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Chapter I. Introduction

1. Objectives. We denote by V[au ■ ■ -,an] the number of variations of
sign of the sequence alt--,an of real numbers. Hence, for example,
V[-1,0,1 ]= 1, V[1,0,1] = 0, V[0,0,0]=-1. If / is a real function
defined for 0 < x < <*>, then V[f(x)] = l.u.b. V[/(x,), ■ • - ,/(xn)], taken over
all sets 0 < X! < x2 < • • ■ < co.

Let H be a real-valued function of L'( — °°, «), <b a real-valued, continu-
ous function of L °° (— °° , °° ) and let

(1) H *<b(x) = j~ H(x - t)<fi(t)dt, -co<x<oo.

H is said to be a variation diminishing *-kernel if and only if, for every
such <b,

(2) V[H*<Kx)]£V[<p(x)].

Let

1  C~   C* a
~2t)_„E(s) '(3)

where

(4) E(s) = ecs2+1*"f] (l - i^) e"/8*,

the aA's being real, with Z*"=i(l/oit) < co> and 6 and c real, with c ^ 0.
In 1947, I. J. Schoenberg proved that the kernel G defined by (3) is vari-
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INTEGRAL EQUATIONS AND HANKEL CONVOLUTIONS 331

ation diminishing and that, conversely, every variation diminishing kernel
is of the form (3); see [13].

The following analogous theory, generalizing the kernels of (3), was
developed by I. I. Hirschman, Jr. [5]:

Let 7 be a fixed positive number, and set

(5) u(x)
x2y + l

2T+1/2r(7 + 3/2)'

Define

(6) /(x) = 2-1/2r(7 + l/2)x1/2"V,_1/2(x),

where «/T_1/2(x) is the ordinary Bessel function of order y — 1/2. Replacing
the exponential factor of the integrand on the right of (3) by ß (st), we set

(7) G(t) = f 4rv- co < f < co,J o L(s)
where

(8) £(s)=e"2n(l + ij),

the a*'s being real, £*Li(l/a*) < 00, and c ^ 0. Further, corresponding to

sx]ex\
~eWo) ^-y)^/^1^1^

we set

r~ J(sx) J(sy)
(10) G(x,y) =      ^ '\Ky'du(s),Jo E(s)

and define, for <b in LJ(0, od),

(11) G#<b(x)=fo G(x,t)<p(t)du(t), 0<x<oo.

A general definition of ^ # <b(x) for any two functions \p and <p of
L^O, ao;du(x)) will be given in II, §2. Hirschman proved that a #-kernel
G is variation diminishing if and only if it has the form (7). We note that
in the special case where 7 = 0, ^f(x) = cosx, and we have Schoenberg's
theorem for an even kernel.

In 1955, I. I. Hirschman, Jr. and D. V. Widder showed that the *-
convolution transform f(x) = G*<b(x) can be inverted by the differential
operator E(D):
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332 D. T. HAIMO [April

E(D)Hx) = lim ebD\\(l - -) eD"*f(x) = «(x),

where D stands for differentiation with respect to x. Further, they ob-
tained a corresponding representation theory, [10, pp. 120-169].

These results suggest that we may develop a parallel inversion theory
for the #-convolution of (11). Our primary goal will be to derive such a
theory under the least restrictive assumptions and to establish an analogous
representation theory. Our main inversion theorem will be the following:

Let <p be a function integrable on every finite interval and let

where

fW= fo G(x,t)<b(t)dp(t),

A*t)f{yt)
G(x,y)=jCu

0 < x <

n(-l)
the ak's being real, 0 < ax < ■■■ < <», with Z*"=i(l/a*) < 00• Then

limn(l fix) = 0(x),

where AxA(x) = ft"(x) + 27ft'(x)/x, if lim^0l/A - <*(x)]dM(0 = 0,
a condition which holds a.e.

Correspondingly, we prove that necessary and sufficient conditions for
a function / to be represented by fix) = fZG(x, t) dxpit) with \pit) f are
that fix) EC-, 0 ^ x < co, rj&i (1 - -Waft /(x) £ 0, 0 ^ x < o=, l = jV0
< JVj < ■ - •, /(x) = o(-J^(oix)), x—» co, where JPia^x) is defined in III,

§3, (3).
Examples which serve to illustrate these results are given in the fol-

lowing table:

0

0

Eit) Gix,y)

cosh(f/2)

sinh wt
*t

cosh(i/2)

sinh ivt

(2x)

(x/2)

12 cosh 7tx cosh 7ry
cosh27rx + sinhVy

1/2 cosh x cosh y + 1
(coshx + cosh y)2

(27I-)1/2  sinh 7rx sinh 7ry

xy   sinh27rx + coshVy

1      sinh x sinh y
irt

U/2) xy (coshx + coshy)i
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Note that the Stieltjes transform

r " *(*)
F(x) = —-dt

Jo   X + t

becomes, after exponential changes of variables,

Ht)

333

h(x)
-/-■ 2cosh

dt,

where h(t) = F(e')e"2,       = e'2*(<?').
Hence, if tp is an even function, we have

h(x) 2 Jo
1

cosh
x + t

W(t)dt
cosh:

-2-X cosh 7tx cosh i<t
cosh27rx + coshVi

or

^(2^) dt,

,, ,     ,    ,,,, f",„ .,„  cosh7txcoshirt    ... ,
/(x) = (2/tt) 1/2     (2tt) "2—rj-■-rT-T*(0

Jo cosh irx + cosh 7Tt

where /(x) = ft(x)/7r, 0(x) = i/^^x). Thus we find that the Stieltjes trans-
form for <f> satisfying *(l/x) = x*(x) is the special case of the # -convolu-
tion illustrated by our first example above. The inversion theorem enables
us to conclude that, in this case,

see [10, p. 69].

2. Formal approach. Before proceeding to a rigorous development, let us,
by way of illustration, derive the inversion theorem formally. We consider
a real-valued function / defined on (0, °°) and set

(1) fix)=L  /M^*W' 0<x<co,

so that, by inversion, as in the case of the Fourier transform, we have

(2) fix) = i AW®**®.

We define the linear differential operator \ by
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(3)
V d2     2y d 1

By an application of Bessel's equation, we may show that, for t fixed,

(4) AIJ(xt) = -t2/(xt);

see [5, p. 317]. Note the analogy to the Fourier transform where the deriva-
tive operator D applied to the exponential gives D{eUr) = iteUx. Next, let

(5) E(s) SM]'
where the at's are real and £T=i(l/a*) < °°- Further, for a real-valued
function <b defined on (0, »), let

(6) f(x) = jo G(x,y)<p(y)du(y), 0<x<oo,

where G(x,y) is defined in §1, (10). It then follows formally that

f {x) = fo WA^dM)

= J[ f{xt)du{t) J[ G<t,y)<b(y)du(y)

= j\(y)du(y) J[ f{xt)G{l,y)du{t)

= Jo ̂ -wr^
E(x) ■

Hence

/(x)=jr" zw \D dun)=jo Axt) |^ du(t).

We thus find that

_ /" /(*>*'(') ^
Jo      -    r ^-i
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It, therefore, follows that

N

lim

"   °'J   J" un, n r.+41

= *(*),
which is the inversion we seek.

Chapter II. Definitions and preliminary results

1. Basic definitions. We begin by developing the theory of the Hankel
transform and by establishing some of the properties analogous to those
of the Fourier transform. For fixed 7 > 0, we define

(1) ^(j)"y-^r(V+i/2)dx-
We denote by Lp(0, co), 1 ^ p < a>, the space of all real-valued, measurable
functions / defined on (0, «) with norm

(2) ||/||p = [ jo"\f(x)\"dp(x)Y" < cc,

whereas L"(0, co) denotes the space of those functions / for which

(3) II/! . = ess.l.u.b.|/(x)| < co.
0<X< oo

Let A(x,y,z) be the area of a triangle with sides x,y,z if such a triangle
exists. Set

(4) D(x,y,z) = t-^J/i    ^ (xyz)-^\Mx,y,z)}^

if A exists and zero otherwise. We note that D(x,y,z) ^ 0 and that D(x,y,z)
is symmetric in x,y,z. Further, we have the following basic formula:

(5) fQ /(zt)D(x, y, z) dß(z) = /(xt) /(yt),

[17, p. 411], from which it follows immediately, on setting t = 0, that

(6) jo D(x,y,z)du(z) = 1.

Using (5), we may show that
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(7) \/(x)\^l, 0^X<oo;

see [5, p. 310].

2. Preliminary results. For each / in L'(0, °°), it is clear, by §1, (7), that
the integral fZ ^(xt)f(t) du(t) exists, so that we may define the Hankel
transform / of a function / in L'(0, °0 by

(l) f ix)=L SMfMMQ.
Lemma 2.1. Let f be a function of L'(0, od). Then /"(x) is bounded and

continuous for 0 g x < od .

Proof. Since

we have

|/"(x)| g£ I f(xt)f(t)\du(t) Z.flu

(2) l.u.b.|/"(x)| ^l/ll,

and the transform is clearly bounded.
Further, the continuity of / (x) for 0 ^ x < a> may be established by

noting that, for any real x and ft, 0 ^ x < °d , we have

|/"(x + A)| ̂  j  I ,/((x + h)t) I |/(0| du(t).

Now |/((x + A)f)| = and  lim^01 ,/((x + ft)<) | = | ̂ /(xt) |,
0 £t < od , so that the Lebesgue convergence theorem may be applied and
the result follows.

Lemma 2.2. Let /,/i,/2, • • • be a sequence of functions of L'(0, od) such that
lim„_ „ || /„ — /||! = 0.  Then  lim„^ „ /„ (x) = / (x),   uniformly for 0 ^ x < od .

Proof. By Lemma 2.1, (2), we have

i/;(x)-/"(x)i /i,.

Definition 2.3. The associated function f(x,y) corresponding to a func-
tion f{x) of L'(0, od) is given by

/(*»y)"f f{u)D{x,y,u)du(u), 0<x,y<co.

The following lemma justifies the definition.

Lemma 2.4. Let f be a function of Ll(0, od). Then the integral

jo f<u)D{x,y,u)du(u)
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1965] integral equations and hankel convolutions 337

converges for almost all y for each fixed x, and, for x fixed, \\ f(x, •) || 1 _= || /II i-

Proof. We have

f I f f(u)D(x,y,u)dp(u) \ dn(y)Jo Jo

-fo My)i l/MI0^'")^")

= J \f(u)\dß(u) Jo D{x,y,u)dn(y)

= 11/Hi.
and hence /(x,y) exists for almost all y, for each fixed x, and vice versa.

Definition 2.5. Let / and g be any two functions of L\Q, oc). Then

/# g(x)= J f(x,y)g(y)dn(y), 0<x<co.

We find that the properties of the # -convolution parallel those of the
♦-convolution, as illustrated by the following lemmas.

Lemma 2.6. Let f and g be functions of Ll(0, oo) and let

f#g(x)=fof(x,y)g(y)du(y), 0<x<«,.

Then the integral defining f # g(x) converges for almost all x, 0 < x < °o, and

|/#f|i£|/|i|«|i.
Proof. We have

j |/# g(x)\du(x) = j dM(x)| j f(x,t)g(t)dn(t)^

= r dM(x)i r g(Ddud) r Hu)D(x,t,u)du(u)
Jo Jo Jo

g f du(x) f \g(t)\dß(t) f \f(u)\D(x,t,u)du(u)Jo Jo Jo

= f \g{t)\du(t)[ \f(u)\dp(u) f D(x,t,u)dß(x).Jo Jo Jo

The change in order of integration follows by Fubini's theorem. It is thus
clear that

Lemma 2.7. // / and g are functions of Ll(0, °°), then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



338 D. T. haimo [April

(/#*) "(x) = f'(x)g'(x), 0<x<co.

Proof. We have

(/ # *) "(x) - J /{xt) (/ # g) (t) dß(t)

= j "  f{xt) da{t)j^ f{t, U)g(u) du(u)

"X ^(*<)<k(f)J g(u)dM(u)J^ f(u)D(t,u,v)du(v)

= Jo g(u)dn(u)jo f(v)dn(v)fo J(xt)D(t,u,v)du(t),

the change in order of integration follows by Fubini's theorem. Thus, by
§1, (5), we have

(/#tfr(x)=j[   /(Xu)g(u) dß(U) j /(xv)f(v)du(v)

= f(x)g'(x).
The following lemma may be found in [5, p. 315]. It enables us to establish

the commutativity and associativity of the #-convolution in L'(0, °°).

Lemma 2.8. Let f be a function of LL(0, Then

fix) - lim f f~(t)kAt)jT(xt)du(t) o.e.,
n— oo JO

where the kn(t), n = 0,1,2, • • •, are a sequence of functions such that
(i) kn(t) 2,0, 0<x< cc;
(ii) fökn(t)du(t) = 1,
(iii) lim„^„ jT *„(*) dp(t) = 0 /or ei*ry 5 > 0,
(iv) ^DGL'IO,.),
(V) =

An example of a sequence of functions kn satisfying the above properties is
given by

*»(x) = wo ^,2'-'% + l/2)n*+le-"\T(2y + 1)

Corollary 2.9. Lei*/ and g be functions of L'(0, ») suc/i that f~(x) =g'(x),
0 < x < oo. T/ien /(() = #(f) a.c.

Corollary 2.10. Let / be such that f and f~ belong to Ll(0, oo). Then
(f')'(x) =/(x) o.e.

Lemma 2.11. Let f, g and h all be functions of L'(0, oo). Then (/# g)(x)
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= {g#f)(x) a.e. and ((/ # g) # h)(x) = (/# (*#«))<*) a.e.

Proof. We have (/# g) "(x) - f'(x)g'(x) = g\x)f'(x) = ig # /) "(x) and
hence, by Corollary 2.9, {f # g)(x) = ig # f){x) a.e. and similarly for
associativity.

We conclude the section by including, without proof, the following general
theorem on the application of linear differential operators to integrals.

Theorem 2.12. Let rm(x), m = 0,1, • • -,M be functions continuous in (a, b),
Ov/(x) > 0. Define the linear differential operator

LM= i>m(x)(d/dxr.

If fix) = fu Qix,y)<t>iy)duiy) converges for 0^x<co, and if o(x)
= fo° LM[Qix,y)]cbiy)duiy) converges uniformly for 0 ^ x ^ A < <*> for
every real number A,  then LM[fix)} — qix).

Chapter III. Variation diminishing # -kernels

1. Introduction. In this chapter, we study properties of the variation
diminishing # -kernels G(x) and of their associated functions G(x,y) de-
fined by Gix) = foi fixt)/Eit))duit) and

G(x,y)=f Giu)Dix,y,u)duiu).

We propose, first, to establish inequalities on Eix) in order to verify the
existence of basic integrals. We then construct the variation diminishing
kernels G(x) as convolutions of elementary, basic variation diminishing
kernels. We examine variation diminishing matrices and explore properties
of the associated functions G(x,y).

2. Inequalities for Eis).

Lemma 2.1. Let 0 <ax ^ a2 ̂  • • • < °°, with £ r-i(l/a*) < °°, and let Eis)
= II*-i[l + s2/a2k]. Then \ Eia + ir) | ^ | Eiir) \.

The proof follows immediately from the product representation of Eis).
Note that if ak = °° for k = n + \,n + 2, • • •, then Eis) becomes a poly-
nomial of degree 2n, but the result holds nonetheless.

Theorem 2.2. Let Eis) be the function defined in the preceding lemma.
Then, for any positive numbers p and R. 1/| Eia + ir) \ = 0(1/1 a\p), \ a\ —> »,
uniformly for |t| g R.

The proof follows from the definition of Eis) and the preceding lemma.
Note that if Eis) is a polynomial of degree 2n, the theorem holds for p ^ 2re.

The following results will all be based on the assumption that Eis) is an
infinite product.
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3. Generation of variation diminishing kernels. We propose to show that
the kernels G(x) referred to in the Introduction may be generated from
an infinite number of # -convolutions of elementary basic variation dimin-
ishing kernels ga(x), a > 0, given by

(1) ga(x) =a2i+i*(ax),

where

(2) Sf(x) - x1/2-^T_1/2(x),

K\_i,2(x) being the Bessel function of the second kind. In our development
we also need the function

(3) S(x) = V-mY{y + l/2)x1/2-%_1/a(x),

where /T_i/2(x) is the Bessel function of imaginary argument of order y — 1/2.

Lemma 3.1. Let ga(x) be defined by (1). Then ga~(x) = 1/(1 + x2/dl).

Proof. See [17, p. 410].
Lemma 3.2. Let J?(ax) and Jr (ax) be defined by (3) and (2) above. Then

1 d \ x-i^ax))^ J^U .L dx .Sf (ax) Ja2x2"'Jr(ax) dx

Proof. Each of the identities may be verified by straight computation of
the right-hand side, making use of Bessel's equation.

Lemma 3.3.
d                        d              21r_l/2rf'v 4- 1/2)

Jf (ox)    J?(ax) - JP(ax) ^ St(ax) =-.

Proof. See [17, pp. 79, 80].

Lemma 3.4. Let

f{xt)f(yt)r/{xt) fjyt)
ga(x,y) = jo -—2— du(t)

Then

ga(x, y) = a^+15f (ay) -?(ox), x^y,

= a2^\9t(ax)JP(ay), x^y.

Proof. See [17, p. 429].
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Lemma 3.5. Let ga(x,y) be the function defined in Lemma 3.4 and let <p(x)
be a continuous function of L"(0, co). Then

(l - ^) J[ ga(x,yH(y) dniy) = *(*).

Proof. By Lemma 3.4, we have
Jf» CO /* X X» CO

ga(*,y)(M:y)dM(y) = I &,(*,y)«(y) d/*(y) + I go(*,y)0(y)d,i(y)
0 JO Jx

= a2^+1[ Xax) J'XayJ^Wd/ity)

+ Xa*)J _5r(ay)«Xy)dM(y) ] •

Applying the operator (1 — Ax/a2) to each side and using Leibniz's rule,
we have, because of Bessel's equations,

(l-^) I ga(x,y)My)du(y)

a  r(y + ^\ 1        dx dx J

Hence the result follows by Lemma 3.3.

Theorem 3.6. ga{x), a > 0, is a variation diminishing kernel.

Proof. See [5, p. 322J.

Lemma 3.7. Let gi(x),g2(x), ■ ■ ■ ,gn(x) be a sequence of variation dimin-
ishing kernels. Then, if

g(x) = 0jl#£2#  ■■■# gn){x),

g(x) is variation diminishing.

Proof. See [5, p. 323].

Theorem 3.8. Let

E(x)=ii(i+£),

where 0 <    ^ a2 ±i • • • and Z*°=i < 00, and Zef

G(t) = 4i-idM(x).Jo jB(x)

Then
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G'(X) =   f   /(xt)G{t)du(t) = ^r- ,Jo E(x)

and G(t) is a variation diminishing # -kernel.

Proof. See [5, p. 323].

4. Matrix transformations.
Definition 4.1. A real matrix A = [ayJ (1 ig i g m; 1 £ n) is called

totally non-negative if all its minors of any order are non-negative.
Definition 4.2. Let A = [a,,] (1 g i ^ m; 1 £ j ;£ n) be a real matrix of

order R. Then A is called minor definite if all the following of its minors
have the same sign:

(a) those which are of equal order r < R;
(b) those which are of order = R and which belong to the same combina-

tion of columns.
Definition 4.3. A real matrix A = [ay-](l £i£m;lg.jgn) is said to

be variation diminishing if and only if for any set of real numbers Xu xn,
it follows that

n

y. = Z°i/x;>      i = l, •••,m,
j-i

implies that

Vbi. •••>%•] = V[xu ■■■,xnj.

The associated function of a variation diminishing # -kernel will be re-
ferred to as variation diminishing. An approximation argument readily
shows that if G{x,y) is variation diminishing, so is the matrix [G(x,,y;)]
(1 £ i;       £ j' £ m).

Theorem 4.4. [G(Xi,yj)]lsijSn is totally non-negative.

Proof. Consider the quadratic form

" "      f" I(x,u) J(x.u)Z GixuxjMj- Z titji   ^K ' Mu)
i,j = l ij = l

T. M,_/(«,"> J <i»(u)

-X"[£TO*"
_t 0.

By a theorem on quadratic forms (see [2, Vol. I, p. 306]), it follows that
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det[G(aCi,JCj)]ij_1>...,ll > 0. Now let 0 ^ xx < x2 < ■■■ <xn< » and 0 g yx < y2
< •■• <yn< °°> and consider the set consisting of all the x,'s and y/s.
Arrange these in increasing order, denoting the numbers of the combined
set by Wj, j = 1, • • ■, r, where 0 ^ it;, < w2 < ■ ■ ■ < wr, with n ^ r g 2n. Con-
sider the n X r matrix A = [G(x,, Wj)](i = 1, • • •, n;j = 1, • • •, r). By the re-
mark preceding the theorem, A is a variation diminishing matrix and hence,
by [10, p. 101] A is minor definite. Since A has rank n, all n X n minors
have the same sign, and since det[G(x„ xy)]ij=i,...,n 0, we also have
det[G(x„yJ)]1,;=1,...,n^0.

Theorem 4.5. G(x,y) > 0.

Proof. By the preceding theorem, with n = 1, it is clear that G(x,y) ^ 0.
Suppose G(x,y) = 0. Then we may appeal to IV, Theorem 3.2 (the proof
of which, though independent of the preceding results, is more conveniently
included in IV) to note that there exists a number y, > y such that G(x,yi)
> 0. Similarly, since G(x,y) = G(y, x), there exists a number x, > x such
that G(xj,y) > 0. Now, applying the preceding theorem once more, with
n = 2, we find that

G(x,y) G(x,yi)

G(x„y) G(x1,y1)
^ 0

or

- G(x,yi)G(xuy) ^0,

a contradiction.

5. Properties of G^x.y). Let

en(x)= n fi+4).
J._w, , \ ak'k=N+l ' °*'

where 0 < a, ^ a2 = • • •, with £T=am-i (1/a*) < 00, and let Gjv(x) be the vari-
ation diminishing kernel whose Hankel transform is the reciprocal of EN(x),
and GN(x,y) be the function associated with GN(x). We write G(x) and
G(x,y) for G0(x) and G0(x,y), respectively.

The following theorems will be stated for G(x, y), though they hold equally
well for GN(x,y) with N any integer.

Theorem 5.1. // G(x,y) is i/ie function associated with G(x), </iera

xt)J
E(t)

r(    >     C",Axt)/(yt) J

Proof. By definition, we have
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G(x,y)=jo G(u)D(x,y,u)du(u)

/{tu)

where the change in order of integration follows by Fubini's theorem.
Applying II, §1, (5), we have the required result.

Note that G(x,0) = G(x).

Corollary 5.2. {dm+n/dxmdyn) G(x,y), m,n - 0,1,2, ■ • •, is bounded and
continuous for 0 ^ x, y < ».

Theorem 5.3. ./V°G(x,y)dM(y) = 1, 0£x< <*>.

Proof. We have

f  GOcyJcMy) = f dM(y) f G(t)D(x,y,t) dß(t)Jo Jo Jo

= j  G(t)dß(t)fo D(x,y,t)du{y)

= Jo  G(t)dß(t) = 1.
Theorem 5.4. Let G(x,y) be the function associated with G(x). Then, for

x fixed,
(a) flrt2G(x,t)dß(t) = x2 + 2(27 + 1)A2,
(b) /„" t4G(x,t) dß(t) = x4 + 4x2(27 + 3)A2 + 8(27 + 1)(27 + 3)(A22 - A4),
(c) /„- (t2 - x2)2G(x,t) dß(t) = 8x2A2 + 4(27 + D(27 + 3)(Al - A4),

where A2 = £X1 (1 /a*), A4 = £"s.<j(1 /a?a2).

Proof. We have

(1) f G{x,i)/iyt)dß(t) = 4?TT- ■Jo E(y)

The definitions of /(xy) and £(y) give us the following Taylor expansions:

x2 x4
(2) /(xy) = 1-y2H-_y4 - • • ■K ) /K y> 2(27 + l)y ^8(27 + l)(27 + 3)y

(3) E(y) = l + A2y2 + A4y4+ ....

Hence
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+ [ 8(2T + l)(2y + 3) + 2(2y + d^ + ^-a] y*+---

Eiy)
(4)

Substituting (2) and (4) in (1), we find that

X  G(X' 2(2y +l)y2+ 8(2y + 1) (2y + 3) ̂  " " ']
= 1-[272Tt^iT+A^2

fx4 x2 2 1
+ L8(27 + l)(27 + 3) +2727TiyA2 + ^"A4Jy4+"'"-

Equating coefficients of y2 and y4, we obtain (a) and (b), respectively,
whereas (c) is a direct result of (a), (b) and Theorem 5.3.

Corollary 5.5.

f r2G„(f)dM(0 = 2(2T + l) £   (L) .
J° k=N+i \a*/

Corollary 5.6. For any 5 > 0,

lim I   Gjv(r) d^W = 0.
Jb

Proof. We have, for fixed s > 0,

f GjvM oV(f) ̂2 f f2GN(r) dM«
Ji 0 JS

_ 2(27 + 1)   f 1
0 k = N+l ak

and the result is immediate on letting n—> <*>.

Theorem 5.7. For x fixed, 0 < x < «,

lim I GN(x,y) du(y) = 1, 0^a<x<6<cc,Ja ~
= 0, 0^a^6<x<oo,

= 0,     0 <x < a ^6 ^ co.

Proof. Suppose 0^ag6<x< oo. Let i = x - 6, 5 > 0. Then we have
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£GN(x,y) du(y) ^ jo   GN(x,y) du(y)

= f   du(y) f GN(u)D(x,y,u)du(u)Jo Jo

-jo dß{y)l GJv(")fl(*.y.")*»(«*)

= f GN(u)du(u) [ D(x,y,u)du(y)
Ji Jo

GtA_u)du(u).

The result we seek follows directly on letting N—><*> and taking note of
Corollary 5.6. The proof for 0 < x < a g b ^ °o is similar, and that for
0^o<x<H od follows from the first two cases and Theorem 5.3.

Let us define a frequency function as any non-negative function <b(t)
for which <p(t) du(t) = 1. The mean, mw and the variance, V^, of the
frequency function <b are defined by

ml= f t2<b(t)du(t),-I
y* = jo (t2-my<p(t)du(t).

We note that the associated functions GN(x,y) are frequency functions,
and, by Theorem 5.4,

m2GN=x2 + 2(2y+l) Z \,
k=N+\ ak

Vc,N=Sx2 ± *
* = N+1 ak

+ 4(27+l)(2y + 3)r f £   4)2       t i],
\_\k = N+\ak/ N+lSi<jaiaiJ

where x is fixed. It follows that as N—> co, m(;N—>x and VaN—»0.

Chapter IV. Convergence of the convolution transform

1. Introduction. In this chapter, we develop asymptotic estimates for the
variation diminishing kernel and its associated function. This leads us to
the establishment of the convergence behavior of the # -convolution trans-
form. We find, in fact, that G # <p(x) converges for all x > 0 if G # <b(xti)
Converges for some x0 > 0. Hence, we may refer to G # <t> as convergent or
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divergent. In this respect, we note that G # <b behaves like the Stieltjes
transform.

2. Residues.

Theorem 2.1. Let z = axi be a zero of order mj + 1 of E(z). Then the
residue R of

where ^(a^ ^ 0.

The proof, involving only direct computation, is omitted.

Corollary 2.2. With the notation of the theorem, for x fixed, 0 ^ x < <»,

On carrying out the differentiation, we note that the dominant term in y,
for fixed x, is of the form

zi/2^Hy\2(zy) f{zx)
E(z)

at z = Oii is

C y\a,x)ym^lrle^y, y^cc,

where C, a constant independent of x and y, is positive.

Proof. By the theorem, we have

BJP(ax)ym^K. (oiy), ß>0.

Since, by [17, p. 202J,

the result follows.

3. Asymptotic estimate for G(x,y).

Lemma 3.1.

where C is the contour
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Proof. The definitions of /(z) and du(z) give

fiyt) du(t) = y1/2-^1/2+V,_1/2(yi) dt,

and since

G(x,y) = /(xt) ,/(yt)
£(0

we have

G(x,y) =y 1/2-,^    ^(X0 ,1/2+>

By [17, p. 75],

= y12- [X H^i^O*) dr

-*w-"[X/(xt)tiri+iHyllm{yt)       r» /(xt)tl'^Hy\2(yt)

dt

E(t) dt-\-
£(f)

d<

since     and E are even functions.

Theorem 3.2. Under the assumptions of Theorem 2.1, with x fixed,
0 ^ X < co,

G(x, y) = cc-°iyi- jPfox) [ 1 + 0 Q ] ,      y- -,

u>ftere c > 0.

Proof. Let a be such that a: <a <a2, and let C be the indicated contour:

By the residue theorem, we have

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] integral equations and hankel convolutions 349

r.zm^/{xz)H\\2{yz) ^ _ 2t. ( Rc j1'^/(xz)Wy\2(yz) |
Je E(z) T \ E(z)

We may apply III, Theorem 2.2 and routine estimates of Bessel func-
tions to get, on letting /? —> °= and r —►0,

r-t^^^sO«) .(      z^ f(xz)H\\2{yz)\
+ S(x,y),

where |S(x,y)| = 0(y lrie ay),y-> <x>. An appeal to Lemma 3.1 and Corol-
lary 2.2 leads to the desired result.

4. Convergence property.

Theorem 4.1. Let 0 be a function integrable in every finite interval, and let

f G(x0,y)<b(y)dß(y) = lim f G(x0,y)<t,(y) dp(y),      x0 ̂  0,

converge conditionally. Then fa™ G{x,y)<t>(y) du{y) converges conditionally for
all x and uniformly for x in any finite interval.

Proof. Let 0 £ sx < s and 0 ^ f, < t. Then, by HI, Theorem 4.4, we have
that

G(sutJ G(sut)\

G(Md G(s,t)
or, by III, Theorem 4.5, G(s,t)/G(sut) ä G(s,t1)/G{sut1). Let

G(x0,y)

Then, clearly, g(y) > 0, and if xu > x, g(y) [ . Hence

G(x,0) G(x)

-0,

0<g(y) zg(0) =
G(x0,0)    G(x0) '

andg(y) is uniformly bounded for all x < x0. On the other hand, if x0 < x,
g(y) T  and, by Theorem 3.2, g(y) = Gix,y)/G(xo,y) ̂  JTfax)/jTfaxJ,
y—> co. Hence, in this case, g(y) is uniformly bounded for all x, x0g x g A,
for every real number A 3: x0.

Now

j " G(x,y)0(y) d„(y) = f * ̂ 4 G(xo,y)0(y) dß(y)Jo Jo G(x0,y)

g(y)G(xo,y)0(y)aV(y).
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Using the second mean value theorem, we find that

['2G(x,y)<p(y)du(y)

where Tx g w ^ T2. Since g(y) is uniformly bounded, and since, by hypoth-
esis, we know that given e > 0, there is a T > 0 such that for Tu T2 > T,
each of the integrals on the right is less than «, the theorem follows.

1. Introduction. In this chapter, we derive the inversion theorem under
general hypotheses. Since the behavior of GN(x,y)/G(x,y) and of GN(x,y)
plays a significant role in the development, we give a detailed study of the
essential properties of these functions.

2. The changes of trend of GN(x,y)/G(x,y).

Lemma 2.1. Let A(s) = 1 — |s| for |s| < 1, As = 0, otherwise. Then

Chapter V. Inversion for continuous functions

GN(x,y) = lim
r(7 + 1/2) AI

du(s).

Proof. We have

Letting s = x — s'h, we get

Now

limGy* - s'h.y) = G\(x,y),

and

\GN(x- s'h,y)A(s') \ g \\GN\\^.

Hence, by Lebesgue's limit theorem, it follows that
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lim / = GN(x,y) f A(s')ds' = GN(x,y).

Lemma 2.2. Lei

and let
/{tu)

Then

G(*,y) = j GN(x,s)GUs,y) du(s).

Proof. We have

jo GN(x,s)G*N(s,y)du(s) = (GN# G*N( -,y))(x).

But

(GN # GM -,y)) (x) = GMx)GM -,y)' (x)

1    /(xy) _ /(xy)
EN(x) EMx) E(x)

The lemma thus follows by inversion.

= G( .,yf (x).

Theorem 2.3. For any real number a, and x fixed, G(x,y) — aGN(x,y) has
at most two changes of sign for 0 ^ y < °°.

Proof. By Lemmas 2.1 and 2.2, we have

G(x,y) - aGMx,y)

r-     r       ar(7 + 1/2)A(^rf) 1
= lim I   GN(y,s)   GN(x,s)-2l,2"yhs2y- dß^'

Since GN(x,y) is a variation diminishing kernel, it follows that, for x fixed,

r r-        f orb + iW^)
V[ Jo Gjv(y, s) { GÄ(jc, s) -        21-2-^-        1 d"(s) J

ar(T+i/2)A(^)
= V[ G^,y)-21,-%I     '] ,
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so that, by [10, p. 81], for x fixed,

ar(T + l/2)A(^^)
V[G(x,y) - dGN(x,y)} g lim inf V [ G*N(x, y)-2l<2^hy*-        j '

Since, for all sufficiently small h, and x fixed,

ar(T + 1/2)a(x
G*N(x,y)

\ h
2l/2^hyh

has at most two changes of sign, so does G(x, y) — aGN(x, y).

Theorem 2.4. For x fixed, lim^« Ga,(x,v)/G(x,y) = 0.

Proof. Let axi be a zero of order mx+l of E(t). If ml + 1 > N, then
axi is a zero of order mi = m1-|-l-Arof EN(t). Hence by IV, Theorem 3.2,

Gjv(x,y) ~ CNy{axx)e ^ym^N,

so that Gw(x,y)/G(x,y) ~ CNy~N, and lim^. GJV(x,y)/G(x,y) = 0. If m,+ 1
±S iV, then a^' is not a zero of £/v(0, and, by the proof of IV, Theorem 3.2,
it follows that

Gdx.y) - 0(y-Te-«°),     a > a,.

Thus, using IV, Theorem 3.2 for G(x,y), we again find that

,.   GN(x,y) _
hm —-       = 0.G(x,y)

Theorem 2.5. For x /ixed, G^(x,y)/G(x,y) has at most one change of trend.

Proof. Consider, for some real number a,

G(x,y) - aGN{x,y) = aG(x,y)\- - .La G(x,y)J

Since G(x,y) > 0, it follows that

V[G(x,y)-aGdx,y)]=v\1--%^].La G(x,y)J

If GN(x,y)/G{x,y) were to have more than two changes of trend, there
would, necessarily, exist a real number a for which V[G(x,y) - aGN(x,y)]
> 2, contradicting Theorem 2.3. Suppose then that GN(x,y)/G(x,y) has two
changes of trend. We have GN(x,y) /G(x,y) > 0. Suppose GN(x,y)/G(x,y)
is increasing in the neighborhood of the origin as in Figure a. If the quotient
had two changes of trend, it would have to decrease once and then increase
for all large values of y, contradicting Theorem 2.4. Hence in this case,
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Gjv(x,y) /G(x,y) must have exactly one change of trend. On the other hand,
suppose the quotient is decreasing in the neighborhood of the origin as in
Figure b. Then since limy_„ (GN(x,y)/G(x,y)) = 0, if there were two changes
of trend, there would exist a real number a for which V[G(x,y) — aGN(x,y)]
= 3, contradicting Theorem 2.3. Hence in this case GN(x,y)/G(x,y) has no
change in trend.

Theorem 2.6. Let x be fixed and 8 any positive number. Then, for N suffi-
ciently large, GN(x,y)/G{x,y) has exactly one change of trend in the interval
(x-8,x + 8).

Proof. Let A be a number such that 0 < A < 1. We note first that there
must exist a y in the interval (x — 8, x - 8/2) for which GN(x,y)/G(x,y)
< A; for, otherwise, we have GN(x,y)/G(x,y) ^ A for all y, x — 8 < y < x
- 8/2. By III, Theorem 5.7, it then follows that

0= lim f   "'GN(x,y)du(y)
n—» Ji b

fGN(x,y) nt ....= hm I       —--G(x,y)du(y)
N^^Jx-i G{x,y)

£ A f ° 2G(x,y)du(y) > 0,

a contradiction. Similarly, we may show that in the interval (x + 8/2, x + 8),
there must exist a y for which GN(x,y)/G(x,y) < A. Finally, in the interval
(x — 8/2, x -f- 5/2), there must exist a y for which GN(x,y)/G(x,y) > A, for,
otherwise, we have GN(x,y)/G(x,y) ^ A for all y in the interval. But then

lim P    GN(x,y) du(y) = lim P   ' C^^-G(x,y) du(y)
Ji-« jv^» Ji-i,2 G(x,y)

= A fX "G(x,y)du(y) gA<l.
Jx-b 2

On the other hand, III, Theorem 5.7, gives
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lim I       GN(x,y)dn(y) = 1,
N—m Jx-b/2

a contradiction. This result in conjunction with Theorem 2.5, proves the
theorem.

Theorem 2.7. For x fixed and 5 any positive number,

.. GN(x,y)
hm -- = 0,w— G(x,y)

/or 0 ä= y ^ x — <5, x + 6 ̂  y ^ °°.

Proof. By Theorem 2.6, we know that for TV sufficiently large, GN(x, y)/G(x, y)
has one change of trend in the interval (x — 5/2, x + 5/2). It therefore follows
that GN(x,y)/G(x,y) ] for 0 ^ y ^ x - 5/2. Hence

f *"4'2 G„(x,y) GN(x,x - 5) fx~ia,
-jr.-rdn(y)^-—- du(y).Jx-i    G(x,y) G(x,x —5) Jx-s

Further, G(x,y) > 0 so that 1/G(x,y) is bounded. Hence

f*-*'2 GN(x,y) , . . ^   .   ,        1 r,/aPJ
7^7-r^(v)=    l.u.b.    —- Gjv(x,y)dM(y)-

Ji-j    G(x,y) x-biyix-b,2 G(x,y) Jx-t

Thus
• x-b/2

. f G^x.y) d/iCv)1 Ji-iGN(x, x - g) <
G(x,x-5) =x-4f;s;+äG(x,y)

dM(y)

and by III, Theorem 5.7, we have limN^„ (GN(x, x - 5)/G(x, x - 5)) = 0.
Similarly, we may show that \\mN-,a,(GN(x,x + 5)/G(x,x + 6)) = 0, and the
theorem follows.

3. The change of trend of GN(x,y).

Theorem 3.1. Let

hXx,y)=(   ^(xt){(yt) dß(t),      O^x, y<-,
Jo        e'"

and let

Then

GN,(x,y) = J  GN(s,y)h,(x,s)dp(s),      0 ^ x, y < »,

/i,(x, x)
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Proof. We have

Axt)J{yt)

355

ht(x,y) =f du(t)

= 21-'2r(7+1/2) (ry)

so that, by [17, p. 395j,
X

Thus

ht(x,y)
h,(x, x)

(x)

and, since AO) = 1, it follows that

.. h,(x,y)
hm —-r = 1,«-o h,(x, x)

0 ^ x, y < °°.

Now we have

It is clear that

GN,,(x,y)
hXx, x) XGN(s,y) —- dß(s).

n,(x, x)

lim GN(s,y) f'f*'^ = GN(s,y).
t-o n,(x, x)

Further, for 0 ^ x < a, the inequalities IS ^ e' readily follow from
the power series expansion for   ?(x). Hence

h,(x,s)
h,(x, x)

\   1 '   „ .V-A.4

<e.V2.-,V-x2)/4

where the last inequality holds for all s and for every c < 1. Thus we may
apply Lebesgue's limit theorem to get

lim ÜN'{x'y)
.-o h,{x, x)

y)d/i(s) = l.
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Theorem 3.2. For x fixed and a any real number,

V[GN{x,y) - a] £2.

Proof. We have, by Lemma 2.1, and by the definition of GNi,{x,y),

GN(x,y) - aGN,,(x,y)

r(y+l/2)A(^-)
= limJo GN(s,y)[-ah,(x,s)\d,(s),

so that a proof entirely analogous to that of Theorem 2.3, leads to the con-
clusion that

V[GN(x,y) -aGN„(x,y)}^2.

Since x is fixed and a is arbitrary, we take a = a'/h,(x, x), a' any real
number. Then

By Theorem 3.1 and [10, p. 84], it follows that

V[GN(x,y) -a'U hrninf vT GN(x,y) - ^ 2.

Theorem 3.3. For x fixed, lim^ «,GN(x,y) = 0.

Proof. The conclusion is a direct result of IV, Theorem 3.2.

Theorem 3.4. For x fixed, and for any 8 > 0, GN(x,y) has a variation of
trend in {x — 8, x + 5) for N sufficiently large.

Proof. We proceed in a manner entirely similar to the proof of Theorem
2.6. Let A be a positive number such that 0 < A M-lY du(y) < 1. Within
the interval (x — 8,x — 8/2), if N is large enough, there must exist a y for
which GN{x,y) < A; for, if not, Gn(x,y) ^ A for all y in the interval. But
then, applying III, Theorem 5.7, we find that

rx-b/2

0 = lim GN(x,y)dn(y)
JV-» Jo

fx-b s*x-b,2
= lim I     GN(x,y)dn(y) + lim GN(x,y)du(y)

Jo A/-« J*~*
/•x—6/2

= lim I GN(x,y)du(y)
A/—« Jx-b

/• x—4/ 2
^ A        dM(y) > 0,

Jx-b
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a contradiction. Similarly, we may show that in the interval (x + 6/2, x + 5),
there must exist a y for which GN(x,y) < A.

Moreover, in the interval (x - i/2,x + fi/2), GN(x,y) must exceed A at
some point y; for, otherwise, we have GN(x,.y) ^ A for all y in the interval.
But then

px+b.2 fx^b,2
lim GN{x,y)du(y) g A du(y) < 1,
Af— <» Jx~b2 Jx-b,2

by the definition of A; whereas, using III, Theorem 5.7, we have

lim I      GjvU.y) du(y) = 1,
N-~ °= Jx-bri

a contradiction. It thus follows that for large N, GN(x,y) has a change of
trend in the interval (x — 5,x + 5).

Theorem 3.5. For x fixed and N sufficiently large, GN(x,y) has exactly one
change of trend at £N(x), 0 < £jV < and |x - %N(x) \ g c(sN)lr\ where c is a
constant depending only on y, and sN = JjT-n+id/0*)-

Proof. That GN(x,y) has at least one change of trend for N sufficiently
large is proved in Theorem 3.4. That GN(x,y) has at most one change of
trend follows from the proof of Theorem 2.5 on replacing G(x,y) by 1. Thus
it follows that for large N, GN(x, y) has exactly one change of trend at some
point £N(x), and it remains for us to establish the bound for its distance from
x. To this end, let

(1) A = (2(27 + 1)*jvV \
and consider

C I + 2A
(2)

/"■ X + 2A f 1- 2A p »

GN(x,y)du(y) = 1 - GN(x,y) dM(y) - I     GN(x,y) du{y).
Jx-2A Jo Jx+2A

Now
p x-2A f x -2A p oo

GN(x,y)du(y) = |      dM(y) f   GN(u)D(x,y,u) du(u)Jo Jo Jo
fx-UA plx~2A

g du(y) GN(u)D(x,y,u)du(u)
JO J2A

f 2x-2A f *
g GN(u)du(u) D(x,y,u)du(y)

J2A Jo
2      /* 2x-2A ^

= 772 uAGN(u)du(u) g -,4A 4

where the change in order of integration is justified by Fubini's theorem,
and the last inequality follows by HI, Theorem 5.4 (a). Similarly,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



358 d. t. haimo [April

f    GN(x,y)dß(y) = f    dn(y)[ GN(u)D(x,y,u)dß(u)
Jx+1A Jx + 2A J2A

4 A JiA 4

Applying these inequalities to (2), we have

(3)
or

so that

(4)

CI+2A l
GN(x,y)du(y) fci,

Jx-2A 2

l l rx+2A
2-y-"r(T + l/2)J,-M GN(x,y)y2ydy

<(x + 2AY*    AA    .   .      „ , .
- y-ur«   , i /9.4A GN(x,y),l 1(7+1/21 x-2A^yix+2A

IK      O t     \>Tl7+ 1/2) 1l.u.b.    GN(x,y) ^ — —— .
x-2AS>Sx+24 2 A(x+2A)^

Suppose now that |x — £/v(x)| > IIA.

GN(x,y)

Figure a Figure b

* y

Then GN(x,y) ] within the interval (x — 2A,x + IIA) if x <£jv(x), as in
Figure a, and GN(x,y) j within the interval (x — HA,x + 2A) if x > £N(x),
as in Figure b. It therefore follows that (4) holds for y in (x + 2A, x + IIA)
and (x - llA.x - 2A). Hence

ja GN(x,y) du(y)

l j'x+llA

-2^-"T(7+ 1/2)
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X
a contradiction. Similarly,

GN(x,y)du(y)

*r-"r(t + i/2) illGN{x'y)y2ydy
i       rr(T + i/2)      l 1

-2^r(7 + l/2)L    21'2-    A(x + 2A)*VX UA)
_ 9 /x - 11A\2y
~ 8 V x + 2A ) '

and

liminf f Gw(x,y) d/i(y) ̂  | ,

These contradictions imply that our assumption must be false, so that for
N sufficiently large, |x — £a,(x) | g HA, and the theorem holds.

Theorem 3.6. For N large and all x and y, GN(x,y) g A(x)/(sN)ia, where
Sn= Z^jv+iU/a*)-

Proof. We have

G„(x,y)=f dß{t)
EN(t)

1 Axt)/{yt) ±.f*dt2>-^r(7 + l/2) Jo £,v(0

+ 2-"2r(7 + 1/2) (xy)"2- f" Jy~MJ:-M tdt

Now

fl  (l + i)-l+( ±  iW(   £ i) t< +
where the coefficients of powers of t are all positive. Hence EN(t) it 1 + s^2.
Further, for 0 ^ u < a,, | /{u) \ ^ 1, and the asymptotic form for Jy(u),
see [17, p. 194], gives, for u > 0, |JY_1/2(u)| ^c/(u)1/2, where c is a con-
stant. Using these inequalities in the integrals defining GiV(x,y), we find that

G»(",s*'X'r^ + *!tor'X'rdt
+ sNt2

^ [k, + kAxy)r\ f -Jo 1
dt K(x,y)

■f- s^t2 (s.v)
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For N large, if £N(x) is the maximum point of GN(x,y), it follows that

n i    \ <r n i   , / \\ ^ Kix.tdx)) ^ A(x)GN(x,y) ^ GN(x,tdx)) ^ —j-^jä— ^ 7—rrrü -
(SN) (SN)

the last inequality following by Theorem 3.5.

4. Application of the differential operator.

Lemma 4.1. For fixed y,

G(x,y) = GN(x,y).
k~\ \      n* /

Proof. We have

and

G^x.y) = f  ^ du(t).
Jo tN(t)

Applying the operator U*v=i(l — Ajdi) to G(x,y) and noting that, by I,
§2, (4),

n(i-^)/'w)-n(i+3-)'(/w.
t_i \     a*/ t-i \ Ok/

we find that

■jr
-X'

£(0

Ii ^>y(x)
^(0

SM/M

du(t)

da(t) = GN(x,y),

where Theorem 2.12 of II justifies moving the operator under the integral
sign.
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Theorem 4.2. Let <b(x) be integrable in every finite interval, and let

f(x)=fo G(x,y)<b(y)du(y),

where the integral converges. Then

fl (1 -      fix) = f GN(x,y)<t>(y) du(y).*=i \     aj Jo

Proof. By Lemma 4.1,

G(x,y) = GN(x,y),

and hence, by Theorem 2.12 of II, it is sufficient to show that

GN(x,y)<p(y)dß(y)

converges uniformly for x in a finite interval. Now, GN(x,y)/G(.x,y) is posi-
tive, has one change in trend for N sufficiently large, and —»0 as y —> °°.
Hence for y large enough, (GN(x,y)/G(x,y)) J, . By the second mean value
theorem, we have

f 2 GN(x,y)4>(y) du(y) = f '2 °4^4 G{x,yH(y) du(y)Jti jTi G(x,y)

, 1\) J'hGix.TJ JTl

GN(x,
+ G(x, TJ f 2G(x,y)<p(y)du(y),

Jw

where Ty f£ w ^ T2. It then follows by Theorem 2.4 and by IV, Theorem
4.1, that

lim   f 2GN(x,y)4>(y) du(y) = 0,
7\.*i— J-i\

uniformly for x in any finite interval, and hence the theorem is proved.

5. Inversion.

Theorem 5.1. Let <p(t) be a function integrable on every finite interval, and let

f(x) = j GN(x, t)<t>(t) du(t),     0 < x < »,

converge. If
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then

1 rx+h
lim r       [*«) -*(*)]d/.W =0,
h—O 1% Jx

lim fl /(x) =*(*).

Proof. Let

(1) IN = f~ GN(x,y) [d>(y) - <t>(x)]dß(y).

The proof will be complete if we can show that limsupw-„| In\ = 0. Let

(2) 4>(y)=fxy[<Ht)-*(x)]d»(t),
so that

(3) V(y)dy={i>{y)-4>{x)]dn(y).
From the hypothesis, it follows that for a given t > 0, there is a 5 > 0
such that

(4) |*(y)| £ |£W) -*(x)]d,(t) £« y-x ,

for |y — x| < 5. With x and 5 fixed, 5 < x/2, choose N so large that GAi(x,y)
has its one change of trend at £N(x) within the interval (x — 5/2, x + 5/2).
Now let

(5)

a'x-i        fx+i /*"\+       +        Gdx,y)[<b(y) -<b(x)]du
x Jx-& Jx+6/

(y)

= A + h + h-
Since GN(x, y) j in (0, x — 5), we have, by the mean value theorem,

A= P *G„(x,y)[0(y) -*(x)]d„(y)
/• x-o

= GN(x,x - 5) I     [«(y) - 0(x)}du(y),

where 0 ^ y ^ x — 5. Hence, by Theorem 2.7,

(6) lim h = 0.

Also, using the mean value theorem again, we find that
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/3= f GN(x,y)[<p(y) -<t>(x)]du(y)
Jx+i

')-*(*)f GN(x,y)du(y)
Jx+i

U(X,X-\-o)  Jx+i Jx+i

363

= r GN(x,y)
Jx+i G{x,y)

where x + 8 ̂  f < od. By Theorem 2.7, and by III, Theorem 5.7, we have

(7) lim/3 = 0.

Further,
Xx+S

s GN(x,y)[<b(y) - 0(x)]dM(y)

fx+i
GN(x,yH'(y)dy

Jx-i

= GN(x, x + 8)i(x +8) - GN(x, x - 8)i(x - 8)

fi+b d
Jx-i Gjv(X*y)

Hence, by Theorem 2.7,
rx+i

\h\^oa)+\ |*(y)|Jx-i

as AT— od. By (4),

Xx+i d
t\y-x\ -^GN(x,y)

dyGN{x,y) dy

dy

fx+i
od)+ e      (\y-Ux)\ + \Ux) - x\)

Jx-i dyGN(x,y) dy

(8)      ^ o(l) + £ {       (Mx) - y) -fr.GN(x,y) dydy

+ |{w(jc) - x\ [ XT;dyGN(x,y)dy

■* d_
eN(x) dy

Now, on integrating by parts, we have, as N—» od,
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d
4 (tdx) -y)-^GN(x,y)dy

fx+i
= 0(1) + GN(x,y)dy

Jx-5

- o(D +    2ui-y    Jx_t ^GN(x,y) dM(y)

(9) p(_, _i_ i/2) rx+6
±oa) + 2Jl{x:>)2yjxsGdx,y)dM

*        , r(y+l/2)

= o(l)+#(*),
where the last inequality follows since 5 was chosen < x/2. Also,

f N    GN(x, y) dy - f +i f Gdx, y) dyJx-i dy J(N dy
(10) = 2GN(x,Zdx))+o(l), N^oo.

Applying (9) and (10) to (8), we find that

|/2| ^o(l) + (\o(l) + K(x) + \ Ux) - x\[2GN(x,Ux)) + o(l)}\, JV-«.

By Theorems 3.5 and 3.6,

l.u.b. \M - x\GN(x,Ux)) = B(x)
Af-0,1,.-

is finite. If we select, for arbitrary t' > 0,

= K(x) + 2B(x) '

it follows that

(11) lim sup I/2| ^ t',

and hence, combining (6), (7) and (11), we have limsupA/^ | IN\ ^ t, and
the theorem follows.

Chapter VI. Representation

1. Introduction. In this chapter, we develop a representation theory corre-
sponding to the inversion theory. We find that we must consider the
Stieltjes integral JZ~ G{x,y) d0(y) rather than f0" G(x,y)<b(y) dM(y). Our
major preceding results, however, may be established equally well for the
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Stieltjes integral. In particular, if

(1) f(x)=j0 w^ywiy)

converges conditionally for any value of x, 0 ^ x < <*>, then it converges
for all such x and uniformly for x in any finite interval. Further, by the
Stieltjes form of V, Theorem 4.2, /(x) is infinitely differentiable for 0 ^ x
< oo and

(2) II (1 - ^)/(x) = f G„(x,y) d*(y),       0 S x < », N = 0,1, • ...
*_i \     ak/ Jo

Note that if tiy) j, since GN{*,y) > 0,

(3) li(l-^WuO,       0^x< oo, N = 0,1,....

It is our aim to show that necessary and sufficient conditions for a function
/ to have the representation (1) with ^(y) ] are that /(x) be infinitely
differentiable for 0 ^ x < oo, that (3) hold and that /(x) = o( J?(aix)), x-* oo.

2. Behavior at infinity. If the *-convolution transform

f(x)= ( J}(x-t)Mt)

converges for some value of x, where G is a variation diminishing *-kernel,
it has been shown, [10, p. 147]that /(x) = o(eoX),x—» oo. We derive an anal-
ogous result for the # -convolution.

Theorem 2.1. Let f(x) = f0m G{x,t) d$(t),0 g x < », converge. Then f(x)
= o(>(a1x)),x-» oo.

Proof. Let s(y) = // G(0, u) aV(u) and f(y) = G(x,y)/G(0, y). By hy-
pothesis, it follows that, for a given e > 0, there exists a y0 such that
\s(y) \ <(,y^y0- Further, by III, Theorem 4.4, f(y) J , and by IV, Theo-
rem 3.2, lim>_„t(y)= J>Xaxx). Now let fix) = fAx) + f2{x), where fAx)
= Soy»G{x,y)d+(y) and /2(x) - ^ G(x,y) d*(y). Since (G(x,y)/G(0,y)) T ,
on applying the mean value theorem, we have

G(x,y0) f'o

where 0 g jj g y0. Then IV, Theorem 3.2 implies that, as x—> oo, fAx) = o(l).
Further,
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- - Ct(y)ds{y)
Jyo

= t(y0)s(y0) + I s(y)dt(y)
Jyo

^tt{y0)+t\ dt(y)
Jyo

so that f(x) = o(J?(aix)),x—> o=.

3. A basic representation theorem. In this section we develop a funda-
mental representation theorem which will be needed to derive our major
result.

Lemma 3.1. Let

Hx(x,y) = I   ^-^-du(t),     0 g x, y <
Jo t

1 + ~al
Then

HAx.y) = a^-^Tiy + 1/2) Aax) J(.ay) ^  p[j!{at)y  */ x ^ y>

= a^-^T(y + 1/2) ̂ (ax) J?(ay) j" ^Jt^y V ' * * *

Proof. We have by III, Lemma 3.3,

(1)        5?(ax)    JF(ax) - J(ax)    St (ax)

Dividing both sides by [J?(ax)f and integrating from y to oo, we have,
since lim^. (St (ax)/ y(ax)) = 0,

(2)
St(ay) = 2^-1/2r(Y + 1/2) r- dx
J(ay) a2'-1       J, r2'[^(ox)f

But, by III, Lemma 3.4,

HAx,y) = a*+1St(ay) Aax), x^y,
(3)

= a*+15?(ax)y(ay), x^y.

Substituting (2) in (3), we have the desired result.
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Lemma 3.2. Let <p(t) be a function integrabk in every finite interval and
non-negative for 0 ^ x < a>. Then

X'mx',)m *<" - X" ̂»^X"'" *
whenever either side is finite.

Proof. Since, clearly, H(x,y) = H(y,x), we have, on applying Lemma 3.1,

£ H(x,t)4>(t)dn(t)

= Jo *('''WV"r(7 + l/2)
C" tiydt+J. ̂ PW+W

By Fubini's theorem, the order of integration may be inverted to give the
desired result.

Lemma 3.3. Let /(x) £C2,0^<»; f(x) = o( J?(ox)),a > 0,x-^ »; /"(at)
>: 0(^(ax)),x-» oo. Then f'(x) = o( J%x)).

Proof. On integrating by parts, we may verify that for any real number 6,

w."'^-w4r„-,-,)fW
D (7 ,/x

Since /"(x) S: 0( ^i(ax)),x—> oo, there exists a non-negative number A such
that

f"(x) ^ - A Aax), 0^x<oo,

and hence

f(x)Zo(-7(ax)) + AeJ^(a(x + 6)),     x^oo, <? >0,

Zo(-7(ax)) + A6-7(ax), x^oo,ö<0.

Since 0 may be chosen arbitrarily small, it follows that

fix) =o(J?(ax)), x^oo,

as was to be shown.
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Lemma 3.4. Let
Q{D) = qn(x)Dn + qn-MLT-1 + ■■■+qi)(x),      0<x< »,

be a linear differential operator of degree n with coefficients such that the
q^Hx), j = 0,1, • • ■, i, i = 0,1, • • -,n are all bounded for X0 ^ < °° for any
X0>0. If f(x) EC, 0 g * < 00; f(x) = o(Aax)), a > 0,x^ »; Q(D)/(x)
^0(-X(ox)), fAen = o( J?(ax)), x-* »,* = 1,2, ..•,» - 1.

Proof. It is sufficient to prove the theorem for A = 1. For, suppose the
theorem holds for k = 1, so that with the given hypotheses, we have /'(x)
= o(J?(ax)), x^co. Let Q*(D) = c„(x)L>" 1 + • • ■ + 9l(x). Then

Since q0(x) is bounded, this implies that Q*(D)f'(x) ^ 0(J?(ax)), x—> °=.
But, applying the theorem, which we assume holds for k = 1, to /'(x) and
the operator Q*(D), it follows that f"(x) =o(J^(ax)), x—> 00. Proceeding
in this way, we may clearly conclude that /*(x) =0(^1)), x—> 00,
A = 2, ?••,'» — 1. It thus remains for us to establish the theorem only for
k — 1. To this end, set

where Pn-i(x) is a polynomial of degree n — 1. Since the o,u',   = 0,
i = 0, • • •, n are bounded for x0 ̂  x < °o and since /(x) = o( J^(ax)),x-> 00,
it follows from (2) that

Q*(D)D(f(x)) = Q*(D)f'{x)
= Q(D)f(x) -o0(x)/(x).

(1)

On integrating by parts, we find that

F(x) = PB_1(x) + (n-l)!gB(x)/(x)

(2)

(3) F(x) =o( J*(ox)), x—* 00.

Further, differentiating (1) twice, we have

(4)

and since Q(D)f(x) £ 0( J%x)), we find that

(5) F"{x) Z 0(X(ax)), x^oo.

F(x) thus satisfies the conditions of Lemma 3.2 and hence
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(6) F'(x) =o(JVc)), x^co.

But, on differentiating (2), we find that

(7) F'(x) = (n - 1)!9b(x)/'(x) +o(X(ox)),     x^ »,

and since q„(x) is bounded, it follows that f'(x) =o(X(ux)), x—> od, and
the lemma is proved.

Lemma 3.5. Let (a) f(x) G C2, 0 g. x < », (b) /(x) = o( J^x)), x^ od.
Then

Proof. Note that the assumption that ]l — AJ/a2]/r(0) is defined implies
that /'(O) = 0. By III, Lemma 3.2, we have

(1> [1 - if]'<* - - sot ä^^m (Ms)]-
Multiplying each side of (1) by afx*1, _X(flix) and integrating with respect
tox from 0 to u, then dividing both sides by u^/fa^)]2 and integrating
with respect to u from 0 to x, we find that

,2) /W. jM{m-f^^yi«J>>m[i-£]/w*}.
As a result of hypothesis (b), it is clear that

(3)     ao) - I 'vrjfaf X"'"naA [ (l - if) H *
and hence

«»   '<*> -X" [ (' - 3) »«]*•
Theorem 3.6. Let (a) /(x) £C°,0sx< °=, (b) f(x) = o(J!r(a1x)), x^ od,

(c) HIi(l - A,/a*2)/(x) ^ 0, 0 f£ x < od, N= 1,2, .... Tnen

/(*)=J["G*(x,y)[ll (l-a^) /(y)]dM(y), 0^x<oo, AT-1,2,...,

where

G^(x,y)=        ^ dM(f),     0<x, y< oo, N= 1,2,.--.
Jo      N   / t2\

n(1+a)
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Proof. We note that by Lemma 3.4,

(1) /l*'(x) = o(-^{alx)), x-», *=1,2,-...

Now if

(2) = II (l-^) /(*), 0£x<»,
*=i \ ak/

then clearly

(3) /n(x) = /n-i(x).

Since, as a result of (1), fN-i(x) satisfies the conditions of Lemma 3.5,
we have

Now writing

and repeating the argument, we find that

Jx   UAf_1[_^(aA;_1UAf_J J JO

f     a^^^v-ix) P»-»*   *„    ,   V ja
Jx    U2v-i[-^(aA/_iUA;-i)r Jo

. f"   'f.-**1*»-* duN VNt*J(aNtN)fN(tN) dtN.
JtN-luN[y(aNuN)\l Jo

Proceeding in this manner, we finally express /(x) in terms of 27V iterated
integrals

■II (l-^/^ld^.

Condition (c) now enables us to apply Lemma 3.2 repeatedly with the
result that
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/• CD /* CO y» 00

fix) =     HAx, t,) dud,)     H2(tu t2) dvitj     \ Hn-MhJo Jo Jo

5)       Jo HdtN-u tN) [ n (1 - ^jr)/(to)] >

where

(6) HN(x,y) =j
' r2
1 + aXOn

du(t).

By V, Lemma 2.2, and Fubini's theorem, it now follows that

(7)       ax)=Jo" g*n(x, t) [ n (i -     4» W,

where G/J(x,t) is defined as above.

Corollary 3.7. Let (a) fix)ECM, 0^x<oo, iV=l,2, (b) fix)
= o(Xaix))," x-» oo, (C) [Iii, (1 - Ajaftfix) £ 0, 0 ^ x < oo, l = JV0
<Nt< .... Then

fix) = f GAV(x, y) ft (1 -      fiy) dniy),   0 ̂
Jo k=l \ ak>

x < oo, 1 = N0 < Ni <

Proof. With the weaker conditions of the corollary the proof of the theo-
rem may be followed to the point where fix) is expressed by the iterated
integrals (4). Lemma 3.2, in this case however, can be applied only for those
values of N in the sequence No, Nu • ■ • and hence fix) has the representa-
tion given above.

4. Representation.

Lemma 4.1. Let GN(x,y) be defined as in Theorem 3.6. Then limA,_<x,Gi5(x,y)
= G(x,y) uniformly for x fixed, 0 ^ x < oo, and for y in any finite interval.

Proof. Consider

\G*dx,y)-Gix,y)\

^ /ixt)/iyt)

tA \     ai)    t=i \     a J

duit)

4 0(1+4) n(i+4)
d/i(0.
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lim

n(i+?) n(i+3*«i \     a*/    *=i \ ak/

and, for f ^ 1 and all N ^ 2y + 1, we have

1 1

b(i+£) bKt) h(i+5)

= 0,

- 1 + cf2N " 1 + ct4y+2'

c < 0, so that Lebesgue's limit theorem may be applied to obtain

1 1lim

b(l+S) SKi)
aVW = 0,

whence the result.
Helly's first and second theorems are proved in [11, Vol. I, pp. 222, 233].

We find it useful to combine and restate them in the following forms:

Theorem 4.2. Let f(x) be a continuous function defined for 0 ^ x < oo
and such that /(oo) exists. Let gn(x) be a sequence of functions, defined on
0 ^ x < co, which are uniformly bounded and which are of total variation
uniformly bounded by K. Then there exists a subsequence gnXx) of the sequence
gn(x) converging to a function g(x) at every point of continuity of g(x). g(x)
is of total variation bounded by K and

lim f f{x)dgn{x) = f f(x)dg(x) +c/(»).
n;—c° JO JO

We are now in a position to derive our main representation theorem.

Theorem 4.3. Necessary and sufficient conditions that

/(*) G(x,t) dm,

with \p(t) I are that
(a) /(x)6C-, 0^x< co,
(b) UtAl ~ ^/al) fix) £0, 0^x< co, 1 zN0<N1< ....
(c) /(x) =o(JW)), x--.
Proof. The necessity of conditions (a) and (b) have already been dealt

with in the introduction to the chapter, and of condition (c) in Theorem
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2.1. It thus remains to establish the sufficiency of the conditions. By Cor-
ollary 3.7, we have

(1)

Now let

fix) = f~G*Niix, t) [ H (l - ^) A')] Ml)

GN{x,t)(2) aN'M = GJJÖJ)

and

(3) ßNiit) = j G*NiiO, t) [    (1 - ^) /«)] *« W •

Then (1) becomes

(4) f{x)=f0 0^,(0.
Note that since the integrand defining ßNiit) is non-negative, ßNi{t) ] and

dßNi{t)=ßNi(°>)=f(0).

This implies that the /3iv,(*) form a sequence of uniformly bounded func-
tions which are of uniformly bounded total variation. Further, if we set

(5) a(x'') = cw

then, for each x, a(x, t) f by III, Theorem 4.4. Also, a(x, f) is a continu-
ous function of t for each x, and

(6) «(x, co) = Xaxx).

The hypotheses of Theorem 4.2 are thus satisfied by a(x, t) and the /3NiU),
so that

(7) lim  I   «(x, t) dßNi(t) = I   «(x,Od0(f)+cJ%1x),
Nij—» JO »j Jo

where

(8) 0(f) = lim ßNi(t)
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for every t which is a point of continuity of ß(t). Clearly ß(t) ^ 0 and
ß(t) f . For N sufficiently large, the aNXx, t) are also continuous functions
oft, aN\x,t) ] for fixed x and aNi(x, <*>) = _?(aix). Further, by Lemma 4.1,
we have that iimN^maNi(x,t) = a(x,t) uniformly for x fixed and for t in
every finite interval. Hence lims^a\\aNj(x,t) — a(x,t)^ „ = 0 for each x.
Now consider

a(x,t) dßNjj(t) - I   [aNi(x, t) - a(x, t)]dßNi.(t),

so that

f(x) - f  a(x,t)dßNi{t) U f  \aN.(x,t) - a(x,t)\dßNi{t)Jo v Jo 7 v

£ I«a/,.(*,0 -«(*,01-/(0).
Thus

/(x) = lim   I a(x,t)dßNi(t),

or by (5), (7) and (8),

f(x) =f a(x,t)d/3(r)+c^(aix)

= f G(x,t)di(t)+c^(alX),

where

Theorem 2.1 establishes the fact that

G(x,t)dHt) = oOM),      x —

and hypothesis (c), that /(x) = o( J^t^x)), x—» <x>, whence c = 0, and we
have /(x) = JT G(x,0 di(t), with *(0 T •
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