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INTEGRAL EXPRESSIONS FOR TAIL PROB.ABILITIES 

OF THE MULTINOMIAL AND NEGATIVE MULTINOMIAL DISTRIBUTIONS 

Ingram Olkin 

Stanford University 

1. Summary and Introduction 

by 

and Milton Sobel 

University of Minnesota 

~ Independent and identically distributed observations are taken, 

-

each of which assumes k+2 (k ~ 1) possible values or attributes. 

We regard the observations as falling into one of k+2 possible 

mutually exclusive cells or categories c
1

, ..• ,ck+
2 

with respective 

probabilities p
1

, ..• ,pk+
2

, Epi = 1. Let s1 , .•• ,sk denote non

negative integers, and let s denote a positive integer. Observations 

are taken one at a time until cell Ck+l contains s observations. 

It is assumed that Pk+l > 0 so that, with probability one, this 

sampling procedure terminates with a finite number of observations. 

Denote the random number of observations in cell Ci at stopping 

time by Xj, j = l, .•• ,k, and consider the following events: 

at the time of stopping, 

at the time of stopping, 

X. > s for all j = l, ..• ,k, 
J - j 

xj < s. -1 
- J 

for all j = 1, ... ,k. 

If the sj are all equal, then E
1 

and E
2 

refer to the minimum and 

maximum of (x
1

, .•• ,~), respectively. The probabilities P{E
1

} and 



P(E
2

} are referred to as negative multinomial probabilities. In this 

paper we obtain integral expressions involving certain generalized F 

and Beta distributions for the straightforward summation formulas for 

P(E
1

}, P(E
2

}, and for a number of related probabilities. A number 

of recursion formulas and bounds are also developed. 

Some of the multiple integrals also arise in the work of Gupta and 

Sobel (1962) dealing with the maximum and minimum of correlated F

statistics; in addition to exact computations, they develop approximations 

to these multiple integrals which depend on sums and products of 

(ordinary) incomplete Beta functions which have been tabulated. We 

mention that another class of generalized F and Beta distributions is 

discussed by Olkin (1959). 

2. Integral Expressions 

We first show that with no loss of generality the (k+2)-nd cell 

may be eliminated. Consider F(E
1

}, namely, 

00 00 

(2 .l) = ~ 
CX=S 

k 

( 

k x.) 
r(a) TI p.1 

. 1 l 
l= 

a-s-x 
s 0 

Pk+l Pk+2 
, 

where x
0 

=Ex .. Interchange the order of the first sunnnation symbol 
l l 

with the remaining k and let j = a-s-x
0

; 

(2.2) 

k 

r(s) nx.! 
l l 

2 

then 

r(j+s+x
0

) 

j! r(s+x
0

) 



-

k 

= (1 - E 0. )s 
l 1 

00 00 k x. 
TI e. J.. 

l J.. ' 

k+l 
then ~ 

l 

e.= 1, 
1 

and from (2.2) we see that the determination of 

can be made from the k+l probabilities e
1

, ..• ,ek+l· 

Before obtaining the general result for (2.2), we consider the 

important special case k=l. (For convenience we omit the subscripts 

on x
1

, e
1

, and s
1

.) It is well known that for any real s > O and 

positive integer r, 

00 

(2.3) (1-e)s L 
x=r 

r s + x) l 
e 

ex 1 r-l( )s-l 
r s x! 

= 
B(r,s) O t l-t dt = I 0(r,s) 

e 
1-0 r-1 

l 

Io 
u 

du . = 
B(r,s) (l+uf+s 

The LlIS of (2.3) is generalized in (2.2), and we seek the corresponding 

generalization of the RHS of (2.3). 

Remark. We note that, although in the present formulation s is 

necessarily an integer, in the final identity this need not be the case; 

for this reason the gannna function is used instead of the more natural 

factorial symbol. 

2.l Integral Identities for Upper Tail Probabilities 

In this section we consider a generalization of (2.3) for the minimum 

problem in the case of the negative multinomial (Theorem 2.1) and the 

multinomial (Iemnia 2.2) distributions. 
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For simplicity of notation let 

r(a
1

) 

B (a
1

, ... ,a) = r( 
m m a

1 
+ 

r(a) 
m 

+ a ) • 
m 

(We write B(a
1

, ••• ,am) when the "order" mis clear from the context.) 

Theorem 2.1. Ifs> 0 is real, k ~ 1 and s
1

, .•• ,sk are non-negative 

k+l 
integers, 0i ~ O, i = l, ••• ,k, 0. l > 0 and E 0. = 1, then 

i+ 1 J 

00 00 

(2.4) 

1 

k k 

r(x
0
+s) 

k 
r(s) Jix.! 

) 1 1 

, ~ 

J ... J 
0 0 

k x. 
II e. i 

1 1 

k s.-1 

Jiy.J k 
i J TT 

k s+s
0 

\1. dyj 

(1 +E y.) 
1 1 .· 

where x
0 

= E xi, s = E s . , 
1 0 1 1 

and 8f = 0 / ek+ l, i = 1, ••• , k. 

Remark. It is easily seen that the multiple sum on the left-hand 

k 
side of (2.4) is convergent if and only if. ek+l > O, i.e., 1 0i < 1. 

When ek+l -. 0 · the RHS of (2.4) approaches unity, and in the limit we 

can use (2.4) as a definition of the LHS. 

k+l 
We also note that if E 0. < 1 then the result (2.4) still holds 

k l J k 

with 1 + E y. in the integrand replaced by c + E Yi where c is defined by 
kl 1 . 1 

c-0k 
1 

+ E 0. = l; this remark also applies to theorem 2.4 belowo 
+ 1 1 

To prove (2.4) we first prove a lemma dealing with the "upper tail" 

of an ordinary multinomial distribution. In order to consider different 

cases at one -time, let m ~ 1 denote the number of c·ells with s. > O, 
. J 

which we assume without loss of generality to be the first m cells. 
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Lemma 2.2: If n, k, m, and s
1

, ... ,sm are positive integers with 

l ~ m ~ min(k,n), 

k 

with E p. = 1, 
l 1. 

m 

m 

s
0 

=Es. ~ n, 
l 1. 

then 

where t
0 

=Et., 
l 1. 

and the sunnnation, .E*, 

(x
1

, ... ,~) such that 

x. > O, i = m+l, ... ,k. 
1. -

m 

E xj = n, 
l 

x. > s., 
1. - 1. 

are probabilities 

fi dt. , 
l 1. 

is over all k-tuples 

i = l, ••. ,m, and if m < k, 

Proof of Lemma 2.2. We note that if m=k, then we need only 

write (2o5) for k+l cells and let Pk+l = O. For m < k--l and 

s = 0 •• 

m+l 
it follows from 

P(Xi > s., i = l, ... ,k} = P(X. > s., i = l, ... ,m), 
- 1. 1. - 1. 

that we can make the correspondence k'-l = m, 
k 

= E p., 
m+l J 

i = l, ... ,m, so that the problem is reduced to one with m+l cells. 

Consequently, we need only consider the case m = k-·l. 

The proof is by induction on k. Let Q(p
1

) denote the left-hand 

side of (2 .. 5) with m = k-l. Differentiating with respect to p
1 

and 

simplifying by telescoping terms, we obtain 

s -l n-s x. 
l l 

(n-s
1

)! k (1~~J i 

dQ pl (l-pl) * (2.6) = 
B(s

1
,n-s

1
+l) E 111 

, 
dpl k 

11x. ! • 1. 
1. 

5 
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where the summation is over all (k-1)-tuples (x
2

., ... ,~) with 

k 
Ex. = n-s

1
, x. > s., i = 2, ... ,k. Using the induction hypothesis for 

2 J. J. - J. 

the (k-l) fold expression in (2.6), we obtain 

[

k-1 si-~. k-1 n-s0-sk u ui p- E ui) k-1 
2 

· TTdu., 
B(s

1
, ... ,sk_

1
,n-s

0
+sk+l) '.t 1 

k 

where s
0 

= E s ., qi = pi/(l-p
1

), i = 2, ... ,k-1 . 'l'ransforming 
1 J 

by ui = ti(l-p
1

) for i = 2, ... ,k-l, and integrating with respect 

to p
1 

results in 

From Q(O) = O we have c=O. To complete the induction proof, we need 

only verify (2.5) for k=2, but this reduces to the well-known relation 

between the tail of the binomial distribution and the Incomplete Beta 

distribution. II 

Proof of Theorem 2.l: The left member of (2.4) may be -written as 

(2.9) 
r o:+ s) 
o:? r s 

0: ! 

k 

TI x. ! 
l J. 

k 

where e
0 

= Ee., cp. = e./e
0

, 
l J. J. J. 

k-tuples (x
1

, ... ,~) with 

and the summation, 

x. > s., i = 1, ... ,k, 
J. - J. 

6 

.E*, 

and 

k x. 
TI q>.J., 

1 J. 

is over all 

k 

E xi= o:. 
1 



-

Use of (2.5) in (2.9) and interchanging the order of sunnnation and 

integration leads to 

k 

where t
0 

=Et .• In (2.10) let j = a-s
0 

and sum the infinite series; 
l J 

them 

cpl cpk 

Io··· Io s+s 
[1-e

0
(1-t

0
)J 

0 

k 

TI dt. 
l l. 

After simplifying and substituting yi = e
0
ti/(i-e

0
), i = l, ••• ,k, 

the result (2.4) follows. 

The case when any of the s. are zero is proved by reducing both 
l. 

sides of (2.4) to the marginal probabilities which have the same 

structural form as in (2.4); the argument is given in detail in (2.22). II 

2.2 Integral Identities for Lower Tail Probabilities 

We can use Lelllllla 2.2 together with the Poincare formula 

k k 

= l - E P{X. > s.} + [ P(X. > s., XJ. ,2: sj} - · • • 
·1 1-1 . ·1 1-1 
l.= 1,J= 

to find integral expressions for lower tail probabilities. If the sum 

of the s. inside the braces of any term on the right-hand side of 
J. 

7 
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(2.12) is greater than n, then these terms are zero and can be removed, 

at the outset. The remaining terms can then be written as integrals 

by using Lemma 2.2. 

If s
O 

= s
1 

+ ••· + sk Sn, then none of the terms are deleted, 

and we have as a direct consequence of (2.5) that 

k k 

= 1 - L P(T. < p.) + L,P(T. < pl.., T. < pj) - ••• , 
·1 1 1. • ·1 1 J 
1.= 1.,J= 

where the random variables 

(2.14) 

for O < t., 
l. 

i = 1, ... ,k; 

T
1

, ... ,Tk have the joint density 

(1 - L, t.) O 
[~

k t

1

s. i -1] k n-s 

l l. 

k 

Et.< i. 
1 l. 

' 

Thus, by applying Lemma 2.2 to each term of (2.13), we obtain the 

following result for the lower tail of the multinomial distribution. 

If n, k, and s
1

, ... ,sk 

s
O 

= s
1 

+ • • • + sk ~ n, and 

(2.15) 

k 

are positive integers with 

k 
0 < p . < l, j = 1, ... , k, ~ p . = 1, 

- J - I' J 

where t
O 

=Et., and ~* denotes sunnnation over all k-tuples 
1 l. 

8 

then 
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(x
1

, o o. ,~) with O < x. < s.-l, 
- l - l 

i = l, O O O, k, 

k 

and Ex. = n. 
l J 

If k-m of the s. are equal to or greater than n+l, and 
J 

the remaining m of the sj (say, s
1

, ... , sm) have a sum sl + ••• + s 

= n then the terms containing an s. = n+l are deleted from (2.12), 
J 

and (2.13) takes the form 

(2 .16) P{x
1 

< s
1

-1, ... ,x < s -l) 
- m - m 

m m 

= l - L p { T. < p. ) + E p { T. < p. , Tj < p .) - • . . , 
i=l l l i,j=l l l J 

where if m < k, the joint density of T
1

, ... ,Tm is obtained from 

(2.14) by integrating over 0 < T., 
J 

j = m+l, ... ,k, 
k m 
ET.<1-ET., 

m+l J l J 

in which case (2.15) may be stated in a more general context. 

Lemma 2.3: If m, k, n, and s
1

, ... ,sk are positive integers with 

l ~ m $ min(k,n), and s
0 

= s
1 

+ ••• + sm Sn, then 

(2 .17) rt kn! 

~ xi! 

k x. 
TIP. J. 

l l 

m m m-l 

1 - E ti 1 - E p. 1-t - E p. 
2 

1 l 
3 

1 

= 1 1 ··-1 
P1 P2 Pm 

1 [

m s -l] n-s 
~ ti i (J.-t()) 0 m 

TT dt. , 
B(s

1
, .•• ,sm, n-s

0
+l) ':t 1 

m 

where t
0 

= L, t., and ~* 
l l 

O < x. < s.-1, j ~ l, ... ,m, 
- J - J 

denotes the sunnnation over all k-tuples with 

m 

and \·x. = n. It is interestj.ng to note L J . . 
1 

that the RHS of (2.17) depends only on (p
1

, •·.,pm) and (s
1

, • · .,sm), 

and not on (pm+1, ... ,pk) or (sm+l, ... ,sk). 

9 
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From lemmas 2.2 and 2.3 we can now obtain integral expressions for the 

distribution of the minimum and the maximum of x
1

,x
2

, ... ,Xm by setting 

s
1 

= s
2 

- ..• = sm = s (say) wheres is a positive integer. For the par

ticular value n = s _:.ms we obtain from (2.5) the interesting simple 
0 

result for the minimum 

P{ Min X. ~ s) 
l s ·s 1 

_1._m 
= ( ms ) ! <ft p . / ; 

(s!)m 1 
1 

there is no analogous result for the maximum. 

9A 



To obtain a result for lower tail probabilities which is dual to 

Theorem 2.1, we require the marginal probabilities of the expression in 

(2.4) when k > 2. Define 

00 00 r(x
0

+s) k x. 
L(s

1
, ... ,sk; sl el, ... ,; 8k+l) 

s 
E E TI e/· , - ek+l k 

Xl=Sl ~=Sk r(s) ~xj! 
1 

k 
where XO =Ex .. Using the identity 

1 l. 

00 

~ 
ej 

(1-8)-a = E °7i" 
, 

j=O 
a J. 

it follows by a direct calculation that 

(2.18) L(O,s
2

, ..• ,sk; s I e
1

, .•• , ek; 8
k+l~ 

= L( s
2

, ... , sk; sl 
e2 ek ek+l 

1-e ' · · ·' 1-e ; l-8 ) 
1 1 1 

By an iteration of (2.18), we obtain 

(2 .19) L(O, •.. ,O,sm,···,sk; s I e
1

, •.. , ek; 8k+l) 

e ek 8
k+l 

= L(sm' ... ,sk; sl 
m ) 

m-1 
, ••• J 

m-l 
; 

m-1 J 

1-E e. i-E ej i-E e. 
l J l 1 J 

so that the marginal probabilities are of the same structural form as 

the LHS of (2.4). 

Define the RHS of (2.4) by 

10 
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... 

-
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-
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-
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.... 

~ 

-
'-..J 

Integration over y
1 

yields 

(2.20) R(oo, s2, .•• ,sk; slp
1

, .•. ,pk) = R(s2, •.. ,sk; slp
2

, ••. ,pk); 

by iterating (2.20) we obtain 

(2.21) R(oo, ... ,oo, sm' ... , sk; slp1, •.• ,pk) = R(sm, •.• ,sk; slpm,···,Pk), 

and again the marginal probabilities are at the same structural form 

as the RHS of (2.4). 

For a typical marginal probability, using (2.19), (2.4), and 

(2.21), it follows that 

(2.22) L(O, .•• ,O,sm,···,sk; sle1, .•• ,ek; ek+l) 

( I e ek ek+l 
= L sm, •.• ,sk; s m~l , ... , m-1 ; m-1 

1- r,e. 1- ~ei 1- Ee. 
1 

1 
1 1 

1 

( I em ek ) = R s , .•. , sk; s -e - , ... , -e -
m k+l k+l 

=R(co, ... , .. , sm, ... ,sk; sl~ , ... , 
8
k+1 

* * = R(oo, ... ,oo, sm, ... ,sk; sle1, ..• , 0k) 

* 

l) 
8
k+l 

) 

Thus, with e. defined independently of m as in Theorem 2.1, the 
1 

operation of setting certain s. = 0 in the LHS of (2.4) is equivalent 
1 

11 
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* to setting corresponding e. = oo 
l. 

in the RHS of (2.4). We use the result 

in the proof of the following theorem on the lower tail of the negative 

multinomial distribution. 

Theorem 2.4. If s > 0 is real, k and s
1

, ... ,sk are positive integers, 

e. > o, i = 1, ... , k, ek l > o, '\I e. = 1, then 
i- + l.J l. 

s -1 s -1 
r(s+x) k 1 k xi 

(2.23) 
s 

E 6 
0 

~ 0
k+l 

... 
ei 

X =0 ~=0 r(s) fi x. ! 1 
1 

l. 

k II Si -1 
00 00 Yi 

= B(s
1
,~--,sk, s) J ... J ;!. II dy. , , -k , s+s

0 l. 

e* e* (1+ E y.) 
1 k 1 1 

k k 
where x = ~ x. , s = 6 s . , e* = e . I ek 

1
, 1 = 1, .•. , k. 

0 1 1 0 1 l. 1 l. + 

Proof: Let X. denote the number of observations in the i-thcell 
l 

and let A. denote the event X. > s. at the time of stopping. Let B. 
l. i- l. l. 

denote the event that Yi< Bf, where Y1, ... ,Yk have a joint density 

given by (2.14). From (2.22), P(A ..•. Ai} 
1
1 r 

= P(B
1 

... Bi} 
1 r 

for any r, 

and hence 

P(at least one X. > s.} = P(UAi} 
1 - 1 

k k kl 
= 6 P(A. } - E P(A .A.} + . . . + ( -1) - P(A • . . ¾} 

1 1 i < j 1 J 1 

k k k 1 
=23P(B.} - E P(B.B.} + ... + (-1) - P(B ... R} 

1 l. i < j l. J 1 -k 

= P(UB.} = P(at least one Y. < et} . 
l. l. 1 

12 



The result follows by taking complements. II 

Remark: Although the main purpose in writing (2.23) is that for k > 2 

and large values of si the integral in (2.23) can be used to evaluate 

the sum on the left, for small values of the si, we may use the sum 

to evaluate the integral. For the latter purpose, note that ej = ej/ek+l' 

ktl k 
j = 1, .•• , k, I!, ej = 1, from which we calculate e. = e.ll:/(1 + E et), 

1 J J 1 J 

k 

j = 1, ••• ,k and ek+l = (1 + b e.ll:)-
1

, which are now used for the LHS 
1 J 

of (2.23). 

In this connection the following bound may also be useful. Let 

s
1 

= min(s
1

, ... ,sk) and let P
1 

denote the sum of all terms in the 

left member of (2.23) for which x = x
1 

+ ··· + ~ < s
1
-l. Then 

(2.24) ~<: +x~ e:+1(1-ek+ltz-fr-x_!_ 

11 x. i 
1 1 

fi( e. ) 
1 1-e~+l ' 

where the inside summation is a complete multinomial sum and hence equals 

unity. From (2.3) we have 

(2.25) 

k -1 
where ak+l = (1 +~et) • Clearly, (2.25) is a lower bound for P(E

1
} 

1 J 

which can also be used as an exact expression for part of the summation 

of P(E
1

}. 

3. Recursion Fbrmulas. 

We now develop some recursion formulas which provide an alternative 

method for the computation of the various probabilities. Denote the 

13 
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-

( 

s1 , ... , s ; n ) 
LHS of (2.17) by J m_ k ; the subscript on J 

m P1' .•. ,Pm, 
is omitted 

whenever the "order" m is clear from the context. In terms of the urn 

model, this refers to the probability that for m of the cells (say, 

the first m cells) x. < si-1, 1 < s. < n, i = 1, ... , m. For the re-
1 - - 1 -

maining k-m cells, we can integrate out the xi corresponding to 

k-m-1 of these cells leaving one cell (say, the (m+l)-st cell) with 

probability p 
0 

(3.1) 

m 
= l - ~ p. ; thus for k > m+ l 

1 1 

There are now various ways to generate recursion formulas. Inte

gration by parts in (2.17) results in two reduction formulas 

( 3.2) 

(3.2) 

= ( 

n) s n-s ( s1 , ••• ,s _1 ; n-s ) 
P m(l-p ) m J m m 

s m m e
1

, ... ,e 
1

; m 
m m-

14 

m 

n > L, 
1 

s. ' 1 



.. 
where the e. = p./(1-p ), j = 1, .•. , m-1, sum to unity. In the above 

J J m 

definition, the J function is zero if any s. = o. 
J 

Formulas (3.2) and 

(3.3) are especially useful when one or more of the are close to 

unity, and n, respectively, in which case the second term on the right 

hand side of (3.2) and of (3.3) vanishes. This procedure permits a re

duction from an m-dimensional integral to a sum of a small number of 

integrals, each of which is at most (m-1)-dimensional. Upon.iteration, 

we eventually obtain a sum of tabulated incomplete Beta function. This 

method is exact, and is useful if the dimensionality of the basic integral 

is not too large. 

If we expand J m ( 

s1 , ... ,s; n ) 

P1, ... ,pm; m+l 
with respect to the number of 

entries in the (m+l)-st cell, we obtain 

(3.4) 

s -m 
J ( sl, •.. ,sm; n ) o (n) 1 a; n...a: J ( sl, •.• ,sm; a:-) 

P • m+l = L a; ( -po) Po p* p* · ' P1,o••, m' a=O 11···, m' m 

m 

where s =Es., p~ = p./(1-p ), j = 1, ... , m. 
0 1 J J J 0 

Similarly, an expansion with respect to the number of entries in 

them-th cell yields 

(3.5) 

where pJ. = p./(1-p ), j = 1, ... , m-1. 
J m 

Any of these recursion formulas can be iterated until m = 1, in 

which case 

J ( :: ; )= r1_P(n-a+l, a), 

15 



so that the basic integrals have a representation as a linear combination 

of incomplete Beta functions. 

(3.6) 

In either (3.4) or (3.5) we note that the RHS is of the form 

A 

r. a g(o:) 
~o a 

} 

where aa ~ 0 and r.aa ~ 1. Consequently, we immediately obtain bounds in 

terms of max g(a) or min g(o:). However, it is clear that g(o:) is a mon-
a a 

otone non-increasing function on the positive integers, for if the inequal-

ities X. ~ s.-1, j = 1, ••• ,m, holds for the first a+ 1 observations, 
J J 

then they hold a fortiori for the first a observations. 

More generally, we can iterate the expansion in (3.5) and use the 

monotonicity to prove that 

(3.7) 

where 

( ') 
s

1
, ... ,s ; n 

m-r 
J P

1 
, •• 0 ,p :;m-r+l 

r m-r, r 

~ 
(81,, •• ,s ; n) 

J P1•·••,p:; m+l 

r-1 
n+r 

~ 
m-r . 0 m-J 

J-
( s1, ... ,s ; 

J P1r•···,Pm-r,r; 

- ~ s • ) 

m-r+l 

r-1 
= pl._/(1 - r. p .). 

. 0 m-J 
J= 

Thus we find from (3.7) for r = 1, that 

16 
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J 

\ 
m-r+ m 

pm-r+l' ···,pm; r+l ) 



-
... 

-
... 

... 

-
_. 

_, 

.. 

-
._ 

~ 

-
-
-
-
-
-
\aJ 

(3.8) I
1 

(n - s +1 
-p m-. ' 

m 

(

s , ••• ,sm; 

;:. J p~, .•• ,pm; 

sm) J( 

:1) 

s 1 ' • .• ' s m-1 ; n \ 

P11,•••,Pn-l,l; m/ 

- 1-pm n-s.,+1, sm) J m-1 'n-sm+l 
sr ( (s1 , ... ,s . ~ 

P11,•••,P . m m-1 1' 
' I 

from which by iteration, we obtain 

(3.9) r
1 

(n-s +1,s ) 1
1 

(n-s 
1
+1, s 

1
) ••• r

1 
(n-s

1
+1,s

1
) 

-p m m -p -p m- m- -p - ••• -p 
m m-1 m 1 m 

1-p 1-p - ... -p 
m 2 m 

s J m 

(

s 1 , • • • ,s ; n ) 

- P1,•••,Pm; m+l 

~ 1
1 

(n-s +1,s ) 1
1 

(n-s 
1
-s +2,s 

1
) 

-p m m -p -p m- m m-
m m-1 m 

1._p 
m 

1
1 

(n-s
1

- ••• -s +m, s
1

) . 
-p - ••• -p m 

1 m 

1-p - ••• -p 
2 m 

(s
1

, ... ,s; n) 
In a similar manner, letting I l m_ 

1 \pl' · • ·'pm' m+ 
denote the left mem-

her of (2.5), and integrating by parts we obtain the reduction formulas 

( 
s 1,. . .,sm; n ) (~ n ) sm-1 n-sm+l (s 1 , ... ,sm_1; n-sm+l ,, 

( 3 .10) I = - s -1 p ( 1-p ) I 
\ p1 , ••• , pm; m+ 1 / m m m 01 , ..• , 0 m- l; m / 

+ 
I m- m / s 1 , ••• ,s 1 ,s -1; n) 

\P1,•••,Pm-l'pm ; m+l 

17 
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(3.:1.i) ( 
s

1
, ••• ,s; n) 

I P1••••,p:; m+l = s p ( 1-p · ) I e e · 
~

n) sm n-sm ( sl, •• • ,sm-1; 

~ m m 1, ••• , m-1' 

+ 
I ( s 1 , • • • , s m-1 , s m + 1 ; n ) 

P1,•••,P 1 ,P ; m+l 
m- m 

where 0i is as defined above. Clearly, 

(3.12) 1 (s ;n) 
p;2 

= I (s,n-s+l) = 1 - J(
8

'n) • 
p p,2 

n:sm) 

Corresponding to (3.4) and (3.5), we now obtain, in terms of p
0

, p; and 

A 

p. (j = l, ••• ,m) all defined above, 
J 

(3.13) 

( 3 .14) 

r(sl, .. .,sm; 

P1,•••,pm; 

I (sl, .. .,sm; 

P1, .•. ,pm; 

:1) 

:i)= 

n n a n-a m ~) · (s1 , .•. ,s; a) 
= E a (1-po) Po I Pf,···,P!; m 

CX=SO 

n-sm (n) f3 n-{3 ( sl, • .• ,sm-1; '3) 
E (3 (1-p) p I A A 

f3=S ' m m p 1 ' • • • 'p m-1 ; m 
m-1 

m-1 
where S 

1 
= Es .• 

m- i=l i 

Using the fact that the left member of (2.5) is non-decreasing inn 

we obtain corresponding to the bounds in (3.7) 

/
s 1 , ... ,s · s + ) (3.15) I m-r' 1 . •. +sm-r 

\ Plr' • • • ,P ; m-r+l , m-r,r (
s ) 

I m-r+l'•••, 8
; n 

Pm-r+l' • • • ,p:; r+l 

~ I m 
(

s
1

, .•• ,s ; n ) 

P1,·••,pm; m+l 

(

s 1 , ••• ,s ; n-s 1- ••• -s) (·s 1 , ••• ,s; n ) ~r ~~ m ~~ m 
:§; I I 

p
1 

, ••• ,p ; m-r+l p +
1

, ••• ,p; r+l 
r m-r,r m-r m 

where p. is defined above. For r = 1 this gives 
ir 
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. . 

+ ••• + 
( 3 .16) 

m 

~ I (s ,n-s + 1) 
pm m m (

s1 , ••• ,s 1; n-s ) 
m- m 

I P11'•••,Pm-l,l; m , 

from which by iteration, we obtain 

m-2 

I (s ,n+l-s) I (s 
1

,1 + E si) ••• I 
Pm m m Pm-1 m- . 1 

~ I (s ,n+l-s ) I (s 
1

,n+l-s -s 
1

) 
pm m m pm-l m- m m-

1-p 
m 

4. Other Tail Probabilities. 

1-p - ••• -p 
2 m 

I 

1-p - ••• -p 
2 m 

m 
( s l , n+ 1-E s . ) • 

1 l. 

In the basic urn mod~l we continue taking observations until cell 

Ck+l contains s observations. Our concern then was with the events that 

each cell C. contains at leasts. or at most s.-1 observations. There are, 
J J J 

of course, other models and events which may be of interest. 
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We now consider a different event with the same model. Suppose 

the k cells are ordered and the event of interest is that at the time 

of stopping there are at least s
1

, s
1 

+ s
2

, ••• , s
1 

+ + sk 

observations in cells c
1

, the union of c
1 

and c
2

, ••• , the union of c
1 

and 

c
2 

and ••• and Ck, respectively. This is a special type of cumulative model, 

but others may be handled in a similar manner. 

Corresponding to the tail probabilities of Section 2, we now have 

t X. 

c(s1••••,sk;p1,•••,Pk; n) = E fin.' IT P/ ' 

X • • 

1 J 

where the summation is over all k-tuples (x
1

, ••• ,xk) with 

k-1 k-1 k-1 
(4.1) xl ~ s 1 ,xl + x2 ~ sl + s2, ... , ~ x. ~ ~ s., ~ Si ~ n . 

1 J 1 J 1 

By an argument similar to that in the proof of Lennna 2.2, we show 

that 

(4.2) 

n-s k-1 
<1-v ) 0 IT 

0 1 

k-1 

Vi, SO= ~ Si 

To prove (4.2) consider c(s
1

, ••• ,sk;p
1

, ••• ,pk; n) = Q(pk) as 

k-2 

a function of pk with p1 , •.• ,pk_2 free, Pk-l = 1 - ~Pi-pk• 

18 
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.... 
After differentiating Q(pk), collapsing sums, and simplifying, we obtain 

(4.3) 

-(1-pk) 
= 

k-1 
I: s.-1 
1 1 

pk-1 
, ••• , Y--p ; 

- k 

k-1 ) 
I: s.-1 • 
. 1 
1 

where Sk-l = s
1 

+ .•. + sk-l" Using induction for k-1, (4.3) can be ex

pressed as a (k-2)-fold integral. Integration with respect to pk (using 

the fact that Q(l} = 0) leads to (4.2). The proof is completed by noting 

induction argument. 

Remark. There are various ways to prove (402). 'The following method is 

an alternative which has intrinsic interest, and we sketch the underlying 

idea. Consider n independent observations on a uniform distribution 

on [0,1]. The points 81 = p1 , 82 = P1 + P2 , .•• , 8k-l··= P1 + ••• + Pk-1' 

divide the unit interval into k subintervals (cells) of length p
1

, ••• ,pk. 

If X. denotes the number of observations that falls in the j-th cell, 
J 

,• 
then the probability that x

1 
~ s

1
, x

1 
+ x

2 
~ s

1 
+ s

2
, ••• ,x

1 
+ ••• + Xk 

~ s
1 

+ 000 +skis given by the LHS of (4.2)0 On the other hand, if we 

let T. denote the length of the interval from the left endpoint of the 
J 

j-th cell to the s.-th order statistic in the j-th cell, then the random 
J 

variables T
1

, o•• , Tk-l have the multivariate Beta distribution as given 

by (2 .14) 0 

r r 
The condition ~ Xj ~ ~ sj~ r = 1,.o•,k-1, is now equivalent 

to the condition 

19 
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r r 

~ T. < E P., r = l, ... ,k-1. 
1 J 1 J 

r r 
Integrating (2.14) over ~ tj <~p., 

1 1 J 

r = l, ••. ,k-1, then yields (4.1). 

Now suppose we have k+l cells with probabilities p
1

, ••. ,pk+l 

summing to unity and with pk+ 
1 

> 0; let O < b
1 

< · · · < bk < co be 

non-negative integers. Observations are taken one at a time until 

Xit+l = s. Consider the probability that at a time of stopping, 

~ + •.. + Xj >bj, j = 1, ... , k. Letting oj = oj/pk+l 

= (p1 + ··· + pj)/pk+l' we obtain 

Theorem 4.1. 

k 
(s +l3x. -1)! k 

x. 

E 
1 J IT l. s ( 4. 3) 

k pi pk+l 

( s-1) ! IT xi! 
1 

1 

( s+bk -1) ! 
o* o*-v 

1 2 1 

k-2 
o* "1 
k-1- u vi 

.J l 

k-1 

pk(o;- 6 v.) 
1 l. 

= k .J .J 
( s-1) ! IT (b. -b . 

1
) i 

l. l.-

0 0 0 
[ 

where b = O. 
0 

1 

[ 

k 
b -b 1 

~v/ i-l-1 
X - s+b -1 k 

k-1 s+b (1-v ) k-1 IT 
(1+ Ev.> k-1 k dv1

, 

1 1 1 
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Proof: Rewrite the LHS of (4.4) as 

y ' 
( 1-6 )s E k. 

k k 
IT x. ! 
1 1. 

where the inside sum is over all k-tuples (x
1

, ••• ,xk) for which 

k r 
Ex .. =yk,Exi~b ,r=l, ••• ,k-1. HencebyLemma.2.2, the above sum 
1 J 1 r 

is equal to 

(s+bk-1-l): (s+bk_
1
+z-1): 

k-1 (s+bk_
1
-1}! z! 

<s-1): II (b.-b. 1-1): 
1 J J-

61 62 6k-1 k-2 

1
515 -ul J~ - ~ ui r.~ b.-b. -1] G k-1 ~- z k-1 

x · k k ••• k 11 uil. 1.-l 6.(1- Eu.) II du. · 
0 0 1 l. 1 l. 1 l. 

Interchanging the order of integration and summation, and using (2.3) to 

sum the series, and letting uj = [6k/(l-6k)] vj, j = 1, ••• ,k-1, we 

obtain. (4.4). II 
The result (4.2) for the special parallelopiped type regions of 

summation (4.1) can be slightly generalized. Suppose for any one value of 

i, say i , we replace the restriction x.. ~ s. in (2.5) by a new restriction. 
0 1. l. 

0 0 

(say) xi+ xa + x~ ~ si + sa + s~ without altering any of the other restric-
o 0 

tions, x. ~ s. ( j,H ) • Assuming that i < a< ~ ( for convenience), we can 
J J O 0 

then assert that the resulting sum is equal to a multiple integral of the 

same density as in the right member of (2.5) except that the upper limit 

of integration for ti is taken from the inequality ti +ta+ t~ < pi +pa+p~, 
0 0 

i.e., the upper limit of ti becomes pi+ Pa+ p~ - ta - t~ and all other 
0 

limits in the right member of (2.5) are unchanged. 
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