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INTEGRAL GEOMETRY AND THE GAUSS-BONNET THEOREM
IN CONSTANT CURVATURE SPACES

GIL SOLANES

Abstract. We give an integral-geometric proof of the Gauss-Bonnet theorem
for hypersurfaces in constant curvature spaces. As a tool, we obtain variation
formulas in integral geometry with interest in its own.

1. Introduction

Let Mn(k) be the n-dimensional simply connected Riemannian manifold of con-
stant sectional curvature k. When the dimension n is odd, the total curvature of a
compact immersed hypersurface S (i.e., the integral of its extrinsic curvature K)
equals

(1)
∫

S

K(x)dx =
vol(Sn−1)

2
χ(S) −

∑
i

cik
i

∫
S

Kn−2i−1(x)dx

where χ is the Euler characteristic, the constants ci depend only on the dimensions,
and Ki is the i-th mean curvature of S. This is a consequence of the Gauss-Bonnet-
Chern theorem for abstract Riemannian manifolds (cf. [1]). When the dimension n
is even, a similar formula holds for embedded hypersurfaces. Indeed, let Q ⊂ Mn(k)
be a compact domain with smooth boundary S = ∂Q. If n is even and V denotes
the volume of Q, then

(2)
∫

S

K(x)dx = vol(Sn−1)χ(Q) −
∑

i

cik
i

∫
S

Kn−2i−1(x)dx − ckn/2V.

This formula can be obtained by applying the intrinsic Gauss-Bonnet-Chern theo-
rem for manifolds with boundary (cf. [2]) to the domain Q.

In euclidean space these formulae were first obtained by Hopf in an extrinsic way
(cf. [4, 5]). Also in the spherical space, a very simple extrinsic proof was given by
Teufel in [10] by means of integral geometry. Furthermore, that work provided a
geometric interpretation of the linear combinations of the mean curvature integrals
that appear in (1) and (2), which play an analogous role to the defect of non-
euclidean triangles. In fact, these defects of hypersurfaces were shown to be the
measure (with multiplicity) of the set of codimension 2 great spheres intersecting
the hypersurface. Note that this generalizes the well-known identification of defect
and area of spherical triangles. Unfortunately, the method used there could not

Received by the editors April 15, 2004.
2000 Mathematics Subject Classification. Primary 53C65.
Key words and phrases. Integral geometry, total curvature.
This work was partially supported by MECD grant EX2003-0987 and MCYT grant BMF2003-

03458.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

1105

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1106 GIL SOLANES

be generalized to hyperbolic space. The present paper extends that results to the
hyperbolic geometry. Moreover, our approach provides a new proof also in the
spherical case.

Let Ln−2 be the space of (n − 2)-dimensional totally geodesic submanifolds of
Mn(k). This is a homogeneous space of the isometry group of Mn(k) with a unique
(up to a constant factor) measure dL invariant under this group. The main result
is the following theorem, from which we easily deduce formulas (1) and (2).

Theorem 1. If Q ⊂ Mn(k) is a compact domain with smooth boundary, then

(3)
∫

∂Q

K(x)dx = vol(Sn−1)χ(Q) − k
2(n − 1)
vol(Sn−2)

∫
Ln−2

χ(L ∩ Q) dL.

If S is a compact immersed hypersurface and n is odd, then

(4)
∫

S

K(x)dx =
vol(Sn−1)

2
χ(S) − k

n − 1
vol(Sn−2)

∫
Ln−2

χ(L ∩ S) dL.

In other words, the defect of a hypersurface in a non-euclidean space is the
measure of codimension 2 planes meeting it, counted with multiplicity. Note that
equations (1) and (2) do not allow such a geometric interpretation.

The idea of the proof is to study the variation properties of the integrals involved.
To be precise, in the case of embedding we prove the following formula for a smooth
deformation Qt of Q:

d
dt

∫
Ln−2

χ(L ∩ ∂Qt) dL = −vol(Sn−2)
2

∫
∂Q

φ(x)Kn−2(x)dx

where φ(x) is the normal part of the deformation. From [8] one knows that the
variation of the total curvature is

d
dt

∫
∂Q

K(x)dx = k(n − 1)
∫

∂Q

φ(x)Kn−2(x)dx,

and we have that both sides of (3) have the same variation properties. Then, one
deforms Q to be contained in a small ball of Mn(k), so that Q becomes ‘almost’
euclidean. Finally, one applies the Gauss-Bonnet theorem for euclidean hypersur-
faces to get Theorem 1. The scheme for even dimensional immersed hypersurfaces
is the same. By induction, and by using the classical reproductibility formulas of
integral geometry, we get (2) and (1) from (3) and (4).

2. Definitions and preliminaries

We use the following model for Mn(k) when k �= 0. Endow R
n+1 with the

(pseudo-)metric
〈x, y〉 = sign(k) x0y0 + x1y1 + · · · + xnyn.

Then Mn(k) is the connected component of {x ∈ R
n+1 | 〈x, x〉 = k} containing

(1/
√
|k|, 0, . . . , 0). The isometry group G(k) is the linear subgroup preserving 〈 , 〉

and Mn(k). An orthonormal frame defined on a manifold U will be a smooth
mapping g : U → Mn(k) together with a smooth collection gi : U → R

n+1 (i =
1, . . . , n) such that 〈gi, gj〉 = δij and 〈g, gi〉 = 0. Then we consider in U the
differential forms ωi(·) = 〈dg(·), gi〉, and ωij(·) = 〈dgi(·), gj〉 for i, j = 1, . . . , n.
When U ⊂ Mn(k) and g = id, we just have the usual dual forms ωi, and ωij are the
connection forms of Mn(k). In euclidean space Mn(0), one considers orthonormal
frames and defines ωi and ωij analogously.
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INTEGRAL GEOMETRY AND THE GAUSS-BONNET THEOREM 1107

The intersection of a linear (r+1)-dimensional subspace of R
n+1 with Mn(k) is an

r-dimensional totally geodesic submanifold that we call an r-plane. The space Lr of
all r-planes is homogeneous under G(k). When k > 0, it is the Grassmann manifold
G(n+ 1, r + 1) and when k < 0 it is an open subset of G(n+ 1, r + 1). In euclidean
space Mn(0), the space Lr of r-dimensional affine subspaces is also homogeneous
below the rigid motion group. In any case Lr admits a measure (unique up to a
constant factor) invariant under G(k). Given a moving frame defined on an open
set U ⊂ Lr so that g(Lr) ∈ Lr, and 〈g1(Lr), . . . , gr(Lr)〉 = Tg(Lr)Lr, this measure
is given by (cf. [9, p. 305])

(5) dLr =
∣∣∣∧ωh

∧
ωij

∣∣∣ , 1 ≤ i ≤ r < j, h ≤ n.

One takes the absolute value to integrate densities instead of differential forms.
Note that Lr need not be orientable.

The classical formulas of integral geometry are devoted to integrate geometric
magnitudes of intersections of such planes with submanifolds of Mn(k). For in-
stance, if S is a compact q-dimensional submanifold (possibly with boundary), and
n − r ≤ q ≤ n, then (cf. [9, p. 309])∫

Lr

volr+q−n(Lr ∩ S)dLr =
On · · ·On−rOr+q−n

Or · · ·O1Oq
· volq(S)

where Oi = vol(Si). This is called the reproductive property of the volume. There
is an analogous property for the mean curvature integrals of a hypersurface S.
Indeed, denote

Mi(S) =
∫

S

Ki(x)dx

where the i-th mean curvature Ki is the mean value of all the products of i principal
curvatures of S (according to some orientation if i is odd), and dx is the volume
element on S. One has (cf. [9, p. 248])

(6)
∫
Lr

M
(r)
i (S ∩ Lr)dLr = 2

On−2 · · ·On−rOn−i

Or−2 · · ·O0Or−i
Mi(S)

where M
(r)
i denotes the i-th mean curvature integral considered in some r-plane.

Besides volumes and curvature integrals, the Euler characteristic of intersections is
also usually considered.

Definition 2.1. Let Q be a compact domain in Mn(k) . For r = 1, . . . , n − 1 set

Wr(Q) =
(n − r) · Or−1 · · ·O0

n · On−2 · · ·On−r−1

∫
Lr

χ(Lr ∩ Q) dLr.

Furthermore, set

W0(Q) = V (Q) and Wn(Q) =
On−1

n
χ(Q).

The constants are chosen in such a way that when k = 0 and Q is convex,
Wr(Q) are the so-called Quermassintegrale (or mean cross-sectional measures).
In euclidean space, one has the Cauchy formula when ∂Q is smooth: Wr(Q) =
nMr−1(∂Q). In non-euclidean geometry, Wr(Q) was expressed by Santaló in [9]
as a linear combination of several mean curvature integrals on ∂Q. We will obtain
this result in a completely new way (cf. Corollary 8).

For odd dimensional planes, the previous definition extends to immersions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1108 GIL SOLANES

Definition 2.2. Let i : S → Mn(k) be a compact immersed hypersurface. When
r is odd we define

Wr(S) =
1
2

(n − r)Or−1 · · ·O0

n · On−2 · · ·On−r−1

∫
Lr

χ(i−1(Lr))dLr.

Note that if S = ∂Q, then Wr(S) = Wr(Q) since χ(Lr ∩ S) = 2χ(Lr ∩ Q).

3. Variation formulas

Our first step is to study the variation of Wr(Q) (resp. Wr(S)) when Q (resp.
S) is perturbed. We will need the following formula of M. Morse (cf. [7]) which is
a generalization of the Poincaré-Hopf index theorem. This formula is also used in
[3] to prove the Gauss-Bonnet theorem in euclidean space.

Theorem 2 (Morse [7]). Let X be a smooth field in a compact manifold N with
boundary ∂N . Assume that X has no zero in ∂N and it coincides with the inner
normal at isolated points of ∂N . Then the sum IndX of the indices of X at singular
points of N is

IndX = χ(N) − Ind−∂X

where Ind−∂X is the sum of the indices of the projection of X at ∂N in the singular
points where X is inward (normal).

3.1. Embedding case. Let Q be a compact n-dimensional manifold with bound-
ary, and let ϕ : Q × I −→ Mn(k) be a smooth mapping such that for every
t ∈ I = (−ε, ε), the restriction ϕt = ϕ(·, t) is an embedding. We denote Qt = ϕt(Q)
and call them a deformation of Q0. It is clear that ϕt is an embedding of S = ∂Q
and that the image St = ϕt(S) = ∂Qt.

In the following proposition and in the subsequent, the normal curvature of an
oriented hypersurface S in the direction of some linear subspace l ⊂ TxS stands for
the determinant of the second fundamental form of S restricted to l.

Proposition 3. If Qt is a deformation of a domain Q0, then for almost every
r-plane Lr, and 0 < s < ε,

χ(Lr ∩ Qs) − χ(Lr ∩ Q0) = −
∑

sign〈∂ϕ

∂t
, n〉signK(Lr)

where the sum runs over the points ϕt(x) where Lr is tangent to St with t ∈ (0, s),
and K(Lr) is the normal curvature of St in the direction Tϕ(x,t)Lr with respect to
the inner normal n.

Proof. Consider the mapping Q × I −→ Mn(k) × I defined by (p, t) 	→ (ϕ(p, t), t).
By hypothesis, the image is a domain M of Mn(k) × I. Reduce for the moment I
to (0, s). Then ∂M ⊂ Mn(k)×I is a smooth hypersurface. For almost every Lr we
can assume Lr ×I to be transverse to this hypersurface. Thus, N = M ∩ (Lr ×I) is
a domain of Lr ×I with smooth boundary (cf. Figure 1). Consider the unit vertical
field ∂t and its orthogonal projection onto ∂N ,

X = ∂t − 〈∂t, n′〉n′

where n′ is the inner unit normal to ∂N . Let us place on a singular point y =
ϕt(p) ∈ ∂N of X. Next we compute the index ι of X in y. Take (local) normal
coordinates in Lr × I around y, and let dX : Ty∂N → Ty∂N be the derivative of
X written in local coordinates. We will show that generically X is not degenerate

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INTEGRAL GEOMETRY AND THE GAUSS-BONNET THEOREM 1109

Figure 1.

so that its index is ±1 according to the sign of the determinant of dX (cf. [6, p.
37]). Since we took normal coordinates, we have dX(Y ) = ∇Y X, where ∇ is the
Levi-Civita connection of L × I. For Z ∈ TyN ,

(7) dX(Z) = ∇ZX = ∇Z∂t −∇Z〈∂t, n′〉n′

= −Z(〈∂t, n′〉)n′ − 〈∂t, n′〉∇Zn′ = −〈∂t, n′〉∇Zn′

and by hypothesis ∂t = ±n′. Thus, the determinant of dX is, up to the sign, the
(extrinsic) curvature K ′ of ∂N in y as a hypersurface of Lr × I and with respect
to n′,

det dX = 〈∂t, n′〉rK ′.

Since n′ points inwards to M , by Meusnier’s theorem, K ′ is a positive multiple of
the normal curvature of ∂M in the direction Ty∂N with respect to the inner normal
to ∂M . By the same reason, this normal curvature is a positive multiple of K(Lr),
the normal curvature of St ≡ (Mn(k)×{t})∩∂M with respect to n in the direction
TpLr. Thus

det dX = λ〈∂t, n′〉rK(Lr)
with λ > 0. In particular, y is a degenerate singular point if and only if St has
normal curvature 0 at x in the direction of Lr. This can happen only for a null
measure set of Lr. To see this, it is enough to apply the Sard theorem to the
mapping {(p, l)|l ≤ TpS} × I → Lr defined by ((p, l), t) 	→ expϕ(p,t) l. As seen in
[11], its critical values are precisely the r-planes which are tangent to some St in
such a way that K(Lr) = 0. Therefore, for almost every Lr we can assume all the
singular points y of X to be non-degenerate, and thus isolated. Hence their index
ι is ±1 according to the sign of the determinant of dX (cf. [6]); i.e.

(8) ι(y) = sign det(dXy) = 〈∂t, n′〉rsignK(Lr).

We now want to relate χ(Lr ∩Qs)−χ(Lr ∩Q0) to the index sum of X. First we
extend I to [0, s] and we slightly modify N in such a way that the new boundary
∂N in Mn(k) × I is smooth. This modification can be made outside the region
B = N ∩ (Lr × [δ, s − δ]), with δ > 0 small enough. Moreover, we can assume
the new ∂N to be orthogonal to ∂t only at isolated points. Consider the open set
A = ∂N ∩ (Lr × [0, δ)) in ∂N . The field X, orthogonal projection of ∂t on ∂N ,
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1110 GIL SOLANES

points outwards to A at ∂A. By Theorem 2 we have that χ(A) is the index sum of
X in the singular points contained in A. Applying Theorem 2 again gives

χ(N) =
∑
C+

ι =
∑

C+∩A

ι +
∑

C+\A

ι = χ(A) +
∑

C+\A

ι

where C+ is the set of singular points of X where ∂t is interior. Then

χ(Lr ∩ Q0) = χ(N) −
∑

C+∩B

ι.

Analogously one sees
χ(Lr ∩ Qs) = χ(N) −

∑
C−∩B

ι′

where C− contains those singularities of −X where −∂t is interior, and ι′ is the
index of −X. Since ι′ = (−1)rι,

χ(Lr ∩ Qs) − χ(Lr ∩ Q0) = −
∑

C−∩B

ι′ +
∑

C+∩B

ι =
∑
C

〈∂t, n′〉r+1ι

where C = (C+ ∪ C−) ∩ B and n′ is the inner normal to ∂N . We finish the proof
by substituting (8) in the latter equation, and by noting that ∂t is interior to M if
and only if ∂ϕ/∂t is exterior to Qt. �

Now we can prove the following variation formula for domains with smooth
boundary in Mn(k).

Theorem 4. For a deformation of domains Qt,

d
dt

∣∣∣∣
t=0

∫
Lr

χ(Lr ∩ Qt)dLr = −vol(G(r, n − 1))
∫

S0

φ(x)Kr(x)dx

where φ(x) = 〈∂ϕ/∂t, n〉 and n is the inner unit normal.

Proof. By the previous proposition, for almost all Lr, we have

χ(Lr ∩ Qt) − χ(Lr ∩ Q0) = −
∑

signφ signK(Lr)

where the sum runs over the tangencies of Lr with the hypersurfaces St. Integrating
with respect to Lr gives∫

Lr

(χ(Lr ∩ Qt) − χ(Lr ∩ Q0))dLr = −
∫
Lr

(∑
signφ signK(Lr)

)
dLr.

Consider Gr(S) = {(p, l)|l ≤ TpS dim l = r}, and

γ : Gr(S) × (−ε, ε) −→ Lr

( (p, l), t ) 	−→ expϕt(p) l.

Since
γ∗(dLr) = ι∂t(γ∗(dLr))dt = γ∗

t (ιdγ∂tdLr)dt,

where γt = γ(·, t), the co-area formula gives
∫
Lr

(∑
signφ signK(Lr)

)
dLr =

∫ t

0

∫
Gr(S)

signφ signK(Lr)γ∗(dLr)

∫ t

0

∫
Gr(S)

signφ signK(Lr)γ∗
t (ιdγ∂tdLr)dt.
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Of course, we can restrict the integration to regular points since γ∗(dLr) vanishes
at critical points. Taking derivatives we get

d
dt

∣∣∣∣
t=0

∫ t

0

∫
Gr(S)

signφ signK(Lr)γ∗
t (ιdγ∂tdLr)dt

=
∫

Gr(S)

signφ signK(Lr)γ∗
0(ιdγ∂tdLr).

Now take a (local) orthonormal frame g; g1, . . . , gn defined on Gr(S)×(−ε, ε) so that
g((p, l), t) = ϕ(p, t), γ = 〈g, g1, . . . , gr〉∩Mn(k), and gn = n. Since we are restricted
to regular points of γ, we can consider this frame as defined on an open set of Lr.
On the other hand, consider the curve Lr(t) given by the parallel translation of Lr

along the geodesic given by n. Let T be the tangent vector of Lr(t). Then

ωi(T ) = 〈dg(T ), gi〉 = 〈 d
dt

g(Lr(t)), gi〉 = 0 r < i < n,

ωij(T ) = 〈dgi(T ), gj〉 = 〈 d
dt

gi(Lr(t)), gj〉 = 0 1 ≤ i ≤ r < j ≤ n,

since Lr(t) are contained in 〈g, g1, . . . , gr, gn〉. Now by (5) we see

dLr = |ωn| · ιT dLr,

and
ιdγ∂tdLr = |ωn(dγ∂t)|ιTdLr + |ωn|ιdγ∂tιT dLr.

But

ωn(dγ∂t) = 〈dgdγ∂t, gn〉 = 〈∂ϕ

∂t
, n〉 = φ,

γ∗
0(ωn)(v) = 〈dgdγ0(v), gn〉 = 0 ∀v ∈ Tp,lGr(S).

Thus,
γ∗
0(ιdγ∂tdLr) = |φ|γ∗

0 (ιTdLr)

and
d
dt

∣∣∣∣
t=0

∫
Lr

χ(Lr ∩ Qt)dLr = −
∫

Gr(S)

φ signK(Lr)γ∗
0 ιT dLr.

Finally, from [11, Lemma 1], γ∗
0(ιT dLr) = |K(l)|dldx, and since the mean value of

the normal curvatures is the mean curvature (cf. [11, Prop. 1]), we get

−
∫

Gr(S)

φ K(Lr)dldx = −vol(G(r, n − 1))
∫

S0

φ Kr(x)dx.

�

3.2. Immersion case. We can extend these results to immersions if we restrict the
parity of some dimensions. Thus, suppose i : S×I −→ Mn(k) is a smooth mapping
such that for each t ∈ I = (−ε, ε), the restriction it = i(·, t) is an immersion (not
necessarily injective) of a compact hypersurface S. We will say that we have a
deformation of the immersion i0. In this setting we have variation formulas for
Wr(S) with odd r (cf. Definition 2.2). Using essentially the same ideas as in the
embedded case one can prove the following proposition.
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1112 GIL SOLANES

Proposition 5. For a deformation of immersions it, and for almost every odd-
dimensional r-plane Lr,

χ(i−1
s (Lr)) − χ(i−1

0 (Lr)) = −2
∑

signK(Lr)

where the sum runs over the contact points it(p) of Lr with the hypersurfaces St

with t ∈ (0, s), and K(Lr) is the normal curvature of St in the direction Ti(p,t)Lr

with respect to the unit normal n that makes 〈∂i/∂t, n〉 > 0.

From this, a proof analogous to that of Theorem 4 gives the following:

Theorem 6. For a deformation it of immersions of S, if r is odd,

d
dt

∣∣∣∣
t=0

∫
Lr

χ(i−1
t (Lr))

2
dLr = −vol(G(r, n − 1))

∫
S0

〈∂i/∂t, n〉Kr(x)dx

where Kr is the mean curvature with respect to a unit normal n.

When the St are embedded this coincides with Theorem 4.

4. The Gauss-Bonnet theorem

Next we prove our main result, and we use it to obtain some known integral-
geometric formulas, as well as to prove the Gauss-Bonnet theorem in constant
curvature spaces.

To get Theorem 1, the idea is to shrink any hypersurface to almost collapse it
to a point, and integrate the variation of the integrals during this deformation.

Theorem 1. Let S be a hypersurface of Mn(k) bounding a compact domain Q.
Then, ∫

S

K(x)dx = On−1χ(Q) − k
2(n − 1)
On−2

∫
Ln−2

χ(Ln−2 ∩ Q)dLn−2.

If i : S → Mn(k) is a compact immersed hypersurface with odd n, then
∫

S

K(x)dx =
On−1χ(S)

2
− k

n − 1
On−2

∫
Ln−2

χ(i−1(Ln−2))dLn−2.

Proof. Let us restrict to the first case. Take some smooth deformation of Q to get
Q′ contained in a ball of arbitrarily small radius. By Theorem 4,

d
dt

∫
Ln−2

χ(Ln−2 ∩ Qt)dLr = −On−2

2

∫
∂Qt

〈∂ϕ/∂t, n〉Kn−2(x)dx.

On the other hand, it was proven by Reilly in [8] that

d
dt

∫
St

K(x)dx = k(n − 1)
∫

St

〈∂ϕ/∂t, n〉Kn−2(x)dx.

Therefore,

k
d
dt

∫
Ln−2

χ(Ln−2 ∩ Qt)dLn−2 = − On−2

2(n − 1)
d
dt

∫
St

K(x)dx,
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and integrating with respect to t, we have

− k

∫
Ln−2

(χ(Ln−2 ∩ Q) − χ(Ln−2 ∩ Q′))dLn−2

=
On−2

2(n − 1)
(
∫

∂Q

K(x)dx −
∫

∂Q′
K(x)dx).

Since the metric of a small ball in Mn(k) is almost euclidean, and the curvature
depends continuously on the metric, by the Gauss-Bonnet formula for hypersurfaces
in euclidean space we have that the total curvature of ∂Q′ is as close to On−1χ(Q)
as we want. On the other hand, χ(Ln−2 ∩ Q′) �= 0 only for an arbitrarily small
subset of Ln−2. �

Moreover, Theorem 1 can be moved to lower order curvatures using the repro-
ductive property (6).

Proposition 7. If Q ⊂ Mn(k) is a compact domain with smooth boundary S, then

Mr(∂Q) = n

(
Wr+1(Q) − k

r

n − r + 1
Wr−1(Q)

)
.

If S is a compact immersed hypersurface and r is odd, then

Mr(S) = n

(
Wr+1(S) − k

r

n − r + 1
Wr−1(S)

)
.

Proof. For almost every geodesic r-plane Lr, the intersection Q ∩ Lr has smooth
boundary. By the previous theorem we have

Mr−1(S ∩ Lr) = Or−1χ(Lr ∩ Q) − r(r − 1)
2

Wr−2(Q ∩ Lr).

Integrating with respect to Lr gives

(9)
∫
Lr

Mr−1(S ∩ Lr)dLr = Or−1

∫
Lr

χ(Lr ∩ Q)dLr

− r(r − 1)
2

∫
Lr

Wr−2(Q ∩ Lr)dLr = Or−1

∫
Lr

χ(Lr ∩ Q)dLr

− (r − 1) · O0

Or−2

∫
Lr

∫
L[r](r−2)

χ(Lr−2 ∩ Q)dL[r](r−2)dLr

where L[r](r−2) is the space of (r − 2)-planes contained in Lr and dL[r](r−2) is the
corresponding measure. But one has (cf. [9, p. 207]) that

dL[r](r−2)dLr = dLr[r−2]dLr−2

where dLr[r−2] is the natural measure in the space of r-planes containing Lr−2.
Thus,

∫
Lr

∫
L[r](r−2)

χ(Lr−2 ∩ Q)dL[r](r−2)dLr

=
On−r+1On−r

O1O0

∫
Lr−2

χ(Lr−2 ∩ Q)dLr−2.
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On the other hand, by the reproductive property of the mean curvature integrals
(6), ∫

Lr

Mr−1(S ∩ Lr)dLr =
On−2 · · ·On−rOn−r+1

Or−2 · · ·O0O1
Mr−1(S).

Substituting the two latter equations in (9) one gets the desired formula. The proof
in the immersed case is analogous. �

From here we can express Wr as a linear combination of several Mi.

Corollary 8. If Q ⊂ Mn(k) is a domain with C2 boundary, then for r = 2l

(10) Wr(Q) =
1
n

l−1∑
i=0

ki (r − 1)!!(n − r)!!
(r − 2i − 1)!!(n − r + 2i)!!

Mr−2i−1(∂Q)

+ kl (r − 1)!!(n − r)!!
n!!

vol(Q),

and for r = 2l + 1,

(11) Wr(Q) =
1
n

l∑
i=0

ki (r − 1)!!(n − r)!!
(r − 2i − 1)!!(n − r + 2i)!!

Mr−2i−1(∂Q).

Proof. Use the recurrence

Wr+1(Q) =
1
n

Mr(∂Q) + k
r

n − r + 1
Wr−1(Q)

and finish with
W1(Q) =

1
n

M0(∂Q) W0(Q) = V.

�

Remark. Formula (11) holds also for immersed hypersurfaces.

In the particular case r = n we have the Gauss-Bonnet formulae (1) and (2)
for hypersurfaces in constant curvature manifolds. Indeed, recall that Wn(Q) =
On−1χ(Q)/n, and Wn(S) = On−1χ(S)/2n when n is odd. In the remaining cases
(r < n), these formulae were obtained by Santaló (cf. [9, p. 310]) in a completely
different way. Note that the simple relationship between Wi and Mj shown in
Proposition 7 remains hidden in Corollary 8.

Another consequence of Theorem 1 is the following fact, which was well known
for k = 0, but is apparently new for k < 0.

Corollary 9. If k ≤ 0 and Q ⊂ Q′ ⊂ Mn(k) are compact convex domains, then
Mi(Q) ≤ Mi(Q′).
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