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Abstract

In many statistical problems we deal with more than one model.
When the prior information on the parameters in the models is vague
default priors are typically used. Unfortunately, these priors are usu-
ally improper provoking a calibration problem which precludes the
comparison of the models. An attempt for solving this difficulty con-
sists in using intrinsic priors introduced in Berger and Pericchi (1996)
instead of the original default priors; however, there are situations
where the class of intrinsic priors is too large.

Because of this we propose as prior distributions for model selec-
tion the solutions of a system of integral equations which is derived
to calibrate the initial default priors. Under some assumptions our
integral equations yield a unique solution. Some illustrative examples
are provided.

Key words : Bayes factor, model selection, integral equations, intrinsic priors,
expected posterior priors.

1 Introduction

The use of subjective prior distributions has largely been a major critic to
Bayesian analysis. Because of this several objective o default methods have
been proposed for both estimation and model selection problems. Among
the most commonly used are Jeffreys (1961), Bernardo (1979) and Berger
and Pericchi (1996); the first two for estimation problems and the last one
for model selection problems.

Default methods usually yield an improper prior distribution πN(θ) ∝
h(θ), where h(θ) is a function whose integral diverges. Therefore, πN(θ) is
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determined up to a positive multiplicative constant c, that is πN(θ) = c
h(θ). This is not a serious issue in estimation problems where the posterior is
defined by the formal Bayes rule and therefore does not depend on c and it is
usually justified with easy limiting arguments. On the other hand, in model
selection problems we have two models Mi, i = 1, 2, the data x are related
to the parameter θi by a density fi(x|θi), the default priors are πN

i (θi) = ci

hi(θi), i = 1, 2, and the Bayes factor,

BN
21(x) =

mN
2 (x)

mN
1 (x)

=
c2

∫
Θ2

f2(x|θ2)h2(θ2)dθ2

c1

∫
Θ1

f1(x|θ1)h1(θ1)dθ1

,

depends on the arbitrary ratio c2/c1. Therefore, we are left with two problems,
first the determination of the ratio c2/c1, second the Bayes factor with πN

i (θi)
is not an actual Bayes factor and inference methods based on proper priors
are preferable to those that are not (see Principle 1 in Berger and Pericchi,
1996). An attempt for solving these problems (Berger and Pericchi, 1996),
consists in using intrinsic priors πI

1 and πI
2 which are the solutions to a system

of two functional equations. Intrinsic priors provide a Bayes factor free of
arbitrary constants but whether or not it is an actual Bayes factor or a limit
of actual Bayes factors is a problem to be discussed (Berger and Pericchi,
1996).

An additional difficulty in considering intrinsic priors is that they might
be not unique. In the case where model one is nested in model two, the system
of functional equations reduces to a single equation with two incognita so
that it is apparent that the solution is not unique. On the other hand, in the
nonnested case the class of intrinsic priors may be very large too, for instance
in Cano, Kessler and Moreno (2004) it is shown that when comparing the
double exponential versus the normal location models any prior is intrinsic
and the same prior has to be used for the location parameter of the two
models. However, in the general nonnested case it is not clear enough how
to choose a particular solution so that a robustness problem is likely to be
present.

In this paper we put forward as prior distributions for model selection
the generalized expected posterior priors, see Pérez and Berger (2002) for an
introduction to this concept, which solve a system of integral equations. In
section 2 we deal with the problem of the indetermination of the ratio c2/c1

introducing the above mentioned priors to eliminate it. Moreover, we prove
that these priors provide an actual Bayes factor or a limit of actual Bayes
factors and under some assumptions they are unique. Section 3 provides
some illustrative examples and the conclusions are stated in section 4.
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2 Integral equation solutions as priors for mo-

del selection problems

When we compare two models the main goal is to eliminate the indetermina-
tion c2/c1 occasioned by the use of noninformative priors. For it, we propose
as prior distributions π1 and π2 to compare two models the unknown expected
posterior priors which solve the system of integral equations

π1(θ1) =

∫
X

πN
1 (θ1 | x)m2(x)dx (1)

and

π2(θ2) =

∫
X

πN
2 (θ2 | x)m1(x)dx, (2)

where x is an imaginary minimal training sample and mi(x) =
∫

Θi
fi(x |

θi)πi(θi)dθi, i = 1, 2. We emphasize that in this system πi(θi), i = 1, 2, are
the incognita.

The argument to propose these equations is that a priori we suppose
that the two models are equally valid and provided with ideal unknown priors
πi(θi), i = 1, 2, that yield true marginals allowing to balance each model with
respect to the other one since the prior πi(θi) is derived from the marginal
mj(x), j 6= i, as an unknown expected posterior prior. This is nothing but
the idea of being a priori neutral comparing the two models.

Setting πN
i (θi) = cihi(θi), after simple algebraic computations equations

(1) and (2) are converted into

π1(θ1) = h1(θ1)

∫
Θ2

π2(θ2)g1(θ1, θ2)dθ2 (3)

and

π2(θ2) = h2(θ2)

∫
Θ1

π1(θ1)g2(θ1, θ2)dθ1 (4)

where

gi(θ1, θ2) =

∫
X

f1(x | θ1)f2(x | θ2)

mhi
i (x)

dx

and

mhi
i (x) =

∫
Θi

fi(x | θi)hi(θi)dθi

for i = 1, 2. Equations (3) and (4) together constitute a system of two integral
equations with two incognita π1(θ1) and π2(θ2), which easily can be converted
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into a single integral equation for π1(θ1) plus an equation expressing π2(θ2)
as a function of π1(θ1) or viceversa.

However, to look for the solutions of our integral equations, which from
now on will be called integral priors, we go back to equations (1) and (2).
First, let us state some basic properties on the way (1) and (2) operate.

Proposition 2.1 If h1(θ1) is a probability density then equation (2) with
π1(θ1) = h1(θ1) provides a probability density π2(θ2). Alternatively, if h2(θ2)
is a probability density then equation (1) provides a probability density π1(θ1).

Proof. Let us prove the first statement, the second is similar. From (2) and
Fubini’s theorem∫

Θ2

π2(θ2)dθ2 =

∫
Θ2

∫
X

f2(x | θ2)h2(θ2)∫
Θ2

f2(x | θ2)h2(θ2)dθ2

∫
Θ1

f1(x | θ1)h1(θ1)dθ1dxdθ2 =

∫
Θ1

h1(θ1)dθ1

∫
X

f1(x | θ1)dx

∫
Θ2

f2(x | θ2)h2(θ2)∫
Θ2

f2(x | θ2)h2(θ2)dθ2

dθ2 = 1,

which proves the proposition.

An easy consequence of this proposition is that if π1(θ1) and π2(θ2) are
integral priors then both of them are proper and integrate up to the same
constant or both of them are improper.

Second, if π1(θ1) and π2(θ2) are a pair of solutions to the system they
provide a Bayes factor. Concretely, we have

Proposition 2.2 If π1 (θ1) and π2 (θ2) are integral priors and their marginals
are finite, then its relative Bayes factor B1,2(x) is either an actual Bayes fac-
tor or a limit of actual Bayes factors.

Proof. Suppose that the integral priors are not proper densities otherwise
B1,2(x) is an actual Bayes factor. Consider a sequence of compact subsets
Θl

1 ⊆ Θ1 such that Θl
1 ↗ Θ1 as l → +∞ and define the following sequences

of proper densities

π1,l (θ1) =
π1 (θ1)

Al

1Θl
1
(θ1)

and

π2,l (θ2) =

∫
πN

2 (θ2 | x) m1,l (x) dx
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where Al =
∫

Θl
1
π1 (θ1) dθ1 and m1,l (x) =

∫
f1 (x | θ1) π1,l (θ1) dθ1. The se-

quence of actual Bayes factors using π1,l (θ1) and π2,l (θ2) as priors is given
by

Bl
1,2(x) =

∫
f1 (x | θ1) π1,l (θ1) dθ1∫
f2 (x | θ2) π2,l (θ2) dθ2

=
A−1

l

∫
Θl

1
f1 (x | θ1) π1 (θ1) dθ1∫

f2 (x | θ2) πN
2 (θ2 | x) m1,l (x) dxdθ2

=

∫
Θl

1
f1 (x | θ1) π1 (θ1) dθ1∫

f2 (x | θ2) πN
2 (θ2 | x) f1 (x | θ1) π1 (θ1) 1Θl

1
(θ1) dθ1dxdθ2

,

which by dominated convergence goes to∫
f1 (x | θ1) π1 (θ1) dθ1∫

f2 (x | θ2) πN
2 (θ2 | x) f1 (x | θ1) π1 (θ1) dθ1dxdθ2

=

∫
f1 (x | θ1) π1 (θ1) dθ1∫
f2 (x | θ2) π2 (θ2) dθ2

.

Third, the question of the existence and uniqueness of solutions to the
integral equations has to be studied case by case. However, next we provide
a general result.

Theorem 2.3 Let us consider the continuous case, that is when the obser-
vations and the parameters in both models are continuous. Assume that the
Markov chain with transition density Q (θ′1 | θ1) defined below is recurrent
then there is a solution to the integral equations and it is unique up to a
multiplicative constant.

Proof. Consider the function

g (θ1, θ
′
1, θ2, x, x′) = πN

1 (θ′1 | x) f2 (x | θ2) πN
2 (θ2 | x′) f1 (x′ | θ1) ,

which is defined for θ1, θ
′
1 ∈ Θ1, θ2 ∈ Θ2, and x, x′ ∈ X .

For a fix but arbitrary point θ1 ∈ Θ1 the function

(θ′1, θ2, x, x′) 7→ g (θ1, θ
′
1, θ2, x, x′) ,

is a continuous probability density, therefore

Q (θ′1 | θ1) =

∫
g (θ1, θ

′
1, θ2, x, x′) dxdx′dθ2

is a transition density.
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Because of the assumed recurrence there exists an invariant σ-finite mea-
sure p (dθ1) satisfying∫

A

p (dθ′1) =

∫
Θ1

(∫
A

Q (θ′1 | θ1) dθ′1

)
p (dθ1) ,

for each measurable set A. Therefore p (dθ′1) is absolutely continuous with
respect to the Lebesgue measure. Let π1 (θ′1) > 0 denote the Radon-Nikodym
derivative of p (dθ′1) with respect to the Lebesgue measure, then

π1 (θ′1) =

∫
Θ1

Q (θ′1 | θ1) π1 (θ1) dθ1 =∫
πN

1 (θ′1 | x) f2 (x | θ2) πN
2 (θ2 | x′) f1 (x′ | θ1) π1 (θ1) dxdx′dθ2dθ1,

and taking π2 (θ2) =
∫

πN
2 (θ2 | x′)

(∫
f1 (x′ | θ1) π1 (θ1) dθ1

)
dx′, we conclude

that π1 (θ1) and π2 (θ2) are integral priors.
On the other hand, let π1 (θ1) and π2 (θ2) be integral priors, then

π1 (θ′1) =

∫
Θ1

Q (θ′1 | θ1) π1 (θ1) dθ1, (5)

therefore π1 (θ1) dθ1 is an invariant σ-finite measure for Q (θ′1 | θ1) and be-
cause of the recurrence of the Markov chain π1 (θ1) is the unique solution to
(5) up to a multiplicative factor from where π1 (θ1) and π2 (θ2) are the unique
integral priors up to a multiplicative factor.

By construction, the transition density Q (θ′1 | θ1) is essentially a tran-
sition density for the parameter θ2 too. Therefore, there exists a parallel
Markov chain having the same properties as the above defined; in particular,
if one is (Harris) recurrent also is the other. Moreover, in the cases where
recurrence is present but we are not able to find the unique pair of integral
priors if the property of Harris recurrence is satisfied their corresponding
Bayes factor can be approximated by using the ergodic theorem.

3 Examples

3.1 Point null hypothesis testing

Consider the point null hypothesis testing H0 : θ = θ∗ versus H1 : θ 6= θ∗,
which is equivalent to consider the models

M1 : f (x | θ∗) ,

M2 : f (x | θ) , θ ∈ Θ.
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The default priors are πN
1 (θ) = δθ∗ (θ) and πN

2 (θ) = πN (θ). Let x be
a minimal training sample and consider the proper priors π1 (θ) = δθ∗ (θ)
and π2 (θ) =

∫
πN (θ | x) f (x | θ∗) dx for which the marginal densities are

m1 (x) = f (x | θ∗) and m2 (x) =
∫

f (x | θ) πN (θ | y) f (y | θ∗) dydθ. It fol-
lows that∫

πN
1 (θ | x) m2 (x) dx = δθ∗ (θ)

∫
m2 (x) dx = δθ∗ (θ) = π1 (θ)

and ∫
πN

2 (θ | x) m1 (x) dx =

∫
πN (θ | x) f (x | θ∗) dx = π2 (θ)

and therefore π1 (θ) and π2 (θ) are integral priors. In this case the uniqueness
of the Bayes factor is easily obtained. Let us suppose that π̃1 (θ) and π̃2 (θ)
are integral priors. The prior π̃1 (θ) has to be kδθ∗ (θ) for some k > 0 so that
m̃1 (x) = kf (x | θ∗) and

π̃2 (θ) =

∫
πN

2 (θ | x) m̃1 (x) dx = kπ2 (θ)

and then {π̃i (θ)} and {πi (θ)} produce the same Bayes factor.

Remark 3.1 In this case, integral priors and intrinsic priors coincide and
are unique up to a multiplicative constant (see Moreno, Bertolino and Racugno,
1998).

3.2 Location models

Consider two location models

M1 : f1 (x | θ1) = f1 (x− θ1) , θ1 ∈ R,

M2 : f2 (x | θ2) = f2 (x− θ2) , θ2 ∈ R.

The default priors are πN
i (θi) = ci, i = 1, 2, the minimal training sample

size is one, and the marginal densities are mN
i (x) = ci, i = 1, 2. In this case

πN
1 (θ1) and πN

2 (θ2) are integral priors when c1 = c2 since∫
πN

1 (θ1 | x) mN
2 (x) dx =

∫
c2f1 (x− θ1) dx = c2

and ∫
πN

2 (θ2 | x) mN
1 (x) dx =

∫
c1f2 (x− θ2) dx = c1.
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In fact, if the associated Markov chain is recurrent it follows that πN
1 (θ1) =

πN
2 (θ2) = c are the unique integral priors up to a multiplicative constant.

On the other hand, in Cano, Kessler and Moreno (2004) is proved that these
integral priors are intrinsic priors although the class of intrinsic priors could
be very large.

3.3 Scale models

Consider two scale models

M1 : f1 (x | σ1) =
1

σ1

f1

(
x

σ1

)
, σ1 > 0,

M2 : f2 (x | σ2) =
1

σ2

f2

(
x

σ2

)
, σ2 > 0.

The default priors are πN
i (σi) = ci

σi
, i = 1, 2, the minimal training sample

size is one and the marginal densities are mN
i (x) = ciαi(x)

|x| , i = 1, 2, where

αi (x) =

{
βi =

∫ ∞
0

fi (y) dy, ifx > 0,
1− βi, ifx < 0.

The priors πN
1 (σ1) and πN

2 (σ2) are integral priors when c1 = c2, since∫
πN

1 (σ1 | x) mN
2 (x) dx =

∫ σ−2
1 f1

(
x
σ1

)
α1 (x)

c2α2 (x) dx =

c2σ
−2
1

(
1− β2

1− β1

∫ 0

−∞
f1

(
x

σ1

)
dx +

β2

β1

∫ +∞

0

f1

(
x

σ1

)
dx

)
=

c2σ
−2
1

(
1− β2

1− β1

σ1(1− β1) +
β2

β1

σ1β1

)
= c2σ

−1
1

and ∫
πN

2 (σ2 | x) mN
1 (x) dx = c1σ

−1
2 .

Also in this case if the associated Markov chain is recurrent it follows that
πN

1 (σ1) and πN
2 (σ2) with c1 = c2 are the unique integral priors up to a multi-

plicative constant. On the other hand, in Cano, Kessler and Moreno (2004) is
proved that when β1 = β2, these integral priors are intrinsic priors although
there exist an infinite number of continuous intrinsic priors. Moreover, when

β2
1

β2

+
(1− β1)

2

1− β2

6= 1,

the prior πN
1 (σ1) is no longer an intrinsic prior.
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3.4 Location-scale models

Consider two location-scale models

M1 : f1 (x | µ1, σ1) =
1

σ1

f1

(
x− µ1

σ1

)
, µ1 ∈ R, σ1 > 0,

M2 : f2 (x | µ2, σ2) =
1

σ2

f2

(
x− µ2

σ2

)
, µ2 ∈ R, σ2 > 0.

The default priors are πN
i (µi, σi) = ci

σi
, i = 1, 2, the minimal training

sample size is two and the marginal densities are mN
i (x1, x2) = ci

2|x1−x2| ,

i = 1, 2. In this case πN
1 (µ1, σ1) and πN

2 (µ2, σ2) are integral priors when
c1 = c2 since∫

πN
1 (µ1, σ1 | x1, x2) mN

2 (x1, x2) dx1dx2 =∫
πN

1 (µ1, σ1 | x1, x2) mN
1 (x1, x2) dx1dx2 = πN

1 (µ1, σ1)

and ∫
πN

2 (µ2, σ2 | x1, x2) mN
1 (x1, x2) dx1dx2 = πN

2 (µ2, σ2) .

Again assuming recurrence we obtain that the priors πN
1 (µ1, σ1) and

πN
2 (µ2, σ2) with c1 = c2 are the unique integral priors up to a multiplica-

tive constant. On the other hand in Cano, Kessler and Moreno (2004) is
proved that the above integral priors are intrinsic priors, but these are not
necessarily unique.

In the general examples of subsections 3.2 to 3.4 stating the recurrence of
the associated Markov chain yields the uniqueness of the integral priors up
to a multiplicative constant. Of course, the recurrence has to be studied case
by case. Finally, in the next subsection we present some specific examples
where recurrence is found.

3.5 Some specific recurrent examples

3.5.1 The normal versus the double exponential model (location)

Consider the location models

M1 : N(θ, 1), θ ∈ R, πN
1 (θ) = c1,

M2 : DE(λ, 1), λ ∈ R, πN
2 (λ) = c2.
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The minimal training sample size is one, the posterior densities are

πN
1 (θ | x) = N(x, 1) and πN

2 (λ | x) = DE (x, 1) ,

and the transition θ → θ′ of the associated Markov chain is thus made of the
following steps :

1. x′ = θ + ε1, ε1 ∼ N(0, 1)
2. λ = x′ + ε2, ε2 ∼ DE(0, 1)
3. x = λ+ ε3, ε3 ∼ DE(0, 1)
4. θ′ = x + ε4, ε4 ∼ N(0, 1)

Then, if we express the four moves at once, θ′ given θ satisfies

θ′ = θ + ε1 + ε2 + ε3 + ε4

and the transition is therefore a random walk in θ (it can also be checked that
this is equally a random walk in λ). Therefore, the white noise in θ′ = θ + ε
has a finite second moment. It follows from Meyn and Tweedie (1993) that
the random walk is (null) recurrent. The resulting Lebesgue measures are
thus invariant for θ and λ and π1 (θ) = 1 and π2 (λ) = 1 are the unique
solutions to the system of integral equations up to a multiplicative constant.

3.5.2 The normal versus the double exponential model (scale)

Consider the scale models

M1 : N(0, σ2
1), σ1 ∈ R+, πN

1 (σ1) =
c1

σ1

,

M2 : DE(0, σ2), σ2 ∈ R+, πN
2 (σ2) =

c2

σ2

.

The minimal training sample size is one and the posterior densities are

πN
1 (σ1 | x) ∝ 1

σ2
1

exp

(
− x2

2σ2
1

)
and πN

2 (σ2 | x) ∝ 1

σ2
2

exp

(
−|x|

σ2

)
,

which is equivalent to

σ−1
1 | x ∼ HN+

(
0,

1

x2

)
and σ−1

2 | x ∼ Exp (|x|) ,

where HN+ denotes the half-normal distribution. The transition σ1 → σ′1 of
the associated Markov chain is thus made of the following steps:
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1. x′ = σ1ε1, ε1 ∼ N(0, 1)

2. σ2 = |x′|
ε2

, ε2 ∼ Exp(1)
3. x = σ2 ε3, ε3 ∼ DE(0, 1)

4. σ′1 = |x|
|ε4| , ε4 ∼ N(0, 1)

Then, if we express the four moves at once, σ′1 given σ1 satisfies

σ′1 = σ1
|ε1| |ε3|
ε2 |ε4|

and the transition is therefore a random walk in log σ1 (it can also be checked
that this is equally a random walk in log σ2) and again this random walk is
(null) recurrent. The resulting Lebesgue measures are thus invariant for
log σ1 and log σ2 and π1 (σ1) = 1/σ1 and π2 (σ2) = 1/σ2 are the unique
solutions to the system of integral equations up to a multiplicative constant.

3.5.3 The normal versus the log-exponential model

Consider the models

M1 : N(θ, 1), θ ∈ R, πN
1 (θ) = c1,

M2 : exp(X) ∼ Exp(1/λ), λ ∈ R+, πN
2 (λ) =

c2

λ
.

The minimal training sample size is one and the posterior densities are

πN
1 (θ | x) = N(x, 1) and πN

2 (λ | x) ∝ 1

λ2
exp

(
−ex

λ

)
so that λ−1 | x ∼ Exp (ex) and the transition θ → θ′ of the associated Markov
chain is thus made of the following steps:

1. Generate x′ | θ ∼ N(θ, 1)
2. Generate λ | x′ ∼ 1/Exp(ex′

)
3. Generate x | λ ∼ log Exp(λ)
4. Generate θ′ | x ∼ N(x, 1)

Then, if we express the four moves at once, θ′ given θ satisfies

θ′ = log(λε3) + ε4 = − log(ε2/e
x′

) + log ε3 + ε4 = θ + ε1− log ε2 + log ε3 + ε4,

where ε1, ε4 are iid N(0, 1) and ε2, ε3 are iid Exp(1), and the transition is
therefore a random walk in θ (it can also be checked that this is equally a
random walk in log λ).
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Now, log(ε3/ε2) is a logistic variable. Indeed,

η = ε3/ε2 ∼
∫ ∞

0

exp(−ε2(1 + η))ε2dε2 = (1 + η)−2

and ζ = log(η) ∼ eζ/(1 + eζ)2.
Therefore, the white noise in θ′ = θ + ε has a finite second moment and

again this random walk is (null) recurrent. The resulting Lebesgue measures
are thus invariant for θ and log λ and π1 (θ) = 1 and π2 (λ) = 1/λ are the
unique solutions to the system of integral equations up to a multiplicative
constant.

4 Conclusions

A new methodology to deal with the problem of choosing calibrated default
priors for model selection based on the solutions of a system of integral
equations has been proposed.

The resulting priors have been called integral priors and the main advan-
tage of the class of integral priors over the class of intrinsic priors proposed
in Berger and Pericchi (1996) is that provided the Markov chain associated
to the system of integral equations is recurrent the integral priors are unique.
Specifically, in the examples we deal with in subsection 3.5 the integral pri-
ors are unique and they are explicitely obtained. On the other hand, in
the cases where they are not explicitely obtained an approximation to the
unique Bayes factor can be obtained using the ergodic theorem provided the
associated Markov chain is (Harris) recurrent.
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