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§ 1. Introduction

Recently, fractional Brownian motions are widely used to describe

complex phenomena in several fields of natural science. In the termi-

nology of probability theory the fractional Brownian motion is a Gaussian

process {X(t) : t e R} with stationary increments which has a self-similar

property, that is, there exists a constant Η (for the Brownian motion

Η = 1/2, in general 0 < Η < 1 for Gaussian processes) called the exponent

of self-similarity of the process, such that, for any c > 0, two processes

{X(ct) :teR} and {cHX(t) :teR} are subject to the same law (see [10]).

Let us consider the following generalization of fractional Brownian

motions.

DEFINITION. A real-valued stochastic process [X(t); t e Rd} is called

an (a, i/)-process if the following three conditions are fulfilled.

i) {X(t}} is a symmetric stable family of index a. That is, any finite

linear combination 2 αιΧ(^ί) is subject to a symmetric stable law of index

a, equivalently, the characteristic function E[exp{/2 ]Γ] ai^(U)]\ * s written

as exp(— rc\z\") with a positive constant κ = tc(aif tt\ i = 1, , η).

ii) {X(t)} has stationary increments with respect to the action of

Euclidean solid motion. That is, X(gt) — X(gu) is subject to the the same

law with X(t) for any t e R d and g e M(d), where M(d) denotes the group

of d-dimensional Euclidean solid motions. Note that Χ(Ό) is automatically

equal to 0, a.e. (Take g = id, the identity, and t = 0).

iii) {X(t)} is a self-similar process of exponent Η. That is, for any

c > 0, the process {Xc(t) = X(ct); t e Rd} has the same finite-dimensional

distributions as {cHX(t)}.
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The ^-parameter symmetric (starting from 0) stable process of index
a, 0 < a < 2, with stationary independent increments is an (a, l/a)-process.
Fractional Brownian motions are examples of (a, ff)-processes of a = 2,
0 < i i < l and d = 1. For the Gaussian case, a = 2, the author has
already obtained the (2, i/)-process for 0 < Η < 1 for any dimension d
(see [12]). This paper is a direct generalization of the former results on
Gaussian processes to stable processes. An integral geometric method is
used in the construction of these processes. We will see the differences
and the similarity between the Gaussian case and the stable case which
share the same geometrical structure. Especially, the determinism described
in the last section suggests us that there is quite good possibility to
extend deep results on the Gaussian system to the stable processes con-
structed by the integral geometry, and that this type of processes will
give us good examples on the theory of stable processes. In fact, the
author and Κ. Kojo have already obtained some results on the canonical
representations of a stable analogues of Levy's Mrprocesses ([6]).

After showing a necessary condition on (a, Η) under which (a, Η)-
process exists (§ 2), we will make a series of examples of (a, fl)-processes
using integral geometry (§ 3). In § 4 we will calculate 2-dimensional dis-
tributions and we will see that our examples make a new class of (a, Η)-
processes. The set of processes which are constructed by a common
integral-geometric structure is called a conjugate class. In the last section,
some properties of conjugate classes are discussed.

In the construction of examples we use an a-stable random measure
corresponding to a measure space (Ε, 3$, μ).

DEFINITION. A family of random variables <& — {Υ(Β); S e J , μ(Β)<
οο} is called an a-stable random measure corresponding to (Ε, μ) if

i) E[exv(izY(B))] = exp(- μ(Β)\ζγ).

ii) Υ(Βά), 7 = 1, , η, are mutually independent if Βά Π Bk = 0, j Φ k.
iii) Υ( UBj) = Σ Y(Bj)> a.e., for any disjoint family {B/J = 1, 2, •}.

It is easy to see that, for any σ-Άηϋβ measure space, the corresponding
^-stable random measure exists (use the method of construction by induc-
tive limit, cf. [1]).

§ 2. Existence conditions and known results

2-1. Suppose that {X(t), t 6 Rd}, is an (α, i/)-process. We first note
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that from the definition Χ(0) should be equal to 0, a.e. (see ii) of the

definition). The case of 1-dimensional parameter, d = 1, the following

are known. Let {X(t) t e R} be an ϋΓ-self-similar process with stationary-

increments. If Η< 0, then X(t) = 0 a.s. And if Η = 0, X{t) = Χ(0) a.s.

In addition, if {X(t);teR} is α-stable, then (αΛΪ)Η<1 ([5]). On the

other hand, W. Verraat proves that there is no 1-self-similar process with

stationary increments having the finite first moment except the degen-

erate process {X(t) = tX(l); teB] ([14]).

Let us consider an Rd-parameter (a, ii)-process and its restriction of

parameters to a 1-dimensional linear subspace. It is easy to see that this

restriction is an R^parameter (a, #")-process. Thus, the above facts can

be observed also for our (a, Jf7)-process without any changes in their

proofs. We thus have

PROPOSITION 1. A necessary condition of the existence of non-trivial

(a, H)-process is

( 1 ) (α,Η) e {Η<1, 0 < α < 2 } U {Η < 1 , 0 < a < 2) .
l a J

We will see that there exist some examples of (a, fl)-processes for

every (a, Η) in the above area. Thus the condition in Proposition 1 is

also sufficient.

2-2. For the first area {Η < 1} Π {0 < a < 2} and d = 1, the following

examples are discussed in several papers ([2], [4], [5], [8], [10], [13]).

THEOREM 2. For a fixed a, 0 < a < 2, set

( 2 ) F(t,x) = |x|H- ( d 'e ) - | χ - t\H'id/a\ t, x e R d ,

where \ | denotes the Euclidean norm. Then if 0 < H<C 1 and Η Φ d/a,

( i ) F(t, •) eL\W,dx\

and

(ii) the process

(3) X(t;o))= f F(t,x)dZa(x;a>)

is an (a, H)-process, where {Ζα(-)} is a symmetric a-stable random measure

corresponding to the Lebesgue measure on Rd.
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§ 3. Construction using integral geometry

The (2, l/2)-process is nothing but the multi-parameter Brownian

motion which is defined by P. Levy ([7]). It is known that this process

can be constructed using integral geometry as below ([3], [7]).

Consider the set Ε of the totality of hyperplanes of co-dimension 1

in Rd. The group M(d) of Euclidean solid motions acts on Ε in the

natural manner. Let μ be the invariant measure on Ε with respect to

this action of M(d). For any t e Rd, set

( 4) St = {L e Ε L separates the point t and the origin 0}.

Denote a Gaussian random measure corresponding to (Ε, μ) as <& =

We have

THEOREM 3 ([31).

( i ) ^(S t) < οο, for any t.
(ii) The process defined by

( 5 )

is an *Rd-parameter Brownian motion.

The triplet {(Ε, μ), G, St} is essential to the above construction. Here

a group G—M(d) for the above case—acts on a family Ε of subsets of

Rd, μ is the invariant measure on Ε and St is a measurable subset of Ε

whose elements separate the origin 0 and the point t.

In this paper we are interested in (a, if)-proeess. We need to extend

the group G and the set Ε. At first, let us fix Ε as hyperplanes and let

us consider an extension of G. The group G may be taken as the Euclidean

similarity group M(d) X R+, the direct product of M(d) and the group R+

of homothetic transforms. This group acts on the set of all hyperplanes

of co-dimension 1 in the natural manner. The action of the homothetic

part satisfies the relation

( 6 ) S c t = c S t , c e R + .

And the measure μ satisfies

( 7)

By the same discussion we can easily obtain the same relation around

the covariance of the process (see the proof of Theorem 4), we can easily
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see that the Brownian motion is a (2, l/2)-process. If we employ an ar-stable

random measure, 0 < a < 2, instead of Gaussian random measure, we obtain

an (a, l/ar)-process. In the case d = 1, this process is well known as an

<x-stable process with independent stationary increments. Thus, if we want

to consider general (a, i?)-processes, we have to generalize also the set Ε.

Note that, the measure μ is not invariant but homothetic under the

homothetic action of R+.

A hyperplane may be considered as a circle of radius οο. Now it is

natural to take {all spheres of co-dimension 1} as a candidate of Ε in our

construction of (a, i7)-processes. Let us introduce a coordinate system

in Ε;

Ε = {(χ0, Χ); XQ e R+, χ e R }̂, where the element (χ0, χ) is considered as

the sphere of center χ and radius χ0.

The action (g, c) e M{d) X R+ on Ε is defined as

(8 ) (g, c)(x0, x) ΞΞ (c a*, c-gx).

The stationarity (ii) suggests us that the measure μ on Ε may be taken

invariant under the action M(d). Taking the self-similarity into account,

let us take μ as

(9) άμΒ(Χι, χ) = xt^dxodx .

The set St is defined as

(10) St = {(d — l)-spheres which separate the origin and the point t}

Ξ { ( χ χ ) ; | | | | < χ}Δ{(χ ); | | t | | < χ}

where Δ means symmetric difference.

For the convenience of the following discussion, let us introduce a

notation

(11) St = {(χ, χ); ||χ - t | | < χ], then St == StASQ.

We have

THEOREM 4 (for the Gaussian case see [12]).

1) /^(St) < °° if and °nly if 0 < β < 1.

2) The process {Χα>β(ΐ) = Ya(St); t e R% for 0 < β < 1, is an (α, β/α)-

process, where <&r

a ={Υα(.)} is α?ζ a-stable random measure corresponding

to ( Ε , ^ ) .

Proof. "If" part of the proof 1) is easily seen, so we omit it. To
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prove "only if" part, let us suppose ^(St) < °° fc>r a /3 > 1. By the proof

of 2) below there exists an (a, /3/<x)-process for the parameter Η > I/a.

This contradicts the result of Proposition 1. Thus we have proved the

"only if" part if ^(S t) < οο and β < 1.

2) Because /^(SJ is finite, the process {Χα)β(ι)} is well defined. Recall

that St = StAS0. It holds

= Ya((stn°so)\j(cstnSo)) -
= {Ya((st η ' s j η *s0) - * m η *ss) η s0)}

t η ss) η s0) - y«((cst η ss) η
 G s

where CA means the complement of the set A. As we are concerning

the symmetric stable law, the above random variable is subject to the

same law with Ya(St Π
 CSS) — Ya(

cSt Π Ss). And the measure μβ is invariant

under the action of M(d). Thus Χα)β(ΐ) — Χα,β(&) and Χα>β(ΐ — s) are subject

to a common stable law. That is, {Χα)β(ι)} has stationally increments.

To prove self-similarity we first note the following facts,

(12) Sct = cSt and μ^) = c^^St) for any c > 0 .

Let us calculate the n-dimensional characteristic function of the process

(here Sca denotes the set (Π, 6 ^ β 4 . ) υ ( Π , ^ cSctk))

( m

This implies that {Χα)β(ΐ}} is an (<χ, /3/< )̂-process. q.e.d.

N.B. Our process {Χα>β(ι)} satisfies the following condition stronger

than ii);

ii') {Xayf}(t)} has stationary increments under the action of Euclidean

solid motion. That is, {X*tfi(t) = X(gt) - X(gO); t e Rd} has the same

finite dimensional distribution as {XatP(t)}. This fact is proved as in the

same manner used in the proof of ii).
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§ 4. Comparison with fractional stable process

As we mentioned in § 1, there exists another example of (α, if)-process

{dH(t); t e Rd} called fractional stable process for 0 < Η< 1. Let us recall

the definition:

(3) ΔΗ(ν;ω)="\ F(t,x)dZa(x;a>),

where

(2) F(t, χ) = \χ\Η-ν/α) - | χ - t | H - w / e ) , t, x e R d .

Hence, we have two examples of (a, if)-processes for a pair of parameter

(a, Η) in the range 0 < Η< min(l, I/a), α<2.

A natural question pops up.

"Are these processes equivalent to each other?"

If a = 2, the answer is Yes. But the Gaussian case is exceptional. If

αφ2, the answer is " N o " . In fact these processes have different 2-

dimensional joint distributions. To see this, we present an argument

due to Υ. Sato (see [11] for the details).

Let us take two points s and t in Rd and let us calculate the 2-

dimensional joint characteristic functions. For our process {Χα,β} the

characteristic function is

(14)

= exP - {^(ss η
 cs t)|^ |« + μ^8. η st)\zz\a + / Ά η

And for the fractional stable process {dH(t); t e Rtf} is

(15) ElexviiizJxis) + ^ ( t ) ) } ] = exp - f \F(s, χ)ζ, + F(t, x)z2\"dx .

To clarify the difference between (14) and (15), let us calculate the cor-

responding spherical components of the 2-dimensional Levy measures.

In general, the characteristic function of 2-dimensional symmetric

α-stable distribution φ has the unique canonical form

(16) φ(ζ1, ζ2) = exp - k f %ζ, + *2ζ2\«λ(άξ) ,

where λ is a symmetric probability measure on the unit circle S1.
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It is obvious that in case of the process {Χα)β} the measure λ is con-
centrated on 6 points (± 1, 0), (0, ± 1) and (± VY/29 ± /2"/2). In case
of the process {dH(t); teRd}

ί \F(s, χ)ζ, + F(t, x)z2\
adx = ί If^s, t; χ)ζ1 + £2(s, t; x)z2\

aE(s, t; x)dx ,
J R<* JRd

where we set

^(s, t; χ) = F(s, x)/(F2(s, χ) + F2(t, χ))1'2 and

£,(s, t; χ) = F(t, x)/(F2(s, χ) + F2(t, χ))1/2.

Recall the fact that F(t, χ) is continuous in t and χ and B(s, t; χ) = 0
only a set of Lebesgue measure 0 if s Φ t. The measure λ on S1 is the
image of the measure E(s,t;x)dx on Rd by the map (fi,f2). It is easy
to see that the measure λ has absolute continuous part. Therefore, we
have

THEOREM 5 ([11]). The two {a, H)-processes {Xa}aIi(t); t e Rd} and

{dH(t); t e Rd} for Η< min(l, 1/α) and 0 < a < 2, are not equivalent to each

other.

§ 5. Generalized Chentsov type representation and conjugate
Gaussian process

As we saw in § 3 and § 4, the processes which are constructed by
integral-geometric method make a special class of stochastic processes.
In this section we investigate some properties of this class. At first let
us clarify the object in which we are concerned:

DEFINITION. A random field {X(t); t e Rd} is called a process of
generalized Chentsov type if there exist a measure space (Ε, &, μ) and a
map

S:M > a

such that the process {Z(t);teEd} is written as

(5)

where Φ = {Υ(Β); Be &, μ(Β) < οο} is a random stable measure corre-
sponding to (Ε, 8t> μ).

It is obvious that our (a, /?)-processes are examples of processes of
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generalized Chentsov type.

5-1. Let us fix an integer n>d. Let {X^(t);teRn} be the η-
parameter (a, i/)-process that we constructed in § 3. Let us restrict the
parameter t to a linear subspace Rd c Rn, and consider the d-parameter
process; {Xd(t) = Xn\Rd(t), t e Rd}.

This process {Xd} seems a new (^-parameter (a, if)-process of generalized
Chentsov type. Let us check that this process is really new or not.

To simplify calculation let us take η = d + 1 and assume Rd+1 =
Rd χ R1. The set Sj, t e R*, is

{(χ, χη9 * 0 ) ; ||χ||2 < χ* - 4 , χ € Rd}A{(x, χη, xQ); ||χ - t | |2 < ^ - 4}

= {(χ, χη, χ0); \\x\\ < ^ο}Δ{(χ, χη, χ»); ||χ - t | | < ^} ,

where 0̂ = (̂ 0

2 - χ^)1/2.

Set sin ̂  = —~ and 3j;0 = χ0 cos ̂ , then the set above is rewritten as

That is, S? is considered as Sd χ [— ττ/2, ττ/2] by the parameter (̂ 0, ^).
This Jacobian 3(ΛΤΛ, χο)/5(^θ5 ^) is equal to χο Then the quantity //J(Sj) is
evaluated as follows:

= i
5 ( , «, ο ) ^

R»XR+ *

= Ιζμ^β*), where yfe = Γ^
J ff/2

The same calculation holds for any set Si)A which characterizes n-dimen-
sional distribution of the process (see the proof of Theorem 4). Thus we
have

PROPOSITION 6. For any integers η and d, n>d, there exist a con-
stant k such that {X%^\Rd(t); t eT} and {k Χξ,/t) t € Τ} have the same
finite dimensional distributions, that is, the two processes are essentially
the same,

5-2. Conjugate class and Conjugate Gaussian process

Let us proceed to consider a general classes of stochastic processes
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of generalized Chentsov type with parameter in Τ. The parameter space

Τ is not necessarily the Euclidean space and the measure space Ε is not

assumed to be the set of spheres.

Fix a measure / i o n E and a family {St; t e Τ}. Specifying the random

measure %'α — {Υ«( )} to an ^-stable random measure corresponding to

(Ε, μ), we have a process {Xa[t); t e Τ} by

( 5 ) xa(t)= y e ( s j .

DEFINITION. The set of the processes {{Xe(t); t e Τ}; 0 < a < 2} is

called a conjugate class and the Gaussian element {X2(t)} is called the

conjugate Gaussian process to any other element {Xa(t)} 0 < a < 2.

PROPOSITION 7. A quasi-metric d on Ύ is induced from the Hausdorff

metric on the subsets of Ε with respect to the measure μ;

That is, the difference X2(t) — X2(s) of the conjugate Gaussian process is

subject to the Gaussian law of mean zero and variance d(t, s). Such a

process is called a Levy's Brownian motion with parameter in the metric

space (Τ, d) (see [7]).

Using the above proposition we have

THEOREM 8 (cf. [12] of the Gaussian case). There is no symmetric α-

stable H-self-similar process with stationary increments of generalized

Chentsov type for Η > I/a.

Proof. Let {Xa(t)} be an symmetric α-stable process with stationary

increments of generalized Chentsov type. Then the conjugate Gaussian

process {X2(t)} is a ai//2-self-similar Gaussian process with stationary

increments. The corresponding metric in Rd is | t — s|a//. For Η>1/α

this is not a metric function on Rd. q.e.d.

Fix a conjugate class {{Xa(t); t eT}; 0 < a < 2} and consider the 2-

dimensional characteristic functions

= exp - {μ(,%Γ\ cS t)|2 l |« + M c S s n Ss)\z2

Hence, the characteristic function of {Χα} is determined by the scalars

^,), Mcsans t) and
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Let us consider the conjugate Gaussian process

(17) E[exp i{X2(s)^ + X2(t)z2}] = exp -

where σ8, at and ast are the variances and the covariance of the process

{Χ2}. On the other hand, the same characteristic function has the

following form,

s η
 c s t ) |^ | 2 + ^ s s

The quantities μ(88Γ\°8ι) etc. are uniquely determined by as, at and ast as

, ΓΊ cSt) = has - ast), M^s Π St) = \{as - Ο
2 \(18) 2

and

Thus, we have the following determinism of the symmetric ^-stable pro-

cesses of generalized Chentsov type.

THEOREM 9. Let {{Xa(t); t e Τ}, 0 < a < 2} and {{X'a(t); t e Τ}} be two

conjugate classes. If the Gaussian elements {X2(t)} and {X'2(t)} are subject

to the same law, then, for any 0 < a < 2, the processes {Xa(t)} and {X'a(t)}

have common 2-dimensional distributions. Especially any (a, H)-processes

of generalized Chentsov type for fixed a and Η have the same 2-dimensional

distributions up to the normalizing factors.
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