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INTEGRAL FORMULATION FOR MIGRATION 

IN TWO AND THREE DIMENSIONS 

WILLIAM A. SCHNEIDER* 

Computer migration of seismic data emerged in 

the late 1960s as a natural outgrowth of manual 

migration techniques based on wavefront charts and 

diffraction curves. Summation (integration) along a 

diffraction hyperbola was recognized as a way to 

automate the familiar point-to-point coordinate trans- 

formation performed by interpreters in mapping 

reflections from the x, t (traveltime) domain into the 

X, z (depth domain). 

We will discuss the mathematical formulation of 

migration as a solution to the scalar wave equation 

in which surface seismic observations are the known 

boundary values. Solution of this boundary value 

problem follows standard techniques, and the mi- 

grated image is expressed as a surface integral over 

the known seismic observations when area1 or 3-D 

coverage exists. If only 2-D seismic coverage is 

available, wave equation migration is still possible 

by assuming the subsurface and hence surface re- 

corded data do not vary perpendicular to the seismic 

profile. With this assumption, the surface integral 

reduces to a line integral over the seismic section, 

suitably modified to account for the implicit broad- 

side integral. Neither the 2-D or 3D integral migra- 

tion algorithms require any approximation to the 

scalar wave equation. The only limitations imposed 

are those of space and time sampling, and accurate 

knowledge of the velocity field. 

Migration can also be viewed as a downward con- 

tinuation operation which transforms surface re- 

corded data to a deeper hypothetical recording 

surface. This transformation is convolutional in 

nature and the transfer functions tn both two and 

three dimensions are developed and discussed in 

terms of their characteristic properties Simple analy- 

tic and computer model data are migrated to illustrate 

the basic properties of migration and the fidelity of 

the integral method. Finally, applications of these 

algorithms to field data in both two and three dimen- 

sions are presented and discussed in terms of their 

impact on the seismic image. 

INTRODUCTION 

Migration of seismic data has been a basic tool of 

interpreters since at least the 1940s. The classic 

work of Hagedoom (1954) provided firm theoretical 

basis for the migration of time sections in two or 

three dimensions based upon the use of wavefront 

charts and diffraction curves. In the late 196Os, nu- 

merous computer implementations of Hagedoom’s 

migration principle became available for commercial 

use in seismic data processing. In the main, these 

programs accomplished migration by summation of 

stacked trace amplitudes along hyperbolic trajec- 

tories governed by the rms velocity distribution. 

A recent revival in migration theory and practice 

stems principally from the work of Jon Claerbout 

(1970, 1972) and his colleagues at Stanford Uni- 

versity, who first formulated a finite-difference 

algorithm for migration based upon the scalar wave 

equation. Commercial programs at-c now available in 

industry to implement finite-difference migration of 

seismic data based on Claerbout’s original work and 

extensions thereof. These techniques are variously 

called “wave equation” migrations. 

This paper develops an alternate view of wave 

equation migration in which the problem is posed as 

a boundary value problem, which leads naturally to 
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50 Schneider 

an integral or summation algorithm for migration in 

either two or three dimensions. As will be seen, the 

integral solution has strong historic ties to the “con- 

ventional” diffraction summation approach of the 

late 1960s. The differences are subtle but significant 

ins turns of amplitude and waveform reconstruction. 

faithful to the scalar wave equation. 

THEORY 

For completeness, the integral migration algorithm 

will be derived from first principles starting with 

the scalar wave equation, 

V’IJ ---& (In = -4rrq(r, t). 
FIG. 1. Geometry for boundary value solution. 

The complete solution to the inhomogeneous wave 

equation in an arbitrary volume V, is given by a 

surface integral on S,, enclosing V, involving the 

boundary values, and a volume integral over I/, 

involving both source terms and initial values. This 

result is well known in the mathematical physics 

literature (see, for example, Morse and Feshback, 

1953) and derives from an application of Green’s 

theorem. For our purposes, the volume integral may 

be ignored since the initial values are assumed to 

be zero before the shot instant, and there are no real 

sources in the subsurface image space, just reflectors 

and scatterers. Thus, we are left with the homoge- 

neous wave equation and inhomogeneous boundary 

conditions of the Dirichlet type. The remaining 

surface integral is given by, 

U(r,1)=~Ilit,IdS,[G~U(r,,r,) 

- U(r,, h) $-G 1 

The specific geometry of interest is shown in Figure 1 

with n the outward normal vector to the surface So. 

It includes the recording surface Z = 0 place, and 

a hemisphere extending to infinity in the subsurface. 

Contributions from the distant hemisphere are ig- 

nored, and the boundary value representation reduces 

to an integral over the surface involving the wave 

field on So and a suitable Green’s function G. Since 

U(r,, to) in equation (2) is equated to the observed 

seismic data, we require that G = 0 on So in order 

to eliminate the gradient of U, which may not also 

be independently specified, nor is it measured in 

current seismic practice. A Green’s function having 

the desired properties at the free surface consists of 

a point source at r0 and its negative image at rh, or 

G(r, tl ro, to) = 

S(r-r,-;) *(r-ro-g 
_ 

R R' ’ 
(3) 

where 

R = d(z - zo)* + (x - GI)~ + (Y - Yd2~ 

and 

R’ = .\/(z + z# + (X - ~0)’ + (L’ - YI#. 

Other choices of G are possible for image recon- 

struction purposes as discussed by Kuhn and Alhilali 

(1976). Substitution of equation (3) into equation (2) 

and simplification yields the following integral 

representation for the wave field U(r, t) at any point 

in image space in terms of observations of the wave 

field U(r,,, t,) on the surface, 

dAo 

This~ is a rigorous statement of Huygen’s principle 

and is commonly called the Kirchhoff integral. From 

the form of the kernel of equation (4), we recognize 

the transformation as a three-dimensional convolu- 

tion of the observed wave field w*ith a space-time 

operator related to the point source solution to the 

wave equation. We will return to this point subse- 

quently. Before doing so, however, it is instructive 

to re-express equation (4) by performing the indi- 

cated Z0 differentiation and t, integration resulting 

in an equivalent expression. D
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Migration in Two and Three Dimensions 51 

The bracketed term contains the time derivative of 

the recorded data plus the recorded data scaled by 

C/R or l/r the reciprocal traveltime, all evaluated 

at the ‘ ‘retarded’ ’ time to = 1 - R/C, Multiplying 

the brackets is the familiar “obliquity” factor. 

cos0. Because of the l/t multiplier, the second 

term in brackets is frequently dropped giving the 

Rayleigh-Sommerfeld diffraction formula of optics, 

Goodman (1968). However, it is no problem to re- 

tain both terms in seismic applications; we need only 

to differentiate the seismic section and add to it the 

same section scaled by l/t in order to implement 

equation (5) exactly. Trorey (1970), Hilterman 

(1970, 1975), and Berryhill (1976) make extensive 

use of the Kirchhoff integral [equation (S)] in forward 

modeling studies of diffraction and other propagation 

complexities in two and three dimensions. For a lucid 

discussion of the historic role of equation (5) and its 

many variants in optical, acoustic, and seismic 

imagery, the author recommends the excellent treat- 

ment given by Walter and Peterson (I 976). 

Still another representation of equation (4) is pos- 

sible by interchanging the Z0 derivative with a Z 

derivative which may then be taken outside the in- 

tegral, giving 

This is the most compact form and clearly demon- 

strates that the integral transformation is a solution to 

the 3-D wave equation by virtue of the form of the 

kernel f(t - R/C)/R. Now let us return to the 

convolutional aspects of this transformation. As 

noted previously, the integral transformation equa- 

tion (4) may be written symbolically as a three- 

dimensional convolution, 

1 a 
[i )I 

6 fk$ 
*-- 

2n dzo 
, (7) 

r 

where 

r2 = Az2 + x2 + J”. 

which translates the observed wave field from one 

q  H (-lnzl) 

H (IAzl) 

MiGRATiOt-4 USES ii i+iAzlj TO EXTRAPOLATE CONVERGiNG ViNVES 

FIG. 2. Extrapolation of converging and diverging waves. D
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52 Schneider 

Z-plane to another. If we Fourier transform expres- 

sion (7) over X, y, and f (Appendix A), the operation 

becomes complex multiplication in the frequency 

wavenumber domain, giving 

fi(k,, k,, z, w) = &k.r, k,, zo, QJ) 

H(k,, k,, AZ, 4, (8) 

where 

to reflect the phase delay in propagation across the 

slab of thickness hZ. Conversely, we can make the 

clock run backward and compute the field at Z, 

from the field at Z2 by use of the positive sign in H 

to reflect the phase advance in moving a distance 

AZ closer to the source. In the operation of migration 

we must use the positive sign in operator H to ex- 

trapolate converging waves back toward their ori- 

gins. With these basic mathematical tools to move 

data around, let us now review the principle of 

migration based on these integral transformations. 
H = eZi, AZ, -k: - k-$. (9) 

The transfer function H is seen to be a pure phase 

operator embodying the exact dispersion relation for 

the scalar wave equation. The operator H, expressed 

either in the space-time domain or frequency wave- 

number domain, enables us to extrapolate waves 

in space, which we will see shortly is basic to seismic 

image reconstruction. The choice of sign in equation 

(7) and (8) is important insofar as it determines the 

direction of extrapolation. To clarify the choice, 

consider Figure 2 which depicts a spherical wave 

radiating from S and two observation surfaces at 

Z, and Z2. The wave field at Z2 can be obtained from 

the field at Z,, which is closer to the source, by using 

expression (8) with the negative sign in operator H 

(1) FIELD DATA - CDP STACK 

G (x, y, o, t ) t 

COINCIDENT SOURCE/RECEIVER 

(2) Utx, y, o, t) = Glx, y, o, 2tl 

ONE-WAY TIME 

First, it is important to recognire that the wave 

field extrapolation equations developed thus far are 

not suitable for application to field records. While it 

is not difficult to pose the problem to accommodate 

shot-to-detector offset [see, for example, Timoshin 

(1970) and French (1975)], the mathematics are 

somewhat messier. For simplicity, we limit this 

discussion to the familiar CDP stack representation 

which approximates coincident source/receiver 

geometry as illustrated in Figure 3. Furthermore, 

the equations are cast in one-way traveltime so we 

can either divide our stacked section time scales by 2 

or use a velocity in migration equal to l/2 the true 

velocity. With these two assumptions, it becomes 

clear that the “physical” experiment we are approx- 

imaging with stacked data is one in which the re- 

Y 
G (x, y, o, t 1 

s, r 

FIG. 3. Migration principle: steps I and 2 D
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Migration-in TWS snd~ Jhree~ !limensians 

(3) DOWNWARD EXTRAPOLATION 

U (x, y, z, t ) = - &- 2 1’ dA 

(4) IMAGING PRINCIPLE - EXTRAPOLATE RECEIVERS FOR ALL Z >O ATt = 0 

u (x, y, z, 0) = - & + 
dxdy U(xl Y, o$ 

R 
q  3D MIGRATION 

FIG. 4. Migration principle: steps 3 and 4. 

ceivers are located on the surface, the sources are 

positioned along the reflecting interfaces, their 

strengths are proportional to the reflection coeffi- 

cients, and they are fired in unison. That such a 

physical (though not necessarily practical) experi- 

ment could account for most if not all of the significant 

events present on a CDP stack section is of more 

than academic interest. Migration and other inverse 

wave equation processes require input data that are 

reasonably consistent with some forward propagation 

process. Not all current seismic processing tech- 

niques preserve the integrity of this forward-inverse 

re!ationship. For example, fast AGC applied either 

before or after stack can dramatically alter the ampli- 

tude of complex wave interferences which. if undis- 

turbed, can be unscrambled by migration in the 

inverse propagation process. Thus, given that the 

CDP stack, properly processed, is amenable to wave 

equation manipulation, we next insert this data into 

our previously derived transformation equation to 

downward extrapolate the surface recorded data to 

successively deeper levels, as depicted in Figure 4, 

step 3. This in itself is not yet migration, for the 

equation as written would give us a time function 

U(x, y, z, t) for each X, y, z position. Instead, we 

really only want to map a single value for each posi- 

tion, a value proportional to the reflection or scattering 

strength at that subsurface location, or in the context 

of our “physical” experiment, we wish to map the 

equivalent source strength at all subsurface positions 

at the shot instant r = 0. Therefore, we must fix 

t = 0 and evaluate the integral for all X, y, z of interest 

as indicated in step 4 of Figure 4. This is 3-D migra- 

tion for stacked data based on the Kirchhoff integral 

formula. 

To further clarify this concept, consider Figure 5 

which illustrates the input-output mapping relation- 

ship implied by the equations of Figure 4. The input 

assumes we have stacked data over the Z = 0 plane 

for the model shown. The output is a single trace at 

some .x, y !ocation plotted versus Z and vertical 

time Z/C. As the receiver moves down through SUC- 

cessive positions, a point is mapped at each step by 

evaluating the integral with r = 0. For example, 

simulated receiver r1 at z1 maps a zero at t = 0 

because the reflection has not arrived. Similarly, 

the response is zero at zz, and as becomes obvious, 

the integral will be zero when evaluated at zero travel- 

time unless the receiver is sitting on top of or very 

near the reflector. When it is, the reflection wavelet 

will be mapped at the vertical traveltime below the 

surface receiver position (actually below the CDP 

midpoint position). We recognize that this mapping 

procedure will produce the migrated picture. 

Thus far, the development has assumed seismic 

observations are available over an area of sufficient D
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Schneider 
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FIG. 5. Migration principle: input-output relationship. 

extent to perform the indicated surface integrals or 

their discretized equivalents. This requires a 3-D 

seismic survey in which data are acquired over an 

entire prospect with space sampling of the order of 

one-half the shortest wavelengths of interest. While 

surveys of this kind have been and are now being 

conducted on a limited scale, the bulk of current 

seismic information is still 2-D, having been CO]- 

lected along widely spaced lines or traverses. In 

order to use the foregoing theory to migrate data 

from a single line and retain the benefits of a wave 

equation algorithm, we must make some assumption 

about the nature of the surface data U(x, y, 0, t) 

where we did not measure it. The most common 

practice is to assume the wave field at the surface is 

only 2-D; that is, if the line was shot in the x- 

direction, then 

I/(x, .Y> 0, t) = U(x, 0, r), 

independent of y. For this to be true, two conditions 

must be met: (I) the subsurface geology must be 

independent of _v, and (2) the source must either be 

a line source in the y-direction or the source and 

receiver must be colocated as is approximately the 

case in CDP stack. If these conditions are met, the 

appropriate 2-D transfer functions can be obtained 

from equations (7) and (8), by either integrating out 

the y dependence in the 3-D space-time operator or 

setting k, = 0 in the frequency-vvave number oper- 

ator. The corresponding 2-D transfer functions are 

given below: 

(10) 

where 

H = unit step function, 

r= (z-zo)2+xZ, 

and 

H(&, AZ, w) = e’iiAzi \‘m. (11) 

The resulting expressions (IO) and (I 1) are, of 

course, Fourier transform pairs and bear the same 

relationship to the 2-D wave equation solution as the 

3-D transfer functions equations (7) and (8) bear to 

the 3-D wave equation. The 2-D migration algorithm 

obtained by convolving equation ( IO) with U(x, 0, r) 

and setting t = 0 as required by the mapping prin- 

ciple gives: D
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Migration in Two and Three Dimensions 55 

traces in this example is arbitrary, and generally is 

chosen to accommodate the maximum geologic time

dip to be migrated. In principle, dips to 90 degrees 

and beyond can be migrated by the integral approach; 

however, this is not the case fol- finite-difference 

migration algorithms. Figure 7 shows a plot of an 

approximate 2-D transfer function obtained from 

equation (I 1) by assuming near vertical incidence 

propagation which yields 

OFFSET (DEPTH POINTS) 

FIG. 6. Exact 2-D transfer function. 

This expression is somewhat more complicated 

looking than its 3-D counterpart of Figure 4, because 

the y integral has been replaced by a time integral 

along the trace. In order to more fully appreciate 

the relationship between the 2-D and 3-D migration 

expressions, consider the following hypothetical 

experiment. First, consider migrating a seismic sec- 

tion using the 2-D expression given in equation ( 12). 

Next, imagine replicating that same input section 

many times to simulate shooting parallel lines in the 

dip direction of a 2-D subsurface model. Then 3-D 

migrate these parallel lines using the expression in 

Figure 4. The results of the two migrations will be 

identical; that is, expression (12) actually accom- 

plishes 3-D wave equation migration under the spe- 

cial circumstances that the surface recorded data are 

independent of one surface variable. When the above 

is not true, then equation (12) is not a valid migration, 

and as every interpreter should know, user beware! 

Before leaving the mathematics of migration, it is 

instructive to examine the behavior of the 2-D trans- 

fer function, equation (IO), in more detail. Figure 6 

shows a plot one-half the exact space-time operator 

as it would appear when being convolved with the 

section for an output value at 1 set vertical travel- 

time The operator shown is band-limited in both 

space and time appropriate to the sampling. The 

hyperbolic trajectory is predictable from simple ray 

theory considerations; however, the amplitude and 

phase behavior are not. The aperture width, ? 100 

for 

h-k,. 
C 

This approximation is the basis of Claerbout’s (1972) 

so-called 1.5 degree finite difference algorithm. The 

approximate operator plotted in Figure 7 and the 

exact operator in Figure 6 are virtually identical near 

the apex corresponding to small dip angles. The ap- 

proximate operator decays more rapidly with offset 

and follows a parabolic rather than hyperbolic trajec- 

tory. Both these factors, plus frequency dispersion 

associated with finite differencing schemes, limit the 

accuracy and fidelity of finite difference migration 

in steeply dipping situations. While it is true that 

higher order approximations are possible and have 

been discussed by Claerbout (1976) and others. in 

the limit they can only approach the exact transfer 

function which the integral method achieves with 

ease. Next, let us examine the application of these 

migration algorithms to both model and field data. 

MODEL RESULTS 

First, consider the analytical migration of a plane 

1.0 

c 

i! 

S 

z 

z 

= 1.5 

0 

OFFSET (DEPTH POINTS) 

FIG. 7. Approximate 2-D transfer function. D
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56 Schneider 

Z 2 

SURFACE DATA DOWNWARD CONTINUED DATA 

Ulx, y, 0, t) = J$$ 
sin wt” 

U(x, y, z.t) = wt” 

z. case 
t’+ly _ 

C 
t” 

x sine 

=1--T-- - 

(z, - z) case 

C 

dt’ sine _I -- 
dx C 

FIG. 8. Plane dipping reflector example. 

dipping reflection depicted in Figure 8. On the left 

of the figure, we postulate a band-limited signal 

.S(t) emanating from a bed dipping at angle 0 in the 

X, z plane. The surface recorded data U(x, y. 0, t) 

is a delayed version of this signal, and the observed 

time dip dt ‘ldx is the familiar quantity sin 0/c. 

For this analytical signal we can actually analytically 

downward continue our receiver to a depth z using 

either equation (7) or (8). The result, U(X, y, z, t), 

is not unexpected and could have been arrived at by 

inspection. Since the receiver is a distance z closer 

to the reflector, the traveltime delay is reduced by 

z cos 0/c. Now to obtain the migrated time picture 

we must invoke the mapping principle by setting 

t = 0, and change variable from depth z to vertical 

time T = Z/C as shown by U(X, y, T, 0) in Figure 9. 

In migrated time space, the time dip dr’/dx after 

migration becomes tanB/c, and the bandwidth of 

the signal is reduced by cos0. Since migration is a 

loss-less process, the latter is purely a geometrical 

effect due to rotation of the reflection. Put another 

way, migration increases the time dip of a reflector 

by cos 0 and decreases the apparent signal frequency 

by the same factor so as to preserve horizontal wave- 

number. 

Now let US examine the computeI’ migration of 

several simple synthetic sections. Figure 10 models 

four flat reflections and four dipping reflections with 

time dips of 4, 8, 12, and 16 msec/trace, respec- 

tively. The reflection wavelet is a zero phase, O-80 

Hz bandwidth pulse. A 2-D migrated picture is 

shown in Figure 11. A trace spacing of 25 m and 

velocity of 2500 misec were used resulting in struc- 

tural dips ranging from 12 to 53 degrees. The steepest 

event has migrated some 200 traces, or about 5 km. 

f 

-n 

0 

To = c 

MIGRATED time PICTURE 

Let: t - o, T- 5 - Vertical time

sincrl”7’ 
UN y.r, 0) = W’T’ 

T’ 
x tan0 

‘T- To - - 
dT’ _x 

C 7F’ c 

w’ * wcos.9 

FIG. 9. Analytical migration of dipping reflector. D
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Migration in Two and Three Dimensions 

4 

FIG. 10. Synthetic time section modeling four flat 
reflections and four dipping reflections at 4, 8, 12, 
and 16 msecitr dip. 

FIG. Il. 2-D migrated time section, AX = 25 m, 
V = 2500 misec. 

The dots on the 53 degree event indicate the predicted yet these events are properly migrated including the 

migrated end points for the 16 msec/trace reflection aliased components. The question of migrating under 

in Figure 10, the correspondence is excellent. The sampled data is more complex than one might ex- 

slight tails on each of the migrated events result from pect, nor is it independent of the algorithm. With 

not including diffractions in the input model. The the integral approach it is possible to correctly mi- 

details of the result are more evident in Figures 12 grate aliased data by not spatially bandlimiting the 

and 13 which show enlarged portions of the input migration operator shown previously in Figure 6. 

section and migrated section, respectively. The low The risk in doing this is to generate migration back- 

level jitter on the input are sidelobes associated with ground noise which in the previous example is 

the sharp cutoffs in the wavelet design. The back- sufficiently low level to be unobjectionable. How- 

ground noise in the output is a combination of the ever, the effect is very sensitive to the space sampling 

above and migration noise. The expected results are AX. Figure 14 shows another ‘migration of the input 

also evident from these figures; namely, (I) the mi- model in Figure IO in which the trace interval was 

grated dip is greater than the unmigrated dip by cos doubled to 50 m; that is, the migration program was 

8, and (2) the migrated pulse is reduced in apparent told the AX was 50 m instead of 25 m. but the identi- 

bandwidth by cos 8, thereby keeping the horizontal cal section was migrated. Of course, the implied 

wavenumber invariant. It is also interesting to note structural picture is different, and. as before, the 

the 12 and 16 msec/trace reflections have a signifi- events are correctly migrated, including aliased 

cant portion of their bandwidth beyond the l/2 wave- frequencies. The most notable difference, however, 

length Nyquist space sampling limit of 42 and 32 Hz, is the increase in migration noise from both flat and 

FIG. 12. Detail of input section in Figure 10. FIG. 13. Detail of migrated section in Figure 11. D
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FIG. 14. 2-D migrated time section, AX = 50 m, 
V = 2500 mlsec. 

dipping events. This is basically a leakage problem 

caused by approximating the integral [equation (12)] 

by a discrete summation. The coarser the AX, the 

poorer the summation approximates the integral and 

the greater the leakage. While AX is a critical param- 

eter, the leakage also depends on frequency, velocity, 

migration aperture, and traveltime. In general, the 

leakage worsens with increasing AX, increasing 

frequency, increasing aperture, decreasing velocity, 

and decreasing traveltime. The problem also scales 

as the ratio of V/AX. In other words, the 50 m model 

with a 5000 m/set velocity would have the same 

low noise level as the 25 m, 2500 m/set migration 

in Figure Il. To guard against this problem on 

coarsely sampled data (whether or not it is aliased), 

the migration operator must be spatially bandlimited 

as in Figure 6 or, equivalently, a more sophisticated 

numerical integration must be used in lieu of discrete 

summation. Before leaving this sample plane dipping 

model, however, we will migrate it one more time

using a AX of 16 m giving the result as shown in 

Figure 15. The third dipping event now appears as a 

greatly compressed 70 degree segment which has 

migrated some 300 traces horizontally and 1 .O to 1.5 

set in time to its correct subsurface position. The 

missing fourth reflection does not represent a possible 

reflection in this model because its 16 msec/trace 

time dip exceeds the maximum of 13 msec/trace 

for a 90 degree reflector; hence it is not imaged. 

As is apparent from these examples, the integral 

method has no algorithmic limitations on dip. Reflec- 

tions can be migrated to 90 degrees and beyond in 

the presence of vertical velocity gradients. The issues 

FIG. 15. 2-D migrated time section, AX = 16 m, 
V = 2500 m/set. 

of velocity and cost ultimately become the limiting 

factors, but before addressing the questions of veloc- 

ity inhomogeneity, another slightly more realistic 

model is of interest. 

Figure 16 shows a synthetic zero offset time

section for three reflecting horizons of moderate 

complexity computed using a forward wave theory 

approach described by Trorey ( 1970). A constant 

8000 ft/sec velocity was used, the trace interval is 

50 ft, and the wavelet bandwidth is approximately 

O-60 Hz. Many of the classic diffraction phenomena 

so often seen on stacked sections are present. The 

2-D integral migration shown in Figure 17 is virtually 

a perfect reconstruction of the subsurface acoustic 

impedance with accurate representation of the ampli- 

tude and waveform, structural attitude, curvature, 

and bed terminations. Were the world so simple, 

seismic processing would be a closed book. Un- 

fortunately, real seismograms are infinitely more 

complex than the constant velocity model depicted 

here, and much ptoggiess remains to be made in 

seismic processing techniques before we can accu- 

rately image in heterogeneous media. 

Some of the more practical aspects of migrating 

seismic data are knowing what velocity to use, how 

to estimate it from the data, and how accurate it must 

be. None of these are trivial issues, nor shall I attempt 

to provide comprehensive answers. Certainly the 

issues of estimating seismic velocity for stacking 

and more recently for migration have received ample 

attention in the literature and in professional society 

meetings. I will not attempt to summarize the 

current art in this mature activity except to point out 

there is a trend away from CDP stack based vel- 

ocity analysis toward migration based techniques 

[Sattlegger (1975), Dohr (1975)]. The trend will 

undoubtedly accelerate as migration of unstacked 
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FIG. 16. Wave theory, zero offset time section modeled at 8000 ft/sec and 50 ft tract spacing. 

data gradually replaces the CDP stack as the standard 

seismic image. 

The question of (post stack) migration velocity 

sensitivity is somewhat more easily addressed, and 

I use the model in Figure 16 to illustrate the effects 

of slightly under and over migration. The section 

was remigrated with a velocity of 7600 ft/sec (5 

percent low) and 8400 ft/sec (5 percent high). The 

results are shown in Figures 18 and 19, respectively. 

In a gross sense the pictures are very similar to 

Figure 17 migrated with the correct velocity. In 

discernible, and, as expected, the flat reflections 

are totally insensitive to velocity. While not a com- 

prehensive answer to the velocity sensitivity ques- 

tion, we may readily conclude that: the more complex 

the subsurface, the more diffraction-like is the time

section, and the more accurate must the velocity be. 

Even with faulted simple geology, relatively small 

errors in migration velocity will improperly collapse 

the diffraction tails and blunt fault resolution. 

VELOCITY INHOMOGENEITY 

detail they differ; for example, the fault terminations In the foregoing development, starting with the 

are blurred, the flanks of the synclines are in error scalar wave equation and resulting in integral migra- 

by several hundred feet, and the small bump on the tion algorithms based thereon, it has been tacitly 

second reflector is severely distorted. Other distor- assumed the techniques could be successfully applied 

tions in amplitude and waveform are not readily to waves propagating in a variable velocity medium D
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60 Schneider 

FIG. 17. 2-D migrated synthetic wave theory section. 

even though the derivation assumed constant veloc- 

ity. This is certainly not intuitively obvious, but as 

will be shown, the method is remarkedly robust 

with regard to vertical velocity variations. 

First, consider the 2-D migration of a single 

sinusoidal trace with constant velocity. The result in 

Figure 20 shows the familiar windshield wiper pat- 

tern. The dark bands trace out the wavefronts at 2, 

3, and 4 set of traveltime. The trace amplitude decays 

with time to compensate for decreasing wavefront 

curvature, and the decay with offset along the wave- 

front reflects the obliquity factor cos0. Now if we 

vary the velocity C = C(Z) for each depth or vertical 

time step in the migration algorithm [equation (12)], 

them wavefront- p~attern txkes on a very different~ shape 

as shown in Figure 21. For this linear increasing 

velocity V = 1800 + tjOOt m/set, the wavefronts 

are flatter for small dip angles and swoop up more 

rapidly for steep dips. When the wavefront ap- 

proaches vertical, the structural dip is 90 degrees. 

This occurs at the surface for constant velocity, but 

well below the surface with an increasing velocity 

function. The question of accuracy of the variable 

velocity result can best be answered from simple 

model studies. 

The first model is described by the instantaneous, 

average and rms velocities shown in Figure 22. 

Figure 23 compares the true curved ray wavefront 

with those generated by the integral migration al- 

gorithm using both the average and rms velocity 

distributions~ofFigure 22. The exuct curve -was com- 

puted by integrating the traveltime equations as D
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Migration in Two and Three Dimensions 61 

described by Musgrave (1961). For traveltimes of 

1, 2, 3, and 4 set, the wavefronts are virtually iden- 

tical for dips less than 20 degrees. The rms velocity 

curve continues to track the exact wavefront to about 

40 degrees and then departs gradually as the dip 

angle increases. Even out to approximately 60 de- 

grees the offset error is only about l-2 percent, 

which implies the velocity is too slow by the same 

amount. 

A second model, Figure 24, presents a more com- 

plicated velocity distribution consisting of a deep 

water layer over a high-velocity subsurface. The 

wavefronts shown in Figure 25 tell a similar story; 

the ermrs are slightly greater due to the large dis- 

continuity at the water bottom, yet migration using 

the rms velocity appears quite satisfactory to about 

60 degrees, considering the expected accuracy of 

seismic velocity estimation. 

A final model, Figures 26 and 27, shows a first 

order velocity discontinuity at depth between two 

linearly increasing functions. The errors are of the 

same magnitude as in the previous two models and 

suggests that for this class of linear increasing vel- 

ocity functions (with or without discontinuities), the 

strategy of using the vertical rms velocity in the 

integral migration algorithm [equation (12)] will 

produce quite accurate migrations to the order of 

60 degrees structural dip. The errrors increase with 

angle and total distance traveled. At early times, 

less than 2 set for these models, accurate migrations 

FIG. 18. Model in Figure 16 migrated at 7600 ftisec, 5 percent low velocity D
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62 Schneider 

FIG. 19. Model in Figure 16 migrated at 8400 ftisec, 5 percent high velocity 

can be obtained well beyond 60 degrees. Refine- 

ments are possible to improve accuracy at steeper 

dips by using ray-tracing strategies or modifying 

the rms velocity as a function of angle to approximate 

the rms velocity along the ray, which would give the 

exact result. At present, however, we do not believe 

these refinements are warranted until further ad- 

vances are made in estimating velocity with accuracy 

of the order of I percent in structurally complex 

geologic settings. 

Horizontal velocity gradients present an additional 

complication to both migration and velocity estima- 

tion techniques. They can be “handled” from a 

mechanical point of view in much the same way 

as are the vertical gradients, by allowing the rms 

velocity term in the 2-D and 3-D migration algo- 

rithms to vary with X, y, and Z. The errors in migra- 

tion caused by lateral velocity gradients are not as 

well understood as those caused by vertical gradients, 

and the matter is still being actively researched. 

Let us now leave the theory and models and ex- 

amine several field examples of 2-D and 3-D 

migration. 

FIELD EXAMPLES 

The first 2-D migration example comes from the 

Gulf of Mexico. Figures 28 and 29 show, respec- 

tively, the stack section and migrated section. The 

trace interval is 50 m, typical Gulf velocities were 

used, and the display bandwidth is about 40 Hz 

shallow and 20 Hz at depth. Technically the result 

is very clean with virtually no migration noise or D
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FIG. 20. Migrated 40 Hz sinewave at constant 2500 
misec velocity. 

FIG. 21. Migrated 40 Hz sinewave with varying 
velocity V = 1800 + 600 t misec. 

artifacts, and waveform character has been well 

preserved. Geophysically, the main value of 2-D 

migration in this example is to enhance fault resolu- 

tion in the relatively simple sand/shale section. At 

depth, while some simplification occurs in the struc- 

tural picture, it would be remarkable if the assump- 

tions for valid 2-D migration were met; that is, 

sections parallel to this one would look exactly alike. 

A second 2-D example comes from the North 

Sea. The CDP stack and 2-D migrated sections are 

shown in Figures 29 and 30, respectively. Trace 

spacing in this case is 25 m and the display band- 

width is higher than in the previous Gulf Coast ex- 

ample. The stacked section exhibits a simple 

Tertiary-Cretaceous section down to about 1 sec. 

Below the Cretaceous-Jurassic unconformity the 

data are complex, discontinuous, and exhibit numer- 

ous diffraction events. The 2-D migrated picture 

reveals a much more interpretable Jurassic section 

between 1 and 2 set, indicating major block faulting 

and tectonic activity probably related to salt move- 

ment. In particular, several small fault blocks on the 

left of the section and also just right of center are 

virtually obscured by diffractions on the stacked 

section. After migration, they stand out with remark- 

able clarity. as does the uncomformity at the base 

of the Cretaceous. Overall, the waveform and char- 

acter of the input section are faithfully preserved 

in the migrated picture, due principally to the wave 

equation formulation of the algorithm. This is per- 

haps the most significant difference between this 

“Kirchhoff” based migration and the earlier 

diffraction-summation techniques. 

Whether the structural picture portrayed here by 

migration is correct cannot be answered from this 

result alone; additional seismic control is necessary. 

In general, from our experience we know complex 

geology is seldom sufficiently two-dimensional to 

satisfy the assumptions required for 2-D migration. 

While French (1975) extends the range of applica- 

bility of 2-D migration to both oblique profiles and 

plunging 2-D structures, there is no substitute for 3-D 

data and 3-D migration to correctly image seismic 

returns from complex geologic targets. 

Until recently 3-D seismic data acquisition and 

processing were more of a research curiosity than 

a practical exploration tool. However, continuing 

advances in computer hardware and software coupled 

with innovations in seismic data acquisition over the 

VELOCITY (KFT/SEC) 
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FIG. 22. Velocity function-model 1. D
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OFFSET IKFT) 

FIG. 23. Wavefront 

MIGRATION WAVEFRONT V, 

MIGRATION WAVEFRONT V,,,,, 

EXACT WAVEFRONT 

curves for model 1 showing the exact and approximate wavefronts using the average 
rms velocities in the Kirchhoff migration integral. 

and 

past several years now make it economically feasible 

to conduct 3-D surveys on both land and marine 

prospects. Tegland (1976) describes some of these 

significant advances which include streamer tracking 

systems to locate accurately the streamer relative to 

the boat for each shot, apd efficient land 3-D col- 

lection techniques based on crooked traverses and 

perimeter shooting. An example of the latter applied 

to a California land prospect is shown in Figure 32. 

The technique, called Seisloop/Seisquare’, obtains 

3-D coverage by shooting around regular or irregular 

loops into geophones emplaced completely around 

the perimeter of the same loop. In this prospect, 14 

rectangular loops covering IO sq mi were shot using 

Vibroseism source patterns at each of the large dots, 

into geophone arrays at each small dot. Each source- 

receiver midpoint location is calculated and the cor- 

responding trace assigned to a unique “bin” 330 ft 

square, resulting in the regular CDP map of Figure 

33. Traces common to a bin are stacked together 

after static and NM0 corrections have been applied, 

yielding a set of stacked traces on a uniform 330 ft 

X, y grid with an average CDP fold of six. These 

data may be arranged for display in numerous ways, 

Figure 34 shows a north-south gather of CDP lines 

19, 20, and 21 which are 330 ft apart and about 3 

miles long. Data quality is fair to good in the shallow 

section. The geology is complex showing strong 

north dip, and well control indicates that the shallow 

‘Service Mark of GSI. U.S. Patent No. 3,867,713. 
@Continental Oil Co. 

gas production is controlled by numerous small fault 

blocks. The prospect is an old field with 25 existing 

wells, generally thought to be drilled out. 3-D seis- 

mic was tried in an attempt to uncover additional 

secondary fault traps in a mature field development 

situation. As a result of the 3-D survey, five new 

drilling locations were identified, and as of this writ- 

ing, two have been drilled and tested commercial 

gas with recoverable economic value about ten times 

the cost of the 3-D survey and drilling. 

Of major significance in this project was the ap- 

plication of 3-D migration based on the formula of 

Figure 4 appropriately discretized for sampled data 

input. Figure 35 shows three output sections from the 

VELOCITY (KFT/SEC) 

FIG. 24. Velocity function-model 2. D
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OFFSET (KFT) 
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b 

MIGRATION WAVEFRONT V, 

MIGRATION WAVEFRONT V,,, 

EXACT WAVEFRONT 

FIG. 25. Wavefront curves for model 2. 

3-D migration process at the same locations as the 

CDP stack lines in Figure 34. Each trace in the mi- 

grated picture results from a weighted sum over a 

square aperture of 10 x 10 input CDP stacked traces. 

The aperture size was determined by the maximum 

time dip rates as seen on the stacked sections in the 

north-south direction and between lines in the east- 

west direction. 

For comparison, Figure 36 shows the same three 

lines migrated with the 2-D algorithm. The clarity 

and definition of the 3-D migration are superior to 

both the 2-D migration and CDP stack at all levels. 

In fairness to the latter, however, it should be noted 

that 6-fold conventional shooting is not a very heavy 

field effort by current standards. Better conventional 

2-D results could have been obtained with higher fold 

shooting. That more conventional seismic would 

have contributed to finding additional reserves in this 

field is questionable since several generations of 2-D 

work had already been exploited to their fullest in 

discovering the known reserves. The key to finding 

any remaining pools was dense spatial sampling and 

accurate location of small untested fault blocks, both 

of which the 3-D migrated data addressed. Of sec- 

ondary interest is a major unconformity seen at about 

I.5 set on the 3-D sections, but rather obscure on 

the CDP and 2-D migrated sections. This uncon- 

formity may play a significant role in deeper untested 

targets in the field. Its expression is more apparent 

on east-west lines illustrated in Figure 37, showing 

two 3-D migrated lines gathered across the prospect 

660 ft apart. Also evident are numerous north-south 

trending faults which control the shallow gas pro- 

duction. 

Of considerable importance to the overall success 

of this project was the confidence placed in the 3-D 

migrated result by the geologist-interpreter because 

it tied subsurface well control, whereas the stacked 

sections did not. Finally, in retrospect, the 330 ft 

bin size was marginally adequate for the exploration 

objective in terms of structural dip and resolution 

implications. The space sampling intervals &, AY 

are critical parameters in 3-D surveys and must be 

selected to meet the geologic and resolution objec- 

tives within the economic constraints imposed on 

the program. In general, 3-D seismic surveys will, 

vEtociTY (KFT/SEC) 

FIG. 26. Velocity function- model 3. D
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because of their custom problem-solving nature, re- 

quire a much greater degree of prep~hmnirrg and 

client-contractor interplay than conventional seismic 

surveys. 

SUMMARY AND CONCLUSIONS 

Our understanding of migration has come a long 

way from the era of wavefront charts and curves 

of maximum convexity. We now view the operation 

as a rigorous inverse wave propagation process sub- 

ject only to the limitations of the scalar wave equation 

assumption. and our ability to estimate propagation 

velocity. Both these areas will undoubtedly be the 

focal points for further improvements in migration 

practice in the years ahead. 

This discussion has centered on the integral formu- 

lation for migration. The finite-difference school also 

has its advocates and supporters and no attempt was 

made here to plead their case. Loewenthal (1974), 

Koehler (1976). Larner (1976), and others have dis- 

cussed the latter in considerable detail. To claim one 

approach is vastly superior to the other is to ignore 

the fact that both integral and tinite-difference migra- 

tions are based on the scalar wave equation. In the 

limit of no approximations in implementation they 

would yield the same results. 

In the author’s opinion, the integral method offers 

the following advantages: 

I) The 2-D and 3-D algorithms can be implemented 

without approximating the scalar wave equation. 

Data can be migrated to 90 degrees and beyond, 

velocity accuracy and cost being the only real 

limitations. 

In 3-D applications, departure from a regular X, v 

grid can be easily accommodated by the integral 

method. This occurs frequently in both land and 

marine applications because of the difficulty in 

collecting seismic data exactly where you want it. 

Finally, the integral method lends itself more 

readily to ad hoc weighting schemes which are 

meant to combat seismic noise not comprehended 

by any of the current wave equation formulations 

for migration. 
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FIG. 27. Wavefront curves for model 3. 

MIGRATION WAVEFRONT V, 

MIGRATION WAVEFRONT V,,, 

EXACT WAVEFRONT 
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FIG. 28. Gulf of Mexico CDP stacked section. D
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FIG. 32. California land 3-D prospect map showing location of source and receiver positions. 
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FIG. 33. California land 3-D prospect map showing grid of CDP bin center locations. 
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APPENDIX 

The system response function H(k,, k,, AZ, w), 

which translates the scalar wave field across a slab 

of thickness AZ = z - z,, in a constant velocity me- 

dium, is given by the 3-D Fourier transform of the 

convolutional operator given in equation (7). There- 

fore, we have 

H&i-, k,, AZ, 4 = -&-; drdydt 

‘tt - rlC) e-i(ot+k,s+k,!A 

r 

and integrating over t gives 

e 
-i,“d(z- zoy+** +y* 

d(z - z(J* + x2 + y* 

e-ik,s emikyv 

I . 

The inner integral is a Hankel function of the second 

kind (Magnus and Oberhettinger, 1954) thus we are 

left with the following integral over y: 

a 
H= -- 

dZ 

Now using the relation between cylindrical functions 

H’*’ = J 
0 0 

- iN 
0 

where Jo and N,, are Bessel and Neumann functions, 

respectively, we substitute for Hb2) in the y integral 

and evaluate the final transform as (Magnus and 

Oberhettinger, 1954) 

I 
sin(;-zO)JF 

H=% JF 

The two-dimensional transfer function [equation 

(1 l)] can be derived in a similar manner starting with 

the convolutional operator [equation (lo)]. 
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