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INTEGRAL EQUATIONS IN REFLEXIVE BANACH SPACES

AND WEAK TOPOLOGIES

DONAL O’REGAN

(Communicated by Palle E. T. Jorgensen)

Abstract. The Schauder Tychonoff theorem in a locally convex topological
space is used to establish existence results for Volterra-Hammerstein and Ham-
merstein integral equations in a reflexive Banach space.

1. Introduction

This paper studies integral equations in a reflexive Banach space relative to the
weak topology. In particular, in §2 we establish the existence of a weak solution
(described in §2) to the Volterra-Hammerstein integral equation

y(t) = h(t) +

∫ t

0

k(t, s)f(s, y(s)) ds, t ∈ [0, T ],

where T > 0 is fixed. Here y takes values in a reflexive Banach space B. The
Schauder Tychonoff theorem in locally convex spaces is used to establish existence.
Our method has the added advantage in that it discusses automatically the interval
of existence [0, T ]. We note as well that no compactness condition will be assumed
on the nonlinearity f ; this will be due to the fact that a subset of a reflexive Banach
space is weakly compact iff it is weakly closed and norm bounded. The results of this
section complement related work in the literature; see [2, 5, 13, 14]. For example in
[5, 13, 14] some very interesting results for the differential system y′ = f(t, y) (which
is a particular case of the Volterra-Hammerstein equation) are presented. The basic
idea in these papers is to use a “successive approximation” type of approach to show
“local” existence. The interval of existence from a “construction” point of view is
only briefly discussed. Section 3 discusses the Hammerstein integral equation

y(t) = h(t) +

∫ 1

0

k(t, s)f(s, y(s)) ds, t ∈ [0, 1],

with y taking values in B.
For the remainder of this section we gather together some results which will be

used throughout this paper. B will always be a reflexive Banach space with norm
‖ · ‖. B∗ will denote the dual of B. We will let Bw denote the space B when
endowed with the weak topology generated by the continuous linear functionals
on B (the family of seminorms {ρh : h ∈ B∗} is defined by ρh(x) = |h(x)| for all
x ∈ B).
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We recall, for convenience [7, 11, 12, 15], the following: Let y(t) be a function
from [a, b] into B. Then

(i) y(t) is said to be weakly continuous at t0 ∈ [a, b] if for every φ ∈ B∗ we have
φ(y(t)) continuous at t0.

(ii) y(t) is weakly Riemann integrable on [a, b] if for any partition {t0, . . . ,
tn} of [a, b] and any choice of points τi, ti−1 ≤ τi ≤ ti, i = 1, . . . , n, the sums∑n
i=1 y(τi)(ti − ti−1) converge weakly to some element y0 ∈ B, provided

max
1≤i≤n

|ti − ti−1| → 0,

i.e. there exists an element y0 ∈ B such that

φ(y0) =

∫ b

a

φ(y(s)) ds for all φ ∈ B∗.

Similarly we can define the Bochner (respectively Pettis) integral of a strongly (re-
spectively weakly) measurable function y : [a, b]→ B; see [7, 11, 12]. In particular
if y is weakly continuous on [a, b], then y is strongly measurable [12]; also if B is
reflexive, y is weakly Riemann integrable [11, 13].

Now C([a, b], Bw) denotes the family of weakly continuous functions on [a, b]
(the family of seminorms {ηh} is defined by ηh(g) = supx∈[a,b] ρh(g(x)) for all

g ∈ C([a, b], Bw)). C([a, b], Bw) is a locally convex topological space; see [6, 8].
Next we recall the following results from the literature on functional analysis

[1, 2, 4, 7, 13, 15].

Theorem 1.1 (Schauder Tychonoff). Let K be a closed convex subset of a locally
convex (Hausdorff ) space E. Assume that f : K → K is continuous and that f(K)
is relatively compact in E. Then f has at least one fixed point in K.

Theorem 1.2 (Arzela Ascoli). Let F be a weakly equicontinuous family of func-
tions from I = [a, b] into B, and let {xn(t)} be a sequence in F such that for each
t ∈ I, the set {xn(t), n ≥ 1} is weakly relatively compact. Then there exists a sub-
sequence {xnk(t)} which converges weakly uniformly on I to a weakly continuous
function.

Remark. (i) A family F = {fi, i ∈ J}, J some index set, is said to be weakly
equicontinuous if given ε > 0, φ ∈ B∗ there exists δ > 0 such that, for t, s ∈ [a, b],
if |t− s| < δ, then

|φ(fi(t)− fi(s))| < ε for all i ∈ J.
(ii) {xn(t)}∞n=1 converges weakly uniformly on I to a function x(t) if for all ε > 0,

φ ∈ B∗ there exists an integer N so that n > N implies

|φ(xn(t)− x(t))| < ε for all t ∈ I.

Theorem 1.3 (Eberlein Šmulian). Suppose K is weakly closed in a Banach space
E. Then the following are equivalent :

(i) K is weakly compact.
(ii) K is weakly sequentially compact, i.e. any sequence in K has a subsequence

which converges weakly.

Theorem 1.4. A subset of a reflexive Banach space is weakly compact iff it is
closed in the weak topology and bounded in the norm topology.

Theorem 1.5. A convex subset of a normed space X is closed iff it is weakly closed.
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Finally we state a result which is an immediate consequence of the Hahn Banach
theorem.

Theorem 1.6. Let X be a normed space with 0 6= x0 ∈ X. Then there exists a
φ ∈ X∗ with ‖φ‖ = 1 and φ(x0) = ‖x0‖.

2. Volterra integral equations in reflexive Banach spaces

Throughout this section B will be a reflexive Banach space. We will study the
Volterra-Hammerstein integral equation

y(t) = h(t) +

∫ t

0

k(t, s)f(s, y(s)) ds, t ∈ [0, T ],(2.1)

where T > 0 is fixed. Assume

f : [0, T ]×B → B is weakly-weakly continuous,(2.2)

h : [0, T ]→ B is weakly continuous,(2.3)

and 

k(t, s) ∈ L1([0, T ],R) for each t ∈ [0, T ] and the map
t→ k(t, s) is continuous from [0, T ] to L1([0, T ],R);
also there exists v ∈ L1[0, T ] and constants α > 0,
β > 0 such that for x < t in [0, T ] we have∫ t

x

|k(t, s)| ds ≤ β
(∫ t

x

v(s) ds

)α(2.4)

are satisfied.

Remark. Let g : [a, b]×B → B. Then g(t, u) is said to be weakly-weakly continuous
at (t0, u0) if given ε > 0, φ ∈ B∗ there exists δ > 0 and a weakly open set U
containing u0 such that

|φ(g(t, u)− g(t0, u0))| < ε whenever |t− t0| < δ and u ∈ U.

Theorem 2.1. Suppose f satisfies (2.2). Let µ > 0 be given and define

Q = {(t, u) : 0 ≤ t ≤ T, ‖u‖ ≤ µ} ⊆ [0, T ]×B.

Then there exists a constant Kµ > 0 such that ‖ f(t, u)‖ ≤ Kµ for all (t, u) ∈ Q.

Proof. Let V = {u : ‖u‖ ≤ µ} ⊆ B. Now V is weakly compact from Theorems 1.4
and 1.5. Consequently Tychonoff’s theorem implies that Q is compact in the prod-
uct (i.e. real × weak) topology. Since f is weakly-weakly continuous on [0, T ]×B,
we have that the range f(Q) is weakly compact. Consequently Theorem 1.4 implies
that f(Q) is bounded in the norm topology.

By a solution to (2.1) we mean a function y ∈ C([0, T ], Bw) which satisfies the
integral equation in (2.1). This is equivalent (consequence of the Hahn Banach
theorem) to finding a function y ∈ C([0, T ], Bw) with

φ(y(t)) = φ

(
h(t) +

∫ t

0

k(t, s)f(s, y(s)) ds

)
, t ∈ [0, T ] for all φ ∈ B∗.
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Theorem 2.2. Suppose (2.2), (2.3), and (2.4) hold. In addition assume

there exist a nondecreasing continuous (independent of φ) function
ψ : [0,∞)→ (0,∞) and a constant σ ≥ 1 with∣∣∣∣φ(∫ t

0

k(t, s)f(s, y(s)) ds

)∣∣∣∣ ≤ ψ (∫ t0 ‖y(s)‖σ ds
)

for any (norm continuous) y ∈ C([0, T ], Bw) and any
φ ∈ B∗ with ‖φ‖ = 1

(2.5)

and

T <

∫ ∞
0

du

(ψ(u) + h0)σ
where h0 = sup

[0,T ]

‖h(t)‖(2.6)

are satisfied. Then (2.1) has a solution y ∈ C([0, T ], Bw); in fact the solution we
produce will be norm (strongly ) continuous.

Proof. Let

J(z) =

∫ z

0

du

(ψ(u) + h0)σ
,

so J : [0,∞)→ [0,∞) is a strictly increasing function. Also let

K = {y ∈ C([0, T ], Bw) : y is norm continuous with
∫ t

0 ‖y(s)‖σ ds ≤ a(t)

and ‖y‖0 ≤M0}

where

a(t) = J−1(t)(2.7)

and

M0 = h0 + ψ(a(T )).(2.8)

Remark. For notational purposes ‖y‖0 = sup[0,T ] ‖y(t)‖.

First notice that K is convex and norm closed. Hence K is weakly closed by
Theorem 1.5. Define an operator N by

Ny(t) = h(t) +

∫ t

0

k(t, s)f(s, y(s)) ds.(2.9)

We claim that N : K → K is weakly continuous and N(K) is weakly relatively
compact. Once the claim is established, then Theorem 1.1 with E = C([0, T ], Bw)
guarantees a fixed point of N in K, and hence (2.1) has a solution in C([0, T ], Bw).

We begin by showing that N : K → K. To see this, take y ∈ K and consider
Ny(s) for s ∈ [0, T ]. Without loss of generality assume Ny(s) 6= 0 for all s ∈
[0, T ]. Then Theorem 1.6 implies that there exists φs ∈ B∗ with ‖φs‖ = 1 and
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φs(Ny(s)) = ‖Ny(s)‖. Thus∫ t

0

‖Ny(s)‖σ ds =

∫ t

0

(
φs

(
h(s) +

∫ s

0

k(s, x)f(x, y(s)) dx

))σ
ds

≤
∫ t

0

(
|φs(h(s))| +

∫ s

0

|φs(k(s, x)f(x, y(x)))| dx
)σ

ds

≤
∫ t

0

(
h0 + ψ

(∫ s

0

‖y(x)‖σ dx
))σ

ds

≤
∫ t

0

(h0 + ψ(a(s)))σ ds =

∫ t

0

a′(s) ds = a(t)

since ∫ a(s)

0

dx

(ψ(x) + h0)σ
= s.

Next, we show ‖Ny‖0 = sup[0,T ] ‖Ny(t)‖ ≤ M0 for any y ∈ K. To see this,

look at Ny(t) for t ∈ [0, T ]. Without loss of generality assume Ny(t) 6= 0 for all
t ∈ [0, T ]. Then Theorem 1.6 implies that there exists φt ∈ B∗ with ‖φt‖ = 1 and
φt(Ny(t)) = ‖Ny(t)‖. Thus

‖Ny(t)‖ = φt

(
h(t) +

∫ t

0

k(t, s)f(s, y(s)) ds

)
≤ h0 +

∫ t

0

|φt(k(t, s)f(s, y(s)))| ds

≤ h0 + ψ

(∫ t

0

‖y(x)‖σ dx
)
≤ h0 + ψ(a(t)) ≤ h0 + ψ(a(T )) = M0.

It remains to showNy is norm continuous for any y ∈ K. To see this, let t, x ∈ [0, T ]
with t > x, and without loss of generality assume Ny(t) − Ny(x) 6= 0. Then
Theorem 1.6 implies that there exists φ ∈ B∗ with ‖φ‖ = 1 and φ(Ny(t)−Ny(x)) =
‖Ny(t)−Ny(x)‖. Notice also since ‖y‖0 ≤ M0, then Theorem 2.1 guarantees the
existence of a constant K1 (independent of the chosen y) with

‖ f(s, y(s))‖ ≤ K1 for all s ∈ [0, T ] and for all y ∈ K.(2.10)

Thus

‖Ny(t)−Ny(x)‖ = φ(Ny(t)−Ny(x))

≤ ‖h(t)− h(x)‖+K1

∫ T

0

|k(t, s)− k(x, s)| ds

+K1

∫ t

x

|k(t, s)| ds,

so Ny is norm continuous. Hence N : K → K. Also N : K → K is weakly
continuous. To see this, notice if yn ⇀ y in K (here ⇀ denotes weak convergence
and (yn) is a net in K), i.e. yn converges weakly uniformly to y on [0, T ], then since
f satisfies (2.2) we have immediately that Nyn converges weakly uniformly to Ny
on [0, T ], so N is weakly continuous.

Next we show that N(K) is weakly relatively compact. To see this, we apply
both the Arzela Ascoli and the Eberlein Šmulian theorem. Choose a sequence yn ∈
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K,n ≥ 1. Our aim is to show first that for each t ∈ [0, T ] the set {Nyn(t) : n ≥ 1}
is weakly relatively compact. This follows immediately from Theorem 1.4 once we
show that for each t ∈ [0, T ] the set {Nyn(t) : n ≥ 1} is norm bounded. For fixed
t ∈ [0, T ] we have ‖Nyn(t)‖ ≤M0, so the set {Nyn(t) : n ≥ 1} is weakly relatively
compact by Theorem 1.4. Next we show that N(K) is weakly equicontinuous. Let
y ∈ K be arbitrary, and let t, x ∈ [0, T ] with t > x. Without loss of generality
assume Ny(t) − Ny(x) 6= 0. Then Theorem 1.6 implies that there exists φ ∈ B∗
with ‖φ‖ = 1 and φ(Ny(t)−Ny(x)) = ‖Ny(t)−Ny(x)‖. Also (2.10) is true so

‖Ny(t)−Ny(x)‖ = φ

(
h(t)− h(x) +

∫ x

0

[k(t, s)− k(x, s)]f(s, y(s)) ds

+

∫ t

x

k(t, s)f(s, y) ds

)
≤ ‖h(t)− h(x)‖+K1

∫ T

0

|k(t, s)− k(x, s)| ds

+K1

∫ t

x

|k(t, s)| ds,

and this together with (2.3) and (2.4) implies that N(K) is weakly equicontinuous.
Theorem 1.2 guarantees that the weak closure of N(K) is weakly sequentially com-
pact, and this together with Theorem 1.3 implies that the weak closure of N(K) is
weakly compact, i.e. N(K) is weakly relatively compact. Theorem 1.1 now guar-
antees that (2.1) has a solution y ∈ K.

Remarks. (i) Another existence result for (2.1) will be established in §3.
(ii) Of course (2.5) could be replaced by other growth conditions and existence

will again be guaranteed (provided (2.6) is appropriately adjusted).

3. Hammerstein integral equations in reflexive Banach spaces

Let B be a reflexive Banach space, and consider the Hammerstein integral equa-
tion

y(t) = h(t) +

∫ 1

0

k(t, s)f(s, y(s)) ds, t ∈ [0, 1],(3.1)

with

f : [0, 1]×B → B is weakly-weakly continuous,(3.2)

h : [0, 1]→ B is weakly continuous,(3.3)

and {
k(t, s) ∈ L1([0, 1],R) for each t ∈ [0, 1] and the map
t→ k(t, s) is continuous from [0, 1] to L1([0, 1],R)

(3.4)

holding.

Theorem 3.1. Suppose (3.2), (3.3), and (3.4) hold. In addition assume{
there exists a nondecreasing continuous function Ω : [0,∞)→ (0,∞)
with ‖ f(s, u)‖ ≤ Ω(‖u‖) for t ∈ [0, 1]

(3.5)
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and

A ≡
(

sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds
)

lim sup
x→∞

Ω(x)

x
< 1(3.6)

are satisfied. Then (3.1) has a solution y ∈ C([0, 1], Bw).

Proof. Consider the set S of real numbers x ≥ 0 which satisfy the inequality

x ≤ sup
[0,1]

‖h(t)‖+ Ω(x)

(
sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds
)
.

Then S is bounded above, i.e. there exists a constant M1 with

x ≤M1 for all x ∈ S.(3.7)

To see this, suppose (3.7) is not true. Then there exists a sequence 0 6= xn ∈ S
with xn →∞ as n→∞ and

1 ≤
sup[0,1] ‖h(t)‖

xn
+

Ω(xn)

xn

(
sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds
)
.

Since lim sup(sn + tn) ≤ lim sup(sn) + lim sup(tn) for any sequences sn ≥ 0, tn ≥ 0,
we have 1 ≤ A. This contradicts (3.6). Choose M0 > M1. Then

sup
[0,1]

‖h(t)‖+ Ω(M0)

(
sup
t∈[0,1]

∫ 1

0

|k(t, s)| ds
)
< M0,(3.8)

for otherwise M0 ∈ S, and this would contradict (3.7). Let

K =

{
y ∈ C([0, T ], Bw) : y is norm continuous and ‖y‖0 = sup

[0,1]

‖y(t)‖ ≤M0

}
.

Define an operator N by

Ny(t) = h(t) +

∫ 1

0

k(t, s)f(s, y(s)) ds.

We claim N : K → K. To see this, let y ∈ K, and consider Ny(t) for t ∈ [0, 1].
Without loss of generality assume Ny(t) 6= 0 for t ∈ [0, 1]. Then there exists
φt ∈ B∗ with ‖φt‖ = 1 and φt(Ny(t)) = ‖Ny(t)‖. Now notice (3.5) and (3.8) imply
for each t ∈ [0, 1] that

‖Ny(t)‖ ≤ |φt(h(t))|+
∫ 1

0

|k(t, s)φt(f(s, y(s)))| ds

≤ ‖h(t)‖+

∫ 1

0

|k(t, s)|Ω(‖(y(s))‖) ds

≤ ‖h‖0 + Ω(‖y‖0)

(
sup
[0,1]

∫ 1

0

|k(t, s)| ds
)

≤ ‖h‖0 + Ω(M0)

(
sup
[0,1]

∫ 1

0

|k(t, s)| ds
)
< M0.
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614 DONAL O’REGAN

Thus N : K → K. Also as in Theorem 2.2 N is weakly continuous and N(K) is
relatively weakly compact. Theorem 1.1 now guarantees that (3.1) has a solution
y ∈ K.

Remark. The ideas in Theorem 3.1 immediately yield an extra existence result for
the Volterra integral equation (2.1), namely: suppose (2.2), (2.3), (2.4) with{

there exists a nondecreasing continuous function Ω : [0,∞)→ (0,∞)
with ‖ f(s, u)‖ ≤ Ω(‖u‖) for t ∈ [0, T ]

(3.9)

and (
sup
t∈[0,T ]

∫ t

0

|k(t, s)| ds
)

lim sup
x→∞

Ω(x)

x
< 1(3.10)

satisfied. Then (2.1) has a solution y ∈ C([0, T ], Bw).
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