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Integral Equation Modeling of Cylindrically
Periodic Scatterers in the Interior
of a Cylindrical Waveguide

Hristos T. Anastassiuylember, IEEE John L. Volakis,Fellow, IEEE,and Dejan S. Filipovic

Abstract—We examine the scattering from cylindrically peri-
odic engine-like structures using integral-equation methods. The
periodic scatterer is enclosed in a cylindrical waveguide, and the
primary goal of this paper is to show that this type of geometry
affords substantial computational reductions by exploiting the
periodicity of the blade structure and characteristics of the modal
scattering matrix of the engine-like termination. Also, as a result
of the periodic waveguide termination, a limited number of modes
are excited by a given incoming mode, and this is exploited for
a further reduction of the storage requirements of the modal
scattering matrix.

Index Terms—Cylindrically periodic, discrete body of revolu-
tion, method of moments, periodic, scattering.

I. INTRODUCTION

HE problem of electromagnetic scattering from jet-engine

inlets (see Fig. 1) has been investigated in a number of
recent papers [1]-[8] via different approaches. Rigorous mog@| 1  simpiified model of a jet engine.
methods [3], [4] are applicable only for simplified engine
models since the geometry of a realistic engine termination is
not canonical [3]. Also, standard numerical techniques, such as
the moment of methods (MoM) or the finite-element method
(FEM) cannot handle the entire structure due to its large
electrical size. Further, high-frequency techniques such as the
shooting and bouncing ray method [6], are not applicable due
to the engine’s complexity.

For an efficient solution of the problem, it has been found
that a decomposition of the computational domain into nu- Fields to Ray/Modes Numerical or
merical and high-frequency regions is the most appropriate Integration Surface Rigorous Modeling
approach. As shown in Fig. 2, the region surrounding the (Hand-off Surface)
complex engine termination is modeled numerically, where&®. 2. lllustration of the computational decomposition.
ray or modal methods are used to propagate the field through
the duct. In this manner, a significant amount of memor,
is saved by not discretizing the duct region. One way gq

. . . ?ntral processing unit (CPU) time problems.
couple the two computational regions is through the moda To reduce the CPU time and storage requirements down to
scattering matrix, and this approach is discussed in [1]. How-

: : . . L anageable levels, we exploit the inherent blade periodicity of
ever, even with this decomposition, a direct application ghe jet engine to show that the computational domain can be
numerical methods such as the FDTD [7] and FEM [1] lea J g b

S
to intractable problems when dealing with realistic jet-engi%ew

Modal or Ray region Engine

-+

CS) computation at many frequencies introduce additional

reduced down to a single blade or engine “slice.” This discrete
sizes spanning 30 wavelengths in diameter (at 10 GH ngoﬁgsvgr:lét'g&rfzors) li?griloeictz Ledzcgitt:reentr;bg tohfe
Multispectral characterization requiring radar cross secti g quir y €a
number of blades. However, it has so far been implemented
Manuscript received October 24, 1996; revised October 30, 1997. only in the context of differential-equation methods [2]. In
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where the superscript:, denotes the power of the dyadic
R. The latter is the rotation dyadic, defined in Cartesian
coordinates by the matrix

cosps —sing, 0O
[R] = | sin¢gs cos¢ps O |. 3
0 0 1

It can be readily shown that
R!=R" (4)
R™(¢,) = R(m,,). (5)

These equations present important properties to be explored
@éer in this analysis.

Fig. 3. Symmetry in a DBOR body.

[2], it is shown that the analysis over the entire engine can h bl ¢ . incid fell |
reduced down to a surface integral equation over a single blad& " tde problem o Sci“e””g’d?” incident I;ﬁ" 1S
or periodic sector of the engine. It is further demonstratéfSumed to Impinge upon the periodic structure, WiteTes a

that the resulting modal scattering matrix is sparse, leading gm of cylindrical waygguid_e modes. This excita_ltion induces
additional storage and CPU time reductions. the surface currenf giving rise to the scattered field [10]

Further computational reductions can be achieved by incor-
porating fast integral-equation algorithms such as the adaptive
integral method (AIM) [9]. The latter redistributes the currents
on the blade onto a canonical grid such that the scattered fieldere k = w, /e, Z = Vi/e (1 is the permeability, and
due to the fictitious sources on the nodes of the grid remathe permittivity),X is the outer surface of the scatterer, and
the same as that of the original sources up to a certain ordgfis the dyadic Green's function for the Helmholtz equation
Combining blade periodicity and the AIM concept results ifhside a cylinder (electric type of the first kind) stated in
drastic complexity reductions. Appendix A. An integral equation fod can be derived by

The DBOR procedure (which takes advantage of blageyoking the boundary condition satisfied &) namely,
periodicity) leads to a compact integral equation whose domain

is confined over the single engine blade. Initially, we consider (E°+E')-t=0 (7
perfectly conducting (PEC) scatterers, but the last section of ] ) ) ]

this paper gives an extension of the method to periodic angudreret is the tangential unit vector on, demanding that the
sectors containing nonmetallic, possibly lossy, materials. Thrigngential electric field vanishes on the surface of the periodic
appendixes are included, which provide certain mathematigtterer. _ _ _
details omited from the main text, in reference to the dyadic A numerical solution forJ can be obtained by casting
Green’s function for cylindrical waveguides and explicit ex(?) into & discrete system of equations. To do so, we first
pressions of the elements of the pertinent MoM impedan@@Proximate the surface curresfitby the expansion

matrix. J@) = I f,(r) (8)

E*(r) = —jkZ /E C(r,7) - J(r') &S’ 6)

Il. SETUP FORPERFECTLY CONDUCTING SCATTERERS , . .
where f (') are the chosen basis functions adgd are

Consider the PEC scatterer residing inside a cylindricghefficients to be determined. A standard set of linear basis

metallic waveguide and occupying the volurig as shown fynctions are those given by Rabal.[11], which are defined
in Fig. 1. This structure is used to terminate a cylindricg{g

waveguide and consists dV, periodic sectors or “slices.” ;
The slices are identical and rotated around the center axis with 1,5+ ifrcTt
+ Py el

respect to each other by integer multiples of the angular period f(r) = 2}4; ©)
5 "= ——p;, ifrel,
¢y = 1 @ 244 .
*7 N, 0, otherwise

whereg, is the angular opening of each slice (see Fig. 3). vwhere Ajt denote the area of the two triangles forming the
will refer to this termination as a DBOR since the geomet,gihedral patch, as illustrated in Fig. 4. The basis functions
can be generated by revolving the basic slice occupying tFePresent the current flowing through thth edge from one
volume V; a discrete multiple of azimuth angles. Due to triangle to the other, wherg? is measured from the vertices
this inherent periodicity, the vecter of a point in them,th OPPOSite to thegth edge. A useful property of the basis
periodic slice occupying the volunié,,. can be written as functions is

r=R" 1y 10€Vp (2) P (Rms . ,,-) =R™ - f,(r) (10)
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Using these notations along with identities (4) and (5), (10)
can be more explicitly rewritten as

[A] OO L [A]OD D o [A]ON DN
= (B}

Ta [AJAO{7}O 4 [A]ED LD 4y [A GV =D gD
SUR

[A](NS—I,O){J}(O) 4ot [A](NS—l,Ns—l){J}(Ns—l)
= {pyY (16)

where

Alname) = k7 / f(r)
20 20

—n,

R 5(12 -, R -'r’) ‘R™
f (') d*S d*S’ (17)

0

Fig. 4. The Rao-Wilton-Glisson (RWG) linear-surface basis functions.

and this is a consequence of linearity. Substituting (8) into (

73 . . .
. : . . te the entries of the submatrick4]=<) representing the
upon Galerkin's testing, we obtain the linear system 4] P 9

interactions between the:,th and then,th slice currents.

[A{I} = {V} (11) Also, {b}(") is the excitation column vector of theth slice,
o o defined by
where .
, (ns) = [y () ylna) L y(ne)
V;q —_ / EZ(,,_) fp('r) dQS (12) {b} - |:V1 7V2 ’ 7VQ :| (18)
=
- . where
are the elements of the excitation vec{df}, and{I} is the
colu_mn of unknown_current coeffi_ciemI%. As usual,[4] is Vp(ns) :/ E (I:zns ,T) R S, S, (19)
the impedance matrix whose entries are given by S

A itz A I N d2S 25" In (19), X is theouter surface of the slice within the volume
va = I /E/pr(r) G(r,7') fq(T ) &S A5 (13) V5. Clearly, the indexn, indicates the slice where the source

point is located, whereas, is the index representing the slice

Note that (11) involves the currents over tagnole scat- containing the observation point. Both indexes run from 0 to

terer (see Fig. 1) covering the entire angular dom@irc 3
¢ <2m. Thus, for large diameter terminations, the size ojys_l_o téke advantage of blade periodicity. we proceed to
the impedance matrix quickly becomes unmanageable. In _ . nage. P . P
: L . . establish a relationship among submatri¢e§(™-""+). The
Section Il1, it will be shown that the scattering from the slices™. " . (nome) .
rincipal part of the entries df4]\"="*<) can be written as

can be isolated from each other, yielding an equivalent systgm

much smaller than (11). ) o oo '
A](J[;s'rns) =jkZ Z Z e~ in(ms—ns)ds

[lIl. DECOUPLING OF THELINEAR SYSTEM OF EQUATIONS m=ln=-co
To exploit the periodicity of the geometry, we proceed {CEE/ () My (r; +41
to establish a relationship between the currents among the o /20 B e e
identical slices. Assuming that each periodic slice is identically M (T FB) - f () 7S d7S
discretized intoQ) patches, the current expansion (8) can be TM | oTM
rewritten as + Cnrn, 5 5 fp(’r) ) Nﬂ/nl(’r7 :l:ﬁnrn)
0 0
SR T N _p(r's FBL) - £,(r') d*S d*S"  (20)
Iy = 30 YA (R ) et () —r T ) L
m.=0 g=1

This is an exoression of the total current in terms of Ioc%’lhere we have substituted in the cylindrical waveguide the
P reen’s function given in Appendix B. However, any other

currents on the individual slices with index,. To facilitate . \ . . .

. . : ertinent Green’s function, including that of free space, could
further manipulation, we define the current column vect ' used. From (20). we readilv deduce th\éf}"m'“) depends
{J}0m) of the m,th slice by used. (20), w lly dedu P

only on the differencen;—n, and not on the individual values
T (15) of m4 andn,. This is expected since physical intuition dictates

(ms) — I(rns) I(rns) I(nls)
e a [ oo e } that any interaction between two given slices should depend on
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their relative, and not absolute, location. Hence, we introdu¢24) by setting
the superscript, = m, — n, to rewrite the system (16) as

{J}(l) - ejni¢s{J}(0)

AIOLIYO (AT o [0 (gD ) — e 1y

= {8}
[A] N O L (AN D 4 (AN D gy (YD)

_ {b}(l) {J}(Ns—l) - ej(Ns—l)nmbs{J}(O). (25)

. ) Thus, the top block row of (24) can be written as
[A]TNAVLO o (A O e

= {p} VoY), 1) [A©@ + [[A]u)ejws Lo +[A]<Ns—1>ej<zvs—1>nf¢s}

The lone superscript of the impedance submatrices now in- {10 = {8} (26)
dicates the relative location of the interacting slices. Since
the waveguide and engine fields are identical modiioit and since (21) and (24) have the same solution, on the basis
follows that of uniqueness, (25) is the only possible choice for relating the
(o) — [ AN —ra) periodic sector currents among themselves.
[A] = [4] : (22) A more compact expression for (26) can be obtained by

This “modulo N.” property will prove extremelv important using the properties of the Green’s function. First, we define
s~ Property P y Imp the left-hand side of (26) as a single matfK] as follows:

because of its essential role in decoupling the subsystems
comprising the overall system (21). ' . o

To proceed further, we assume that the incident field is [&] = [[A](O) + [A]Denids 1. -+[A](AS_1)63(AS_1)"Z'¢S}.
single cylindrical waveguide mode of ordet, as described 27)
in Appendix A. To permit decoupling of the subsystems
comprising (21), it is important that the angular dependenﬁeext by using (20) and the geometric sum
be in the form of an exponential and not trigonometric (i.e.,
the fields must be proportional txp{jn;¢}). The excitation N1
column vectors on theth and (« + 1)th slices are, hence, Ay, (n,n;) = Z i (ni—n)rs b,
related via SN

rs=0
B} = oI (1) o [pLR) = pIRnids [ (0)] N ifn=niteN, veZ 0
o o o . O7 else

Ii:oa"'aNe_l- (23)

We will refer to the block rows of (21) by the superscript oft follows that the principal part of the matrix entrids,,
the right-hand side, i.e., we will use the terms “zeroth blodieduces to

row,” “first block row,” ..., “(N, — 1)th bloqk row.” Now o oo
multiplying the «th block row _of (21) bye=9rm- for all j(m =jkZ Z Z An. (n,n;)
x=1,---,N,— 1, and subtracting the zeroth block row from el re—oo
all others yields the equivalent system - -
: Cnn;/ ) My, s + jnn;
[A] {0 4 (A DL o (AN DN { To /T 1) (735 m)
= {6} M (v F ) J, () S 28
[A](o)({‘]}(l)efjnws _ {J}(O)) . CnTrl,\,I/ fp(T) N (75 iﬁﬂf)
+ [A] D[ JY D ednits _ 1) o J
NS [A](J\’s—l)({J}(O)e—jnfqbs _ {J}(Ns—l)) -N—nm(T';:Fﬁg,l)f) 'fq(T/) B2S d28’ } (29)
={0}
The implication of this result is that for a given order of
(0) (Ns—1) =3 (Ns—L)nigps _ (0) the incident mode, only a limited set of scattered modes is
[A]™({J} e {3)
AV IO I VamDnige £ gy(1)y excited. Namely, only the scattered modes with ordetbat

(N.-1) (No2) (N s, _sat_isfyn =ni+vN, veZ are_reflected back, and this_
+ o+ (4] {J} ¢ is in agreement with the result given by the FEM analysis
— {J} N7 of a similar problem [2]. For a body of revolution (BOR),
= {0} (24) Ns — and, in this case, (28), implies that= n; only,
which is consistent with classical BOR theory [12].
where we have made use of (22). Apart from the first of theseThe most important consequence of this analysis is that for
block matrix systems, we can satisfy all other block rows @ given incident mode, it suffices to solve the integral equation



ANASTASSIU et al. INTEGRAL EQUATION MODELING OF CYLINDRICALLY PERIODIC SCATTERERS 1717

only over a single slice using a modified version of the dyadithe current density is again expanded into volume basis
Green’s function. Indeed, if we define this modified Green®inctions ¢, via
function by the periodicity dyadic

1 ) =D L, (7). (35)
r, (r.7v) E——26(r—r)zz/ !
k A choice fory, is [13]
+ Z Z An, (n,n;)CTE 3
m=1ln=—o0 'l/)q("') = Z Pqn("')'a'n (36)
M""l (,,-7 iﬁnnl) —nm ( ? :FﬁgT];]l) =t
wherei,., x = 1,2, 3 denotes unit vectors spannifRy and
+§j§jANWmd% -
° 1, if re AV,
et nEe Pa(r) =10, otherwise (37)
N (3 20N (185 (30) ’ '

Using the volume equivalence principle, it can be shown that

the entries of K] are given in compact form as the integral equation for the current can be written as [13]
— i _ d "o N g3
qu — 7]CZ/ fp('r)-l_'nz ('r,'r/)-fq(’r/) dQS dQS/. (31) E ("') = Jwi L,G (T,"') JVU(',' ) d v (38)
= =
o where
The currents on the reference slitg are simply the solutions N N
=, S(r —v)z% &(r— oI
to the system G'(r,r)=-
w uw( ) WPulea(r) —
JHO = {p1©) 32
KO = {b) (32) LSS TR ()
and those on the other slices are obtained from (25). m=ln=-o00
The importance of (32) cannot be exaggerated. Since the M 3TE Z Z
problem essentially reduces to modeling only one slice of the —m Brm) P
scatterer, the number of equations or unknowns is reduced by TM . e TM
a factor of N,. For a typical N, = 40, this implies a CPU G N (75 3B )N o (755 5m ) (39)

time and memory reduction each by a factor of 1600. Far, vi b7 is the unit dyadic andd,,,.(r), N..(r) are defined
large scatterers with large periodicity numbeé¥s, e.g., jet in Appendix A. A

engines, the problem can thus be scaled to a tractable S|zeOn the basis of a DBOR scatterer
Moreover, the limited coupling among the scattered modes _
results in sparse modal scattering matrices, which are much e(R™ 1) =ey(r) Vms€Z (40)

easier to store and handle. Also, calculations involving ﬂ?ﬁ]d by invoking a similar procedure as in the case of metal-
Green'’s function in (30) can be performed more efficientl

Mc scatterers, we can express the entries of the impedance
since a number of terms corresponding to significant mod

Somatrix [A]"=™<) as
of low order are now absent. ) .
Finally, it is important to observe that the above formulation 4(r.m.) _ _J / - .3 3 43
) mon | s () 2l () 3] P

does not demand any restriction on the shape of the periodic™ (r)
slice. Therefore, the shape of the exterior surface of the slices J 5 / 1 b.(r) -, () v
is irrelevant to the integral-equation method and the technique " Jy lea(r) — € P 4
is applicable to arbitrary DBOR'’s such as realistic jet engines. o oo
Fion S 3 emntmenas.
m=1n=—oco

IV. EXTENSION TO DIELECTRIC SCATTERERS
TE

It is straightforward to extend the above analysis to a {CEE / f 1/1 M (75 £5,,)
DBOR which consists of nonmetallic sections. To construct ‘ TR 3 3
the integral equation, we begin by introducing the scattered M- "m :Fﬁnm) Py ) &P dPv

field expression Lo / () - N (3 £6)
v

nm nm

Br) = g | Glrr) S a3 NI ) o ) @)

where J,, now represents the equivalent-volume current defyhere §,,,, is the Kronecker delta. Also, the entries of the
sity replacing the dielectric region with permittivity,()  excitation column vector are given by [cf. (19)]
given by o o
Vi) = [ EYR™ -r) R -q,(r) d®v.  (42)
T, (r) = jwlea(r’) — EF). (34) r v !
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—— Mode Matching
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Fig. 5. Mesh and geometry parameters for one-fourth of the engine termi- 0 | | | )
nation (single slice). 0. 10. 20. 30. 40. 50.

Apart from a slight modification, the expressions for the ¥ (deg)

impedance matrix and excitation vector are nearly identicéib. 6. Backscatter RCS for the four straight blades enginpdlarization,
to those for the PEC DBOR. For reference, the periodicify = 0 ¢40-

dyadic in (30) for the dielectric DBOR is

40. . | , S

B §(r—r)I
e — 4

§(r—1')z2
w? peg(r’)

+Z Z A]\fs(n,nz)CEEMnnl(T7:l:ﬁgr];;;)

m=1n=—oc

. anrn ("'/; :Fﬁgr];]z)

m=1ln=—o0

: N—nrn, (l"/; :F/3Tl\’1)

nm

1:“;1“ (r,v)=—

RCS (dB/AY)

10. £ —— Mode Maiching h

(43)

V. VALIDATION AND RESULTS

As an example, let as consider a four-blade geometry 0. 10. 20. 30. 40. 50.
in a cylindrical waveguide, as shown in Fig. 5. For this
configuration, the diameter of the cylinder was chosen to be
4, and the length of the engine and duct waéA. The Fig. 7. Backscatter RCS for the four straight blades engingo(arization,
straight blades occupied 9@ngular sectors and were facing® = ¢ ¢U0-
parallel to the cylinder's base, forming the grooves shortage.

Based on the proposed formulation, only a single blade waghieved. The modal scattering matrix is very sparse and its
needed and, in doing so, the memory was reduced from 8§§nzero entries can be predictegriori, leading to large stor-

to 53 MB. The CPU time is typically reduced by the samgge savings. The computational domain can be reduced down
factor of (IV,)?, i.e., the efficiency of the DBOR method istg a single periodic sector of the scatterer (e.g., a single blade
increased along with the number of blades. Scattering pattefgs the jet engine). This is done regardless of the geometry
(¢¢ and 89 polarizations) for the geometries shown in Fig. B¢ the periodic sector or slice and, as can be realized, the
are given in Figs. 6 and 7. _ computational savings are dramatic. Specifically, the number

The reference data are based on the mode-matching metgpghknowns is reduced by a factor equal to the number of
[3] and, except for the lower RCS regions (nulls), theyjicesn, with the corresponding computational savings being
are in good agreement with the DBOR MoM data. Thggy | to(V,)2. The above CPU time simplifications for a
dlffgrences are attributed to the mode-matchm_g method _t OR parallel those already known for regular BOR's and,
typically suffers from mode convergence and field-modelinge efore, this analysis can be considered as a generalization
inaccuracies near the edges of the blades. of the latter. Similar simplifications can be carried out for

partial differential equation (PDE) simulations. However, the
VI.  SUMMARY AND CONCLUSIONS incorporation of the DBOR concept in the integral-equation

In this paper, we showed that substantial computational effprmulation is more attractive for metallic structures because
ciency can be achieved by taking advantage of the periodicttye computational domain is restricted to the scatterer’s surface
properties of DBOR (e.g., a jet engine) situated in a cylindricahd no cumbersome phase boundary conditions are needed to
waveguide. Specifically, the following simplifications werdake advantage of periodicity. Instead, for integral equations,

6' (deg)
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the only modification is the introduction of the periodidNotice that exponential, and not trigonometric, dependence on

Green'’s function. ¢ is used.
Results for jet-engine configurations with straight blades
were given for validation purposes. However, the proposed APPENDIX B
DBOR method has been equally well applied to realistic jet ELEMENTS OF THE IMPEDANCE MATRIX
engines, which involve twisted blades and conical—cylindrical FOR PEC SATTERERS

hub sections. In the text of this paper, we showed that the impedance

matrix entries for PEC terminations are given b
APPENDIX A 9 y

THE CYLINDRICAL WAVEGUIDE . o f =, =(= =
A(Tlsnls) = 3kZ LR G(Rns . R /)
DyAaDIC GREEN'S FUNCTION Pq J /EO <o fP(T) T r

Following [10], we define two sets of cylindrical vector R™ -fq(T') d2s d25°  (54)
wave functions, namely,

44 where R is the rotation dyadic. To eliminate the rotation
(44) dyadics, we can use the propertiexdés defined in Appendix
1 : T i

N (r; BN = ZV XV x [']Inl (vEMp) e]n¢e—J,ﬁg§f,42:|' A. First, we expressM.,,,(r) as

(45)

TE _

Mo BI5) =V x [y (1) 7237853

3
M (r) = Z Mr(LZrzz("')éz (r) (55)
The functionsM,,,,, correspond to TE modes and the functions i=1

N,,., are associated with TM modes. If the waveguide radiu O P
is @, thenyTMTE and 3TM.TF are defined by Where {é1,é2,83} = {p, ¢, 2}. It then follows that

™ _ 3 _ _
1) =0 40, (R r) = >0 m (R e ()
Jn (Vama) =0 (47) i
TM,TE\ 2 TM,TE\2 _ ;.2 3 _
(,ann ) + (ﬁnrn ) =k~ (48) — ejnﬁs¢s Z Mr(:gl(,r)l_zﬁs . éz("')
Carrying out the vector operation3/,,,, and N,,, can be i=1
written explicitly as P z?’:M(‘) () B
. —c sPs nzmei,,, ks
M., (r; BTE) IJ—nJ|n|(’YErE p)ejnqse—j,amzi) P B
’ TE 7/ TE \ jné —iB8 " 2] :@jmmsMnm(T) "R (56)
- ,ann]|n| (Wnnzp)e ¢ -rmm ¢ (49) imilarl
in TM gTM ' _— Similarly,
N (13 fIN) = —HIom a1 (TN )i =000 _ | _
k. Ny (B 1) = &/ Ny () - B, (8)
+ 2 g (v p) e i = _
kp Next, we define the principal pam](,’;s"’” of (54) as the

TM

+ (vam) J I( ™ )Cjnqbe—j,ﬁTMzA integral over the modes only [not including the delta function

k Tnm £ "% term in (51)]. By invoking (56) and (57), (54) yields
(50) o
The dyadic Green's function of the electric type satisfyinglun’ ™ =ikZ Y > e imlmene)e:
Dirichlet boundary conditions (first kind) is given by m=ln=-00
= 1 Ead - CE,E/ ) My + 3};%
G(r,7') :—ﬁé(r — 723 + Z Z { T, /5, F(m) (&)
ptn=e M (5 F ) S () dES &S
" CEEMnnl ) :l:ﬁgr];;; M—nrn 'r/; q:ﬁr?r];;;
o oo ( ) ( ) +Con / Jo(r) - N (5 280
+ Z Z Ogrlr\iINnnl ("7 :l:ﬁgr])zi) o e
m=1ln=—o00 M N—nrn ('r/; qzﬂgrl:li) ) fq(’r/) dQS dQS/ } (58)
where the upper sign is used fer> 2’ and the lower sign for APPENDIX C
z<z'. The constants are given by SCATTERED FIELD FROM PEC DBORS

TE _ . TE \2 2] 72 (.TE, \ATE -1 It is possible to express the scattered field from a PEC
Crim = J{QW[(%’"G) " }JW (%”"a) 3’”"} (52) DBOR in a very compact form involving the currents of the
, . , 1312 vt ference slice”. Given an incident mode of order;, the
™ _ _ i fo (ZTM 2| 77 (4TM gt™M1 re SIICE-0 ' . i _
Com J{ 7 (m @) [J|"'|(7"'"’ a)} /"’"} (53) scattered field is generally given by (6). Using the properties
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where Hristos T. Anastassiu(S'89—M’'91), photograph and biography not available
Q at the time of publication.
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f (r') &S (60) .
John L. Volakis (S'77-A'79-M'82—-SM'88-F96)
Q@ was born in Chios, Greece, on May 13, 1956. He
B};)fn =Ap.(n, ”1)03717\3 Z I(gor)L_ / N_,. ('r’; —/33)3) received the B.E. degresymma cum laudefrom
e — U5 Youngstown State University, Youngstown, OH,
N 12 e in 1978, and the M.Sc. and Ph.D. degrees from
J () d7S (61) the Ohio State University, Columbus, in 1979 and

1982, respectively.
From 1978 to 1982, he was a Graduate

Evidently, (59) yields the scattered field in terms of TE a
Research Associate at the Ohio State University

TM modes, whereas the coefflcm_:nts of t_he expan5|on_(|. ElectroScience Laboratory. From 1982 to 1984,
the elements of the modal scattering matrix) are convenien he was with Rockwell ~International, Aircraft
given by (60) and (61) in terms of the curredtgﬁi on slice Division. Since 1984, he has been with the University of Michigan at

- . . . nn Arbor, where he is currently a Professor in the Department of Electrical
2o Only' A similar expression holds for dielectric SCattereréngineering and Computer Science (EECS). His primary research deals with

We again emphasize that due to the tetw (n,7n;), only @ the development and application of analytical and numerical techniques to
limited set of scattered modes are returned. large-scale scattering, printed antennas, and bioelectromagnetics. Along with
his students, he developed prototype algorithms and computer codes for
modeling antennas, radar scattering and imaging of aircraft structures and
REFERENCES microwave circuits. He has published approximately 140 articles in major
refereed journal articles, over 140 conference papers, several book chapters on
[1] D. C.Ross, J. L. Volakis, and H. T. Anastassiu, “Hybrid finite elementhyumerical methods, and has co-author@gproximate Boundary Conditions
modal analysis of jet engine inlet scatteringZEE Trans. Antennas in Electromagnetic§London, U.K.: Inst. Elect. Eng. Press, 1995) dfidite-
Propagat, vol. 43, pp. 277-285, Mar. 1995. ) _ Element Method for Electromagneti¢Biscataway, NJ: IEEE Press, 1998).
_ » “Overlapping modal and geometric symmetries for computingie was an Associate Editor &tadio Sciencdrom 1994 to 1997. He is an
jet engine inlet scattering,IEEE Trans. Antennas Propagatiol. 43,  Associate Editor for thd. Electromagnetic Waves and Applications
pp. 1159-1163, Oct. 1995. . _ Dr. Volakis is a member of Sigma Xi, Tau Beta Pi, Phi Kappa Phi, and
[3] H. T. Anastassiu, J. L. Volakis, and D. C. Ross, “The mode matchinggmmission B of URSI. He is also a member of the AdCom for the IEEE
technique for electromagnetic scattering by cylindrical waveguides Witklytennas and Propagation Society. He has served as an Associate Editor of
canonical terminations,J. Electromag. Waves Applicatvol. 9, N0.  the |EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION (1988-1992), and
11/12, pp. 1363-1391, Nov./Dec. 1995. ., chaired the 1993 IEEE Antennas and Propagation Society Symposium and
[4] H. T. Anastassiu, J. L. Volakis, D. C. Ross, and D. Andersh, “Eleczaio Science Meeting. He is currently an associate editdEBE Antennas
tromagnetic scattering from simple jet engine model€EE Trans. 54 propagation Society Magazintn 1998, he received the University of

Antennas Propagatvol. 44, pp. 420-421, Mar. 1996. i ; :
[5] P. H. Pathak and R. J. Burkholder, “High-frequency EM scattering by c9an College of Engineering Research Excellence Award.

open-ended waveguide cavitieRadio Sci, vol. 26, no. 1, pp. 211-218,
Jan.—Feb. 1991.

[6] H. Ling, R. C. Chou, and S. W. Lee, “Shooting and bouncing rays:
Calculating the RCS of an arbitrarily shaped cavityFEE Trans.
Antennas Propagatvol. 37, pp. 194-205, Feb. 1989.

[7] R. Lee and T. T. Chia, “Analysis of electromagnetic scattering fro
a cavity with a complex termination by means of a hybrid ray FDT
method,”IEEE Trans. Antennas Propagatol. 41, pp. 1560-1669, Nov.
1993.

[8] J.L.Karty, J. M. Roedder, and S. D. Alspach, “CAVERN: A prediction
code for cavity electromagnetic analysidEEE Antennas Propagat.
Mag. vol. 37, no. 3, pp. 68-72, June 1995.

[9] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AlM: Adaptive,
integral method for solving large-scale electromagnetics scattering crowave circuits and systems (MMDS), etc.
radiation problemsRadio Sci.vol. 31, no. 5, pp. 1225-1251, Sept.—Oct. Mr. Filipovic received the Nikola Tesla Award
1996. from the Serbian Secretary of Science for his diploma thesis.

(2]

Dejan S. Filipovic received the Dipl.Ing. degree in
electrical engineering from the University of Nish,
Nish, Yugoslavia, in 1994.

Upon graduation, he worked as an Research As-
sistant at the Faculty of Electronic Engineering,
University of Nish. Since 1997, he has been a Grad-
uate Student Research Assistant at the University
of Michigan at Ann Arbor. His research interests
are computational electromagnetics, antennas, mi-




