cor-
esponds to the lossless case.

The incident electric field will be taken as the beam-
ike field generated by the CSP,

Ez
in�r�� = H0

�1��k�r� − r�s��, �3�

here the complex-valued source point position is given
s

r�s = �x0 + ib cos �,y0 + ib sin ��. �4�

Note that function (3) has two branch points, which
hould be connected with a branch cut [10,11,23–28]; it
lso has maximum magnitude along only one direction,
=�. Near the cut, function (3) is well approximated by a
one-side” Gaussian beam propagating in the mentioned
irection, while further from the cut it smoothly trans-
orms into a cylindrical wave. Therefore parameters b and

are the aperture width and the beam-aiming angle, re-
pectively, of the directive aperture source simulated with
he aid of CSP.

. BASIC EQUATIONS
y following the formulation outlined in Section 2, the
cattered electric field can be presented as a single-layer
otential,

Ez
sc�r�� = ikZ0�

M

Jz�r���G�r�,r���dl�, r�� � M, �5�

here the scalar Green’s function is a Hankel function of
ero order satisfying the radiation condition, i.e.,
�� ,�� �= �i /4�H0

�1��k �r����−r���� � � �, and the unknown
urface current density has only one component defined
s

Jz�r��� = H� T
+�r��� − H� T

−�r���. �6�

Then, by imposing the boundary conditions given in
q.(1), the electric-field integral equation can be derived
s

R�r��Jz�r�� − ikZ0�
M

Jz�r���G�r�,r���dl� = Ez
in�r��, r�,r�� � M.

�7�

Note that if the resistivity R is not identically zero,
hen Eq. (7) is a so-called second-kind equation; it is also
Fredholm integral equation (IE), because its kernel has

nly logarithmic, i.e., integrable, singularity [33]. If, how-
ver, R=0, the PEC counterpart of Eq. (7) is the first-kind
quation. Note that Eq. (7) does not permit a continuous
ransition to the static case of a PEC reflector �k=0,R
0�.
The Fredholm second-kind nature of Eq. (7) suggests

hat any usual discretization scheme of the order N ap-
lied to build a numerical solution to Eq. (7) is conver-
ent, i.e., limN→	�Jz

�N�−Jz�=0 [this is unlike the first-kind
EC counterpart of Eq.(7)]. For instance, this can be a
onventional method-of-moments (MoM) discretization
ith the pulse basis and delta testing functions. Thus, the

esistivity R plays the role of regularization parameter; if
t is purely imaginary or purely real-valued, adding such

term coincides with regularization in the sense of
avrentyev [36] or Bakushinsky [37], respectively. Still

he convergence of the MoM algorithms is usually not
apid enough to enable the computation of electrically
arge reflectors with high accuracy. Therefore we develop
ere a different numerical solution.
Assume that the curve M can be characterized with the

id of the parametric equations x=x���, y=y���, 0
 �� �
� in terms of the polar angle �. This puts certain re-

trictions on M, which must be convex or at least star-
hape. For example, if M is a parabolic arc then r���
L / �cos �−cot � sin ��, where the angle � satisfies a
1 1
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ranscendental equation as f sin �1=tan ��f cos �1
Lcos2��1 /2��. Then, because of the field continuity
cross the virtual arc S, we extend the surface-current
ensity function Jz with zero value to S and denote it now
s J̃z. This results in the following set of two equations
alid on the complementary parts of the unit circle, �
�0,2��:

R���J̃z��� − ikaZ0�
0

2�

J̃z����G��,���l����d�� = Ez
in���,

0 
 ��� � �, �8�

J̃z��� = 0, � � ��� 
 �, �9�

here l���=a−1���x��� /���2+ ��y��� /���2�1/2 stands for the
acobian normalized to a (see below on the choice of a),
���=R0���Z0, and R0��� is the normalized position-
ependent resistivity of the curved reflector (for instance,
s given below for the edge-loaded case).
To discretize the set of Eqs. (8) and (9), we make a

alerkin projection on the set of entire-domain expansion
unctions, which are the trigonometric polynomials
eim
�m=−	

+	 . Here, it is convenient to introduce the un-
nown expansion coefficients, �xn�n=−	

+	 , of the product of
he surface current density function with the Jacobian in
he following manner:

X��� = J̃z���l��� =
2

i�Z0
	

n=−	

	

��n� + 1�1/2xnein�, �10�

here the factor in the brackets will be justified later (see
lso [31,32]). In terms of the same functions, the incident
eld on C=M�S can be expanded as

Ez
inc��� = 	

n=−	

	

bnein�, �11�

here, in the case of CSP excitation, the coefficients are
ound as

bn =
1

2�
�

0

2�

H0
�1��k�r���� − r�s��e−in�d�, r� � C. �12�

The kernel function in (8), which is the Green‘s func-
ion, can also be expanded into a double Fourier series;
owever for an arbitrary arc M the coefficients have to be

ound numerically. To make their computation more eco-
omic, we add to and subtract from G a similar function
iven at the full circle of the same radius a as the auxil-
ary circular arc S, i.e., H0

�1��2ka sin���−�� � /2��. There-
ore a new function is defined as follows (note that we
ave used such decomposition earlier in [25] when study-

ng a PEC reflector):

H��,��� = H0
�1��k�r���� − r�������� − H0

�1��2ka sin��� − ���/2��.

�13�

The corresponding series representation is

H��,��� = 	
m,n=−	

	

hnmein�eim��. �14�
Note that this difference function turns to zero at the
ircular arc S and is not singular if �� →�. Further, if the
adius of S is chosen in such a way that at the junction
oints �= ±�, the curvatures of M and S are matched,
hen the function H�� ,�� � and its first derivatives with
espect to � and �� are continuous functions on the whole
. Furthermore the second derivative of H�� ,�� �, i.e.,

2H�� ,�� � /�����, has only logarithmic singularity as

� →�. Hence, it is not continuous but belongs to L2�C�,
nd therefore the Fourier series coefficients hnm decay
apidly enough (see also [10,26]) to provide that

	
m,n=−	

	

m2n2�hnm�2 � 	. �15�

Thus, on performing the Galerkin projection of dual
qs. (8) and (9) on the trigonometric polynomials, we ob-

ain the following dual-series equations:

	
n=−	

	

��n� + 1�1/2xnein�

= −
kal����

2R0��� 	
n=−	

	 
��n� + 1�1/2xnJn�ka�Hn
�1��ka�

+ 	
p=−	

	

hn,−p��p� + 1�1/2xp�ein�

+
i�

2

l���

R0��� 	
n=−	

	

bnein�, ��� � �, �16�

	
n=−	

	

��n� + 1�1/2xnein� = 0, � � ��� 
 �. �17�

Note that the right-hand parts of Eqs. (16) and (17)are
wo Fourier expansions of the same function of � on two
omplementary arcs of the whole unit circle. Therefore we
an use discrete Fourier transform to invert the left-hand
arts of Eqs. (16) and (17) and obtain an infinite set of lin-
ar algebraic equations for determining the unknowns,

xm + 	
n=−	

	

Amnxn = Bm, m = 0, ± 1, ± 2, . . . , �18�

here

Amn =
�ka

2 � �n� + 1

�m� + 1

1/2
Jn�ka�Hn

�1��ka�Qnm

+ 	
p=−	

	

hn,−pQpm� , �19�

Bm =
i�

2��m� + 1�1/2 	
s=−	

	

bsQsm, �20�

nd the coefficients Qnm are defined as

Qnm =
1

2�
�

−�

� l���

R0���
ei�n−m��d�. �21�
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The coefficients Qnm decay as O��n−m�−1+��, where 0
��1 (�=0 for e=0), if the indices get larger. Together
ith property (15) and large-index asymptotics for cylin-
rical functions, this enables one to prove that

m,n=−	
+	 �Amn�2�	. By similar treatment one can find that

m=−	
+	 �Bm�2�	, provided that the branch cut associated
ith the CSP aperture does not cross the reflector contour
.
Now it is clear that the term ��n �+1�1/2 introduced “in

dvance” in expansion (10) makes the decay of Amn sym-
etric with respect to m→	 and n→	. As a result, if the

bove requirements for the configuration of the reflector
nd feed are satisfied, the resultant infinite-matrix Eq.
16) is a Fredholm second-kind and has a unique solution
xn�n=−	

+	 in the class of numerical sequences l2 (i.e.,

n=−	
+	 �xn�2�	). As is known, if such a matrix equation is

runcated and the truncation order, say Ntr, gets larger,
he approximate solution error reduces to zero—see, for
nstance, the review [21] for details.

Further we will study the far-field characteristics of a
esistive reflector illuminated by the CSP feed. Therefore
e need a formula linking the far field and the unknown

oefficients; that is,

Ez�r�� = ��in��� + �sc�����2/i�kr�1/2eikr, �22�

here

�in��� = e−ikr0 cos��−�0�ekb cos��−��,

�sc��� =
1

2� 	
n=−	

	 xn

��n� + 1�1/2�
−�

�

ein��−ikr�����cos��−���d��.

�23�

The characterization of reflectors is usually done via
valuation of their directivities. In our case, the reflector
ntenna main beam looks in the direction �=�, which we
ill refer to as the forward direction. Then the forward di-

ectivity is (see [23] and references therein)

Dforw = lim
r→	

�r�Ez�r,��H�
*�r,���2

Prad
, �24�

here the denominator is the total power radiated by the
SP feed in the presence of the reflector, averaged over all
irections, i.e.,

Prad =
1

�kZ0
�

0

2�

��in��� + �sc����2d�. �25�

Note that the directivity can also be derived via the far-
eld scattering pattern,

Dforw =
2��in��� + �sc����2

kZ0Prad
. �26�

As the resistive reflector is partially transparent, we
ill also compute the backward directivity Dback. This
uantity is similar to (24) and (26), but with �=0 instead
f �.
. NUMERICAL RESULTS
n the computations, we assume that the CSP feed is in
he geometrical focus (x0=L, y0=0) and illuminates the
eflector in symmetric manner ��=0�. To calculate the ex-
ansion coefficients of smooth functions, bm and hmn, we
pply the fast Fourier transform (FFT) and double FFT
DFFT), respectively. Here, the order of FFT and DFFT
ust be kept sufficiently high to provide a superior accu-

acy of filling in the matrix with respect to the matrix
runcation error; therefore we have used 2048-point �210�
ransforms. This enables us to examine the convergence
f our numerical solution and compare it with that of a
onventional MoM algorithm, within at least four digits
n the near-field characteristics. The accuracy, for in-
tance, of the current density coefficients, is evaluated by
omputing the error in the sense of the maximum norm as

�cur�N� =
max�xn

N − xn
N+1�

max�xn
N�

, �27�

here xn
N is the coefficient found after solving Eq. (16)

runcated to the order N. Here we would like to empha-
ize that the use of the Euclidian norm as in [20] leads to
he same conclusions.

Figure 2 presents the relative errors in the current den-
ity coefficients for several lossy resistivity values of the
niformly resistive reflectors. The curves show the ex-
ected convergence and demonstrate that its rate de-
ends on the resistivity magnitude: the larger the �R� /Z0,
he faster the decrease in error. Generally, our analysis of
onvergence suggests the following convenient empirical
ule: For guaranteed 3-digit accuracy in the current, take
he truncation number as N�3��ka /R1/2+10.

In Figure 3, we compare the errors in the computation
f the far-field characteristic, the forward directivity ver-
us the matrix truncation number, after the formula

ig. 2. Relative error in the surface current density versus the
atrix truncation number Ntr for the uniformly resistive lossy

eflectors with e=1 (parabola) and kb=3. (a) Solid curve is for
=0.2Z0 and dashed curve is for R=Z0, with other parameters

eing d=20� and f /d=0.5. (b) Solid curve is for d=20� (here, the
adius of the auxiliary circle is a=22.35� and its center’s shift is
=12.49�) and dashed curve is for d=40� (here, a=44.71� and
=25.0�), with other parameters being f /d=0.5 and R=Z .
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�dir�N� =
�Dforw

N − Dforw
N+1�

�Dforw
N �

. �28�

The curves in Fig. 3 correspond to the numerical solu-
ions obtained with conventional MoM algorithm using
ulse basis and delta testing functions applied to IE (7)
thick curves) and our algorithm (thin curves). They dem-
nstrate that our solution outperforms MoM approxi-
ately by an order in terms of the matrix size necessary

or the fixed accuracy. Furthemore, as expected, the accu-
acy of determining the far field is an order of magnitude
etter than that of the near field or surface current.

ig. 3. Relative error in the far-field directivity versus the ma-
rix truncation number Ntr computed with MoM and our method
or the uniformly resistive lossy (R is real-valued) and lossless (R
s imaginary-valued) parabolic reflectors with d=10�, f /d=0.4,
b=3, and �R�=0.5Z0. Note that in this case the radius of the aux-
liary circle is a=9.43� and L=5.56�.

ig. 4. Normalized radiation patterns for the uniformly resis-
ive parabolic reflectors illuminated by in-focus CSPs. (a) Solid
urve is for d=20� and dashed curve is for d=40�, with other pa-
ameters being f /d=0.5, R=0.1Z0, and kb=3. (b) Solid curve is
or R=Z0 and dashed curve is for R=0.1Z0, other parameters be-
ng d=40�, f /d=0.5 and kb=3. (c) Solid, dotted and dashed
urves are for the CSP sources having kb=1, 3, and 5, respec-
ively. Other parameters are d=40�, f /d=0.5 and R=0.1Z0. As
he lossless reflector patterns are very close to the lossy ones of
he same �R�, they are not plotted here.
The normalized radiation patterns of the uniformly re-
istive parabolic reflectors with different lossy and loss-
ess resistivities are given in Fig. 4. These results agree
ell with the data given in [32] for the circular resistive

eflectors. In subfigure (a), one can see how taking the re-
ector twice larger makes the main beam twice narrower;
his also lowers the sidelobes, but only in the forward
alfspace. In subfigure (b), the effect of larger resistivity
f the uniformly resistive reflector is seen in the increased
nd uniform leakage through it. From subfigure (c), the
ole of the edge taper becomes clear: a less directive inci-
ent beam leads to increased sidelobes, but does not dis-
ort the forward- and backward-field amplitudes.

The curves in Fig. 5 show the change in the forward di-
ectivity of a uniformly resistive parabolic reflector when
ts focal distance f /d varies while the aperture size d is
xed. As the in-focus CSP source here is also fixed �kb
const�, the reason for such change in Dforw is the varia-

ion of the edge illumination. Examination of the curves
eads to the conclusion that the optimal edge illumina-
ion, calculated as 20 log�Ez

in�edge� /Ez
in�center��, is close to

10 dB, and directivity varies little if it is between −8 and
15 dB.
In Fig. 6, we compare the forward and backward direc-

ivities of several differently sized all-resistive parabolic
eflectors as a function of the absolute value of the lossy
nd lossless resistivity. Here, the backward directivity is
he same as for Eq. (26) but in the direction �=0. An in-
eresting observation is that if the uniform resistivity of a
0-� parabolic reflector is R=1.5Z0, the forward and back-
ard directivities are equal.
In Fig. 7, the forward directivity versus the contour ec-

entricity (see Eq. (1) of [25]) of the reflector profile is plot-
ed for the different resistivity R values of the uniformly
esistive reflectors. For each different R value the maxi-
um directivity occurs at e=1, i.e., in the case of a pa-

abola, and directivity increases if the surface becomes
ess transparent. Note that the lossy and lossless cases
resent not much difference in the D versus e plots.

ig. 5. Directivity as a function of the relative focal distancef /d
or three values of parabolic aperture dimensions, d=15�, 20�,
nd 25� plotted as solid, dashed, and dashed—dotted curves, re-
pectively. Here, heavy curves are for the uniformly resistive
ossless reflector case �R= i0.5Z0�, light ones are for the lossy case
R=0.5Z �, and the CSP source with kb=3 is located in focus.
0
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Finally we have studied the previously reported reduc-
ion of the side lobes of the far-field radiation pattern for a
arabolic reflector by means of varying resistive edge
oading. Here, we assumed that the angular size of the re-
ector corresponded to �����, and the resistivity as a

unction of the angular coordinate was a small constant
alue R���=AZ0 if ���
�1��. However starting from ���
�1, it was assumed to grow linearly up to the edge as
���=Z0�A�−B�1+ �B−A�������−�1�−1 if �1� �����, and

each the value of R=BZ0 at the reflector edges. This kind
f study had been earlier performed in [32] for the
ircular-arc profile simulating a shallow parabolic con-
our, while here it is done for the truly parabolic profile
ase.

In Figure 8, the normalized radiation patterns are com-
ared for three types of reflectors: (i) PEC, (ii) “nearly-
EC,” i.e., uniformly resistive with R=0.01Z0, and (iii)

ig. 6. Directivities as a function of absolute value of uniform
esistivity for three reflectors with d=10�, 20�, and 30�, plotted
s solid, dashed, and dashed—dotted curves, respectively (lossy
nd lossless reflector case results are not distinguishable). Heavy
urves are for the forward directivity and light curves are for the
ackward directivity.

ig. 7. Forward directivity versus the eccentricity of the conical-
ection-profile reflectors for different R values in lossy and loss-
ess uniform-resistivity cases. The other parameters are d=20�,
/d=0.5, and kb=3.
dge-loaded nearly-PEC as explained above, where we
ook A=0.01 and B=1. One can see that the nearly-PEC
ase pattern follows the PEC one in the forward half-
pace but shows some 5 dB higher lobes in the backward
alf-space, because of partial transparency. The pattern
or the edge-loaded reflector (red curve online) follows the
early-PEC in the backward half-space; however its pen-
mbral side lobes are smaller by some 5 dB than for the
EC and nearly-PEC reflectors. This leads to the higher
alues of the forward directivity for the reflector antenna
ith resistive edge loading: Dforw=215.8 and 216.1 in the

dge-loaded lossy and lossless cases, respectively, while it
s 208.3 and 207.1 in the case of corresponding nearly-
EC uniformly resistive reflectors.

. CONCLUSION
e have presented an integral-equation based analysis of

rbitrary-profile 2-D reflectors with resistive-surface
oundary conditions and illuminated with the E-polarized
omplex-source-point beams. The problem is discretized
sing the trigonometric polynomials as global expansion
unctions introduced on the entire unit circle. This leads
o a dual series equation that is partially inverted with
he aid of an inverse discrete Fourier transform. The re-
ulting infinite-matrix equation is of the Fredholm second
ind and exhibits enhanced convergence when truncated
nd solved numerically. Based on this numerical solution,
he normalized far-field patterns and dependences of the
attern directivity on the reflector resistivity and other
arameters have been computed. They demonstrate,
mong other effects, a chance to decrease the edge scat-
ering of a parabolic reflector by using varying-resistivity
dge loading.
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ig. 8. Normalized radiation patterns for the PEC, uniformly
esistive “nearly PEC,” and edge-loaded parabolic reflector cases.
a) Lossy and (b) lossless reflector cases, other parameters being
=40�, f /d=0.5, and kb=3. Also in both figures (a) and (b) the
olid curve is the constant resisitivity case, the bold solid curve is
he variable resisitivity case, and the dotted curve is the PEC
ase.
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