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Preface

I am not sure that this book will gain a wide readership. A pure mathematician would
most likely consider it rather old-fashioned that the book is abundant in cumbersome
calculations performed in coordinate form with use made of multilevel indices. Or such a
person would probably find the discussion of details of optical polarization measurements
to be dull. On the other hand, an applied mathematician will likely be confused by
vector bundles, Riemannian connections and Sobolev’s spaces. In any case both of them
will not admire my Russian English. Nevertheless, I hope that a young mathematician
(physicist, engineer or computer scientist), skipping through this book, would wish to
get acquaintance with some relevant field of physics (mathematics). In such a case the
aim of the book will be achieved. As for me, I like my subject just for its diversity and
unpredictability. Dealing with integral geometry, one never knows what it will require
next time; today it may be perusing a textbook on commutative algebra and tomorrow,
technical description of an electronic microscope.

What is integral geometry? Since the famous paper by I. Radon in 1917, it has
been agreed that integral geometry problems consist in determining some function or
a more general quantity (cohomology class, tensor field, etc.), which is defined on a
manifold, given its integrals over submanifolds of a prescribed class. In this book we only
consider integral geometry problems for which the above-mentioned submanifolds are
one-dimensional. Strictly speaking, the latter are always geodesics of a given Riemannian
metric and, in particular, straight lines in Euclidean space.

Stimulated by internal demands of mathematics, in recent years integral geometry has
gain a powerful impetus from computer tomography. Now integral geometry serves as the
mathematical background for tomography which in turn provides most of the problems
for the former.

The book deals with integral geometry of symmetric tensor fields. This section of
integral geometry can be viewed as mathematical basis for tomography of anisotropic
media whose interaction with sounding radiation depends essentially on the direction in
which the latter propagates.

As is seen from the table of contents, the main mathematical objects tackled in the
book are termed “ray transform” with various adjectives. I feel it obligatory to explain
the origin of the term, since I am afraid some of readers will not recognize their old crony.
But first I would like to tell a funny story that is popular among scientific translators.

A French poet tried to render Pushkin’s verses. Later another poet, having not recog-
nized Pushkin, find the verses to be worthy of translation into Russian. As result of such
double translation, the famous string from Tatyana’s letter “I am writing to you, what
can surpass it?” becomes: “I am here, and wholly yours!”

Of course, the reader understands that it is only a colorless English copy of the Russian
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original, since I am neither A. S. Pushkin nor even one of the heroes of the story.

Something of the kind has happened with our crucial term. It is the term “X-ray
transform” that is widely spread in western literature on mathematical tomography. In
particular, this term is employed in the book [48] by S. Helgason. Rendering the last
book in Russian, the translators encountered the following problem. By the Russian
physical tradition, the term “X-rays” is translated as “ ” (“the Röntgen rays” in reverse
translation word by word). So the translators had to choose between the two versions: “
” (the Röntgen transform) or “ ” (the ray transform). The second was preferred and so
the term “ ” (the ray transform) had gain wide acceptance in the Russian literature on
tomography. But the friendship of this term with X-rays was lost as a result of the choice.
I have found this circumstance very fortunate for the purposes of my book. Indeed, as
the reader will see below, the ray transforms, which are considered in the book, relates
to the optical and seismic rays rather than to X-rays. Therefore, I also prefer to use the
term “the ray transform” without the prefix X- in the English version of the book.

In the course of the first four chapters one and the same operator I is investigated which
is simply called the ray transform without any adjective. In the subsequent chapters, after
introducing other kinds of the ray transform, we refer to the operator I as the longitudinal
ray transform.

I will not retell the contents of the book here. Every chapter is provided with a little
introductory section presenting the posed problems and the results of the chapter. Now
I will only give a remark on the interdependency of chapters.

The first chapter is included with the purpose to motivate formulations of the problems
considered in the remainder of the book. This chapter is oriented to a well-qualified
reader. Therein we use some notions of tensor analysis and Riemannian geometry without
providing definitions in detail. If the reader is not so skilled, then it is possible to start
reading with Chapter 2 and return to Chapter 1 after gaining acquaintance with the
main definitions of Chapter 3. It is also note-worthy that Chapters 4–8 can be read
independently of Chapter 2 to which they are related only in a few episodes.

Some words now are in order about the applied problems treated in the book. Chap-
ters 5–7 deal with some aspects of the theory of propagation of electromagnetic and elastic
waves in slightly anisotropic media. The respective considerations first pursue of the goal
motivating the mathematical objects to be further introduced; no concrete applied prob-
lem is considered here. Section 2.16 is of a quite different character where an application
of the ray transform to some inverse problem of photoelasticity is considered. Photoe-
lasticity is an interesting branch of experimental physics at the interface between optics
and elasticity theory. In Section 2.16 we consider one of the methods of the branch, the
method of integral photoelasticity, which seems to become a new prospective field of opti-
cal tomography in the nearest future. In this section our investigation is carried out up to
some concrete algorithm which, in the author’s opinion, is suitable for use in real optical
measurements.

Perhaps, the applications of integral geometry, which are considered in the book, are
not those most successful or important. I believe that tensor integral geometry will find its
true applications in such fields as lightconductor technology, plasma physics, tomography
of liquid crystals or, probably, in the problem of earthquake prediction. My modest
physical knowledge does not allow me to treat such problems by myself. I would be glad
if one of my readers will address them.
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Finally, I wish to express my sincere gratitude to Professor S. S. Kutateladze, the
editor of the book, who took pains to make my Russian English comprehensible if not
readable. I hope that he succeeded.

February, 1994, Novosibirsk.
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Chapter 1

Introduction

In the first section we formulate the problem of determining a Riemannian metric on
a compact manifold with boundary from known distances in this metric between the
boundary points. This geometrical problem is interesting from the theoretical and applied
points of view. Here it is considered as an example of a question leading to an integral
geometry problem for a tensor field. In fact, by linearization of the problem we arrive
at the question of finding a symmetric tensor field of degree 2 from its integrals over
all geodesics of a given Riemannian metric. The operator sending a tensor field into the
family of its integrals over all geodesics is called the ray transform. The principal difference
between scalar and tensor integral geometry is that in the last case the operators under
consideration have, as a rule, nontrivial kernels. It is essential that in the process of
linearization there arises a conjecture on the kernel of the ray transform.

Integral geometry is well known to be closely related to inverse problems for kinetic and
transport equations. In Section 1.2 we introduce the kinetic equation on a Riemannian
manifold and show that the integral geometry problem for a tensor field is equivalent
to an inverse problem of determining the source, in the kinetic equation, which depends
polynomially on a direction.

Section 1.3 contains a survey of some results that are related to the questions under
consideration but are not mentioned in the main part of the book.

1.1 The problem of determining a metric by its

hodograph and a linearization of the problem

A Riemannian metric g on a compact manifold M with boundary ∂M is called simple
if every pair of points p, q ∈ M can be joint by the unique geodesic γpq of this metric
whose all points, with the possible exception of its endpoints, belong to M \∂M and such
that γpq depends smoothly on p and q. For p, q ∈ ∂M we denote by Γg(p, q) the length
of γpq in the metric g. The function Γg : ∂M × ∂M → R is called the hodograph of the
metric g (the term is taken from geophysics). The problem of determining a metric by its
hodograph is formulated as follows: for a given function Γ : ∂M × ∂M → R, one has to
determine whether it is the hodograph of a simple metric and find all such metrics. The
next question of stability in this problem seems to be important as well: are two metrics
close (in some sense) to each other in the case when their hodographs are close?

13



14 CHAPTER 1. INTRODUCTION

We shall discuss only questions that are related to uniqueness of a solution to the
posed problem. The following nonuniqueness of a solution is evident. Let ϕ be a dif-
feomorphism of M onto itself which is identical on ∂M. It transforms a simple metric
g0 to a simple metric g1 = ϕ∗g0 (the last equality means that for a point x ∈ M and
every pair of vectors ξ, η of the space TxM tangent to M at the point x the equality
〈ξ, η〉1x = 〈(dxϕ)ξ, (dxϕ)η〉0ϕ(x) is valid where dxϕ : TxM → Tϕ(x)M is the differential of ϕ

and 〈, 〉αx is the scalar product on TxM in the metric gα). These two metrics have different
families of geodesics and the same hodograph. The question arises: is the nonuniqueness
of the posed problem settled by the above mentioned construction? In other words: is it
true that a simple metric is determined by its hodograph up to an isometry identical on
the boundary? Let us formulate the precise statement.

Problem 1.1.1 (the problem of determining a metric by its hodograph) Let g0,
g1 be two simple metrics on a compact manifold M with boundary. Does the equality
Γg0 = Γg1 imply existence of a diffeomorphism ϕ : M → M , such that ϕ|∂M = Id and
ϕ∗g0 = g1?

Until now a positive answer to this question is obtained for rather narrow classes of
metrics (there is a survey of such results in Section 1.3; some new results in this direction
are obtained in Chapters 4 and 8). On the other hand, the author is not aware of any
pair of metrics for which the answer is negative.

Let us linearize Problem 1.1.1. For this we suppose gτ to be a family, of simple
metrics on M , smoothly depending on τ ∈ (−ε, ε). Let us fix p, q ∈ ∂M, p 6= q, and
put a = Γg0(p, q). Let γτ : [0, a] → M be a geodesic of the metric gτ , for which γτ (0) =
p, γτ (a) = q. Let γτ = (γ1(t, τ), . . . , γn(t, τ)) be the coordinate representation of γτ in a
local coordinate system, gτ = (gτ

ij). Simplicity of γτ implies smoothness for the functions
γi(t, τ). The equality

1

a
[Γgτ (p, q)]2 =

a∫

0

gτ
ij(γ

τ (t))γ̇i(t, τ)γ̇j(t, τ)dt (1.1.1)

is valid in which the dot denotes differentiation with respect to t. In (1.1.1) and through
what following the next rule is used: on repeating sub- and super-indices in a monomial
the summation from 1 to n is assumed. Differentiating (1.1.1) with respect to τ and
putting τ = 0, we get

1

a

∂

∂τ

∣∣∣∣∣
τ=0

[Γgτ (p, q)]2 =

a∫

0

fij(γ
0(t))γ̇i(t, 0)γ̇j(t, 0) dt +

+

a∫

0

[
∂g0

ij

∂xk
(γ0(t))γ̇i(t, 0)γ̇j(t, 0)

∂γk

∂τ
(t, 0) + 2g0

ij(γ
0(t))γ̇i(t, 0)

∂γ̇j

∂τ
(t, 0)

]
dt (1.1.2)

where

fij =
∂

∂τ

∣∣∣∣∣
τ=0

gτ
ij. (1.1.3)
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The second integral on the right-hand side of (1.1.2) is equal to zero since ∂γi

∂τ (0, 0) =

∂γi

∂τ (a, 0) = 0 and the geodesic γ0 is an extremal of the functional

E0(γ) =
∫ a

0
g0

ij(γ(t))γ̇i(t)γ̇j(t) dt.

(One can also verify the vanishing of this integral by transforming the second term in
brackets with the help of differentiation by parts and use made of the equation of geodes-
ics). Thus we come to the equality

1

a

∂

∂τ

∣∣∣∣∣
τ=0

[Γgτ (p, q)]2 = If(γpq) ≡
∫

γpq

fij(x)ẋiẋjdt (1.1.4)

in which γpq is a geodesic of the metric g0 and t is the length of this geodesic in the metric
g0.

If the hodograph Γgτ does not depend on τ then the left-hand side of (1.1.4) is equal
to zero. On the other hand, if Problem 1.1.1 has a positive answer for the family gτ then
there exists a one-parameter group of diffeomorphisms ϕτ : M → M such that ϕτ |∂M = Id
and gτ = (ϕτ )∗g0. Written in coordinate form, the last equality gives

gτ
ij = (g0

kl ◦ ϕτ )
∂ϕk(x, τ)

∂xi

∂ϕl(x, τ)

∂xj

where ϕτ (x) = (ϕ1(x, τ), ..., ϕn(x, τ)). Differentiating this relation with respect to τ and
putting τ = 0, we get the equation

(dv)ij ≡
1

2
(vi ; j + vj ; i) =

1

2
fij, (1.1.5)

for the vector field v generating the group ϕτ where vi ; j are covariant derivatives of the
field v in the metric g0. The condition ϕτ |∂M = Id implies that v|∂M = 0. Thus we come
to the following question which is a linearization of Problem 1.1.1: to what extent is a
symmetric tensor field f = (fij) on a simple Riemannian manifold (M, g0) determined by
the family of integrals (1.1.4) which are known for all p, q ∈ ∂M? In particular, is it true
that the equality If(γpq) = 0 for all p, q ∈ ∂M implies existence of a vector field v such
that v|∂M = 0 and dv = f?

Let us generalize this linear problem to tensor fields of arbitrary degree. Given a
Riemannian manifold (M, g), let τM = (TM, p, M) and τ ′

M = (T ′M, p′,M) denote the
tangent and cotangent bundles respectively. Let Smτ ′

M be the m-th symmetric power of
the bundle τ ′

M and C∞(Smτ ′
M) be the space of smooth sections of this bundle. Elements of

this space are smooth symmetric covariant tensor fields of degree m on M. The operator
d : C∞(Smτ ′

M) → C∞(Sm+1τ ′
M), determined by the equality d = σ∇ will be called the

operator of inner differentiation with ∇ standing for the covariant differentiation and σ,
for the symmetrization. Thus for v ∈ C∞(Smτ ′

M) dv is the symmetric part of the covariant
derivative of the field v (compare with (1.1.5)).
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Problem 1.1.2 (the integral geometry problem for tensor fields) Let (M, g) be a
simple Riemannian manifold. To what extent is a symmetric tensor field f ∈ C∞(Smτ ′

M)
determined by the set of the integrals

If(γpq) =
∫

γpq

fi1...im(x)ẋi1 . . . ẋim dt (1.1.6)

that are known for all p, q ∈ ∂M? Here γpq is the geodesic with endpoints p, q and t is the
arc length on this geodesic. In particular, does the equality If(γpq) = 0 for all p, q ∈ ∂M
imply existence of a field v ∈ C∞(Sm−1τ ′

M), such that v|∂M = 0 and dv = f?

By the ray transform of the field f we will mean the function If that is determined
by formula (1.1.6) on the set of geodesics joining boundary points. In Chapter 4 this
problem will be generalized to a wider class of metrics.

Let us formulate one more version of the problem under consideration which does
not include boundary conditions. An open (i.., without boundary and noncompact) Rie-
mannian manifold (M, g) is called dissipative provided every geodesic leaves any compact
set if continued in each of the two directions. The geodesic γ : (a, b) → M (−∞ ≤ a <
b ≤ ∞) is called maximal, if it does not extrapolate onto an interval (a−ε1, b+ε2), where
ε1 ≥ 0, ε2 ≥ 0, ε1 + ε2 > 0. For a compactly-supported field f ∈ C∞(Smτ ′

M) the ray
transform If is defined by formula (1.1.6) on the set of all maximal geodesics.

Problem 1.1.3 Let (M, g) be an open dissipative Riemannian manifold. To what extent
is a compactly-supported field f ∈ C∞(Smτ ′

M) determined by its ray transform If which is
known on the set of all maximal geodesics? In particular, does the equality If = 0 imply
existence of a compactly-supported field v ∈ C∞(Sm−1τ ′

M), such that f = dv?

1.2 The kinetic equation on a Riemannian manifold

We denote the points of the space TM of the tangent bundle to a manifold M by the
pairs (x, ξ) where x ∈ M, ξ ∈ TxM. Let T 0M = {(x, ξ) ∈ TM | ξ 6= 0} be the manifold of
nonzero tangent vectors. We recall that by the (contra-variant) coordinates of the vector
ξ ∈ TxM with respect to a local coordinate system (x1, . . . , xn) in a neighborhood U ⊂ M

of a point x are meant the coefficients of the decomposition ξ = ξi ∂
∂xi (x). The family

of functions (x1, . . . , xn, ξ1, . . . , ξn) constitutes a local coordinate system on the domain
p−1(U) ⊂ TM , where p is the projection of the tangent bundle. We will call it associated
with the system (x1, . . . , xn). From now on we will consider only such coordinate systems
on TM.

Let (M, g) be a simple compact Riemannian manifold, f ∈ C∞(Smτ ′
M). For (x, ξ) ∈

T 0M, let γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M denotes the maximal geodesic determined by the
initial conditions γx,ξ(0) = x, γ̇x,ξ(0) = ξ. We define a function u on T 0M by the equality

u(x, ξ) =

0∫

τ−(x,ξ)

fi1...im(γx,ξ(t))γ̇
i1
x,ξ(t) . . . γ̇im

x,ξ(t) dt. (1.2.1)

This function is easily seen to be positively homogeneous in its second argument:

u(x, λξ) = λm−1u(x, ξ) (λ > 0) (1.2.2)



1.2. THE KINETIC EQUATION 17

and, consequently, is uniquely determined by its restriction to the manifold ΩM =
{(x, ξ) ∈ TM | |ξ|2 = gij(x)ξiξj = 1} of unit vectors. For compactness it is more conve-
nient then T 0M. We divide the boundary ∂(ΩM) of this manifold into two submanifolds

∂±ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M,±〈ξ, ν(x)〉 ≥ 0},

where ν(x) is the unit vector of the outer normal to the boundary ∂M. Comparing (1.1.6)
and (1.2.1), we see that u satisfies the boundary conditions

u(x, ξ)|x∈∂M =





0, if (x, ξ) ∈ ∂−ΩM,

If(γx,ξ), if (x, ξ) ∈ ∂+ΩM.
(1.2.3)

The equation

Hu ≡ ξi ∂u

∂xi
− Γi

jk(x)ξjξk ∂u

∂ξi
= fi1...im(x)ξi1 . . . ξim (1.2.4)

is valid on T 0M where Γi
jk are the Christoffel symbols of the metric g. Indeed, let us

fix (x, ξ) ∈ T 0M and put γ = γx,ξ. By the evident equality γγ(t0),γ̇(t0)(t) = γ(t + t0) the
relation (1.2.1) implies

u(γ(t0), γ̇(t0)) =

t0∫

τ−(x,ξ)

fi1...im(γ(t))γ̇i1(t) . . . γ̇im(t) dt.

Differentiating this equality with respect to t0 and putting t0 = 0, we have

∂u

∂xi
γ̇i +

∂u

∂ξi
γ̈i = fi1...im(x)ξi1 . . . ξim .

By using the equation of geodesics

γ̈i + Γi
jkγ̇

j γ̇k = 0 (1.2.5)

and the relation γ̇(0) = ξ, we arrive at (1.2.4).
The differential operator

H = ξi ∂

∂xi
− Γi

jkξ
jξk ∂

∂ξi
(1.2.6)

participating in (1.2.4) is the vector field on the manifold TM. H is called the geodesic
vector field and the one-parameter group of diffeomorphisms Gt of the manifold TM
generated by H is called the geodesic flow or geodesic pulverization. These notions are
widely used in differential geometry (see, for instance, [13]). The geodesic flow has a
simple geometric meaning: Gt is the translation along geodesics in time t, i.., Gt(x, ξ) =
(γx,ξ(t), γ̇x,ξ(t)) in our notation. In particular, this implies that the field H is tangent
to ΩM at all points of the manifold ΩM and, consequently, equation (1.2.4) can be
considered on ΩM.

The operator H is related to the inner differentiation operator d by the following
equality:

H
(
vi1...im−1(x)ξi1 . . . ξim−1

)
= (dv)i1...im(x)ξi1 . . . ξim, (1.2.7)

which can be proved by an easy calculation in coordinates. Thus we arrive at the following
question which is equivalent to Problem 1.1.2.
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Problem 1.2.1 Let (M, g) be a simple compact Riemannian manifold. To what extent
is the right-hand side of equation (1.2.4), considered on ΩM , determined by the boundary
values u|∂ΩM of the solution? In particular, does the equality u|∂ΩM = 0 imply that u(x, ξ)
is a homogeneous polynomial of degree m − 1 in ξ?

Similarly, the second question of Problem 1.1.3 can be formulated in the following
equivalent form.

Problem 1.2.2 Let (M, g) be an open dissipative Riemannian manifold. Is it true that
any compactly-supported solution to equation (1.2.4) on ΩM is a homogeneous polynomial
of degree m − 1 in ξ?

The equation
Hu = F (x, ξ) (1.2.8)

on ΩM with the right-hand side depending arbitrarily on ξ is called (stationary, unit-
velocity) kinetic equation of the metric g. It has a simple physical sense. Let us imagine a
stationary distribution of particles moving in M. Every particle moves along a geodesic of
the metric g with unit speed, the particles do not influence one another and the medium.
Assume that there are also sources of particles in M. By u(x, ξ) and F (x, ξ) we mean the
densities of particles and sources with respect to the volume form dV 2n = det(gij)dξ1 ∧
. . . ∧ dξn ∧ dx1 ∧ . . . ∧ dxn (which corresponds to the standard symplectic volume form
under isomorphism between the tangent and cotangent bundles induced by the metric g).
Then equation (1.2.8) is valid. We omit its proof which can be done in exact analogy
with the proof of the Liouville theorem well-known in statistical physics [135].

If the source F (x, ξ) is known then, to get a unique solution u of equation (1.2.8),
one has to set the incoming flow u|∂−ΩM . In particular, the first of the boundary con-
ditions (1.2.3) means the absence of the incoming flow. The second of the boundary
conditions (1.2.3), i.e., the outcoming flow u|∂+ΩM , must be used for the inverse prob-
lem of determining the source. This inverse problem has the very essential (and not
although quite physical) requirement on the source to depend polynomially on the direc-
tion ξ. The operator d gives us the next means of constructing sources which are invisible
from outside and polynomial in ξ: if v ∈ C∞(Sm−1τ ′

M) and v|∂M = 0, then the source
F (x, ξ) = (dv)i1...imξi1 . . . ξim is invisible from outside. Does this construction exhaust all
sources that are invisible from outside and polynomial in ξ? It is the physical interpreta-
tion of the problem 1.2.1.

1.3 Some remarks

In geophysics the so-called inverse kinematic problem of seismics is well known which is
formulated as follows. In a domain D ⊂ Rn there is a simple Riemannian metric of the
type g = n(x)ge, where ge is the Euclidean metric. One has to determine the function
n(x) by the hodograph Γg. In geophysics the metrics of such type are called isotropic.
Linearization of this problem in the class of isotropic metrics leads to Problem 1.1.2 in
the case m = 0. Due to their significance for practice, these problems attract attention of
geophysicists and mathematicians for a long time. We refer the reader to the book [109]
that contains a discussion of these problems as well as an extensive bibliography.
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Questions of the following type seems to be of interest. Is it possible to determine
by the hodograph of a metric whether the latter has various geometrical properties? For
instance, is it flat, conformally flat, of constant-sign curvature, does it decompose into
a product of two metrics and so on? Clearly, each of these questions is correct only if
Problem 1.1.1 has a positive answer for the corresponding class of metrics. For example,
if we are interested in how to determine by the hodograph whether a metric is flat, the
first question we have to answer is: may the hodographs of two metrics coincide provided
that one of these metrics is flat and another is not flat? In other words, we have to solve
Problem 1.1.1 under the complementary condition of flatness of g0. The author has thus
arrived at Problem 1.1.1. Independently this problem has been formulated by R. Michel
[80]. We will now list the known results on Problem 1.1.1. In [8] Yu. E. Anikonov
has proved an assertion that amounts to the following: a simple Riemannian metric
on a compact two-dimensional manifold M is flat if and only if any geodesic triangle
with vertices on ∂M has the sum of angles equal to π. As is easily seen these angles
can be expressed by the hodograph. Thus, this result answers the question: how to
determine whether a metric is flat given the hodograph? A similar result was obtained
by M. L. Gerver and N. S. Nadirashvili [37]. R. Michel obtained a positive answer to
Problem 1.1.1 in the two-dimensional case when g0 has the constant Gauss curvature [80].
A positive answer to Problem 1.1.1 for a rather wide class of two-dimensional metrics
has been obtained in [38]. We see that all above mentioned results are dealing with
the two-dimensional case. The first and, as the author knows, the only result in the
multidimensional case has been obtained by M. Gromov [42]. He has found a positive
answer to Problem 1.1.1 under the assumption of flatness of one of the two metrics.

In the case m = 0 a solution to the linear problem 1.1.2 for simple metrics was found
by R. G. Mukhometov [83, 86], I. N. Bernstein and M. L. Gerver [12], and in the case
m = 1, by Yu. E. Anikonov and V. G. Romanov [7, 10]. In [87] R. G. Mukhometov
generalized these results to metrics whose geodesics form a typical caustics. For m ≥ 2
no result like these has been obtained until now.

The kinetic equation on Riemannian manifolds and related questions of theoretical
photometry are discussed in the articles by V. R. Kireytov [58, 59]. The inverse problems
for the kinetic equation were investigated by A. Kh. Amirov [3, 4].

The first idea arising in any attempt at constructing a counter-example to Problem
1.2.2 is as follows. Is it possible that the equation (1.2.4) has a finite solution u(x, ξ)
which is polynomial in ξ of degree strictly greater than m − 1. It turns out that such
counter-example does not exist. This statement was proved by the author [114] for any
connected Riemannian manifold (M, g), in which the requirement of compactness of the
support can be replaced by the assumption that in the case n = dim M ≥ 3 a few first
derivatives of the solution u(x, ξ) are equal to zero at a point x0 ∈ M and in the case
n = 2 that all derivatives vanish at the point.
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Chapter 2

The ray transform of symmetric
tensor fields on Euclidean space

The chapter is devoted to the theory of the ray transform I in the case when the manifold
M under consideration coincides with Rn and the metric of Rn is Euclidean. In other
words, in this chapter I is the integration of a symmetric tensor field along straight lines.
The theory of the ray transform on Rn, developed below, has much in common with the
classical theory of the Radon transform [35, 48]. However, there is an essential difference
between these theories stipulated by the next fact: if considered on the space of symmetric
tensor fields of degree m, the operator I has a nontrivial kernel in the case m > 0 . This
circumstance plays an important role through the whole theory.

Section 2.1 contains the definitions of the ray transform and some differential opera-
tors that are needed for treating it. Then some relationship between I and the Fourier
transform is established.

Sections 2.2–2.5 are devoted to investigation of the kernel of I on the space of compact-
ly-supported tensor fields. In this investigation a differential operator W arises which plays
an essential role in the theory of the ray transform as well as in its applications. We call
W the Saint Venant operator for the reason explained at the end of Section 2.2.

It is well known that a vector field can be represented as a sum of a potential and
solenoidal fields. A similar assertion is valid for a symmetric tensor field of arbitrary
degree. This fact plays an important role in the theory of the ray transform. Two
versions of such representation are given in Section 2.6.

Sections 2.7–2.10 are devoted to the description of the range of the ray transform
on the space of the smooth rapidly decreasing fields. Here the main role is played by
the differential equations obtained at first by F. John [56] in the case m = 0, n = 3. In
the articles by I. . Gelfand, S. G. Gindikin, . I. Graev and Z. Ja. Shapiro [31, 34] these
equations were generalized to the operator of integration of a function on p-dimensional
planes (p ≤ n − 2), their geometrical as well as topological meaning was explicated. Our
proof of sufficiency of the John conditions begins by the same scheme as in [34]; however,
in this way we have soon arrived at new aspects of the problem which are stipulated by
nontriviality of the kernel of I. We have grouped these aspects in two theorems: a theorem
on the tangent component and a theorem on conjugate tensor fields on a sphere, which
are also of some interest by themselves. Proving the last theorem, the author ran into an
algebraic problem which was kindly solved by I. V. L’vov at the author’s request. This

21
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algebraic theorem is presented in Section 2.9.

Sections 2.11–2.14 are devoted to the inversion formulas for the ray transform. We
present two formulas; the first recovers the solenoidal part of a field f from If and the
second, the value Wf of the Saint Venant operator. The components of Wf form a full
family of local linear functionals that can be determined by the integrals If.

The classic Plancherel formula asserts that the Fourier transform is an isometry of the
space L2(R

n). Yu. G. Reshetnyak obtained a formula that expresses ‖f‖L2(Rn) through
the norm ‖Rf‖H of the Radon transform of the function f , where ‖ · ‖H is some special
norm on the space of functions defined on the set of all hyperplanes. Later this formula
was called the Plancherel formula for the Radon transform by the authors of the books
[35, 48]. It allows one to extend R to L2(R

n). In Section 2.15 a similar result is obtained
for the ray transform.

In Section 2.16 an application of the ray transform to an inverse problem of photoe-
lasticity is presented.

Section 2.17 contains bibliographical references as well as the formulations of some
results that are not included into the main exposition.

2.1 The ray transform and its relationship

to the Fourier transform

First of all we will agree upon the terminology and notations related to the tensor algebra.
Then we will introduce various spaces of tensor fields and define the differential operators
that are needed for investigating the ray transform: the operator of inner differentiation,
the divergence and the Saint Venant operator. After this we define the ray transform and
establish its relationship to the Fourier transform.

We consider Rn as a Euclidean vector space with scalar product 〈x, y〉 and norm |x|.
From now on we always assume that n ≥ 2. We put Rn

0 = Rn\{0}. If e1, . . . , en is a basis
for Rn, then we assign gij = 〈ei, ej〉. Let (gij) be the inverse matrix to (gij). We restrict
ourselves to using only affine coordinate systems on Rn.

Given an integer m ≥ 0, by Tm = Tm(Rn) we mean the complex vector space of all
functions Rn × . . . ×Rn → C (there are m factors to the left of the arrow, C is the field
of complex numbers) that are R-linear in each of its argument, and by Sm = Sm(Rn) the
subspace of Tm that consists of the functions symmetric in all arguments. The elements
of Tm (Sm) are called tensors (symmetric tensors) of degree m on Rn. Let σ : Tm → Sm

be the canonical projection (symmetrization) defined by the equality

σu(x1, . . . , xm) =
1

m!

∑

π∈Πm

u(xπ(1), . . . , xπ(m)) (2.1.1)

where the summation is taken over the group Πm of all permutations of the set {1, . . . , m}.
We identify the space T 1 = S1 with Cn by the equality (x + iy)(z) = 〈x, z〉 + i〈y, z〉 for
x, y, z ∈ Rn. We also assume that Tm = Sm = 0 for m < 0.

If e1, . . . , en is a basis for Rn, then the numbers ui1...im = u(ei1 , . . . , eim) are called
the covariant coordinates or components of the tensor u ∈ Tm relative to the given basis.
Assuming the choice of the basis to be clear from the context, we shall denote this fact by
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the record u = (ui1...im). Alongside the covariant coordinates the contravariant coordinates

ui1...im = gi1j1 . . . gimjmuj1...jm
(2.1.2)

are useful too. We recall the summation rule: on repeating sub- and super-indices in a
monomial the summation from 1 to n is understood. It is evident that the scalar product
on Tm defined by the formula

〈u, v〉 = ui1...imvi1...im (2.1.3)

(the bar denotes complex conjugation) does not depend on the choice of the basis.
Together with operator (2.1.1) of full symmetrization, we will make use of the sym-

metrization with respect to a part of indices that is in coordinate form defined by the
equality

σ(i1 . . . ip)ui1...im =
1

p!

∑

π∈Πp

uiπ(1)...iπ(p)ip+1...im

We shall also need the alternation with respect to two indices

α(i1i2)ui1i2j1...jp
=

1

2
(ui1i2j1...jp

− ui2i1j1...jp
).

Symmetrization with respect to all indices will be denoted without indicating arguments,
i. e., by σ. A record of the next type

sym ui1...ikj1...jl
: (i1 . . . ik−1)ik(j1 . . . jl−1)jl (2.1.4)

is convenient for notation of the partial symmetry of the tensor u. Namely, (2.1.4) denotes
the fact that the tensor u is symmetric with respect to each group of indices in parentheses.

We recall that the tensor product u ⊗ v ∈ T k+m is defined for u ∈ T k, v ∈ Tm by the
equality

u ⊗ v(x1, . . . , xk+m) = u(x1, . . . , xk)v(xk+1, . . . , xk+m).

The symmetric tensor product defined by the equality uv = σ(u ⊗ v) turns S∗ =
∞⊕

m=0
Sm

to the commutative graded algebra. By iu : S∗ → S∗ we mean the operator of symmetric
multiplication by u and by ju, the operator dual to iu. In coordinate form they are written
as follows:

(iuv)i1...ik+m
= σ(ui1...ikvik+1...ik+m

),

(juv)i1...im−k
= vi1...imuim−k+1...im

(2.1.5)

for u ∈ Sk, v ∈ Sm. The tensor juv will also be denoted by v/u. A particular role will be
played by the operators ig and jg, where g = (gij) is the metric tensor. We will therefore
distinguish them by putting i = ig, j = jg. Let us extend the scalar product (2.1.3) to
S∗, by declaring Sk and Sl orthogonal to each other in the case of k 6= l.

For f ∈ Sm, ξ ∈ Rn ⊂ Cn = S1, the equality

〈f, ξm〉 = fi1...imξi1 . . . ξim

is valid which we will make use of abbreviating various formulas.
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For an open U ⊂ Rn, let D′(U) be the space of all distributions (generalized functions)
on U. For any space A ⊂ D′(U) of distributions on U, we put A(Sm; U) = A⊗CSm. If A
is considered with a topology, then we endow A(Sm; U) with the topology of the tensor
product (there is no problem with its definition because Sm has a finite dimension).
The notation A(Sm;Rn) will usually be abbreviated to A(Sm). For T ∈ A(Sm; U), the
components Ti1...im ∈ A are defined; we will denote this fact by the same record T =
(Ti1...im) as before. If A consists of ordinary functions, i.e., A ⊂ L

1,loc(U) (L
1,loc(U)

is the space of functions locally summable on U ), then a field u ∈ A(Sm; U) can be
considered as a function on U with values in Sm. In accord with this scheme the next
spaces are introduced in particular:

C l(Sm; U) — the space of l times continuously differentiable symmetric tensor fields
on U ;

E(Sm; U) — the space of smooth (infinitely differentiable) fields;
D(Sm; U) — the space of compactly-supported smooth fields;
L

1,loc(S
m; U) — the space of locally summable or ordinary fields;

D′(Sm; U) — the space of symmetric tensor field-distributions (or the space of gener-
alized symmetric tensor fields);

E ′(Sm; U) — the space of compactly-supported tensor field-distributions;
S(Sm) — the space of smooth fields rapidly decreasing with all derivatives on Rn;
L2(S

m) — the space of square integrable fields.
Each of these spaces is furnished with the corresponding topology. Considered without

any topology, the space E(Sm; U) will also be denoted by C∞(Sm; U). The scalar product
on L2(S

m) is defined by the formula

(u, v)L2(Sm) =
∫

Rn

〈u(x), v(x)〉 dV n(x) (2.1.6)

in which dV n(x) = [det(gij)]
1/2dx1 ∧ . . . ∧ dxn is the Lebesgue measure. The lower index

will sometimes be omitted in (2.1.6) if such abbreviation is not misleading.
If L is a linear topological space and L′ is its dual space, then by 〈T, ϕ〉 we mean

the value of the functional T ∈ L′ at the element ϕ ∈ L. The space L′ will usually
be considered with the strong topology. We identify the space D′(Sm) with the dual of
D(Sm), and the space E ′(Sm) with the space dual of E(Sm), by the formula

〈T, ϕ〉 = 〈Ti1...im , ϕi1...im〉.

For an ordinary field u ∈ L
1,loc(S

m; U), this equality takes the next form

〈u, ϕ〉 =
∫

U

〈u(x), ϕ(x)〉 dV n(x) (ϕ ∈ D(Sm; U)). (2.1.7)

Note that on the left-hand side of this equality the angle brackets mean the value of a
distribution while on the right-hand side they denote the scalar product. The author
hopes that the coincidence of these notations will not confuse.

Given an affine coordinate system (x1, . . . , xn), we define the operator of (covariant)
differentiation ∇ : C∞(Tm) → C∞(Tm+1) by the equalities ∇u = (ui1...im ; j), ui1...im ; j =
∂ui1...im/∂xj. Evidently, it does not depend on the choice of a coordinate system. The
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following circumstance is rather essential: the iterated derivative ∇ku = (ui1...im ; j1...jk
)

is symmetric in j1, . . . , jk. The operator d = σ∇ : C∞(Sm) → C∞(Sm+1) is called the
inner differentiation, the divergence operator δ : C∞(Sm) → C∞(Sm−1) in coordinate
form is defined by the equality (δu)i1...im−1 = ui1...im ; im+1g

imim+1 . The operators d and −δ
are formally dual to each other with respect to the scalar product (2.1.6). Moreover, for a
compact domain G ⊂ Rn bounded by a piece-smooth hypersurface ∂G, the next Green’s
formula is valid:

∫

G

[〈du, v〉 + 〈u, δv〉] dV n =
∫

∂G

〈iνu, v〉 dV n−1 (2.1.8)

where dV n−1 is the (n − 1)-dimensional area on ∂G and ν is the unit vector of the outer
normal to ∂G. To prove (2.1.8), it suffices to write down the identity

〈du, v〉 = ui1...im ; im+1v
i1...im+1 = (ui1...imvi1...im+1) ; im+1 − 〈u, δv〉,

to introduce the vector field ξ by the equality ξj = ui1...imvi1...imj and to apply the Gauss-
Ostrogradskĭı formula to ξ.

The Saint Venant operator W : C∞(Sm) → C∞(Sm ⊗ Sm) is defined by the equality

(Wu)i1...imj1...jm
= σ(i1 . . . im)σ(j1 . . . jm)

m∑

p=0

(−1)p

(
m
p

)
ui1...im−pj1...jp ; jp+1...jmim−p+1...im

(2.1.9)

where

(
m
p

)
= m!

p!(m − p)!
are the binomial coefficients.

By the ray transform of a field f ∈ C∞(Sm) we shall mean the function If defined on
Rn × Rn

0 by the equality

If(x, ξ) =

∞∫

−∞

〈f(x + tξ), ξm〉 dt (2.1.10)

under the condition that the integral converges. From this definition, we immediately de-
rive that the function ψ(x, ξ) = If has the following homogeneity in its second argument:

ψ(x, tξ) =
tm

|t|ψ(x, ξ) (0 6= t ∈ R) (2.1.11)

and satisfies the identity

ψ(x + tξ, ξ) = ψ(x, ξ) (t ∈ R) (2.1.12)

which shows that ψ(x, ξ) = If is constant with respect to its first argument on the straight
line passing through the point x in the direction ξ.

Let TΩ = {(x, ξ) ∈ Rn ×Rn | 〈x, ξ〉 = 0, |ξ| = 1} be the space of the tangent bundle
of the unit sphere Ω = Ωn−1 = {ξ ∈ Rn | |ξ| = 1}. Equalities (2.1.11) and (2.1.12) imply
that the function ψ can be recovered from its trace ϕ = ψ|TΩ on TΩ by the formula

ψ(x, ξ) = |ξ|m−1ϕ

(
x − 〈x, ξ〉

|ξ|2 ξ,
ξ

|ξ|

)
. (2.1.13)
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In various sections of this chapter the ray transform If of a field f will be understood as
follows: either as a function on Rn ×Rn

0 or as a function on TΩ. It will be clear from the
context which of these ways is taken. By (2.1.13), the two ways are equivalent.

Let us observe that the operator I has a nontrivial kernel. Indeed, if the field v ∈
C∞(Sm−1) satisfies the condition v(x) → 0 as |x| → ∞, then

(Idv)(x, ξ) = lim
a→∞

a∫

−a

d

dt
〈v(x + tξ), ξm−1〉 dt = 0.

Under some conditions on the behavior of the field f(x) at infinity, the converse assertion is
valid: the equality If = 0 implies existence of a field v such that f = dv. In Section 2.4 this
statement will be proved for compactly-supported f and in Section 2.6, for f ∈ L2(S

m).
We shall use the Fourier transform on Rn in the following form:

F [f ] = f̂(y) = (2π)−n/2
∫

Rn

f(x) e−i〈y,x〉 dV n(x).

We define the Fourier transform F : S(Sm) → S(Sm) by components, i.e., (F [f ])i1...im =
F [fi1...im ]. By the Fourier-Plancherel theorem it is extendible to an isometry of the space
L2(S

m).
Let S(TΩ) be the space of smooth functions ϕ(x, ξ) on TΩ such that all their deriva-

tives decrease rapidly in the first argument. The Fourier transform F : S(TΩ) → S(TΩ)
is defined by the formula

ϕ̂(y, ξ) = (2π)(1−n)/2
∫

ξ⊥

ϕ(x, ξ) e−i〈y,x〉 dV n−1(x) (2.1.14)

where ξ⊥ = {x ∈ Rn | 〈x, ξ〉 = 0}, and dV n−1(x) is the (n − 1)-dimensional Lebesgue
measure on ξ⊥. Thus, it is the ordinary Fourier transform in the (n − 1)-dimensional
variable x, where ξ stands as a parameter.

It is easily seen that If ∈ S(TΩ) for f ∈ S(Sm), and the operator I : S(Sm) → S(TΩ)
is bounded. For f ∈ S(Sm), the relationship between the ray transform and the Fourier
transform is expressed by the equality

Îf(y, ξ) = (2π)1/2〈f̂(y), ξm〉 ((y, ξ) ∈ TΩ). (2.1.15)

Indeed, let |ξ| = 1. Substituting x = x′ + tξ, x′ ∈ ξ⊥ into the integral

〈f̂(y), ξm〉 = (2π)−n/2
∫

Rn

〈f(x), ξm〉 e−i〈y,x〉 dV n(x),

we obtain

〈f̂(y), ξm〉 = (2π)−n/2
∫

ξ⊥




∞∫

−∞

〈f(x′ + tξ), ξm〉 e−it〈y,ξ〉 dt


 e−i〈y,x′〉 dV n−1(x′).

If 〈y, ξ〉 = 0, i.e., (y, ξ) ∈ TΩ, then the previous equality gives

〈f̂(y), ξm〉 = (2π)−n/2
∫

ξ⊥

If(x, ξ) e−i〈y,x〉 dV n−1(x)

which coincides with (2.1.15).
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2.2 Description of the kernel of the ray transform

in the smooth case

Theorem 2.2.1 Let n ≥ 2 and m ≥ 0 be integers, l = max{m, 2}. For a compactly-
supported field f ∈ C l(Sm;Rn) the following statements are equivalent:

(1) If = 0;

(2) there exists a compactly-supported field v ∈ C l+1(Sm−1;Rn) such that its support
is contained in the convex hull of the support of f and

dv = f ; (2.2.1)

(3) the equality

Wf = 0 (2.2.2)

is valid in Rn.

This theorem answers to the question: to what extent is a compactly-supported field
h ∈ C l(Sm) determined by its ray transform Ih? According to the claims (2) and (3) of
the theorem, the answer is given in two forms. First, Ih determines h up to a summand of
the type f = dv where v is an arbitrary compactly-supported field of degree m−1. Second,
there is a system of local linear functionals of the field h which is uniquely determined
by the integral information Ih. Namely, the family of the components of the field Wh is
such a system. Moreover, this family is a full system of the local linear functionals which
can be restored by Ih.

The scheme of the proof of theorem 2.2.1 is as follows. We start with proving equiv-
alence of claims (1) and (2) in the case n = 2. Then we prove the equivalence of (2) and
(3) for an arbitrary n. After this equivalence of (1) and (2) for an arbitrary n follows from
the next two observations :

(a) I and W commute with the operator that restricts tensor fields onto affine sub-
spaces of Rn;

b) for f ∈ C l(Sm;Rn), if the restriction of the field Wf on each two-dimensional plane
is equal to zero, then Wf = 0.

The last claim follows from the fact that the field Wf has the next symmetry

sym (Wf)i1...imj1...jm
: (i1 . . . im)(j1 . . . jm)

as one can see from definition (2.1.9).

Equation (2.2.1) can be considered not only on the whole Rn but also on a domain
U ⊂ Rn. If U is a simply-connected domain, then condition (2.2.2) remains sufficient for
solvability of equation (2.2.1) as the next theorem shows.

Theorem 2.2.2 Let U be a domain in Rn, x0 ∈ U, m ≥ 1 be an integer, f ∈ Cm(Sm; U),
and vp ∈ Tm+p−1 (0 ≤ p ≤ m − 1). Equation (2.2.1) has at most one solution v ∈
Cm+1(Sm−1; U) that satisfies the initial conditions

∇pv(x0) = vp (p = 0, 1, . . . ,m − 1). (2.2.3)
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For existence of a solution v ∈ Cm+1(Sm−1; U) to problem (2.2.1), (2.2.3), it is necessary
that the right-hand side of equation (2.2.1) satisfies condition (2.2.2), and the tensors vp

have the symmetries

sym (vp
i1...im+p−1

) : (i1 . . . im−1)(im . . . im+p−1) (p = 0, 1, . . . ,m − 1) (2.2.4)

and satisfy the relations

σ(i1 . . . im)vp
i1...im+p−1

= fi1...im ; im+1...im+p−1(x0) (p = 1, . . . , m − 1). (2.2.5)

If U is a simply-connected domain, then conditions (2.2.2), (2.2.4), (2.2.5) are sufficient
for existence a solution v ∈ Cm+1(Sm−1; U) to problem (2.2.1), (2.2.3).

Let us note that v is a function in the case m = 1 and equation (2.2.1) looks like:
dv = fidxi. In this case equality (2.2.2) is the well-known condition of integrability for
a Pfaff form: ∂fi/∂xj = ∂fj/∂xi. In the case m = 2 Theorem 2.2.2 is well known in
deformation theory [91]. In this case equation (2.2.1) looks like: vi ; j + vj ; i = 2fij; and,
by Lemma 2.4.2 below, equation (2.2.2) takes the form fij ; kl + fkl ; ij − fil ; jk − fjk ; il = 0
and is called the deformations compatibility condition. It was obtained by Saint Venant
and therefore the operator W is named after him.

2.3 Equivalence of the first two statements of

Theorem 2.2.1 in the case n = 2

If claim (2) of Theorem 2.2.1 holds, then

If(x, ξ) =

∞∫

−∞

d

dt
〈v(x + ξt), ξm−1〉 dt = 0.

Thus (2) → (1) for arbitrary n.
In the proof of the implication (1) → (2) in the case n = 2 we will use Fourier series

in the form that differs slightly from the ordinary one and is described as follows.

Lemma 2.3.1 For an integer p ≥ 0, the system of 2p + 1 functions

cosp−i−1 θ sini θ (0 ≤ i ≤ p − 1), cosp−i θ sini θ (0 ≤ i ≤ p)

is linearly independent over (−π, π). If Vp is the linear span of this system and Up is the
closure of the linear span of the system

cos kθ, sin kθ (k = p + 1, p + 2, . . .)

in L2(−π, π), then L2(−π, π) = Vp
⊕

Up and the summands are orthogonal to each other.

To verify this, it is enough to notice the coincidence of Vp with the linear span of the
system

cos kθ, sin kθ (0 ≤ k ≤ p).
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Let us begin proving the implication (1) → (2) for n = 2. Let (x, y) = (x1, x2) be
a Cartesian coordinate system in R2. In R2 a symmetric tensor of degree m has only
m + 1 different components. Therefore it is convenient to introduce another notation for
components by putting f̃i = f1...12...2 (0 ≤ i ≤ m); index 1 is repeated i times, and 2 is
repeated m − i times. We also assume that f̃i = 0 when either i < 0 or i > m. Equality
(2.2.1) can be rewritten in this notation as follows:

f̃i =
1

m

[
i
∂ṽi−1

∂x
+ (m − i)

∂ṽi

∂y

]
(i = 0, . . . , m), (2.3.1)

and claim (1) of theorem 2.2.1 looks like:

∞∫

−∞

m∑

i=0

(
m
i

)
f̃i(x + t cos θ, y + t sin θ) cosi θ sinm−i θ dt = 0. (2.3.2)

This equality holds identically on x, y, θ. For x, y, θ ∈ R, we put

w(x, y, θ) =

0∫

−∞

m∑

i=0

(
m
i

)
f̃i(x + t cos θ, y + t sin θ) cosi θ sinm−i θ dt. (2.3.3)

The function w(x, y, θ) is of class C2 with respect to the set of all its arguments and, by
(2.3.2), satisfies the identity

w(x, y, θ + π) = (−1)m+1w(x, y, θ). (2.3.4)

It follows from (2.3.3) that w satisfies the equation

cos θ wx + sin θ wy =
m∑

i=0

(
m
i

)
f̃i(x, y) cosi θ sinm−i θ (2.3.5)

which is the simplest form of the kinetic equation (compare with (1.2.4)). Here the
notations wx = ∂w/∂x and wy = ∂w/∂y are used. By Lemma 2.3.1, w can be uniquely
represented by the series

w(x, y, θ) =
m−2∑

i=0

βi cosm−i−2 θ sini θ +
m−1∑

i=0

αi cosm−i−1 θ sini θ +

+
∞∑

k=m

(ãk cos kθ + b̃k sin kθ) (2.3.6)

whose coefficients αi, βi, ãk, b̃k are compactly-supported functions of the variables x, y with
continuous derivatives of the first and second order. The series

∞∑

k=m

[
(ãk

x)
2 + (ãk

y)
2 + (b̃k

x)
2 + (b̃k

y)
2
]

converges uniformly in (x, y) ∈ R2 (we assume here that the components of the field f
are real; it is sufficient to prove theorem 2.2.1 in this case). From (2.3.4), we see that
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β1 = . . . = βm = ãm = b̃m = ãm+2 = b̃m+2 = . . . = 0, and (2.3.6) can be rewritten as
follows:

w =
m−1∑

i=0

αi cosm−i−1 θ sini θ +
∞∑

k=0

[
ak cos(m + 2k + 1)θ + bk sin(m + 2k + 1)θ

]
. (2.3.7)

Series (2.3.7) is differentiable termwise with respect to x, y because w ∈ C2. We
substitute the so-find values of wx and wy into (2.3.5) and then transform the left-hand
sides of this equation to a series of type (2.3.6) (increasing m by 1). Comparing the
coefficients of the series on the left- and right-hand sides of the so-obtained equality, we
arrive at the next infinite system:

αi
x + αi−1

y + γi(a
0
x + b0

y) + δi(b
0
x − a0

y) =

(
m
i

)
f̃m−i (i = 0, . . . , m), (2.3.8)

ak
x − bk

y = −(ak+1
x + bk+1

y ),

ak
y + bk

x = −(−ak+1
y + bk+1

x )



 (k = 0, 1, . . .) (2.3.9)

where it is assumed that α−1 = αm = 0, and the numbers γi, δi are the coefficients of the
expansions

cos mθ =
m∑

i=0

γi cosm−i θ sini θ, sin mθ =
m∑

i=0

δi cosm−i θ sini θ.

Let us show that (2.3.9) implies

ak ≡ bk ≡ 0 (k = 0, 1, . . .) (2.3.10)

Indeed, squaring each of the equalities (2.3.9) and summing them, we obtain

(ak
x)

2 + (ak
y)

2 + (bk
x)

2 + (bk
y)

2 + 2

[
∂

∂x
(ak

yb
k) − ∂

∂y
(ak

xb
k)

]
=

= (ak+1
x )2 + (ak+1

y )2 + (bk+1
x )2 + (bk+1

y )2 + 2

[
∂

∂x
(ak+1

y bk+1) − ∂

∂y
(ak+1

x bk+1)

]
.

The expressions in brackets have a divergence form and, consequently, vanish after inte-
gration over R2. We thus obtain

ck ≡
∫∫

R2

[
(ak

x)
2 + (ak

y)
2 + (bk

x)
2 + (bk

y)
2
]
dxdy = ck+1 (k = 0, 1, . . .).

The series
∑∞

k=0 ck converges as we have seen before. Therefore all ck = 0, (2.3.10) is
valid.

Equalities (2.3.8) now look like:
(
m
i

)
f̃m−i = αi

x + αi−1
y (i = 0, . . . , m).

Defining ṽi by the equality (m − i)

(
m
i

)
ṽi = mαm−i−1 (0 ≤ i ≤ m − 1), we arrive at

(2.3.1) which is equivalent to the relation f = dv.
By (2.3.3), suppx,yw is contained in the convex hull of the support of f. Consequently,

the same is true for supp v. Examining the above proof, one can see that smoothness of
the field v is not less than that of f, i.e., v ∈ C l(Sm−1) if f ∈ C l(Sm). Nevertheless, (2.2.1)
implies v ∈ C l+1(Sm−1) as will be shown later in the proof of Theorem 2.2.2.
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2.4 Proof of Theorem 2.2.2

First of all, the part of Theorem 2.2.1 which remains unproved, namely, the equivalence
of claims (2) and (3) in this theorem, is a consequence of Theorem 2.2.2. The proof of
Theorem 2.2.2 given below is based on the following observation: being differentiated
(m − 1) times, equation (2.2.1) can be resolved with respect to ∇mv.

At first we give a few purely algebraic propositions.

Lemma 2.4.1 For 1 ≤ l ≤ m, let a tensor y ∈ Tm have the symmetry

sym yi1...im : (i1 . . . il)(il+1 . . . im). (2.4.1)

Then the next equality holds:

σ(i1 . . . im)yi1...im =
1

m
σ(i1 . . . im−1)

[
(m − l)yi1...im + lyimi1...im−1

]
. (2.4.2)

P r o o f. By definition,

σ(i1 . . . im)yi1...im =
1

m!

∑

π

yiπ(1)...iπ(m)
.

We combine the summands of this sum according to the position of the index im. We then
get

σ(i1 . . . im)yi1...im =
1

m
σ(i1 . . . im−1)

[
yimi1...im−1 + yi1imi2...im−1 + . . . + yi1...im

]
.

By (2.4.1), the first l summands in the brackets coincide; in the other summands the
index im can be moved to the final position. The lemma is proved.

We call (2.4.2) the formula of decomposition of the symmetrization σ(i1 . . . im) with
respect to the index im. Of course, similar formulas are valid for other indices of the tensor
y possessing a symmetry of the type (2.4.1).

We define the operator V : C∞(Sm) → C∞(T 2m) by the equality

(V f)i1...imj1...jm
= α(imjm) σ(i1 . . . im−1) σ(j1 . . . jm−1)×

×
m−1∑

p=0

(−1)p

(
m − 1

p

)
fi1...im−p−1imj1...jp ; jp+1...jmim−p...im−1 . (2.4.3)

Lemma 2.4.2 For f ∈ C∞(Sm), the next relations are valid:

σ(i1 . . . im) σ(j1 . . . jm) (V f)i1...imj1...jm
=

1

2
(Wf)i1...imj1...jm

, (2.4.4)

α(imjm) (Wf)i1...imj1...jm
=

m + 1

m
(V f)i1...imj1...jm

. (2.4.5)
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P r o o f. From the definition of V and the evident equality

σ(i1 . . . im) σ(j1 . . . jm) α(imjm) σ(i1 . . . im−1) σ(j1 . . . jm−1) =

= σ(i1 . . . im) σ(j1 . . . jm) α(imjm),

we obtain

σ(i1 . . . im) σ(j1 . . . jm) (V f)i1...imj1...jm
=

1

2
σ(i1 . . . im) σ(j1 . . . jm)

m−1∑

p=0

(−1)p

(
m − 1

p

)
×

×
[
fi1...im−pj1...jp ; jp+1...jmim−p+1...im − fi1...im−p−1j1...jp+1 ; jp+2...jmim−p...im

]
.

Combining the second summand in the brackets of the p-th term of the sum with the first
summand of the (p + 1)-st term, we arrive at (2.4.4).

Decomposing the symmetrizations σ(i1 . . . im) and σ(j1 . . . jm) in the definition (2.1.9)
of the operator W with respect to indices im and jm, we obtain

(Wf)i1...imj1...jm
= σ(i1 . . . im−1) σ(j1 . . . jm−1)

m∑

p=0

(−1)p

(
m
p

)
1

m2

[
h +

+ p2fi1...im−pj1...jp−1jm ; jp...jm−1im−p+1...im + (m − p)2fi1...im−p−1imj1...jp ; jp+1...jmim−p...im−1

]

where h denotes some tensor symmetric in im, jm. Applying the operator α(imjm) to this
equality and taking it into account that the last operator commutes with σ(i1 . . . im−1)
and σ(j1 . . . jm−1), we have

α(imjm) (Wf)i1...imj1...jm
= α(imjm) σ(i1 . . . im−1) σ(j1 . . . jm−1)

m∑

p=0

(−1)p

(
m
p

)
1

m2
×

×
[
(m − p)2fi1...im−p−1imj1...jp ; jp+1...jmim−p...im−1 −

− p2fi1...im−pimj1...jp−1 ; jp...jmim−p+1...im−1

]
.

Combining the first summand in the brackets of the p-th term of the sum with the second
summand of the (p + 1)-st term, we get (2.4.5). The lemma is proved.

For f ∈ C∞(Sm), we define Rf ∈ C∞(T 2m) by the equality

(Rf)i1j1...imjm = α(i1j1) . . . α(imjm)fi1...im ; j1...jm .

This tensor is skew-symmetric with respect to each pair of indices (i1, j1), . . . , (im, jm) and
symmetric with respect to these pairs. Consequently, R : C∞(Sm) → C∞(Sm(Λ2)), where
Λ2 = Λ2Rn is the exterior square of the space Rn. The next equalities can be proved in
the same way as Lemma 2.4.2:

(Wf)i1...imj1...jm = σ(i1 . . . im) σ(j1 . . . jm) (Rf)i1j1...imjm , (2.4.6)

(Rf)i1j1...imjm
= (m + 1) α(i1j1) . . . α(imjm) (Wf)i1...imj1...jm

. (2.4.7)

Relations (2.4.4)–(2.4.7) show that the equalities Wf = 0, V f = 0 and Rf = 0 are
equivalent. Thus V and R can be considered as instances of the Sent Venant operator.
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Each of these three operators has its own advantages. For instance, the operator V is
more directly related to the integrability conditions for equation (2.2.1), as we shall see
later. The operator R has the most of symmetries (which are similar to the symmetries
of the curvature tensor [25]) and, consequently, is more appropriate for answering the
question about a number of linearly independent equations in the system Wf = 0. We
have preferred W because it can be generalized more directly to the case of the equation
dpv = f (see Section 2.17).

Lemma 2.4.3 For every tensor f ∈ T 2m−1 (m ≥ 1) possessing the symmetry

sym fi1...imj1...jm−1 : (i1 . . . im)(j1 . . . jm−1), (2.4.8)

there exists a unique solution to the equation

σ(i1 . . . im)ui1...imj1...jm−1 = fi1...imj1...jm−1 (2.4.9)

possessing the symmetry

sym ui1...imj1...jm−1 : (i1 . . . im−1)(imj1 . . . jm−1). (2.4.10)

This solution is given by the formula

ui1...imj1...jm−1 = σ(i1 . . . im−1) σ(imj1 . . . jm−1)
m∑

p=1

(−1)p−1

(
m
p

)
×

×fi1...im−pimj1...jm−1im−p+1...im−1 . (2.4.11)

P r o o f. The dimension of the space formed by tensors possessing the symmetry
(2.4.8) is equal to the dimension of the space formed by tensors possessing the symmetry
(2.4.10). Consequently, the lemma will be proved if we verify that the tensor u defined
by formula (2.4.11) is a solution to equation (2.4.9).

Decomposing the symmetrization σ(imj1 . . . jm−1) in (2.4.11) with respect to the index
im and using the equality σ(i1 . . . im) σ(i1 . . . im−1) = σ(i1 . . . im), we obtain

σ(i1 . . . im)ui1...imj1...jm−1 =
1

m
σ(i1 . . . im) σ(j1 . . . jm−1)

m∑

p=1

(−1)p−1

(
m
p

)
×

×
[
pfi1...im−pimj1...jm−1im−p+1...im−1 + (m − p)fi1...im−pj1...jm−1imim−p+1...im−1

]
.

Combining the second summand of the brackets of the p-th term of the sum with the first
summand of the (p + 1)-st term and taking (2.4.8) into account, we arrive at the equality

σ(i1 . . . im)ui1...imj1...jm−1 = fi1...imj1...jm−1 +
1

m
σ(j1 . . . jm−1) σ(i1 . . . im)

m∑

p=2

(−1)p−1×

×
(
m
p

)
p

[
fi1...im−pimj1...jm−1im−p+1...im−1 − fi1...im−p+1j1...jm−1imim−p+2...im−1

]
.

Tensor in the brackets is skew-symmetric with respect to the indices im−p+1, im and,
consequently, is nullified by the operator σ(i1 . . . im). Deleting it, we get (2.4.9). The
lemma is proved.

To prove theorem 2.2.2 we need the next easy
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Lemma 2.4.4 Assume that U is a domain in Rn; x0 ∈ U ; p ≥ 0 and q > 0 are integers;
y ∈ C1(T p+q; U) has the symmetry

sym yi1...ipj1...jq
: i1 . . . ip(j1 . . . jq).

For every tensors zk = (zk
i1...ipj1...jk

) ∈ T p+k (k = 0, . . . , q − 1) the equation

∇qz = y (2.4.12)

has at most one solution z ∈ Cq+1(T p; U) satisfying the initial conditions

∇kz(x0) = zk (k = 0, 1, . . . , q − 1). (2.4.13)

For existence of a solution z ∈ Cq+1(T p; U) to problem (2.4.12)–(2.4.13) it is necessary
that the right-hand side derivative ∇y has the symmetry

sym yi1...ipj1...jq ; jq+1 : i1 . . . ip(j1 . . . jq+1), (2.4.14)

and the tensors zk have the symmetries

sym zk
i1...ipj1...jk

: i1 . . . ip(j1 . . . jk) (k = 0, 1, . . . , q − 1). (2.4.15)

If U is simply-connected, then conditions (2.4.14)–(2.4.15) are sufficient for existence of
a solution to problem (2.4.12)–(2.4.13). If the right-hand side and initial data have the
symmetries

sym yi1...ipj1...jq
: (i1 . . . ip)(j1 . . . jq),

sym zk
i1...ipj1...jk

: (i1 . . . ip)(j1 . . . jk) (k = 0, 1, . . . , q − 1),

then a solution to problem (2.4.12)–(2.4.13) belongs to Cq+1(Sm; U).

For p = 0, q = 1 the lemma is equivalent to the claim of necessity and (in the case of
a simply-connected U) sufficiency of the conditions ∂yi/∂xj = ∂yj/∂xi for integrability of
the Pfaff form yidxi. See the proof of this case in [128]. In the same way the claim can be
verified for p ≥ 0, q = 1. Now the general case can be easily settled by induction on q.

Now we start proving Theorem 2.2.2.
P r o o f of necessity of conditions (2.2.2), (2.2.4), (2.2.5) for existence a solution to

problem (2.2.1), (2.2.3). Let v ∈ Cm+1(Sm−1; U) be a solution to problem (2.2.1), (2.2.3).
The validity of (2.2.4) follows immediately from (2.2.3). Differentiating (2.2.1) p−1 times,
we obtain (2.2.5). It remains to prove (2.2.2). To this end, we differentiate (2.2.1) m − 1
times :

σ(i1 . . . im)vi1...im−1 ; imj1...jm−1 = fi1...im ; j1...jm−1 .

By Lemma 2.4.3, it implies that

vi1...im−1 ; imj1...jm−1 = σ(i1 . . . im−1)σ(imj1 . . . jm−1)
m∑

p=1

(−1)p−1

(
m
p

)
×

×fi1...im−pimj1...jp−1 ; jp...jm−1im−p+1...im−1 .
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Decomposing the operator σ(imj1 . . . jm−1) on the right-hand side of the last equality with
respect to im and differentiating the so-obtained relation, we have

vi1...im−1 ; imj1...jm
= σ(i1 . . . im−1)σ(j1 . . . jm−1)

m∑

p=1

(−1)p−1

(
m
p

)
1

m
×

×
[
pfi1...im−pimj1...jp−1 ; jp...jmim−p+1...im−1 + (m − p)fi1...im−pj1...jp ; jp+1...jmim−p+1...im

]
.

(2.4.16)
The tensor vi1...im−1 ; imj1...jm

is symmetric with respect to im, jm that can be written as
follows:

α(imjm)vi1...im−1 ; imj1...jm
= 0.

Inserting expression (2.4.16) into the last formula, we arrive at the equality

α(imjm)σ(i1 . . . im−1)σ(j1 . . . jm−1)g = 0

where g denotes the sum on the right-hand side of (2.4.16). Note that all three operators
on the left-hand side of the last equality commute; the second summand of the brackets in
(2.4.16) is symmetric with respect to im, jm and, consequently, is nullified by the operator
α(imjm). Discarding this summand, we arrive at the relation V f = 0 which is equivalent
to (2.2.2) by Lemma 2.4.2.

P r o o f of sufficiency of conditions (2.2.2), (2.2.4), (2.2.5) for solvability of problem
(2.2.1), (2.2.3). Let U be simply connected and conditions (2.2.2), (2.2.4), (2.2.5) be
satisfied. By Lemma 2.4.3, the equation

σ(i1 . . . im)yi1...imj1...jm−1 = fi1...im ; j1...jm−1 (2.4.17)

has a solution given by the formula

yi1...imj1...jm−1 = σ(i1 . . . im−1)σ(imj1 . . . jm−1)
m∑

p=1

(−1)p−1

(
m
p

)
×

×fi1...im−pimj1...jp−1 ; jp...jm−1im−p+1...im−1 . (2.4.18)

Consequently, y ∈ C1(T 2m−1; U). Let us show that the field ∇y has the symmetry

sym yi1...imj1...jm−1 ; jm
: (i1 . . . im−1)(imj1 . . . jm). (2.4.19)

Indeed, on differentiating (2.4.18) we obtain

yi1...imj1...jm−1 ; jm
= σ(i1 . . . im−1) σ(imj1 . . . jm−1)

m∑

p=1

(−1)p−1

(
m
p

)
×

×fi1...im−pimj1...jp−1 ; jp...jmim−p+1...im−1 . (2.4.20)

The derivative ∇y is thus seen to be symmetric with respect to i1, . . . , im−1 and also with
respect to im, j1, . . . , jm−1. For this reason, to prove (2.4.19) it suffices to show that

α(imjm)yi1...imj1...jm−1 ; jm
= 0. (2.4.21)
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Inserting the expression (2.4.20) into (2.4.21) and decomposing the operator σ(imj1 . . . jm)
in the so-obtained equality with respect to im, we see that (2.4.21) is equivalent to the
relation V f = 0 and, by Lemma 2.4.2, to relation (2.2.2).

Lemma 2.4.4 and (2.4.19) imply that the problem

∇mv = y, (2.4.22)

∇pv(x0) = vp (p = 0, 1, . . . , m − 1) (2.4.23)

has a solution v ∈ Cm+1(Sm−1; U). Inserting (2.4.22) into (2.4.17), we obtain

σ(i1 . . . im)vi1...im−1 ; imj1...jm−1 = fi1...im ; j1...jm−1 . (2.4.24)

Let us denote
z = dv, (2.4.25)

and rewrite (2.4.24) as follows:
∇m−1z = ∇m−1f. (2.4.26)

It follows from (2.4.23) and (2.2.5) that

∇pz(x0) = ∇pf(x0) (p = 0, 1, . . . , m − 2). (2.4.27)

Applying lemma 2.4.4, from (2.4.26)–(2.4.27) we obtain z ≡ f. By (2.4.25), this is equiv-
alent to (2.2.1). Finally, initial conditions (2.2.3) are satisfied by (2.4.23).

P r o o f of uniqueness of a solution to problem (2.2.1), (2.2.3). Let v ∈ Cm+1(Sm−1; U)
be a solution of the corresponding homogeneous problem

dv = 0, (2.4.28)

∇pv(x0) = 0 (p = 0, 1, . . . , m − 1). (2.4.29)

Differentiating (2.4.28) m − 1 times , we have

σ(i1 . . . im)vi1...im−1 ; imj1...jm−1 = 0.

By Lemma 2.4.3, it implies that ∇mv = 0. Using the last equality, (2.4.29) and Lemma
2.4.4, we obtain v = 0.

2.5 The ray transform of a field-distribution

Let D(Rn × Ω) be the space of smooth compactly-supported functions on Rn × Ω and
D′(Rn × Ω) be the space of distributions on Rn × Ω. We assume that L

1,loc(R
n × Ω) is

included in D′(Rn×Ω), identifying a locally integrable function h(x, ξ) with the functional
on D(Rn × Ω) defined by the formula

〈h, ϕ〉 =
∫

Rn

∫

Ω

h(x, ξ) ϕ(x, ξ) dω(ξ) dV n(x) (ϕ ∈ D(Rn × Ω)), (2.5.1)

where dω is the angle measure on Ω.
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To construct an extension I : E ′(Sm) → D′(Rn ×Ω) of operator (2.1.10) we note that,
for a compactly-supported field f ∈ L

1,loc(S
m), the field h = If belongs to L

1,loc(R
n×Ω).

Consequently, according to (2.5.1) for ϕ ∈ D(Rn × Ω),

〈If, ϕ〉 =
∫

Rn

∫

Ω

∞∫

−∞

〈f(x + tξ), ξm〉ϕ(x, ξ) dt dω(ξ) dV n(x).

After a simple transformation this expression takes the form:

〈If, ϕ〉 =
∫

Rn

fi1...im(x)




∫

Ω

ξi1 . . . ξim

∞∫

−∞

ϕ(x − tξ, ξ) dt dω(ξ)


 dV n(x). (2.5.2)

Defining the field Jϕ ∈ E(Sm) by the formula

(Jϕ)i1...im =
∫

Ω

ξi1 . . . ξim




∞∫

−∞

ϕ(x − tξ, ξ) dt


 dω(ξ), (2.5.3)

we can rewrite equality (2.5.2) as follows:

〈If, ϕ〉 =
∫

Rn

〈f(x), Jϕ(x)〉 dV n(x).

Comparing this with (2.1.7), we have 〈If, ϕ〉 = 〈f, Jϕ〉. The last equality proved for a
compactly-supported f ∈ L

1,loc(S
m), will be taken as grounds for the following definition.

The operator I : E ′(Sm) → D′(Rn × Ω) is given by the formula 〈IF, ϕ〉 = 〈F, Jϕ〉
where F ∈ E ′(Sm), ϕ ∈ D(Rn × Ω), and J : D(Rn × Ω) → E(Sm) is the continuous
operator defined by (2.5.3).

We can now formulate an analog of Theorem 2.2.1 for tensor field-distributions.

Theorem 2.5.1 For a field F ∈ E ′(Sm) the next three claims are equivalent:
(1) IF = 0;
(2) there exists a field V ∈ E ′(Sm−1) such that its support is contained in the convex

hull of the support of F and dV = F ;
(3) WF = 0.

For s ∈ R we denote by Hs(Sm) = Hs⊗CSm the Hilbert space obtained by completing
S(Sm) with respect to the norm ‖f(x)‖s = ‖(1 + |y|)sf̂(y)‖L2(Sm) where f(x) 7→ f̂(y) is
the Fourier transform. Given a compact set K ⊂ Rn, by Ks

K(Sm) we mean the subspace of
Hs(Sm) formed by fields whose supports are contained in K. As a differential operator, d :
Hs(Sm) → Hs−1(Sm+1) is continuous and so is the Saint Venant operator W : Hs(Sm) →
Hs−m(Sm ⊗ Sm).

We fix a function β ∈ C∞
0 (Rn) such that β ≥ 0,

∫
Rn βdx = 1, and suppβ ⊂ {x | |x| ≤

1}. For ε > 0, we put βε(x) = β(x/ε)/εn. For a field-distribution T ∈ D′(Sm) the
convolution T ∗ βε ∈ E(Sm) is defined. We need its properties that are listed in the next

Lemma 2.5.2 The following are valid:
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(1) if T has compact support, then so is T ∗βε; and if K = suppT, then supp(T ∗βε) ⊂
{x | ρ(x,K) ≤ ε} where ρ is the Euclidean distance in Rn;

(2) if T ∈ E ′(Sm), then T ∗ βε converges to T in the space E ′(Sm) as ε → 0;
(3) if T ∈ Hs(Sm), then T ∗βε converges to T in the space Hs(Sm) as ε → 0, for every

s ∈ R;
(4) the operator T 7→ T ∗ βε commutes with d and W ;
(5) the operator T 7→ T ∗ βε commutes with I in the following sense: for T ∈ E ′(Sm)

I(T ∗ βε) = (IT )
x∗ βε

where
x∗ denotes the partial convolution in Rn × Ω in the space variable x ∈ Rn and that

does not use the angle variable ξ ∈ Ω;
(6) if T ∈ D′(Rn ×Ω), then T

x∗ βε converges to T in the space D′(Rn ×Ω) as ε → 0.

P r o o f. The first three claims and the last one are well-known properties of convolu-
tion (compare with Proposition 2.10 in [111]). The fourth is a special case of permutability
of convolution with any constant coefficient differential operator. To prove the fifth claim,
we note that definition (2.5.3) implies the equality βε ∗ Jϕ = J(βε

x∗ ϕ) that is valid for
ϕ ∈ D(Rn×Ω). From the equality, by putting β̃ε(x) = βε(−x), for T ∈ E ′(Sm), we obtain

〈I(T ∗ βε), ϕ〉 = 〈T ∗ βε, Jϕ〉 = 〈T, β̃ε ∗ Jϕ〉 =

= 〈T, J(β̃ε
x∗ ϕ)〉 = 〈IT, β̃ε

x∗ ϕ〉 = 〈(IT )
x∗ βε, ϕ〉.

Let us begin proving Theorem 2.5.1.
P r o o f of the implication (1) → (2). Let claim (1) be valid for F ∈ E ′(Sm), and

K ′ = supp F. For every ν = 1, 2, . . . , we denote the convex hull of {x | ρ(x,K ′) ≤ 1/ν}
by Kν and put K = K1.

Having a compact support, the field F has finite order (see [36], Chapter II), and,
consequently, F ∈ Ks

K(Sm) for some s ∈ R. By Lemma 2.5.2, the fields fν = F ∗ β1/ν

have the next properties:
suppfν ⊂ Kν , (2.5.4)

fν → F in Ks
K(Sm) as ν → ∞, (2.5.5)

Ifν = 0. (2.5.6)

For any ν = 1, 2, . . . , applying Theorem 2.2.1 to fν , we construct a compactly-
supported field vν ∈ Cm+1(Sm−1) such that

dvν = fν , (2.5.7)

supp vν ⊂ Kν ⊂ K. (2.5.8)

The operator d is elliptic in the sense of the definition given in [111]. Indeed, its symbol
σ1(d) is easily seen to be given by the formula σ1(d)(ξ, u) = iξu for ξ ∈ Rn, u ∈ Sm.
By the direct calculation in coordinates, the equality (m + 1)jξiξ = |ξ|2E + miξjξ can
be proved (E is the identity operator). Later we shall prove more general formula; see
Lemma 3.3.3. Since the operators iξ and jξ are dual to each other, the last equality implies
that jξiξu 6= 0 for ξ 6= 0, u 6= 0. Consequently, by Theorem 3.1 of [111], the estimate
‖vν − vµ‖s+1 ≤ C‖d(vν − vµ)‖s is valid with a constant C independent of ν, µ. From this
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estimate with help of (2.5.5) and (2.5.7), we see that the sequence vν is a Cauchy sequence
in Ks+1

K (Sm−1). Thus it converges in this space and, consequently, in E ′(Sm−1) as well.
Let V ∈ E ′(Sm−1) be the limit of the sequence vν . It follows from (2.5.8) that supp V is
contained in

⋂
ν Kν , i.e., in the convex hull of the support of F. Taking the limit in (2.5.7)

as ν → ∞, we obtain dV = F.
P r o o f of the implication (2) → (3). Let the equality dV = F be valid for V ∈

E ′(Sm−1), F ∈ E ′(Sm). We find a sequence vν ∈ D(Sm−1) (ν = 1, 2, . . .) converging to V
in E ′(Sm−1). Then the sequence fν = dvν converges to F in E ′(Sm). Applying Theorem
2.2.1 to fν , we obtain Wfν = 0. Taking the limit in the last equality as ν → ∞, we get
the one desired: WF = 0.

P r o o f of the implication (3) → (1). Let the equality WF = 0 is valid for F ∈ E ′(Sm).
As above, we construct a sequence fν = F ∗ β1/ν . By Lemma 2.5.2, fν converges to F
in E ′(Sm) as ν → ∞, and Wfν = 0. Applying Theorem 2.2.1 to fν , we verify validity of
(2.5.6). Transforming this equality in accordance with the fifth claim of Lemma 2.5.2, we

get IF
x∗ β1/ν = 0. Taking the limit in the last equality as ν → ∞ and using the sixth

claim of Lemma 2.5.2, we arrive at IF = 0.

2.6 Decomposition of a tensor field into

potential and solenoidal parts

A field f ∈ C∞(Sm) is called potential if it can be represented in the form f = dv for
v ∈ C∞(Sm−1) such that v(x) → 0 as |x| → ∞. If f is potential, then If = 0 as we have
seen above. Thus if we can find a subspace E ⊂ C∞(Sm) which does not intersect the
space of potential fields and whose sum with the latter equals C∞(Sm), then the operator
I is uniquely determined by its restriction to E. Since the dual operator of d is −δ, we
may naturally take as E the space of solenoidal tensor fields , i.e., the space of fields
satisfying the equation δf = 0.

It is well known that a vector field can be decomposed into the sum of solenoidal and
potential fields. If the fields are considered in a bounded domain, then for uniqueness of
such decomposition we have to require that the potential vanishes on the boundary of
the domain. If the fields are defined on the whole Rn, then we have to require that both
summands tend to zero at infinity. It turns out that the last fact is valid for symmetric
tensor fields of arbitrary degree. In this section we shall establish it for fields considered on
the whole Rn. To prove it we shall use the method that is based on the next observation:
after application of the Fourier transform, the relations f = sf + dv, δ sf = 0 give the
equations f̂(y) = ŝf(y)+

√
−1iyv̂(y), jy

ŝf(y) = 0 which can be easily solved with respect

to ŝf(y) and v̂(y).
We recall that S1 is identified with Cn and, consequently, Rn ⊂ S1. For x ∈ Rn, let

ix : Sm → Sm+1 and jx : Sm → Sm−1 denote the operator of symmetric multiplication by
x and that of convolution with x.

Lemma 2.6.1 For every f ∈ Sm and 0 6= x ∈ Rn, there exist uniquely determined
tf ∈ Sm and v ∈ Sm−1 such that

f = tf + ixv, jx
tf = 0. (2.6.1)
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The tensor tf is expressed through f and x according to the formula

tfi1...im = λj1...jm

i1...im (x)fj1...jm
(2.6.2)

in which

λj1...jm

i1...im (x) =

(
δj1
i1 − xi1x

j1

|x|2
)

. . .

(
δjm

im − ximxjm

|x|2
)

, (2.6.3)

and δj
i is the Kronecker symbol. If ξ ∈ Rn and 〈x, ξ〉 = 0, then

〈tf, ξm〉 = 〈f, ξm〉 (〈x, ξ〉 = 0). (2.6.4)

P r o o f. The operators ix and jx are dual to one other. Consequently, the orthogonal
decomposition Sm = Ker jx ⊕ Im ix is valid. This implies existence and uniqueness of tf
and v satisfying (2.6.1). The validity of (2.6.2) will be clear after opening the parentheses
on the right-hand side of (2.6.3) and inserting the so-obtained expression into (2.6.2).
Relation (2.6.4) follows from (2.6.2) and (2.6.3). The lemma is proved.

For a field f ∈ C∞(Sm;Rn
0 ), if decomposition (2.6.1) takes place for all x ∈ Rn

0 , i.e.,

f(x) = tf(x) + ixv(x), jx
tf(x) = 0, (2.6.5)

then tf ∈ C∞(Sm;Rn
0 ) and v ∈ C∞(Sm−1;Rn

0 ), as one can see from (2.6.2). We shall call
the fields tf(x) and ixv(x) the tangential and radial components of the field f(x). The
terms are given because, in the case m = 1, the vector tf(x) is tangent to the sphere
|x| = const, and a vector ixv(x) is parallel to x.

Theorem 2.6.2 Let n ≥ 2. For every field f ∈ S(Sm;Rn) there exist uniquely-determined
fields sf ∈ C∞(Sm) and v ∈ C∞(Sm−1) such that

f = sf + dv, δ sf = 0, (2.6.6)

sf(x) → 0, v(x) → 0 as |x| → ∞. (2.6.7)

These fields satisfy the estimates

|sf(x)| ≤ C(1 + |x|)1−n, |v(x)| ≤ C(1 + |x|)2−n, |dv(x)| ≤ C(1 + |x|)1−n. (2.6.8)

The fields sf and dv belong to L2(S
m). The Fourier transform ŝf(y) of the field sf(x)

belongs to C∞(Sm;Rn
0 ), is bounded on Rn and decreases rapidly as |y| → ∞.

P r o o f of existence. Let f̂(y) be the Fourier transform of the field f(x). By Lemma
2.6.1, for every y 6= 0, there exist uniquely-determined tf̂(y) ∈ Sm and v̂(y) ∈ Sm−1 such
that

f̂(y) = tf̂(y) + iyv̂(y), jy
tf̂(y) = 0. (2.6.9)

Starting with (2.6.2) and (2.6.3), by induction on |α|, we verify validity of the represen-
tations

Dα tf̂i1...im(y) = |y|−2|α|−2m
∑

|β|≤|α|

Pαj1...jm

βi1...im
(y)Dβ f̂j1...jm

(y),

Dαv̂i1...im−1(y) = |y|−2|α|−2m
∑

|β|≤|α|

Qαj1...jm

βi1...im−1
(y)Dβ f̂j1...jm

(y)
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in which Pαj1...jm

βi1...im
(Qαj1...jm

βi1...im−1
) are homogeneous polynomials of degree 2m+ |α|+ |β| (2m+

|α| + |β| − 1). We use the ordinary notation: Dj = −i∂/∂xj and Dα = Dα1
1 . . . Dαn

n for

a multi-index α = (α1 . . . αn). These representations imply that the fields tf̂(y), v̂(y) are
smooth on Rn

0 , decrease rapidly as |y| → ∞, and satisfy the estimates

|Dα tf̂(y)| ≤ |y|−|α|, |Dαv̂(y)| ≤ |y|−|α|−1 (2.6.10)

for |y| ≤ 1. Consequently, tf̂ , iyv̂ ∈ L2(S
m). It follows from (2.6.10) that the field Dα tf̂ is

summable on Rn for |α| ≤ n − 1, and Dαv̂ is summable on Rn for |α| ≤ n − 2.
Let sf(x) = F [tf̂(y)] and v(x) = −

√
−1 F [v̂(y)], where F is the inverse Fourier trans-

form. Now sf ∈ C∞(Sm), v ∈ C∞(Sm−1) since tf̂(y) and v̂(y) are rapidly decreasing.
Applying F to (2.6.9), we obtain (2.6.6). Relations (2.6.7) are satisfied since tf̂ and v̂ are
summable on Rn. Estimates (2.6.8) follow from the above established summability of Dα tf̂
and Dαv̂. Finally, by the Fourier-Plancherel theorem, the containment tf̂ , iyv̂ ∈ L2(S

m)
implies that sf, dv ∈ L2(S

m).
P r o o f of uniqueness. Let sf ∈ C∞(Sm) and v ∈ C∞(Sm−1) satisfy (2.6.7) and

relations sf + dv = 0, δ sf = 0. In particular, sf ∈ S ′(Sm), v ∈ S ′(Sm−1) where S ′

is the space of tempered distributions on Rn. Thus the Fourier images ŝf ∈ S ′(Sm) and
v̂ ∈ S ′(Sm−1) are defined. Applying the Fourier transform to the equalities sf+dv = 0 and
δ sf = 0, we obtain ŝf(y)+

√
−1iyv̂(y) = 0, jy

ŝf(y) = 0. From this, by Lemma 2.6.1, we see

that ŝf |Rn
0

= v̂|Rn
0

= 0, i.e., the supports of these distributions are concentrated at zero.
Consequently, each of their components is a finite linear combination of the derivatives
of the δ-function. With the help of (2.6.7), we conclude from this that sf = v = 0. The
theorem is proved.

The fields sf and dv satisfying (2.6.6) and (2.6.7) will be called the solenoidal and
potential parts of the field f.

We shall need one more version of the decomposition theorem. To formulate it we
first give two definitions.

Let K(Sm) be the closure, in L2(S
m;Rn), of the set of the fields f ∈ C∞(Sm)∩L2(S

m)
that satisfy the equation δf = 0 and the estimate |f(x)| ≤ C(1 + |x|)1−n. Let D(Sm) be
the closure, in L2(S

m), of the set of the fields f ∈ L2(S
m) that can be represented in the

form f = dv for some v ∈ C∞(Sm−1) satisfying the condition: v(x) → 0 as |x| → ∞.

Theorem 2.6.3 We have the orthogonal decomposition

L2(S
m) = K(Sm) ⊕ D(Sm). (2.6.11)

P r o o f. First of all we show that the summands of decomposition (2.6.11) are
orthogonal to one other. Let f ∈ K(Sm), g ∈ D(Sm). There are fields fk ∈ C∞(Sm) ∩
L2(S

m) and vk ∈ C∞(Sm−1) (k = 1, 2, . . .) such that δfk = 0, dvk ∈ L2(S
m),

|fk(x)| ≤ Ck(1 + |x|)1−n, vk(x) → 0 as |x| → ∞ (2.6.12)

and fk → f, dvk → g in L2(S
m) as k → ∞. Inserting u = vk, v = fk and G = {x | |x| ≤

A} into the Green’s formula (2.1.8), we obtain
∫

|x|≤A

〈fk, dvk〉 dx =
∫

|x|=A

〈fk, iνvk〉 dσ.
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The right-hand side of this equality tends to zero as A → ∞, which is easy from (2.6.12).
Consequently, (fk, dvk) = 0. Passing to the limit in k in the last equality, we obtain
(f, g) = 0.

For f ∈ L2(S
m), choose a sequence fk ∈ S(Sm) that converges to f in L2(S

m). By
Theorem 2.6.2, there is a representation fk = sfk + dvk, such that sfk ∈ C∞(Sm) ∩
L2(S

m), δ sfk = 0, vk ∈ C∞(Sm−1), dvk ∈ L2(S
m) and (2.6.12) is satisfied. For every k

and l, fk−fl = (sfk−sfl)+d(vk−vl). The summands on the right-hand side of this equality
are orthogonal to each other and, consequently, ‖fk − fl‖2 = ‖sfk − sfl‖2 + ‖dvk − dvl‖2.
Since the sequence fk is Cauchy, the last equality implies that sfk and dvk are also Cauchy.
Consequently, they converge to some sf, h ∈ L2(S

m). The above listed properties of sfk and
vk imply that sf ∈ K(Sm), h ∈ D(Sm). Passing to the limit in the equality fk = sfk + dvk

with respect to k, we obtain f = sf + h. The theorem is proved.

2.7 A theorem on the tangent component

From (2.6.2), one can see that the tangent component of a smooth field has, as a rule, a
singularity at the point x = 0. In this respect the question arises: assume that a tensor
field h is smooth on Rn

0 and satisfies the condition jxh(x) = 0; under which supplementary
conditions on h does there exist a field f smooth on the whole Rn and such that its tangent
component is h? The question is answered by

Theorem 2.7.1 For a field h ∈ C∞(Sm;Rn
0 ) (n ≥ 3) to be the tangent component of

some f ∈ C∞(Sm;Rn), it is necessary and sufficient that h satisfies the relation

jxh(x) = 0 (2.7.1)

and there exists a function ϕ ∈ C∞(TΩ) connected with h by the equality

〈h(x), ξm〉 = ϕ(x, ξ) ((x, ξ) ∈ TΩ; x 6= 0). (2.7.2)

Necessity follows from (2.6.4). Beginning the proof of sufficiency, we extend ϕ to
Rn × Rn

0 by the equality

ϕ(x, ξ) = |ξ|mϕ(Pξx, ξ/|ξ|) ((x, ξ) ∈ Rn × Rn
0 ) (2.7.3)

where Pξx = x − 〈x, ξ〉ξ/|ξ|2 is the orthogonal projection of Rn onto ξ⊥. Then ϕ is in
C∞(Rn × Rn

0 ) and satisfies the relations

ϕ(x, tξ) = tmϕ(x, ξ) ((x, ξ) ∈ Rn × Rn
0 ; t > 0), (2.7.4)

ϕ(x + tξ, ξ) = ϕ(x, ξ) ((x, ξ) ∈ Rn × Rn
0 ; t ∈ R), (2.7.5)

ξi ∂ϕ

∂xi
= 0 ((x, ξ) ∈ Rn × Rn

0 ), (2.7.6)

〈h(x), ξm〉 = ϕ(x, ξ) ((x, ξ) ∈ Rn
0 × Rn

0 ; 〈x, ξ〉 = 0). (2.7.7)

Equality (2.7.6) follows from (2.7.5) by differentiation with respect to t.
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Let x, ξ ∈ Rn
0 , x 6= tξ (t ∈ R); then the representation ξ = Pxξ + tx is possible with

Pxξ 6= 0. By (2.7.1) and (2.7.7),

〈h(x), ξm〉 = 〈h(x), (Pxξ)
m〉 = ϕ(x, Pxξ) (x, ξ ∈ Rn

0 ; x 6= tξ). (2.7.8)

Differentiating this equality m times with respect to ξ and putting then 〈x, ξ〉 = 0, we
obtain

hi1...im(x) = λj1...jm

i1...im (x)
∂mϕ

∂ξj1 . . . ∂ξjm
(x, ξ) ((x, ξ) ∈ Rn

0 × Rn
0 ; 〈x, ξ〉 = 0). (2.7.9)

Note that (2.6.3) implies the relations

xi1λj1...jm

i1...im (x) = xj1λ
j1...jm

i1...im (x) = 0, (2.7.10)

yi1 . . . yimλj1...jm

i1...im (x) = yj1 . . . yjm (〈x, y〉 = 0). (2.7.11)

Lemma 2.7.2 Under the assumptions of Theorem 2.7.1, there exists a sequence of tensors
cl = (cl

i1...imj1...jl
) ∈ Sm ⊗ Sl (l = 0, 1, . . .), such that the relations

hi1...im(x) = λp1...pm

i1...im (x)
l∑

s=0

cs
p1...pmj1...js

xj1 . . . xjs + O(|x|l+1) (x → 0), (2.7.12)

1

l!

∂lϕ

∂xj1 . . . ∂xjl
(0, ξ) = λq1...ql

j1...jl
(ξ)cl

i1...imq1...ql
ξi1 . . . ξim (ξ ∈ Ω), (2.7.13)

λp1...pm

i1...im (η)

[
1

l!

∂m+lϕ

∂ξp1 . . . ∂ξpm∂xj1 . . . ∂xjl
(0, ξ) − cl

p1...pmj1...jl

]
ηj1 . . . ηjl = 0

(ξ, η ∈ Ω; 〈ξ, η〉 = 0) (2.7.14)

are valid for any l ≥ 0.

P r o o f. We shall construct tensors cl by induction on l. To avoid considering the case
l = 0, we note that the claim of the lemma makes sense for l = −1 as well. In the last
case the lemma asserts only that h(x) = O(1). From (2.7.2), one can easily see that h(x)
is bounded for |x| ≤ 1. Assuming the validity of the lemma for l = −1, 0, . . . , k− 1 ≥ −1,
we expand ϕ(x, ξ) into the Taylor series in x :

ϕ(x, ξ) =
k∑

s=0

1

s!

∂sϕ

∂xj1 . . . ∂xjs
(0, ξ)xj1 . . . xjs + O(|x|k+1) (ξ ∈ Ω).

Using the inductive hypothesis (2.7.13) on the derivatives of order less than k, we trans-
form the last equality to the form

ϕ(x, ξ) = ξi1 . . . ξim
k−1∑

s=0

λq1...qs

j1...js
(ξ)cs

i1...imq1...qs
xj1 . . . xjs + bk

j1...jk
(ξ)xj1 . . . xjk + O(|x|k+1)

(ξ ∈ Ω), (2.7.15)

where

bk
j1...jk

(ξ) =
1

k!

∂kϕ

∂xj1 . . . ∂xjk
(0, ξ) (ξ ∈ Ω). (2.7.16)
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By (2.7.11), if 〈x, ξ〉 = 0, then equality (2.7.15) looks like

ϕ(x, ξ) = ξi1 . . . ξim
k−1∑

s=0

cs
i1...imj1...js

xj1 . . . xjs + bk
j1...jk

(ξ) xj1 . . . xjk + O(|x|k+1)

((x, ξ) ∈ TΩ). (2.7.17)

For (x, ξ) ∈ TΩ, we replace the right-hand side of (2.7.8) with (2.7.17) and obtain

[
hi1...im(x) −

k−1∑

s=0

cs
i1...imj1...js

xj1 . . . xjs

]
ξi1 . . . ξim = bk

j1...jk
(ξ)xj1 . . . xjk + O(|x|k+1)

((x, ξ) ∈ TΩ; x 6= 0). (2.7.18)

Using (2.7.11), the last formula can be rewritten as follows:

[
hi1...im(x) − λp1...pm

i1...im (x)
k−1∑

s=0

cs
p1...pmj1...js

xj1 . . . xjs

]
ξi1 . . . ξim = bk

j1...jk
(ξ)xj1 . . . xjk +

+ O(|x|k+1) ((x, ξ) ∈ TΩ; x 6= 0). (2.7.19)

For η ∈ Ω, we will establish existence of the limit

ak
i1...im(η) = lim

x→0

x/|x|→η

1

|x|k
[
hi1...im(x) − λp1...pm

i1...im (x)
k−1∑

s=0

cs
p1...pmj1...js

xj1 . . . xjs

]
. (2.7.20)

To this end, we expand the function ∂mϕ(x, ξ)/∂ξp1 . . . ∂ξpm into the Taylor series in x:

∂mϕ(x, ξ)

∂ξp1 . . . ∂ξpm
=

k∑

s=0

1

s!

∂m+sϕ

∂ξp1 . . . ∂ξpm∂xj1 . . . ∂xjs
(0, ξ) xj1 . . . xjs + O(|x|k+1).

Inserting the last expression into (2.7.9) and using the inductive hypothesis (2.7.14), we
obtain

hi1...im(x) − λp1...pm

i1...im (x)
k−1∑

s=0

cs
p1...pmj1...js

xj1 . . . xjs =

=
1

k!
λp1...pm

i1...im (x)
∂m+kϕ

∂ξp1 . . . ∂ξpm∂xj1 . . . ∂xjk
(0, ξ) xj1 . . . xjk + O(|x|k+1)

((x, ξ) ∈ TΩ; x 6= 0). (2.7.21)

It follows from (2.6.3) that lim λp1...pm

i1...im (x) = λp1...pm

i1...im (η) as x → 0 and x/|x| → η. Dividing
equality (2.7.21) by |x|k and passing to the limit, we obtain existence of the limit in
(2.7.20) as well as validity of the relation

ak
i1...im(η) =

1

k!
λp1...pm

i1...im (η)
∂m+kϕ

∂ξp1 . . . ∂ξpm∂xj1 . . . ∂xjk
(0, ξ) ηj1 . . . ηjk (〈ξ, η〉 = 0).

(2.7.22)
Dividing (2.7.19) by |x|k and passing to the limit as x → 0, x/|x| → η, we obtain

〈ak(η), ξm〉 = 〈bk(ξ), ηk〉 (ξ, η ∈ Ω; 〈ξ, η〉 = 0). (2.7.23)

Let us prove that
jηa

k(η) = 0 (η ∈ Ω). (2.7.24)
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To this end, we note that, by (2.7.10), condition (2.7.1) can be rewritten as

xq

[
hqi2...im(x) − λp1...pm

qi2...im(x)
k−1∑

s=0

cs
p1...pmj1...js

xj1 . . . xjs

]
= 0.

Dividing this equality by |x|k+1 and passing to the limit, from (2.7.20) we obtain (2.7.24).
Now we check that

jξb
k(ξ) = 0 (ξ ∈ Ω). (2.7.25)

Indeed, if we differentiate equality (2.7.6) k − 1 times with respect to x and put x = 0,
then the so-obtained relation coincides with (2.7.25), by (2.7.16).

Equalities (2.7.23)–(2.7.25), together with smoothness of bk(ξ) which follows from
(2.7.16), imply that the maps ak : Ω → Sm and bk : Ω → Sk satisfy the conditions of The-
orem 2.8.1 formulated below. By this theorem, there exists a tensor ck = (ck

i1...imj1...jk
) ∈

Sm ⊗ Sk such that

ak
i1...im(η) = λp1...pm

i1...im (η)ck
p1...pmj1...jk

ηj1 . . . ηjk (η ∈ Ω), (2.7.26)

bk
j1...jk

(ξ) = λq1...qk

j1...jk
(ξ)ck

i1...imq1...qk
ξi1 . . . ξim (ξ ∈ Ω). (2.7.27)

Replacing the left-hand side of (2.7.22) with (2.7.26), we obtain (2.7.14) for l = k.
Relations (2.7.16) and (2.7.27) imply (2.7.13) for l = k. Writing (2.7.14) in the form

1

k!
λp1...pm

i1...im (x)
∂m+kϕ

∂ξp1 . . . ∂ξpm∂xj1 . . . ∂xjk
(0, ξ)xj1 . . . xjk = λp1...pm

i1...im (x)ck
p1...pmj1...jk

xj1 . . . xjk

((x, ξ) ∈ TΩ; x 6= 0)

and inserting this expression into the right-hand side of (2.7.21), we arrive at (2.7.12) for
l = k. Thus the inductive step is finished and the lemma is proved.

P r o o f of Theorem 2.7.1. Let ui1...im ∈ C∞(Rn) be a function such that its Taylor
series is

ui1...im(x) ∼
∞∑

k=0

ck
i1...imj1...jk

xj1 . . . xjk (2.7.28)

where ck are tensors constructed in Lemma 2.7.2. Then u = (ui1...im) ∈ C∞(Sm) and, by
(2.7.12),

hi1...im(x) = λp1...pm

i1...im (x)up1...pm(x) + o(|x|k), (2.7.29)

for every k ≥ 0. Defining the field ũ ∈ C∞(Sm;Rn
0 ) by the equality

ũi1...im(x) = λp1...pm

i1...im (x) up1...pm
(x), (2.7.30)

we can rewrite (2.7.29) as follows:

h(x) = ũ(x) + o(|x|k) (x ∈ Rn
0 , x → 0; k = 0, 1, . . .). (2.7.31)

From the structure of λp1...pm

i1...im (x) defined by (2.6.3), we see that (2.7.30) can be written in
the form

ũ(x) = u(x) − ixv(x) (2.7.32)
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with some v ∈ C∞(Sm−1;Rn
0 ). Using (2.7.10) and (2.7.11), from (2.7.30) we obtain the

relations
jxũ(x) = 0 (x ∈ Rn

0 ), (2.7.33)

〈ũ(x), ξm〉 = 〈u(x), ξm〉 ((x, ξ) ∈ TΩ; x 6= 0). (2.7.34)

For x ∈ Rn, we define f(x) ∈ Sm by

f(x) =





h(x) + ixv(x), if x 6= 0,

c0, if x = 0.
(2.7.35)

This definition implies that h is the tangent component of the field f. Thus the theorem
will be proved if the containment f ∈ C∞(Sm;Rn) will be established. To this end, it
is sufficient to prove that h̃ = f − u ∈ C∞(Sm;Rn). By (2.7.28), u(0) = c0 = f(0) and,
consequently, h̃(0) = 0. It follows from (2.7.31), (2.7.32) and (2.7.35) that

h̃(x) = o(|x|k) (x ∈ Rn, x → 0; k = 1, 2, . . .). (2.7.36)

By (2.7.32) and (2.7.35), h̃(x) = h(x)−ũ(x) for x ∈ Rn
0 . With the help of (2.7.33), (2.7.34)

and conditions (2.7.1), (2.7.2) of the theorem; from this we conclude that

jxh̃(x) = 0 (x ∈ Rn
0 ), (2.7.37)

〈h̃(x), ξm〉 = ϕ̃(x, ξ) ((x, ξ) ∈ TΩ; x 6= 0), (2.7.38)

where the function ϕ̃ ∈ C∞(TΩ) is defined by the equality

ϕ̃(x, ξ) = ϕ(x, ξ) − 〈u(x), ξm〉 ((x, ξ) ∈ TΩ). (2.7.39)

Relations (2.7.37) and (2.7.38) show that the field h̃ satisfies the assumptions of the
theorem as well as h. As compared with h, the field h̃ has the advantage of satisfying
(2.7.36).

By definition, h̃ ∈ C∞(Sm;Rn
0 ). Thus, to prove the containment h̃ ∈ C∞(Sm;Rn) it

is sufficient to verify that the asymptotic estimate

Dαh̃(x) = o(|x|k) as x → 0 (2.7.40)

is valid for every multi-index α and every k ≥ 0.
Replacing h by h̃, we repeat the discussion which is placed just after the formulation

of Theorem 2.7.1. We extend ϕ̃ to Rn × Rn
0 by a formula similar to (2.7.3) and verify

that
〈h̃(x), ξm〉 = ϕ̃(x, Pxξ) (x, ξ ∈ Rn

0 ; x 6= tξ). (2.7.41)

From (2.7.39) and (2.7.3), one can see that the functions ϕ and ϕ̃ are connected by the
relation ϕ̃(x, ξ) = ϕ(x, ξ)−〈u(Pξx), ξm〉 for (x, ξ) ∈ Rn×Rn

0 . Differentiating this equality
with respect to x and then putting x = 0, we obtain

∂kϕ̃

∂xj1 . . . ∂xjk
(0, ξ) =

∂kϕ

∂xj1 . . . ∂xjk
(0, ξ) − λq1...qk

j1...jk
(ξ)

∂kui1...im

∂xq1 . . . ∂xqk
(0) ξi1 . . . ξim (ξ ∈ Ω).

Inserting the value (2.7.13) of ∂kϕ
∂xj1 . . . ∂xjk

(0, ξ) and the value (2.7.28) of
∂kui1...im

∂xq1 . . . ∂xqk
(0)

into the last equality, we see that Dα
x ϕ̃(0, ξ) = 0 for ξ ∈ Ω and for every multi-index
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α. This implies that Dα
x ϕ̃(0, ξ) = 0 for ξ ∈ Rn

0 , by homogeneity of ϕ̃(x, ξ) in its second
argument. Differentiating the last relation with respect to ξ, we obtain Dα

xDβ
ξ ϕ̃(0, ξ) = 0

for every α, β. From this, one can easily prove existence of a constant Cαβk such that

|Dα
xDβ

ξ ϕ̃(x, ξ)| ≤ Cαβk|x|k (x ∈ Rn, |x| ≤ 1, ξ ∈ Ω) (2.7.42)

for every α, β and k ≥ 0.

Differentiating (2.7.41) with respect to ξ, we obtain

h̃i1...im = |x|−2mQ0,p1...pm

i1...im (x, ξ)
∂mϕ̃

∂ξp1 . . . ∂ξpm
(x, Pxξ) (x, ξ ∈ Rn

0 ; x 6= tξ),

where

Q0,p1...pm

i1...im (x, ξ) = (|x|2δp1
i1 − xi1x

p1) . . . (|x|2δpm

im − ximxpm).

From this, by induction on |α|, we infer the representation

Dαh̃i1...im = |x|−4|α|−2m
∑

β+γ≤α

Qαβγ
i1...im(x, ξ)Dβ

xDγ
ξ ϕ̃(x, Pxξ) (x, ξ ∈ Rn

0 ; x 6= tξ)

with some polynomials Qαβγ
i1...im(x, ξ). This representation taken at (x, ξ) ∈ TΩ, together

with inequalities (2.7.42), implies estimate (2.7.40). The theorem is proved.

2.8 A theorem on conjugate tensor fields

on the sphere

By Lemma 2.6.1, the decomposition Sm = Ker jx ⊕ Im ix is valid for every x ∈ Ω. Let Px

be the orthogonal projection of Sm onto the first summand of this decomposition. The
relation tf = Pxf is expressed in coordinate form by equality (2.6.2). A mapping a : Ω →
Sk is called the tangent tensor field on the sphere if jxa(x) = 0 for x ∈ Ω. Two fields
a : Ω → Sk and b : Ω → Sm are called conjugate if the equality 〈a(x), yk〉 = 〈b(y), xm〉 is
valid for every x, y ∈ Ω satisfying the condition 〈x, y〉 = 0.

Theorem 2.8.1 Let n ≥ 3, k ≥ 0 and m ≥ 0 be integers; Ω = Ωn−1. If a : Ω → Sk and
b : Ω → Sm are conjugate tangent tensor fields on the sphere and one of them is smooth,
then there exists a linear operator A : Sm → Sk such that

a(x) = PxAxm, b(x) = PxA
∗xk (x ∈ Ω),

where A∗ : Sk → Sm is the dual of A. In coordinate form this claim is formulated as
follows: there exists a tensor A = (Ai1...ikj1...jm

) ∈ Sk ⊗ Sm such that

ai1...ik(x) = λp1...pk

i1...ik
(x)Ap1...pkj1...jm

xj1 . . . xjm (x ∈ Ω),

bj1...jm
(x) = λq1...qm

j1...jm
(x)Ai1...ikq1...qm

xi1 . . . xik (x ∈ Ω).
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Starting with the proof, first of all we extend a and b to the mappings a : Rn
0 → Sk

and b : Rn
0 → Sm in such a way that a becomes positively homogeneous of degree m nd

b of degree k. Then the relations

jxa(x) = 0, jxb(x) = 0 (x ∈ Rn
0 ), (2.8.1)

〈a(x), yk〉 = 〈b(y), xm〉 (x, y ∈ Rn
0 ; 〈x, y〉 = 0), (2.8.2)

are valid. They imply the equalities

〈a(x), yk〉 = 〈b(Pxy), xm〉
〈b(y), xm〉 = 〈a(Pyx), yk〉



 (x, y ∈ Rn

0 ; x 6= ty). (2.8.3)

By assumption, one of the two mappings is smooth; let it be a. We can now prove
smoothness of the other mapping. Indeed, the right-hand side of the second equality in
(2.8.3) is smooth on Rn ×Rn

0 . Consequently, the left-hand side of this equality is smooth
on {(x, y) ∈ Rn

0 × Rn
0 | x 6= ty}. This implies smoothness of b on Rn

0 .

Lemma 2.8.2 Let U be a domain in Rn and f ∈ C∞(U). Given an integer k, if Dαf ≡ 0
in U for |α| > k, then f is a polynomial of degree at most k.

We omit the proof of this lemma because it is evident.

Lemma 2.8.3 Let f ∈ C∞(Rn
0 ). If f, restricted to every two-dimensional plane passing

through the origin of the coordinates, is a polynomial of degree at most k, then f is a
polynomial of degree at most k.

P r o o f. Every straight line can be included into some two-dimensional plane passing
through the origin. Consequently, f restricted to every straight line is a polynomial of
degree at most k. From this, ∂k+1f/∂xk+1

i = 0 for x ∈ Rn
0 . Thus Dαf = 0 for |α| > kn.

Applying Lemma 2.8.2, we see that f is a polynomial. Let us show that its degree N
is at most k. To this end we represent f as f = P + Q where P 6= 0 is a homogeneous
polynomial of degree N, and the degree of Q is less then N. There exists a ∈ Rn

0 such that
P (a) 6= 0. Then the restriction of f to the straight line x = at has degree N. Consequently,
N ≤ k.

Lemma 2.8.4 Theorem 2.8.1 is valid for m = 0.

P r o o f. In this case (2.8.2) looks like: 〈a(x), yk〉 = b(y) (x, y ∈ Rn
0 ; 〈x, y〉 = 0).

This implies that the restriction of b to every hyperplane passing through the origin is a
polynomial of degree k. By Lemma 2.8.3, we conclude that b is a homogeneous polynomial
of degree k

b(y) = Ai1...iky
i1 . . . yik . (2.8.4)

The first of equalities (2.8.3) looks now like: 〈a(x), yk〉 = b(Pxy) (x, y ∈ Rn
0 ; x 6= ty).

Differentiating this relation, we obtain

ai1...ik(x) =
1

k!

∂k(b(Pxy))

∂yi1 . . . ∂yik
=

1

k!

∂kb

∂yj1 . . . ∂yjk
(Pxy)λj1...jk

i1...ik
(x).

By (2.8.4), it can be written in the form

ai1...ik(x) = Aj1...jk
λj1...jk

i1...ik
(x). (2.8.5)

Relations (2.8.4) and (2.8.5) give the claim of the theorem. The lemma is proved.
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Lemma 2.8.5 Let the assumptions of Theorem 2.8.1 be satisfied. Extend a and b to Rn
0

in such a way that a (b) be positively homogeneous of degree m (k) and put

ã(x, y) = |x|2k〈a(x), yk〉; b̃(x, y) = |y|2m〈b(y), xm〉 (x, y ∈ Rn
0 ). (2.8.6)

Then ã(x, y) (b̃(x, y)) is a homogeneous polynomial of degree 2k + m (m) in x and a
homogeneous polynomial of degree k (k + 2m) in y.

P r o o f. Differentiating the second equality in (2.8.3) m times with respect to x and
putting 〈x, y〉 = 0, we obtain

|y|2mbi1...im(y) =
|y|2m

m!

∂maj1...jk
(x)

∂xp1 . . . ∂xpm
λp1...pm

i1...im (y)yj1 . . . yjk (x, y ∈ Rn
0 ; 〈x, y〉 = 0).

(2.8.7)
We fix indices i1, . . . , im and put

b̃(y) = |y|2mbi1...im(y). (2.8.8)

The right-hand side of equality (2.8.7) is a homogeneous polynomial of degree k + 2m in
y, i.e., this equality can be written in the form

b̃(y) = a′
j1...jk+2m

(x)yj1 . . . yjk+2m (x, y ∈ Rn
0 ; 〈x, y〉 = 0) (2.8.9)

with some a′ ∈ C∞(Sk+2m;Rn
0 ). Let ã(x) be the tangent component of the field a′(x). It

follows from Lemma 2.6.1 and (2.8.9) that 〈ã(x), yk+2m〉 = b̃(y) for x, y ∈ Rn
0 , 〈x, y〉 = 0.

We thus see that the mappings ã : Ω → Sk+2m and b̃ : Ω → S0 = C satisfy the conditions
of Theorem 2.8.1. By Lemma 2.8.4, the assertion of Theorem 2.8.1 is valid for these fields.
In particular, b̃(y) is a homogeneous polynomial of degree k + 2m. Now (2.8.8) implies
the desired statement about b̃(x, y). The statement on ã(x, y) can be proved in the same
way. The lemma is proved.

Lemma 2.8.6 Let f(x, y) be a real polynomial in variables x = (x1, . . . , xn) and y =
(y1, . . . , yn). For x, y ∈ Rn, if the equality 〈x, y〉 = 0 implies f(x, y) = 0, then f(x, y) is
divisible by 〈x, y〉 =

∑
i

xiyi.

We omit the proof which can be implemented by elementary algebraic methods.

Lemma 2.8.7 Let n ≥ 3, k ≥ 0 and m ≥ 0 be integers, f(x, y) be a complex polynomial
in x = (x1, . . . , xn) and y = (y1, . . . , yn). If there exist polynomials g(x, y) and h(x, y)
such that

|y|2kf(x, y) = |x|2mg(x, y) + 〈x, y〉h(x, y), (2.8.10)

where |x|2 =
∑
i

x2
i , then there exist polynomials α(x, y) and β(x, y) such that

f(x, y) = |x|2mα(x, y) + 〈x, y〉β(x, y). (2.8.11)

If f(x, y) has real coefficients, then α(x, y) and β(x, y) in (2.8.11) can be selected with
real coefficients. If f(x, y) is bihomogeneous in x, y, then α(x, y) and β(x, y) can also be
selected to be bihomogeneous.
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The proof of this lemma will be given in the next section.
P r o o f of Theorem 2.8.1. Multiplying equality (2.8.2) by |x|2k|y|2m, we obtain

|y|2mã(x, y) = |x|2kb̃(x, y) for 〈x, y〉 = 0. By Lemma 2.8.5, ã(x, y) and b̃(x, y) are bihomo-
geneous polynomials of degree (2k+m, k) and (m, k+2m) respectively. Applying Lemma
2.8.6, we obtain |y|2mã(x, y) − |x|2kb̃(x, y) = 〈x, y〉h(x, y), where h(x, y) is a polynomial.
With the help of Lemma 2.8.7 we conclude that

ã(x, y) = |x|2kα(x, y) + 〈x, y〉β(x, y) (2.8.12)

with bihomogeneous real polynomials α, β. As one can see from (2.8.12) the degree of α
is equal to (m, k), i.e.,

α(x, y) = Ai1...ikj1...jm
yi1 . . . yikxj1 . . . xjm (2.8.13)

with some A ∈ Sk ⊗ Sm. Relation (2.8.12) together with (2.8.6) gives

〈a(x), yk〉 = α(x, y) + |x|−2k〈x, y〉β(x, y) (x ∈ Rn
0 , y ∈ Rn). (2.8.14)

Relations (2.8.3) imply that 〈a(x), yk〉 = 〈a(x), (Pxy)k〉. Comparing the last equality with
(2.8.14), we obtain

〈a(x), yk〉 = α(x, Pxy) (x ∈ Rn
0 , y ∈ Rn). (2.8.15)

It follows from (2.8.14) and the second equality in (2.8.3) that

〈b(y), xm〉 = α(Pyx, y) (x ∈ Rn, y ∈ Rn
0 ). (2.8.16)

Equalities (2.8.13), (2.8.15) and (2.8.16) obtained above are equivalent to the claim of
Theorem 2.8.1. The theorem is proved.

We will demonstrate an interesting example related to the question: to what extent is
the assumption of smoothness essential for validity of Theorem 2.8.1? For k = m = 1, i.e.,
in the case of conjugate tangent vector fields on the sphere, the assumption of smoothness
can be replaced by the assumption of continuity of a, b. Without this assumption, the
theorem becomes wrong. To exhibit a corresponding example, we will recall a definition.

A derivative of the field R is a function D : R → R, satisfying two conditions: 1)
D(x+y) = D(x)+D(y); 2) D(xy) = yD(x)+xD(y). Each derivative vanishes on the field
of rational numbers. A nonzero derivative, from the standpoint of elementary analysis, is
rather exotic function: it is discontinuous at any point and unbounded in a neighborhood
of any point. Derivatives of the field R form an infinite-dimensional vector space.

Let D : R → R be a derivative and e1, . . . , en be an orthonomalized basis for Rn.
Define aD : Ω → Rn, by putting aD(

∑
i

xiei) =
∑
i

D(xi)ei. Then

〈aD(x), x〉 =
∑

i

xiD(xi) =
1

2
D

(∑

i

x2
i

)
=

1

2
D(1) = 0,

i.e., the field aD is tangent to Ω. A similar calculation shows that 〈aD(x), y〉+〈x, aD(y)〉 = 0
for 〈x, y〉 = 0, i.e., that the fields aD and −aD are conjugate.

It can be proved that all pairs, of conjugate vector fields, are reduced to the cases
described in Theorem 2.8.1 and the last example. To be more exact, for every pair of
conjugate tangent vector fields a and b on Ωn−1 (for n ≥ 3), there exist a linear operator
A : Rn → Rn and a derivative D such that a(x) = PxAx+aD(x), b(x) = PxA

∗x−aD(x).
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2.9 Primality of the ideal (|x|2, 〈x, y〉)
Let C[x, y] = C[x1, . . . , xn, y1, . . . , yn] be the algebra of complex polynomials in variables
x1, . . . , xn, y1, . . . , yn and (|x|2, 〈x, y〉) be its ideal generated by the polynomials |x|2 =∑
i

x2
i and 〈x, y〉 =

∑
i

xiyi.

Theorem 2.9.1 For n ≥ 3, the algebra C[x, y] / (|x|2, 〈x, y〉) has no zero divisor.

We do not give the proof of this theorem here since the methods of the proof are
beyond the scope of the book. The reader interested in the proof is referred to [70].

We show that Lemma 2.8.7 is a consequence of Theorem 2.9.1. First of all we note
that the last two claims of Lemma 2.8.7 follow from the first. Indeed, assume that
f has real coefficients and equality (2.8.11) is valid for some α and β having complex
coefficients. Taking the real parts of this equality, we obtain (2.8.11) with real α, β.
Similarly, given a bihomogeneous f , assume (2.8.11) valid for some α, β. Taking the
bihomogeneous components of both sides of (2.8.11), we arrive at a similar relation with
bihomogeneous α, β. We shall prove the first claim by induction on k. First of all note
that for k = 0 or m = 0 this claim is trivial. For m = 1 equality (2.8.10) means that
the comparison |y|2kf ≡ 0 (mod (|x|2, 〈x, y〉)) is valid in the algebra C[x, y]. By Theorem
2.9.1, this implies that f ≡ 0 (mod (|x|2, 〈x, y〉)) because |y|2k 6= 0 (mod (|x|2, 〈x, y〉)).
Thus (2.8.11) is valid in this case. Let now k > 0, m > 1. Rewriting (2.8.10) in the form
|x|2mg = |y|2f1−〈x, y〉h where f1 = |y|2k−2f and using the already-proved part of Lemma
2.8.7, we can find a polynomials g1 and h1 such that g = |y|2g1 + 〈x, y〉h1. Inserting this
expression into (2.8.10), we obtain |y|2(|y|2k−2f −|x|2mg1) = 〈x, y〉(|x|2mh1 +h). Since the
polynomial 〈x, y〉 is irreducible and is not a factor of |y|2, the polynomial 〈x, y〉 is a factor
of |y|2k−2f − |x|2mg1. Thus we have |y|2k−2f = |x|2mg1 + 〈x, y〉h2. It remains to use the
inductive hypothesis. The lemma is proved.

2.10 Description of the range of the ray transform

In Section 2.1 we have shown that I : S(Sm) → S(TΩ). The next theorem describes the
range of this operator.

Theorem 2.10.1 Let n ≥ 3. A function ϕ ∈ S(TΩ) can be represented as ϕ = If for
some field f ∈ S(Sm;Rn) if and only if the next two conditions are satisfied:

(1) ϕ(x,−ξ) = (−1)mϕ(x, ξ);

(2) the function ψ(x, ξ) defined on Rn ×Rn
0 by equality (2.1.13) satisfies the equations

(1 ≤ i1, j1, . . . , im+1, jm+1 ≤ n)

(
∂2

∂xi1∂ξj1
− ∂2

∂xj1∂ξi1

)
. . .

(
∂2

∂xim+1∂ξjm+1
− ∂2

∂xjm+1∂ξim+1

)
ψ = 0. (2.10.1)

Equations (2.10.1) are called the John conditions for the reason mentioned in the
introduction to the current chapter.
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P r o o f of necessity. Necessity of the first condition follows from (2.1.11). Let us
prove necessity of the second condition. The function ψ defined from ϕ by formula (2.1.13)
satisfies relation (2.1.10). Differentiating this relation, we obtain

∂2ψ(x, ξ)

∂xi∂ξj
=

∞∫

−∞

t

〈
∂2f

∂xi∂xj
(x + tξ), ξm

〉
dt + m

∞∫

−∞

∂fi1...im−1j

∂xi
(x + tξ)ξi1 . . . ξim−1dt.

The first summand on the right-hand side of this equality is symmetric with respect to
i, j. If we define the field hij ∈ S(Sm−1) by putting

(hij)i1...im−1 = m

(
∂fi1...im−1j

∂xi
− ∂fi1...im−1i

∂xj

)
,

then the next relation is satisfied:

(
∂2

∂xi∂ξj
− ∂2

∂xj∂ξi

)
ψ(x, ξ) =

∞∫

−∞

〈hij(x + tξ), ξm−1〉 dt. (2.10.2)

Now the validity of (2.10.1) can be easily proved by induction on m. Indeed, for m =
0, hij = 0 and (2.10.1) follows from (2.10.2). By the induction hypothesis,

(
∂2

∂xi1∂ξj1
− ∂2

∂xj1∂ξi1

)
. . .

(
∂2

∂xim∂ξjm
− ∂2

∂xjm∂ξim

)
ψim+1jm+1 = 0 (2.10.3)

where ψij(x, ξ) =
∫ ∞
−∞〈hij(x + tξ), ξm−1〉 dt. Comparing the last equality with (2.10.2), we

see that (
∂2

∂xim+1∂ξjm+1
− ∂2

∂xjm+1∂ξim+1

)
ψ = ψim+1jm+1 . (2.10.4)

(2.10.3) and (2.10.4) imply (2.10.1).

Lemma 2.10.2 Let a function ϕ ∈ S(TΩ) satisfy conditions (1) and (2) of Theorem
2.10.1, ϕ̂ ∈ S(TΩ) be the Fourier transform of ϕ. There exists a field ĥ ∈ C∞(Sm;Rn

0 )
such that

(1) jyĥ(y) = 0 for y ∈ Rn
0 ;

(2) The functions ĥi1...im(y) and all their derivatives decrease rapidly as |y| → ∞;
(3) 〈ĥ(y), ξm〉 = ϕ̂(y, ξ) for (y, ξ) ∈ TΩ, y 6= 0.

The proof of this lemma will be given later. Using the lemma, let us now complete
the proof of Theorem 2.10.1.

P r o o f of sufficiency in Theorem 2.10.1. Let ĥ ∈ C∞(Sm;Rn
0 ) be a field existing by

Lemma 2.10.2. Using Theorem 2.7.1, we find a field f̂ ∈ S(Sm) such that ĥ is the tangent
component of f̂ . i.e.,

f̂(y) = ĥ(y) + iyv̂(y) (y ∈ Rn
0 )

where v̂ ∈ C∞(Sm−1;Rn
0 ) and v̂(y) = 0 for |y| ≥ 1. By Lemma 2.6.1,

〈f̂(y), ξm〉 = ϕ̂(y, ξ) ((y, ξ) ∈ TΩ). (2.10.5)
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Let f ∈ S(Sm) be a field such that its Fourier transform is f̂ . We shall show that If =
(2π)1/2ϕ and thus complete the proof of Theorem 2.10.1. To this end, we recall that, by

(2.1.15), (2π)1/2 × 〈f̂(y), ξm〉 = Îf(y, ξ) for (y, ξ) ∈ TΩ. Comparing this with (2.10.5),

we see that Îf = (2π)1/2ϕ̂. Since the Fourier transform is bijective on S(TΩ), the last
equality implies that If = (2π)1/2ϕ, and Theorem 2.10.1 is proved.

P r o o f of Lemma 2.10.2. Let a function ϕ ∈ S(TΩ) satisfy the conditions (1), (2) of
Theorem 2.10.1 and ϕ̂ ∈ S(TΩ) be the Fourier transform of ϕ. It follows from condition
(1) that

ϕ̂(y,−ξ) = (−1)mϕ̂(y, ξ). (2.10.6)

Define the function ψ̂ ∈ C∞(Rn × Rn
0 ) by putting

ψ̂(y, ξ) = |ξ|mϕ̂

(
y − 〈y, ξ〉

|ξ|2 ξ,
ξ

|ξ|

)
. (2.10.7)

The next properties of this function follow from (2.10.6) and (2.10.7):

ψ̂(y, tξ) = tmψ̂(y, ξ) (0 6= t ∈ R), (2.10.8)

ψ̂(y + tξ, ξ) = ψ̂(y, ξ) (t ∈ R). (2.10.9)

Let ψ ∈ C∞(Rn × Rn
0 ) be a function defined from ϕ by equality (2.1.13); it has the

properties (2.1.11) and (2.1.12). We now find the relation of ψ to ψ̂ and, in particular,
express the John conditions (2.10.1) by means of ψ̂. From (2.10.7), (2.1.11) and the
definition of the Fourier transform on S(TΩ), we obtain

ψ̂(y, ξ) = (2π)(1−n)/2|ξ|
∫

ξ⊥

ψ(x, ξ) e−i〈y,x〉dx.

Inverting the Fourier transform on ξ⊥, we have

ψ(x, ξ) = (2π)(1−n)/2|ξ|−1
∫

ξ⊥

ψ̂(y, ξ) ei〈x,y〉dy.

Using the δ-function, we write the right-hand side of the last equality in the form of the
n-dimensional integral:

ψ(x, ξ) = (2π)(1−n)/2
∫

Rn

ψ̂(y, ξ) δ(〈y, ξ〉) ei〈x,y〉dy.

Differentiating this equality, we obtain

∂2ψ(x, ξ)

∂xj∂ξk
= i(2π)(1−n)/2

∫

Rn

yj
∂ψ̂(y, ξ)

∂ξk
δ(〈y, ξ〉) ei〈y,x〉dy +

+ i(2π)(1−n)/2
∫

Rn

yjyk ψ̂(y, ξ) δ′(〈y, ξ〉) ei〈y,x〉dy.
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The second integral is symmetric in j, k and, consequently, vanishes after alternation with
respect to these indices. Accomplishing the alternation and returning to integration over
ξ⊥, we have

(
∂2

∂xj∂ξk
− ∂2

∂xk∂ξj

)
ψ(x, ξ) = i(2π)(1−n)/2|ξ|−1

∫

ξ⊥

(
yj

∂

∂ξk
− yk

∂

∂ξj

)
ψ̂(y, ξ) ei〈y,x〉dy.

Repeating this procedure and using bijectivity of the Fourier transform on ξ⊥, we make
sure that the John equations (2.10.1) are equivalent to the following:

(
yi1

∂

∂ξj1
− yj1

∂

∂ξi1

)
. . .

(
yim+1

∂

∂ξjm+1
− yjm+1

∂

∂ξim+1

)
ψ̂(y, ξ) = 0

((y, ξ) ∈ Rn × Rn
0 , 〈y, ξ〉 = 0). (2.10.10)

Let us fix y ∈ Rn
0 . If considered as vectors, the operators yi

∂
∂ξj − yj

∂
∂ξi belong to the

space y⊥ and span it. Consequently, equation (2.10.10) means that the restriction of the
function ψ̂y(ξ) = ψ̂(y, ξ) to the space y⊥ is such that all its derivatives of order m + 1

are equal to zero. Together with (2.10.8), this means that the restriction of ψ̂y to y⊥ is

a homogeneous polynomial of degree m. Recalling relation (2.10.7) between ψ̂ and ϕ̂, we
obtain the representation

ϕ̂(y, ξ) = f̂i1...im(y)ξi1 . . . ξim ((y, ξ) ∈ TΩ; y 6= 0).

Thus, given an arbitrary y ∈ Rn
0 , we have established existence of a tensor f̂(y) ∈ Sm

such that
〈f̂(y), ξm〉 = ϕ̂(y, ξ) ((y, ξ) ∈ TΩ; y 6= 0).

Applying Lemma 2.6.1, for every y ∈ Rn
0 , we can find a tensor ĥ(y) ∈ Sm such that

jyĥ(y) = 0 and

〈ĥ(y), ξm〉 = ϕ̂(y, ξ) ((y, ξ) ∈ TΩ; y 6= 0).

To complete the proof of Lemma 2.10.2 it remains to apply the next

Lemma 2.10.3 Let ϕ ∈ S(TΩ) and, for every x ∈ Rn
0 , there exists a tensor h(x) ∈ Sm

such that
jxh(x) = 0 (x ∈ Rn

0 ), (2.10.11)

〈h(x), ξm〉 = ϕ(x, ξ) ((x, ξ) ∈ TΩ; x 6= 0). (2.10.12)

Then h ∈ C∞(Sm;Rn
0 ) and functions hi1...im(x) decrease rapidly, together with all their

derivatives, as |x| → ∞. In other words, for every k ≥ 0 and every multi-index α,

sup
|x|≥1

{|x|k|Dαhi1...im(x)|} < ∞. (2.10.13)

P r o o f. If (x, ξ) ∈ Rn
0 × Rn

0 , x 6= tξ, then Pxξ 6= 0 and, consequently, the function
ψ(x, ξ) = |Pxξ|mϕ(x, Pxξ/|Pxξ|) belongs to C∞(U) where U = {(x, ξ) ∈ Rn

0×Rn
0 | x 6= tξ}.

One can easily see that the condition ϕ ∈ S(TΩ) implies that

sup
(x,ξ)∈TΩ, |x|≥1

{
|x|k|Dα

xDβ
ξ ψ(x, ξ)|

}
< ∞, (2.10.14)
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for every k ≥ 0 and for all multi-indices α, β.
Given (x, ξ) ∈ U, (2.10.11) and (2.10.12) imply that

〈h(x), ξm〉 = 〈h(x), (Pxξ)
m〉 = |Pxξ|mϕ(x, Pxξ/|Pxξ|) = ψ(x, ξ).

Since the right-hand side of these equalities is smooth on U, the same is true for the
left-hand side. This implies that h ∈ C∞(Sm;Rn

0 ) and the next equalities are valid:

hi1...im(x, ξ) =
1

m!

∂mψ(x, ξ)

∂ξi1 . . . ∂ξim
((x, ξ) ∈ U). (2.10.15)

From (2.10.14) and (2.10.15), we obtain (2.10.13). The lemma is proved.

2.11 Integral moments of the function If

We now turn to the problem of inverting the ray transform. We pose this problem as
follows: given the function If, determine the solenoidal part of the field f or (and) the
value Wf of the Saint Venant operator.

From now to the end of the current chapter, we will use only Cartesian coordinate
systems on Rn. In this case there is no difference between covariant and contravariant
coordinates, and we shall use only lower indices in the notation of coordinates. The
summation rule looks now like: on repeating indices (not necessarily standing at different
heights) i a monomial the summation from 1 to n is assumed.

We define the operator µm : C∞(Rn × Rn
0 ) → C∞(Sm) sending a function ϕ(x, ξ) to

the set of its integral moments with respect to its second argument:

(µmϕ)i1...im(x) =
1

ωn

∫

Ω

ξi1 . . . ξimϕ(x, ξ) dω(ξ). (2.11.1)

Recall that Ω is the unit sphere in Rn, ωn = 2πn/2/Γ (n/2) is the volume of Ω and dω is
the angle measure on Ω.

If a function ϕ ∈ C∞(Rn × Rn
0 ) satisfies the equation

ξi
∂ϕ

∂xi

= 0, (2.11.2)

then the field µmϕ is solenoidal: δ(µmϕ) = 0. Indeed,

(δµmϕ)i1...im−1 =
∂(µmϕ)i1...im−1j

∂xj

=
1

ωn

∫

Ω

ξi1 . . . ξim−1

(
ξj

∂ϕ

∂xj

)
dω(ξ) = 0.

For f ∈ S(Sm), the function ϕ = If satisfies (2.11.2), which insures from (2.1.12). Thus
the field µmIf is solenoidal for every f ∈ S(Sm).

Let us calculate the composition µmI where I : S(Sm) → C∞(Rn × Rn
0 ) is the ray

transform. Given f ∈ S(Sm), it follows from (2.1.10) and (2.11.1) that

(µmIf)i1...im(x) =
2

ωn

∫

Ω

ξi1 . . . ξim




∞∫

0

〈f(x + tξ), ξm〉 dt


 dω(ξ).
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Changing variables in the integral according to the equality x + tξ = x′, we have

(µmIf)i1...im =
2

ωn

fj1...jm
∗ xi1 . . . ximxj1 . . . xjm

|x|2m+n−1
. (2.11.3)

We like now to apply the Fourier transform to the last equality. This application needs
some justification. By condition, the first factor on the right-hand side of (2.11.3) belongs
to S. The second factor is a function locally summable over Rn and bounded for |x| ≥ 1.
Consequently, the second factor can be considered as an element of the space S ′. It is
well known [138] that, for u ∈ S and v ∈ S ′, the convolution u ∗ v is defined and belongs
to the space θM consisting of smooth functions, on Rn, whose every derivative increases
at most as a polynomial. In this case the usual rule is valid: (u ∗ v)∧ = (2π)n/2ûv̂. Thus
(2.11.3) implies

F [(µmIf)i1...im ] = (2π)n/2 2

ωn

f̂j1...jm
F

[
xi1 . . . ximxj1 . . . xjm

|x|2m+n−1

]
. (2.11.4)

The product on the right-hand side is now understood to be a product of a function in S
and a distribution in S ′. Soon we shall see that the second factor is a locally summable
function and, consequently, this product can be understood in the conventional sense.
Calculating the second factor in accordance with the usual rules of treating the Fourier
transform [48], we obtain

F [(µmIf)i1...im ] =
(−1)m

22m−1

Γ
(

n
2

)
Γ

(
−m + 1

2

)

Γ
(
m + n

2
− 1

2

) f̂j1...jm
(y) ∂i1...imj1...jm

|y|2m−1, (2.11.5)

where ∂i1...ik = ∂k/∂yi1 . . . ∂yik .
Define the functions ei ∈ C∞(Rn

0 ), putting ei(y) = yi/|y|, and the tensor field ε ∈
C∞(S2;Rn

0 ), by the equality εij(y) = δij − ei(y)ej(y). The next lemma can be easily
proved by induction on m with the help of the Leibniz formula; we omit the proof

Lemma 2.11.1 For an integer m ≥ 0,

∂2m|y|2m−1 = ((2m − 1)!!)2|y|−1εm(y)

or, in a more detailed coordinate form,

∂i1...i2m
|y|2m−1 = ((2m − 1)!!)2|y|−1σ(εi1i2 . . . εi2m−1i2m

).

Here the notation k!! = k(k − 2)(k − 4) . . . is used and it is supposed that (−1)!! = 1.
By Lemma 2.11.1, equality (2.11.5) can be rewritten as

(µmIf)∧(y) = b(m,n)|y|−1εm(y)/f̂(y), (2.11.6)

where

b(m,n) = (−1)m ((2m − 1)!!)2

22m−1

Γ
(

n
2

)
Γ

(
−m + 1

2

)

Γ
(
m + n

2
− 1

2

) . (2.11.7)
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Since the field |y|−1εm(y) is locally summable, the product on the right-hand side of
(2.11.6) can be understood in the ordinary sense. Consequently, the same is true for the
initial equality (2.11.4).

Let us estimate the behavior of the field µmIf(x) as |x| → ∞. To this end, we note
that (2.11.6) implies the representation

(Dα(µmIf)∧)i1...im(y) = |y|−2m−2|α|−1
∑

|β|≤|α|

Pαβ
i1...imj1...jm

(y)Dβ f̂j1...jm
(y),

where Pαβ
i1...imj1...jm

is a homogeneous polynomial of degree 2m+|α|+|β|. It follows from the
representation that Dα(µmIf)∧ decreases rapidly as |y| → ∞ and satisfies the estimate
|Dα(µmIf)∧(y)| ≤ C|y|−|α|−1 for |y| ≤ 1. Consequently, the field Dα(µmIf )̂ is summable
over Rn for |α| ≤ n − 2. Thus we have proved

Theorem 2.11.2 Let n ≥ 2 and m ≥ 0 be integers. For f ∈ S(Sm), the field µmIf
belongs to C∞(Sm), tends to zero as |x| → ∞, satisfies the estimate |µmIf(x)| ≤ C(1 +
|x|)2−n and has zero divergence: δµmIf = 0.

2.12 Inversion formulas for the ray transform

Since we have agreed to use only Cartesian coordinates, the metric tensor g coincides
with the Kronecker tensor δ = (δij) (the author hopes that the reader is not confused
by coincidence of the notations of this tensor and the divergence). Recall that by i, j we
mean the operators of symmetric multiplication by δ and the operator of convolution with
δ. Let f ∈ S(Sm). By Theorem 2.6.2, we have the decomposition

f = sf + dv, δ sf = 0 (2.12.1)

of the field f to the solenoidal and potential parts. Applying the Fourier transform to
these equalities, we have

f̂(y) = ŝf(y) +
√
−1 iyv̂(y), jy

ŝf(y) = 0. (2.12.2)

Inserting (2.12.2) into (2.11.6), we obtain

(µmIf)∧(y) = b(m,n)|y|−1εm(y) / ŝf(y) +
√
−1 b(m, n)|y|−1εm(y) / iyv̂(y). (2.12.3)

By Theorem 2.6.2, the fields ŝf(y) and iyv̂(y) are bounded on Rn. Consequently, both
summands on the right-hand side of (2.12.3) are locally summable and this equality can
be understood in the ordinary sense. Let us show that the second summand is equal to
zero. Indeed, the expression

(εm/iyv̂)i1...im = {σ [(δi1j1 − ei1ej1) . . . (δimjm − eimejm)]} {σ(yj1 v̂j2...jm)}
is a sum whose every summand has a factor of the type (δij − eiej)yj = 0. Consequently,
(2.12.3) can be rewritten as follows:

b(m,n)εm(y) / ŝf(y) = |y|(µmIf)∧(y). (2.12.4)

By Theorem 2.11.2, δµmIf = 0. Applying the Fourier transform to the last equality,
we obtain jy(µ

mIf)∧(y) = 0. Thus (2.12.4), considered as a system of linear algebraic

equations relative to the components of the field ŝf(y), has a unique solution, as the next
theorem shows.
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Theorem 2.12.1 Let y ∈ Rn
0 , ε = ε(y), h ∈ Sm (m ≥ 0). The equation

εm/f = h (2.12.5)

has a solution f ∈ Sm if and only if, when its right-hand side satisfies the condition

jyh = 0. (2.12.6)

In this case equation (2.12.5) has a unique solution satisfying the condition

jyf = 0. (2.12.7)

The solution is expressed from the right-hand side according to the formula

f =
(2m)!

2mm!

[m/2]∑

k=0

(−1)k

2kk!(m − 2k)!

n + 2m − 1

(n + 2m − 1)(n + 2m − 3) . . . (n + 2m − 2k − 1)
εk(jkh),

(2.12.8)
where [m/2] is the integral part of m/2.

The proof of this theorem will be given in the next section. On using this theorem,
we shall now obtain the inversion formulas for the ray transform.

Applying Theorem 2.12.1 to equation (2.12.4), we arrive at the equality

ŝf(y) = |y|
[m/2]∑

k=0

ck(iε)
kjkĥ, (2.12.9)

where

ck = (−1)k
Γ

(
n−1

2

)

2
√

π(n − 3)!!Γ
(

n
2

) (n + 2m − 2k − 3)!!

2kk!(m − 2k)!
. (2.12.10)

(recall that (−1)!! = 1) and the notation h = µmIf is used for brevity. Since the
operator j is purely algebraic (independent of y), it commutes with the Fourier transform
F. Consequently, (2.12.9) can be rewritten as follows:

F [sf ] = |y|
[m/2]∑

k=0

ck(iε)
kF [jkh]. (2.12.11)

Let us find the operator whose Fourier-image is iε. From the equalities iε = i− (iy)
2/|y|2,

iF = Fi and iyF =
√
−1Fd, we obtain

iεF = Fi + |y|−2Fd2. (2.12.12)

It is well known that
|y|−2F = −F∆−1, (2.12.13)

where ∆−1 is the operator of convolution with the fundamental solution to the Laplace
equation: ∆−1u = u ∗ E,

E(x) =





−
Γ

(
n
2
− 1

)

4π2
|x|2−n for n ≥ 3,

(2π)−1 ln |x| for n = 2.
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Inserting (2.12.12) and (2.12.13) into (2.12.11), we obtain

F [sf ] = |y|F
[m/2]∑

k=0

ck(i − ∆−1d2)kjkh. (2.12.14)

It is well known that |y|F = F (−∆)1/2 where (−∆)1/2u = −π−(n+1)/2Γ
(

n+1
2

)
u ∗ |x|−n−1.

Thus (2.12.14) implies the final formula:

sf = (−∆)1/2




[m/2]∑

k=0

ck(i − ∆−1d2)kjk


 h.

Let us formulate the result we have obtained.

Theorem 2.12.2 Let n ≥ 2 and m ≥ 0 be integers. For every field f ∈ S(Sm;Rn), the
solenoidal part sf can be recovered from the ray transform If according to the formula

sf = (−∆)1/2




[m/2]∑

k=0

ck(i − ∆−1d2)kjk


 µmIf, (2.12.15)

where ∆ is the Laplacian (acting componentwise); d is the operator of inner differentia-
tion; i and j are the operators defined by the equalities iu = uδ, ju = u/δ where δ = (δij)
is the Kronecker tensor; the coefficients ck are given by formula (2.12.10); [m/2] is the
integral part of m/2.

Let us consider the question about the domain of definition of the operator A =
(−∆)1/2 ∑

ck(i−∆−1d2)kjk on the right-hand side of (2.12.15). By A we mean the space
of the distributions f ∈ S ′ whose Fourier transform f̂(y) is summable in a neighborhood
of the point y = 0. Let A(Sm) be the space of tensor fields whose components are in A.
The operator A is defined on A(Sm) and maps this space into itself, as one can see from
(2.12.9). It follows from (2.11.6) that, for f ∈ S(Sm), the field µmIf belongs to A(Sm).

Let W : C∞(Sm) → C∞(Sm ⊗ Sm) be the Saint Venant operator. We know that
Wdv = 0 for every v ∈ C∞(Sm−1). Consequently, (2.12.1) implies that

Wf = W sf. (2.12.16)

The operators i, d, ∆ commute with one other, as one can verify by an easy calculation
in coordinates. Thus (2.12.15) can be rewritten in the form:

sf = (−∆)1/2

(∑

k

cki
kjk

)
µmIf + du, (2.12.17)

where

u = (∆−1/2d)




[m/2]∑

s=1

(∆−1d2)s−1
[m/2]∑

k=s

aksi
k−sjk


 µmIf (2.12.18)

with some coefficients aks. Applying the Fourier transform to (2.12.18) and using (2.11.6),
we see that the field û(y) is summable over Rn and decreases rapidly as |y| → 0. Conse-
quently, u ∈ C∞(Sm−1) and therefore Wdu = 0. Applying W to equality (2.12.17) and
taking (2.12.16) into account, we arrive at the next
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Theorem 2.12.3 Let n ≥ 2 and m ≥ 0 be integers. For f ∈ S(Sm;Rn), the next equality
is valid

Wf = W (−∆)1/2




[m/2]∑

k=0

cki
kjk


 µmIf. (2.12.19)

Here W is the Saint Venant operator, the rest of the notations are explained in Theorem
2.12.2.

Theorems 2.12.2 and 2.12.3 answer to the two versions of the question about inversion
of the ray transform which are formulated in the beginning of the previous section.

It is pertinent to compare (2.12.15) with the inversion formula for the Radon transform
R (Theorem 3.1 from [48]):

f = cn(−∆)(n−1)/2R#Rf.

Here R#, the dual of the Radon transform, is an analog of our operator µ0. Thus, passing
from scalar integral geometry to tensor integral geometry, the inversion formula acquires
not only the algebraic operators i and j but also the operator ∆−1d2 which can be con-
sidered as a pseudodifferential operator of zero degree.

2.13 Proof of Theorem 2.12.1

We fix 0 6= y ∈ Rn and recall that ei = yi/|y|, εij = δij − eiej. Now we prove necessity
of condition (2.12.6) for solvability of equation (2.12.5). Indeed, assume that equation
(2.12.5) has a solution f ∈ Sm. Then

(jyh)i1...im−1 = yim(εm/f)i1...im = yimσ [(δi1j1 − ei1ej1) . . . (δimjm
− eimejm

)fj1...jm
] .

The right-hand side is a sum each of whose summands has a factor of the type yim(δimjk
−

eimejk
) = 0.

Similar arguments show that (2.12.6) implies the equalities jy(ε
k(jkh)) = 0. Conse-

quently, (2.12.7) follows from (2.12.8).
Thus operators A : f 7→ h and B : h 7→ f defined by equalities (2.12.5) and (2.12.8)

map the space Sm
y = {f ∈ Sm | jyf = 0} into itself. Consequently, to prove the theorem

it is sufficient to show that BA is the identical mapping of the space Sm
y , i.e., to verify

validity, on Sm
y , of the identity obtained from (2.12.8) by replacing h by εm/f. We shall

divide the proof into the several lemmas.

Lemma 2.13.1 For f ∈ Sm
y , the next equality is valid:

εm/f =
2m(m!)3

(2m)!

[m/2]∑

k=0

1

22k(k!)2(m − 2k)!
εk(jkf). (2.13.1)

P r o o f. We choose an orthonormalized basis for Rn such that y = (0, . . . , 0, yn). In
this basis ei = δin; εij = δij for 1 ≤ i, j ≤ n − 1; and εij = 0 if i = n or j = n. Condition
(2.12.7) now looks like: fni2...im = 0. Thus, for all tensors involved in equality (2.13.1),
the following is true: if a component of the tensor contains n among the indices, then this
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component is equal to zero. Consequently, proving equality (2.13.1), we can do in such
a way as if the n-th coordinate is absent. According to the last observation, we agree to
use Greek letters for designation of indices that vary from 1 to n− 1. On repeating Greek
indices, the summation from 1 to n − 1 is understood.

Let us prove the equality

(εm)α1...αmβ1...βm
=

2m(m!)3

(2m)!
σ(α1 . . . αm)σ(β1 . . . βm)×

×
[m/2]∑

k=0

2−2k(k!)−2

(m − 2k)!
δα1α2 . . . δα2k−1α2k

δβ1β2 . . . δβ2k−1β2k
δα2k+1β2k+1

. . . δαmβm
. (2.13.2)

Indeed, denoting (γ1, . . . , γm, γm+1, . . . , γ2m) = (α1, . . . , αm, β1, . . . , βm), we have

(εm)α1...αmβ1...βm =
1

(2m)!

∑

π∈Π2m

δγπ(1)γπ(2)
. . . δγπ(2m−1)γπ(2m)

(2.13.3)

where Π2m is the group of all permutations of the set

{α1, . . . , αm, β1, . . . , βm} = {γ1, . . . , γ2m}

which consists of 2m different symbols α1, . . . , βm (rather than of their numerical values).
We shall write such a permutation as an ordered sequence of pairs:

π = ((γπ(1), γπ(2)), . . . , (γπ(2m−), γπ(2m))).

We introduce some equivalence relation on the set Π2m by declaring the permutations π1

and π2 equivalent if the first of them can be transformed to the second by transpositions
of elements in the set α1, . . . , αm, transpositions of elements in the set β1, . . . , βm, trans-
positions of pairs and transpositions of elements in pairs. This definition implies the next
more simple criterion: two permutations are equivalent if and only if they contain the
same number of pairs of the type (αi, αj). Let Π2m =

⋃
k Bk be the decomposition into

classes where Bk is the equivalence class of the permutation

((α1, α2), . . . , (α2k−1, α2k), (β1, β2), . . . , (β2k−1, β2k), (α2k+1, β2k+1), . . . , (αm, βm)).

In (2.13.3), we group together the summands that correspond to equivalent permutations.
Then we have

(εm)α1...αmβ1...βm
=

1

(2m)!
σ(α1 . . . αm)σ(β1 . . . βm)

[m/2]∑

k=0

ckm×

×δα1α2 . . . δα2k−1α2k
δβ1β2 . . . δβ2k−1β2k

δα2k+1β2k+1
. . . δαmβm

, (2.13.4)

where ckm is the number of elements in the set Bk. We calculate this number as follows.
From m elements α1, . . . , αm, we have to choose 2k elements that enter in the pairs (αi, αj);

it can be done in

(
m
2k

)
ways. Similarly, from β1, . . . . . . , βm, the elements entering in the

pairs (βi, βj) can be chosen in

(
m
2k

)
ways. k pairs (αi, αj) can occupy m positions in

(
m
k

)
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ways. The remaining m − k positions can be occupied by k pairs (βi, βj) in

(
m − k

k

)

ways. The chosen 2k elements αi can be arranged in the chosen pairs in (2k)! ways.
Similarly, the chosen 2k elements βi can be arranged in the chosen pairs in (2k)! ways.
The remaining m − 2k elements αi and m − 2k elements βj can be grouped into pairs of
the type (αi, βj) in 2m−2k((m − 2k)!)2 ways. As a result, we have

ckm =

(
m
2k

) (
m
2k

) (
m
k

) (
m − k

k

)
(2k)!(2k)!2m−2k((m − 2k)!)2 =

(m!)32m−2k

(k!)2(m − 2k)!
.

Inserting this expression into (2.13.4), we arrive at (2.13.2).
With the help of (2.13.2), we can easily complete the proof of the lemma:

(εm/f)α1...αm = (εm)α1...αmβ1...βmfβ1...βm =

= σ(α1 . . . αm)
∑

k

ckmδα1α2 . . . δα2k−1α2k
δβ1β2 . . . δβ2k−1β2k

δα2k+1β2k+1
. . . δαmβm

fβ1...βm
=

= σ(α1 . . . αm)
∑

k

ckmδα1α2 . . . δα2k−1α2k
fβ1β1...βkβkα2k+1...αm

=

[∑

k

ckmεk(jkf)

]

α1...αm

.

Lemma 2.13.2 jεk = n + 2k − 3
2k − 1 εk−1.

P r o o f. We choose a coordinate system as in the proof of Lemma 2.13.1. Then

(εk)α1...α2k−2βγ =
1

(2k)!
σ(α1 . . . α2k−2)×

×(c1δα1α2 . . . δα2k−3α2k−2
δβγ + c2δα1βδα2γδα3α4 . . . δα2k−3α2k−2

). (2.13.5)

Here c1 denotes the number of permutations, of the set {α1, . . . , α2k−2, β, γ}, in which β
and γ enter in the same pair; and c2 denotes the number of the other permutations. These
numbers are easily computable from the arguments similar to those used in the proof of
Lemma 2.13.1: c1 = (2k)!/(2k− 1); c2 = (2k− 2)(2k)!/(2k− 1). Insert the last values into
(2.13.5). Putting then γ = β in (2.13.5) and summing over β, we arrive at the claim of
the lemma.

Lemma 2.13.3 For u ∈ Sm and v ∈ Sl the equality

j(uv) =
1

(m + l)(m + l − 1)
[m(m − 1)(ju)v + 2mlu ∧ v + l(l − 1)u(jv)]

is valid where u ∧ v denotes the tensor in Sm+l−2 that is defined by the formula

(u ∧ v)i1...im+l−2
= σ(ui1...im−1jvim...im+l−2j).

We omit the proof that is obtained from straightforward calculation in coordinates.

Lemma 2.13.4 For u ∈ Sm
y , the next relation is valid: εk ∧ u = εk−1u.
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The proof is omitted.

Lemma 2.13.5 For f ∈ Sm
y and 0 ≤ l ≤ [m/2] the equality

jl(εm/f) =
[m/2]−l∑

k=0

cm
lkε

k(jl+kf), (2.13.6)

is valid where

cm
lk =

2m(m!)2

(2m)!

2−2k−l(m − 2l)!

k!(k + l)!(m − 2k − 2l)!

(n + 2m − 1)(n + 2m − 3) . . . (n + 2m − 2l − 1)

n + 2m − 1
.

(2.13.7)

P r o o f proceeds by induction on l. For l = 0 the claim coincides with Lemma 2.13.1.
Let (2.13.6) and (2.13.7) be valid for l = p < [m/2]. Applying the operator j to equality
(2.13.6), we obtain

jp+1(εm/f) =
[m/2]−p∑

k=0

cm
pkj(ε

k(jp+kf)). (2.13.8)

By Lemmas 2.13.3, 2.13.2 and 2.13.4,

j(εk(jp+kf)) =
1

(m − 2p)(m − 2p − 1)
[2k(n + 2m − 4p − 2k − 3)εk−1(jp+kf) +

+ (m − 2p − 2k)(m − 2p − 2k − 1)εk(jp+k+1f)].

Inserting this expression into (2.13.8), we arrive at equality (2.13.6), for l = p+1 in which

cm
p+1,k =

1

(m − 2p)(m − 2p − 1)
[2(k + 1)(n + 2m − 4p − 2k − 5)cm

p,k+1 +

+ (m − 2p − 2k)(m − 2p − 2k − 1)cm
pk].

In the last equality, replacing cm
p,k+1 and cm

pk by their expressions from the inductive hy-
pothesis (2.13.7), we obtain validity of (2.13.7) for l = p + 1. The lemma is proved.

Lemma 2.13.6 For f ∈ Sm
y and 0 ≤ l ≤ [m/2] the equality

j[m/2]−lf =
l∑

k=0

(−1)kbm
lkε

k
(
j[m/2]−l+k(εm/f)

)
(2.13.9)

is valid where

bm
lk =

(2m)!

2m(m!)2

2[m/2]([m/2] − l)!(2l + κm)!

2l+kk!(2l − 2k + κm)!
×

× n + 2m − 1

(n + 2m − 1)(n + 2m − 3) . . . (n + m + κm + 2l − 2k − 1)
(2.13.10)

and

κm = m − 2[m/2] =

{
0, if m is even,
1, if m is odd.
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P r o o f proceeds by induction on l. By putting l = [m/2] in Lemma 2.13.5, we obtain
the claim being proved for l = 0. Assume that the claim is valid for all l satisfying the
inequalities 0 ≤ l < p ≤ [m/2]. Putting l = [m/2] − p in (2.13.6), we have

j[m/2]−pf =
(
cm
[m/2]−p,0

)−1
(
j[m/2]−p(εm/f) −

p∑

k=1

cm
[m/2]−p,kε

k(j[m/2]−p+kf)

)
. (2.13.11)

By the inductive hypothesis, for 1 ≤ k ≤ p,

j[m/2]−p+kf =
p−k∑

s=0

(−1)sbm
p−k,sε

s
(
j[m/2]−p+k+s(εm/f)

)
.

Inserting this expression into (2.13.11), after the easy transformations we arrive at equality
(2.13.9), for l = p, with the coefficients

bm
p0 =

(
cm
[m/2]−p,0

)−1
; bm

pk = −bm
p0

k∑

t=1

(−1)tbm
p−t,k−tc

m
[m/2]−p,t (1 ≤ k ≤ p). (2.13.12)

Replacing the coefficients cm
[m/2]−p,t and bm

p−t,k−t in (2.13.12) by their values given by (2.13.7)
and the inductive hypothesis (2.13.10), we obtain (2.13.10) for l = p. The lemma is proved.

P r o o f of Theorem 2.12.1. Putting l = [m/2] in (2.13.9) and (2.13.10), we obtain
relation (2.12.8) in which h is replaced by εm/f. As was noted in the beginning of the
current section, this equality proves the theorem.

2.14 Inversion of the ray transform

on the space of field-distributions

The inversion formulas (2.12.15) and (2.12.19) for the ray transform, having been proved
for f ∈ S(Sm), can be easily transferred to broader classes of tensor fields. Here we
will briefly describe how the main definitions and results concerning this formulas can be
extended to the space E ′(Sm). We omit the proofs that are based on the fact of density
of the space D(Sm) in S(Sm) as well as in E ′(Sm).

As we have shown in Section 2.5, the ray transform I : D(Sm) → C∞(Rn×Rn
0 ) can be

uniquely extended to the continuous operator I : E ′(Sm) → D′(Rn × Rn
0 ). Similarly, the

operator µm : C∞(Rn ×Rn
0 ) → C∞(Sm) defined in Section 2.11 has a unique continuous

extension µm : D′(Rn × Rn
0 ) → D′(Sm).

We say that a field u ∈ S ′(Sm) tends to zero at infinity if u(x) is continuous outside
some compact set and u(x) → 0 as |x| → ∞. For E ′(Sm), the theorem on decomposition of
a tensor field into potential and solenoidal parts remains valid in the following formulation:

Theorem 2.14.1 Let n ≥ 2. For f ∈ E ′(Sm), there exist uniquely determined fields
sf ∈ S ′(Sm) and v ∈ S ′(Sm−1) tending to zero at infinity and satisfying (2.6.6). The fields
sf and v are smooth outside supp f and satisfy estimates (2.6.8) outside some compact
set.

For f ∈ E ′(Sm), equality (2.11.6) remains valid which implies that the field µmIf be-
longs to the space A(Sm) defined after the formulation of Theorem 2.12.2. Consequently,



2.14. INVERSION OF THE RAY TRANSFORM 65

for f ∈ E ′(Sm), the right-hand sides of equalities (2.12.15) and (2.12.19) are defined and
belong to A(Sm) ⊂ S ′(Sm). Now Theorems 2.12.2 and 2.12.3 translate word by word to
the case when f ∈ E ′(Sm).

We will finish the current section by a more detailed discussion of formula (2.12.19)
in the case of tensor fields of degree 1 and 2 on a plane. We shall need the results of the
discussion in Section 2.16 that is devoted to a physical application of the ray transform.
According to the physical tradition, in Section 2.16 and in the remainder of the current
section we will use slightly-modified notations: indices of tensors will be marked with the
same letters x, y, z as coordinates.

First we consider the case of a vector field on a plane (n = 2,m = 1). Let D be a
domain, on the (x, y)-plane, bounded by a closed C1-smooth curve γ; and u = (ux, uy)
be some vector field that is defined and continuous in the closed domain D

⋃
γ and has

continuous first-order derivatives in D. It is convenient to consider u as the field defined
on the whole plane, putting u = 0 outside D

⋃
γ. Thus the field u has discontinuity on the

curve γ. Consequently, the derivatives in the Saint Venant operator must be understood
in the distribution sense. According to the observation, let us agree about notations: by
∂x, ∂y we denote the derivatives in the distribution sense and by ∂/∂x, ∂/∂y we denote
the classical derivatives.

We introduce coordinates (x, y, α) on R2 × Ω1, putting ξ = (cos α, sin α) for ξ ∈ Ω1.
The ray transform of a vector field on a plane is given by the formula

Iu(x, y, α) =

∞∫

−∞

[ux(x + t cos α, y + t sin α) cos α + uy(x + t cos α, y + t sin α) sin α] dt.

(2.14.1)
In the case under consideration (n = 2, m = 1) the Saint Venant operator has one
nonzero component. Consequently, Wu can be considered as the scalar function: Wu =
∂xuy − ∂yux. It is clear that

Wu = WDu + Wγu (2.14.2)

where

WDu =





∂uy

∂x
− ∂ux

∂y
, if (x, y) ∈ D,

0, if (x, y) /∈ D,
(2.14.3)

and Wγu is a distribution whose support is a subset of γ. Now we find the distribution.
According to the definition of the derivative of a distribution, for ϕ ∈ D(R2), we have

〈Wu, ϕ〉 = 〈∂xuy − ∂yux, ϕ〉 =

〈
ux,

∂ϕ

∂y

〉
−

〈
uy,

∂ϕ

∂x

〉
=

∫∫

D

(ux
∂ϕ

∂y
− uy

∂ϕ

∂x
) dxdy.

Transforming the last integral with the help of the Green’s formula, we obtain

〈Wu, ϕ〉 =
∫∫

D

(
∂uy

∂x
− ∂ux

∂y

)
ϕdxdy +

∮

γ

(uxνy − uyνx)ϕds (2.14.4)

where ν = (νx, νy) is the unit outer normal vector of γ and s is the arc length of γ.
Recall that the δ-function concentrated on γ is the distribution δγ defined by the equality
〈δγ, ϕ〉 =

∮
γ ϕds. Comparing (2.14.2)–(2.14.4), we see that

Wγu = (uxνy − uyνx)δγ. (2.14.5)
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The algorithm for determination of WDu from the ray transform Iu(x, y, α) afforded by
the formula (2.12.19) is described as follows. First we define the vector field µ = (µx, µy)
according to the formulas

µx(x, y) =
1

4π

2π∫

0

Iu(x, y, α) cos α dα;

µy(x, y) =
1

4π

2π∫

0

Iu(x, y, α) sin α dα.

(2.14.6)

Then we find the field λ = (λx, λy), putting

λx = (−∆)1/2µx, λy = (−∆)1/2µy. (2.14.7)

At last we find

WDu = WDλ =
∂λy

∂x
− ∂λx

∂y
. (2.14.8)

We can determine the second summand on the right-hand side of (2.14.2) from Iu,
starting with the same formula (2.12.19); but it is can easier to proceed as follows. We
assume that the domain D is strictly convex. By γ(s) = (γx(s), γy(s)) we mean the
parametrization, of the curve γ by the arc length s, which is chosen in a way such that the
increase of s corresponds to counterclockwise going along the curve. By α(s, ∆s) we mean
the angle from the Ox-axis to the vector ξ(s, ∆s) = (γ(s+∆s)−γ(s))/|(γ(s+∆s)−γ(s)|.
Then

Iu(γx(s), γy(s), α(s, ∆s)) =

=

∆′s∫

0

[ux(γ(s) + tξ(s, ∆s)) cos α(s, ∆s) + uy(γ(s) + tξ(s, ∆s)) sin α(s, ∆s)] dt

where ∆′s = |γ(s + ∆s) − γ(s)|. The last equality implies that

(uxγ̇x + uyγ̇y)(s) = lim
∆s→0

1

∆s
Iu (γx(s), γy(s), α(s, ∆s))

where the dot denotes differentiation with respect to s. Since γ̇x = −νy and γ̇y = νx, the
previous relation can be rewritten in the form

(uxνy − uyνx)(s) = − lim
∆s→0

1

∆s
Iu(γx(s), γy(s), α(s, ∆s)). (2.14.9)

Equalities (2.14.5) and (2.14.9) express Wγu through Iu.
Now we consider the case of a tensor field of degree 2 on a plane (n = m = 2). Let

D be the same domain as above; v = (vxx, vxy, vyy) be a symmetric tensor field which
is defined and continuous, together with its first-order derivatives, in D

⋃
γ, and has

continuous second-order derivatives in D. We put v = 0 outside D
⋃

γ. In the case under
consideration the ray transform is defined by the formula

Iv(x, y, α) =

∞∫

−∞

[
vxx(r) cos2 α + 2vxy(r) cos α sin α + vyy(r) sin2 α

]
r=(x+t cos α,y+t sin α)

dt.

(2.14.10)
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The Saint Venant operator has one nonzero component:

Wv = 2∂xyvxy − ∂yyvxx − ∂xxvyy.

With the help of the arguments similar to those used in obtaining (2.13.5), one can easily
show that

Wv = WDv + Wγv, (2.14.11)

where

WDv =





2
∂2vxy

∂x∂y
− ∂2vxx

∂y2
− ∂2vyy

∂x2
, if (x, y) ∈ D,

0, if (x, y) /∈ D,

(2.14.12)

and Wγv is a distribution whose support is a subset of γ. The distribution is defined by
the equality

〈Wγv, ϕ〉 =
∮

γ

[(
∂vyy

∂x
− ∂vxy

∂y

)
νx +

(
∂vxx

∂y
− ∂vxy

∂x

)
νy

]
ϕds−

−
∮

γ

[
(vyyνx − vxyνy)

∂ϕ

∂x
+ (vxxνy − vxyνx)

∂ϕ

∂y

]
ds. (2.14.13)

The algorithm, for determination of WD from the ray transform Iv, afforded by the
formula (2.12.19) is described as follows. Fist we define the tensor field µ = (µxx, µxy, µyy)
by formulas

µxx(x, y) =
1

4π

2π∫

0

Iv(x, y, α) cos2 α dα,

µxy(x, y) =
1

4π

2π∫

0

Iv(x, y, α) cos α sin α dα,

µyy(x, y) =
1

4π

2π∫

0

Iv(x, y, α) sin2 α dα.

(2.14.14)

Then we define the field λ = (λxx, λxy, λyy) by the equalities

λxx = (−∆)1/2(µxx −
1

2
µyy), λxy =

3

2
(−∆)1/2µxy, λyy = (−∆)1/2(µyy −

1

2
µxx).

(2.14.15)
At last we put

WDv = WDλ = 2
∂2λxy

∂x∂y
− ∂2λxx

∂y2
− ∂2λyy

∂x2
. (2.14.16)

The second summand on the right-hand side of equality (2.14.11) is expressible, in
terms Iv, which possibility is neglected here.

2.15 The Plancherel formula for the ray transform

Let H(TΩ) be the Hilbert space obtained by completing the space S(TΩ) with respect
to the norm corresponding to the scalar product

(ϕ, ψ)H(TΩ) = (2π)−1
∫

Ω

∫

ξ⊥

|y|ϕ̂(x, ξ)ψ̂(y, ξ) dydω(ξ), (2.15.1)
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where ϕ 7→ ϕ̂ is the Fourier transform on S(TΩ) defined in Section 2.1.

Theorem 2.15.1 The ray transform I : S(Sm) → S(TΩ) can be extended in a unique
way to a continuous operator I : L2(S

m) → H(TΩ). The kernel of the resulting operator
coincides with the second summand of decomposition (2.6.11). For f1, f 2 ∈ L2(S

m), the
next Plancherel formula is valid:

(If 1, If 2)H(TΩ) =
[m/2]∑

k=0

ak(j
kPf 1, jkPf 2)L2(Sm−2k), (2.15.2)

where [m/2] is the integral part of m/2, P : L2(S
m) → K(Sm) is the orthogonal projection

onto the second summand of decomposition (2.6.11), j : Sm → Sm−2 is the operator of
convolution with the metric tensor and the coefficients ak are given by the equalities

ak = ak(m,n) =
2m+1π(n−2)/2Γ

(
m + 1

2

)

(2m)!Γ
(
m + n−1

2

) 1

22k(k!)2(m − 2k)!
. (2.15.3)

The proof of the theorem will be divided into several lemmas.

Lemma 2.15.2 Let fα ∈ S(Sm) (α = 1, 2), sfα be the solenoidal part of the field fα

(i.e., sfα = Pfα) and ŝfα be the Fourier transform of the field sfα. The next relation is
valid:

(If 1, If 2)H(TΩ) =
∫

Ω

∫

ξ⊥

|y| 〈ŝf1(y), ξm〉 〈ŝf2(y), ξm〉 dy dω(ξ). (2.15.4)

P r o o f. First of all we note that the integral on the right-hand side of this equality
converges, by the properties, of the field ŝfα, mentioned in Theorem 2.6.2. By (2.15.1)
and (2.1.15),

(If 1, If 2)H(TΩ) =
∫

Ω

∫

ξ⊥

|y| 〈f̂1(y), ξm〉 〈f̂2(y), ξm〉 dy dω(ξ). (2.15.5)

According to the last claim of Lemma 2.6.1, the fields f̂α and ŝfα are connected by the
relation 〈f̂α(y), ξm〉 = 〈ŝfα(y), ξm〉 for (y, ξ) ∈ TΩ. Inserting this expression into the
right-hand side of (2.15.5), we arrive at (2.15.4). The lemma is proved.

Lemma 2.15.3 Let ϕ(x, ξ) be a continuous function on TΩ that decreases sufficiently
rapidly in x. Then the next equality is valid:

∫

Ω

∫

ξ⊥

ϕ(x, ξ) dx dω(ξ) =
∫

Rn

1

|x|
∫

Ω∩x⊥

ϕ(x, ξ) dω(n−2)(ξ) dx, (2.15.6)

where dω(n−2)(ξ) denotes the (n − 2)-dimensional angle measure on Ω ∩ x⊥.

P r o o f. Let ψ(x, ξ) be a continuous extension of ϕ(x, ξ) to Rn × Ω. With the help
of the δ-function, we replace the inner integral on the left-hand side of (2.15.6) by the
integral over Rn and then change the limits of integration. As a result we obtain

∫

Ω

∫

ξ⊥

ϕ(x, ξ) dx dω(ξ) =
∫

Rn

∫

Ω

ψ(x, ξ) δ(〈x, ξ〉) dω(ξ) dx.
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By Theorem 6.1.5 of [53], δ(〈x, ξ〉)dω(ξ) = dω(n−2)(ξ)/|x|. Consequently,

∫

Ω

∫

ξ⊥

ϕ(x, ξ) dx dω(ξ) =
∫

Rn

1

|x|
∫

Ω∩x⊥

ψ(x, ξ) dω(n−2)(ξ) dx =

=
∫

Rn

1

|x|
∫

Ω∩x⊥

ϕ(x, ξ) dω(n−2)(ξ) dx.

The lemma is proved.
We define the field ε ∈ C∞(S2;Rn

0 ) by putting εij = δij − xixj/|x|2.

Lemma 2.15.4 For 0 6= x ∈ Rn,

∫

Ω∩x⊥

ξi1 . . . ξi2m
dω(n−2)(ξ) =

2Γ
(
m + 1

2

)
π(n−2)/2

Γ
(
m + n−1

2

) εm
i1...i2m

(x). (2.15.7)

P r o o f. Both the left- and right-hand sides of equality (2.15.7) do not depend on
|x|. Consequently, it is sufficient to consider the case of |x| = 1. Note that, for coinci-
dence f = g of two symmetric tensors of degree m, it is necessary and sufficient that
fi1...imηi1 . . . ηim = gi1...imηi1 . . . ηim , for every η ∈ Rn. Applying this rule, we see that to
prove (2.15.7) it suffices to show that

∫

Ω∩x⊥

〈ξ, η〉2m dω(n−2)(ξ) =
2Γ

(
m + 1

2

)
π(n−2)/2

Γ
(
m + n−1

2

) 〈εm(x), η2m〉. (2.15.8)

for every η ∈ Rn

From the definition of the tensor ε, one can easily obtain that, for |x| = 1,

〈εm(x), η2m〉 = |η − 〈η, x〉x|2m. (2.15.9)

On the other hand,∫

Ω∩x⊥

〈ξ, η〉2m dω(n−2)(ξ) = |η − 〈η, x〉x|2m
∫

Ω∩x⊥

〈ξ, η′〉2m dω(n−2)(ξ) (2.15.10)

where the notation η′ = η′(x, η) = (η − 〈x, η〉x)/|η − 〈x, η〉x| is used. Note that η′ ∈
Ω ∩ x⊥. One can easily see that the integral on the right-hand side of (2.15.10) does not
depend of the choice of the vector η′ ∈ Ω ∩ x⊥ and is equal to [112]

∫

Ω∩x⊥

〈ξ, η′〉2m dω(n−2)(ξ) =
∫

Ωn−2

ξ2m
1 dω(ξ) = 2

Γ
(
m + 1

2

)
π(n−2)/2

Γ
(
m + n−1

2

) .

Inserting this expression into (2.15.10) and substituting then (2.15.9), (2.15.10) into
(2.15.8), we obtain the claim of the lemma.

Lemma 2.15.5 The Plancherel formula (2.15.2) is valid for fα ∈ S(Sm) (α = 1, 2).
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P r o o f. Let sfα = Pfα. Using Lemma 2.15.3, we change the limits of integration in
claim (2.15.4) of Lemma 2.15.2:

(If 1, If 2)H(TΩ) =
∫

Rn

ŝf1
i1...im(y) ŝf2

j1...jm
(y)




∫

Ω∩y⊥

ξi1 . . . ξimξj1 . . . ξjm
dω(n−2)(ξ)


 dy.

Replacing the inner integral by its value indicated in Lemma 2.15.4, we have

(If 1, If 2)H(TΩ) = 2
Γ

(
m + 1

2

)
π(n−2)/2

Γ
(
m + n−1

2

)
∫

Rn

ŝf1
i1...im(y) ŝf2

j1...jm
(y)εm

i1...imj1...jm
(y) dy.

(2.15.11)

By the condition δ sfα = 0, the relations yj
ŝfα

ji2...im(y) = 0 are valid. Consequently, the
tensor εm on (2.15.11) can be replaced by δm where δ = (δij) is the Kronecker tensor.
Repeating the arguments that were used in obtaining relation (2.13.2), we obtain

(δm)i1...imj1...jm =
2m(m!)3

(2m)!
σ(i1 . . . im)σ(j1 . . . jm)

[m/2]∑

k=0

1

22k(k!)2(m − 2k)!
×

×δi1i2 . . . δi2k−1i2k
δj1j2 . . . δj2k−1j2k

δi2k+1j2k+1
. . . δimjm

.

Substituting this expression for εm
i1...jm

into (2.15.11), we have

(If 1, If 2)H(TΩ) =

=
[m/2]∑

k=0

ak

∫

Rn

ŝf1
i1...im(y)ŝf2

j1...jm
(y)δi1i2 . . . δi2k−1i2k

δj1j2 . . . δj2k−1j2k
δi2k+1j2k+1

. . . δimjm
dy =

=
[m/2]∑

k=0

ak

(
jk(ŝf1), jk(ŝf2)

)
L2(Sm−2k)

with the coefficients ak defined by formula (2.15.3). Since the operator j is purely al-
gebraic, it commutes with the Fourier transform. Using the Plancherel formula for the
Fourier transform (û, v̂)L2(Sk) = (u, v)L2(Sk), we finally obtain

(If 1, If 2)H(TΩ) =
[m/2]∑

k=0

ak

(
jk(sf1), jk(sf2)

)
L2(Sm−2k)

.

The lemma is proved.
P r o o f of Theorem 2.15.1. Uniqueness of a continuous extension, of the operator

I : S(Sm) → H(TΩ), to L2(S
m) follows from density of S(Sm) in L2(S

m). Let us prove
existence of such an extension. For f ∈ L2(S

m), we choose a sequence fk ∈ S(Sm)
(k = 1, 2, . . .) that converges to f in L2(S

m). By Lemma 2.15.5, Ifk is a Cauchy sequence
in H(TΩ). Consequently, there exists ϕ ∈ H(TΩ) such that Ifk → ϕ. We put ϕ = If. It
can easily be verified that ϕ is independent of the choice of the sequence fk converging
to f and that the Plancherel formula (2.15.2) is valid, for the so-defined operator I :
L2(S

m) → H(TΩ),. From this formula the continuity of I follows together with the fact
that the kernel of I coincides with the second summand of decomposition (2.6.11). The
theorem is proved.
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2.16 Application of the ray transform to

an inverse problem of photoelasticity

A certain methods of polarization optics for investigation of stresses (more briefly: meth-
ods of photoelasticity) are based on the Brewster effect. It asserts that most transparent
materials obtain optical anisotropy in the presence of mechanical stresses. If a plane-
polarized electromagnetic wave falls onto such a body, then the wave acquires elliptic
polarization after passing the body. The extent of polarization is determined by the val-
ues of the stress tensor along a light ray. In photoelasticity there are known a few methods
of using this effect for determining stresses. One of these methods is the so-called method
of integrated photoelasticity [1]. It can be briefly described as follows: we illuminate the
investigated body by the plane-polarized light from various directions and with various
planes of polarization of the incoming light, measuring the polarization of the outcoming
light. As compared with the others, this method has the advantage of simplicity and
preciseness of optical measurements. On the other hand, this method leads to difficult
mathematical problems, most of which are still not solved. One of these problems is
considered in the current section.

We start with the main differential equations of photoelasticity. The relationship
between the stress tensor σ and the dielectric permeability tensor ε is described by the
Maxwell-Neumann law:

εjk = ε0δjk + Cσjk + C1σppδjk

where C and C1 are the so-called photoelasticity constants. In this section we shall
assume that the medium under consideration is homogeneous, i.e., that C, C1 and ε0 are
independent of a point. We fix a straight line π in R3 and choose a Cartesian coordinate
system tηζ such that π coincides with the t-axis. The evolution of the polarization ellipse
of electromagnetic wave along the light ray π is described by the next equations (see [1];
later, in Chapters 5 and 6, we shall derive these equations in a more general situation)

dEη

dt
= −iC

2
(σηη − σζζ)Eη + iCσηζEζ ,

dEζ

dt
= iCσηζEη +

iC

2
(σηη − σζζ)Eζ ,

(2.16.1)

where E is the normalized electric vector.
We write down (2.16.1) in matrix form

dE

dt
= CUE (2.16.2)

where

U =
i

2

(
σζζ − σηη 2σηζ

2σηζ σηη − σζζ

)
. (2.16.3)

The solution to equation (2.16.2) can be represented by the Neumann series

E(t) = A(t)E(t0),

A(t) = I + C

t∫

t0

U(τ)dτ + C2

t∫

t0

U(τ)dτ

τ∫

t0

U(τ1)dτ1 + . . . (2.16.4)
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where I is the identity matrix. If the constant C is small, then we can neglect the nonlinear
terms in (2.16.4) and write

A(t) − I = C

t∫

t0

U(τ)dτ. (2.16.5)

We speak about slight optical anisotropy, if equality (2.16.5) is valid.
From (2.16.3) and (2.16.5), we see that the degree of polarization along the light ray

π is defined by two integrals

L(σ, π) =
∫

π

σηζdt, S(σ, π) =
∫

π

(σηη − σζζ)dt. (2.16.6)

Physically measured quantities are the isocline parameter ϕ and optical retardation ∆
connected with integrals (2.16.6) by the equalities

∆ cos 2ϕ = CS(σ, π), ∆ sin 2ϕ = 2CL(σ, π). (2.16.7)

In [65] and [2] formulas (2.16.6)–(2.16.7) are obtained from physical arguments. Our
derivation of these relations from differential equations (2.16.1) is more simple and straight-
forward.

The technical conditions of measurement impose some restrictions on the family of
straight lines π over which integrals (2.16.6) can be measured. From the standpoint of
technical realization, the most appropriate situation is that in which the measurements are
done for horizontal straight lines, i.e., for those straight lines that are parallel to the plane
z = 0 in some (laboratory) coordinate system xyz. According to this remark, in the current
section we investigate the mathematical formulation of the question: to what extent is the
stress tensor field determined by integrals (2.16.6) measured over all horizontal straight
lines in the layer a < z < b. In studying we shall assume that the stress tensor satisfies
the equilibrium equations only, while not considering strains. Consequently, our results
are valid for any model (elastic, thermo-elastic etc.) of solid stressed media. The only
essential assumptions are as follows: 1) the dielectric permeability tensor depends linearly
on the stress tensor, and 2) the approximation of slight optical anisotropy is valid.

We assume that the stressed medium is contained in a cylindrical domain G = D ×
(a, b) = {(x, y, z) ∈ R3 | (x, y) ∈ D, a < z < b}, where D is a two-dimensional domain on
the (x, y)-plane and the boundary γ of D is a closed strictly convex C1-smooth curve. Let
B = γ × (a, b) = {(x, y, z) | (x, y) ∈ γ, a < z < b} be the lateral surface of the cylinder
G. The stress tensor σ is supposed to have continuous second-order derivatives in G and
continuous first-order derivatives up to B :

σ ∈ C2(G) ∩ C1(G ∪ B). (2.16.8)

The equilibrium equations are assumed to be satisfied in G (we suppose that the volume
forces are absent):

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0,

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0,

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
= 0,

(2.16.9)
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and the boundary conditions corresponding to the absence of the external forces are
assumed to be satisfied on B :

σxxνx + σxyνy = 0,

σyxνx + σyyνy = 0,

σzxνx + σzyνy = 0,

(2.16.10)

where ν = (νx, νy) is the unit vector normal to γ. Some of our results do not depend on
the boundary conditions (2.16.10). It is convenient to suppose that the tensor field σ is
defined in the whole layer {(x, y, z) ∈ R3 | a < z < b} by putting σ = 0 outside G

⋃
B.

The family of horizontal straight lines in R3 depends on three parameters, but it will
be convenient for us to use four parameters. We denote by π(x0, y0, α, z0) the horizontal
straight line defined by the parametric equations x = x0 + t cos α, y = y0 + t sin α, z = z0.
Note that π(x, y, α, z) depends actually on three parameters (x sin α − y cos α, α, z). One
gets two functions

Lσ(x, y, α; z) = L(σ, π(x, y, α, z)); Sσ(x, y, α; z) = S(σ, π(x, y, α, z))

by performing optical measurements along all horizontal straights lines in the layer a <
z < b. Our problem is: to what extent is the tensor field σ, satisfying (2.16.8)–(2.16.10),
determined by the functions Lσ and Sσ that are known for a < z < b and for all x, y, α?

In the current section we will obtain the next three main results on this problem.
1. The functions Lσ and Sσ are related. More exactly, if we know Lσ(x, y, α; z)

and Sσ(x, y, α; z0), then we can find Sσ(x, y, α; z); here z0 is any number satisfying the
condition a < z0 < b.

2. The component σzz is uniquely determined by the functions Lσ(x, y, α; z) and
Sσ(x, y, α; z). An algorithm for determination is given.

3. No information about the tensor field σ, except for σzz, can be extracted from
the functions Lσ and Sσ. More exactly: if two tensor fields σ1 and σ2 satisfy conditions
(2.16.8)–(2.16.10) and σ1

zz ≡ σ2
zz, then Lσ1 ≡ Lσ2 and Sσ1 ≡ Sσ2 .

The straight line π(x0, y0, α, z0) coincides with the t-axis of the coordinate system tηζ
that is related to xyz by the formulas

x = t cos α − η sin α + x0, y = t sin α + η cos α + y0, z = z0,

The components of the tensor σ in these coordinates are related as follows:

σηη(t, 0, 0) = σxx(r0 + tξ) sin2 α − 2σxy(r0 + tξ) cos α sin α+

+σyy(r0 + tξ) cos2 α,

σηζ(t, 0, 0) = −σxz(r0 + tξ) sin α + σyz(r0 + tξ) cos α,

σζζ(t, 0, 0) = σzz(r0 + tξ),

where we put for brevity:

r0 = (x0, y0, z0), ξ = (cos α, sin α, 0).
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Inserting these expressions into (2.16.6), we obtain (r = (x, y, z))

Lσ(x, y, α; z) =

∞∫

−∞

[−σxz(r + tξ) sin α + σyz(r + tξ) cos α] dt, (2.16.11)

Sσ(x, y, α; z) =

∞∫

−∞

[
(σxx − σzz)(r + tξ) sin2 α − 2σxy(r + tξ) cos α sin α +

+ (σyy − σzz)(r + tξ) cos2 α
]
dt. (2.16.12)

We fix z0 ∈ (a, b) and define on the plane z = z0 the vector field u = (ux, uy) and
symmetric tensor field v = (vxx, vxy, vyy) by putting

ux = σyz, uy = −σxz, (2.16.13)

vxx = σyy − σzz, vxy = −σxy, vyy = σxx − σzz. (2.16.14)

Inserting these expressions into (2.16.11), (2.16.12) and comparing the so-obtained equal-
ities with (2.14.1) and (2.14.10), we see that

Lσ(x, y, α; z0) = Iu(x, y, α; z0), Sσ(x, y, α; z0) = Iv(x, y, α; z0), (2.16.15)

where I is the ray transform and (x, y, α) are considered as the coordinates on R2
z0
×Ω1 =

{(x, y, z0; cos α, sin α)}.
We know that the ray transform If of a tensor field f of degree m on Rn and the

value Wf of the Saint Venant operator are uniquely determined from each other. Let us
denote:

lσ(x, y; z) = WDu(x, y; z), sσ(x, y; z) = WDv(x, y; z), (2.16.16)

where WD is the regular part of the Saint Venant operator introduced in Section 2.14. By
(2.16.15), we can assert that the functions lσ and sσ are uniquely determined from the
functions Lσ and Sσ respectively. The explicit algorithms for determination of lσ and sσ

from Lσ and Sσ are given by formulas (2.14.6)–(2.14.8) and (2.14.14)–(2.14.16).
Inserting the values (2.16.13) and (2.16.14) of the components of u and v into equalities

(2.14.3) and (2.14.12), we have

lσ(x, y; z) = −∂σxz

∂x
− ∂σyz

∂y
, (2.16.17)

sσ(x, y; z) =
∂2(σzz − σxx)

∂x2
+

∂2(σzz − σyy)

∂y2
− 2

∂2σxy

∂x∂y
. (2.16.18)

Assuming lσ and sσ to be known, let us now consider (2.16.17) and (2.16.18) as a
system of equations for σ; and add the equilibrium equations (2.16.9) and the boundary
conditions (2.16.10) to this system. It turns out that the so-obtained boundary problem
can be easily investigated.

By the third of the equilibrium equations (2.16.9), relation (2.16.17) is equivalent to
the next one:

∂σzz

∂z
= lσ. (2.16.19)
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We differentiate the first of the equations (2.16.9) with respect to x, the second, with
respect to y and add the so-obtained equalities to (2.16.18). We thus come to the equation

∂2σzz

∂x2
+

∂2σzz

∂y2
+

∂

∂z

(
∂σxz

∂x
+

∂σyz

∂y

)
= sσ

which is, by (2.16.17), equivalent to the next one:

(
∂2

∂x2
+

∂2

∂y2

)
σzz =

∂lσ
∂z

+ sσ. (2.16.20)

Comparing (2.16.19) and (2.16.20), we see that lσ and sσ are connected by the relation

(
∂2

∂x2
+

∂2

∂y2
− ∂2

∂z2

)
lσ =

∂sσ

∂z
(2.16.21)

which implies the first of the above-mentioned results.
Note that equations (2.16.19)–(2.16.21) were obtained without using boundary condi-

tions (2.16.10).
Let us show that the value of σzz on the lateral surface B of the cylinder G is de-

termined by the function Sσ. To this end, we consider two close points r = (x, y, z) and
r′ = (x′, y′, z) belonging to B and denote the horizontal straight line that passes through
r and r′ by π(r, r′). By (2.16.12),

S(σ, π(r, r′)) =

=

|r′−r|∫

0

[
(σxx − σzz)(r + tξ) ξ2

y − 2σxy(r + tξ) ξxξy + (σyy − σzz)(r + tξ) ξ2
x

]
dt

(2.16.22)
where ξ = (ξx, ξy, 0) = (r′ − r)/|r′ − r|. If the point r′ tends to r, then the vector ξ tends
to (τx, τy, 0) where τ = (τx, τy) is the unit tangent vector, of the curve γ, at the point
(x, y). Applying the mean value theorem to integral (2.16.22), we obtain

lim
r′→r

S(σ, π(r, r′))

|r′ − r| = σxx(r)τ
2
y − 2σxy(r)τxτy + σyy(r)τ

2
x − σzz(r). (2.16.23)

The tangent vector τ = (τx, τy) is expressed through the normal vector ν = (νx, νy) by the
formulas τx = −νy, τy = νx. Inserting these expressions into (2.16.23) and using (2.16.10),
we arrive at the equality

σzz(r) = − lim
r′→r

S(σ, π(r, r′))

|r′ − r| (r, r′ ∈ B; z = z′). (2.16.24)

Relations (2.16.19), (2.16.20) and (2.16.24) permit us to assert that the component σzz

is uniquely determined by the functions Lσ and Sσ. Many versions of numerical methods
for determination of σzz are possible because of overdeterminedness of system (2.16.19),
(2.16.20). We will briefly discuss two of them.

1. We fix z0 (a < z0 < b) and find σzz(r) for r = (x, y, z0) ∈ B by (2.16.24) from the
measured values of Sσ(x, y, α; z0). Then we find functions lσ(x, y, z) and sσ(x, y, z0) from
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Lσ(x, y, α; z) and Sσ(x, y, α; z0) by procedures, of inversion of the ray transform, given by
formulas (2.14.6)–(2.14.8) and (2.14.14)–(2.14.16). Then we solve the Dirichlet problem
for equation (2.16.20) at the level z = z0, by using known values σzz(x, y, z0)|(x,y)∈γ, and
find σzz(x, y, z0). The last step is integration of equation (2.16.19), using known lσ(x, y, z)
and σzz(x, y, z0).

2. First we find σzz|B from Sσ(x, y, α; z) by (2.16.24). Then we determine lσ(x, y, z)
and sσ(x, y, z) by inverting the ray transform. At last we find σzz(x, y, z) by solving the
Dirichlet problem for equation (2.16.20) at all levels.

The first method, in contrast to the other one, needs fewer calculations since it requires
inverting the ray transform of a tensor field of degree two only once (for z = z0). Thus, in
the first method, most calculations are spent for inverting the ray transform of a vector
field (determination of lσ from Lσ), which must be executed for all z. In the author’s
opinion, the only deficiency of the first method is that the error of determination of
σzz(x, y, z) can increase with |z − z0|, while all levels are equal in rights in the second
method. Relation (2.16.21) can be used for the control of calculations in the second
method. Various combinations of these methods are possible.

The first method has been realized numerically. It has given good results on test
data. In the author’s opinion, the algorithm is ready for application to processing real
measurement.

We will now prove that no information about a tensor field σ, except for σzz, can
be determined from Lσ and Sσ. Let σ1 and σ2 be two tensor fields satisfying (2.16.8)–
(2.16.10), and σ1

zz ≡ σ2
zz. Then the difference σ = σ1 − σ2 satisfies (2.16.8)–(2.16.10),

and
σzz ≡ 0. (2.16.25)

We have to prove that
Lσ ≡ 0, Sσ ≡ 0. (2.16.26)

Let us fix z0 and define the tensor fields u and v on the plane z = z0 by formulas (2.16.13),
(2.16.14). Then equalities (2.16.15) are valid. Thus, to prove (2.16.26) it is sufficient to
show that Iu = 0, Iv = 0. By Theorem 2.5.1, the last equalities are equivalent to

Wu = 0, (2.16.27)

Wv = 0. (2.16.28)

Inserting expressions (2.16.13) into (2.14.2), (2.14.3) and (2.14.5), we obtain

Wu = −
(

∂σxz

∂x
+

∂σyz

∂y

)
+ (σxzνx + σyzνy)δγ.

Using the third of the equilibrium equations (2.16.9), the last equality can be rewritten
as

Wu =
∂σzz

∂z
+ (σzxνx + σzyνy)δγ.

Comparing this relation with (2.16.25) and (2.16.10), we arrive at (2.16.27).
Inserting expression (2.16.14) into equalities (2.14.11)–(2.14.13), we have

WDv = −
(

∂2σxx

∂x2
+

∂2σyy

∂y2
+ 2

∂2σxy

∂x∂y

)
, (2.16.29)
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〈Wγv, ϕ〉 =
∮

γ

[(
∂σxx

∂x
+

∂σxy

∂y

)
νx +

(
∂σxy

∂x
+

∂σyy

∂y

)
νy

]
ϕds−

−
∮

γ

[
(σxxνx + σxyνy)

∂ϕ

∂x
+ (σxyνx + σyyνy)

∂ϕ

∂y

]
ϕds. (2.16.30)

Differentiating the first of the equations (2.16.9) with respect to x, the second, with
respect to y and summing the so-obtained equalities, we get

∂2σxx

∂x2
+

∂2σyy

∂y2
+ 2

∂2σxy

∂x∂y
= − ∂

∂z

(
∂σxz

∂x
+

∂σyz

∂y

)
.

According to the third of the equations (2.16.9), the last relation can be rewritten as
follows:

∂2σxx

∂x2
+

∂2σyy

∂y2
+ 2

∂2σxy

∂x∂y
=

∂2σzz

∂z2
.

Comparing this equality with (2.16.25) and (2.16.29), we see that

WDv = 0. (2.16.31)

By (2.16.10), the integrand of the second integral on the right-hand side of (2.16.30)
is identical zero. By (2.16.9), the integrand of the first integral can be transformed to as
follows:

〈Wγv, ϕ〉 = −
∮

γ

∂

∂z
(σxzνx + σyzνy) ϕds.

Comparing the last equality with the third of the boundary conditions (2.16.10), we see
that Wγv = 0. Together with (2.16.31), the last equality gives Wv = 0 which completes
the proof.

2.17 Further results

The presentation of the current chapter mainly follows the papers [113, 115, 117, 119].
Here we will deliver a survey of some results close to the main content of the chapter.

In Section 2.10, describing the range of the operator I, we left aside the ray transform
on a plane (n = 2). It was not accidental. Indeed, let us observe that, for n > 2, the John
conditions (2.10.1), that are necessary and sufficient for a function to be in the range of
the operator I, are of differential nature. In the case n = 2,m = 0 the ray transform
coincides with the Radon transform, for which the corresponding conditions are of integral
nature [35]. It turns out that the situation is similar in the case of arbitrary m. Thus the
two-dimensional case radically differs from the case n > 2. The precise formulation of the
result, due to E. Yu. Pantjukhina [100], is as follows:

Theorem 2.17.1 If a function ϕ ∈ S(TΩn−1) can be represented as ϕ = If for some
field f ∈ S(Sm;Rn), then (1) the identity ϕ(x,−ξ) = (−1)mϕ(x, ξ) is valid and (2) for
every integral k ≥ 0, on Rn there exists a homogeneous polynomial P k

i1...im(x) of degree k
such that the equality

∫

ξ⊥

ϕ(x′, ξ)〈x, x′〉k dx′ = P k
i1...im(x)ξi1 . . . ξim (2.17.1)
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is valid for all (x, ξ) ∈ TΩ. Here dx′ is the (n − 1)-dimensional Lebesgue measure on ξ⊥.
In the case n = 2 conditions (1) and (2) are sufficient for existence a field f ∈ S(Sm)
such that ϕ = If.

In the case m = 0 conditions (2.17.1) are formulated in [48].
In [115] the author considered the next generalization of the ray transform

Iqf =

∞∫

−∞

tq〈f(x + tξ), ξm〉 dt.

The subsequent claim is proved in full analogy with Theorem 2.5.1.

Theorem 2.17.2 Let 0 ≤ p ≤ m and n ≥ 2 be integers. For a field F ∈ E ′(Sm;Rn) the
next three assertions are equivalent:

(1) IqF = 0 for q = 0, 1, . . . , p;
(2) there exists a field V ∈ E ′(Sm−p−1) such that its support is contained in the convex

hull of the support of F and dp+1V = F ;
(3) W pF = 0 where W p : C∞(Sm) → C∞(Sm−p ⊗

Sm) is the differential operator of
order p defined by the formula

(W pf)i1...im−pj1...jm
= σ(i1 . . . im−p)σ(j1 . . . jm)

m−p∑

l=0

(−1)l

(
m − p

l

)
×

×fi1...im−p−lj1...jp+l ; jp+l+1...jmim−p−l+1...im−p
.

In particular, a compactly-supported tensor field F of degree m is uniquely determined
by the first m+1 integral moments I0F, . . . , ImF along all straight lines. It is possible that
explicit inversion formulas similar to (2.12.15) exist in this case; encountered algebraic
difficulties in the way of deriving such formulas are not overcome yet.

In conclusion, we present results, due to L. B. Vertgeim [136], on the complex analog
of the ray transform.

We fix the Hermitian form 〈z, w〉 = ziwi on Cn. Given integers p, q ≥ 0, by T q
p we mean

the space of tensors of bidegree (p, q) on Cn, i.e., the space of functions Cn×. . .×Cn → C
(there are p + q factors to the left of the arrow) which are C-linear in each of the first p
arguments and are C-antilinear in each of the last q arguments. Let Sq

p = Sq
p(C

n) be the
subspace of T q

p that consists of tensors symmetric in the first p and last q arguments; let
σ : T q

p → Sq
p be the operator of symmetrization with respect to these groups of arguments.

Any tensor u ∈ T q
p is uniquely represented as

u = u
j1...jq

i1...ip dzi1 ⊗ . . . ⊗ dzip ⊗ dzj1 ⊗ . . . ⊗ dzjq .

The scalar product on T q
p is defined by the equality

〈u, v〉 = u
j1...jq

i1...ip v
j1...jq

i1...ip .

For u ∈ Sq
p and v ∈ Sl

m the symmetric product uv = σ(u ⊗ v) ∈ Sq+l
p+m is defined. As

above, by iu we mean the operator of symmetric multiplication by u, and by ju we mean
the dual of iu.
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Two operators of inner differentiation and two divergences are defined on C∞(Sq
p) :

(df)
j1...jq

i1...ip+1
= σ

(
∂

∂zip+1
f

j1...jq

i1...ip

)
, (df)

j1...jq+1

i1...ip = σ

(
∂

∂zjq+1
f

j1...jq

i1...ip

)
,

(δf)
j1...jq

i1...ip−1
=

n∑

i=1

∂

∂zi
f

j1...jq

i1...ip−1i, (δf)
j1...jq−1

i1...ip =
n∑

i=1

∂

∂zj
f

j1...jq−1j
i1...ip ,

where the usual notation is used:

∂

∂zk
=

1

2

(
∂

∂xk
− i

∂

∂yk

)
,

∂

∂zk
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

Decomposition into potential and solenoidal parts is realizable as follows:

Theorem 2.17.3 Given a field f ∈ S(Sq
p), there exists a unique field sf ∈ C∞(Sq

p) such
that, for some v ∈ C∞(Sq

p−1) and w ∈ C∞(Sq−1
p ) the next relations are valid:

f = sf + dv + dw, δ sf = 0, δ sf = 0,

sf(z) → 0, v(z) → 0, w(z) → 0 as |z| → ∞.

The field sf satisfies the estimate |sf(z)| ≤ C(1+ |z|)1−2n; the fields v and w can be chosen
such that

|v(z)| ≤ C(1 + |z|)2−2n, |w(z)| ≤ C(1 + |z|)2−2n.

Let Cn
0 = Cn \ {0}. By the ray transform of a field f ∈ C∞(Sq

p) we mean the function
defined on Cn × Cn

0 by the formula

If(z, ξ) =
∫

C

f
j1...jq

i1...ip (z + tξ) ξi1 . . . ξipξ
j1

. . . ξ
jq

ds(t)

under the condition that the integral converges. Here ds(t) is the area form on C.
To give the inversion formula for the ray transform we have, at first, to introduce an

analog of operator (2.11.1). For f ∈ C∞(Sq
p), we define the tensor field µIf ∈ C∞(Sq

p) by
the equality

(µIf)
j1...jq

i1...ip (z) =
∫

CP
n−1

ξ
i1

. . . ξ
ip
ξj1 . . . ξjq

|ξ|2p+2q−2
If(z, ξ) dVP(ξ), (2.17.2)

where dVP(ξ) is the volume form, on the complex projective space CPn−1, generated by
the Fubini-Study metric

ds2 =
〈ξ, ξ〉〈dξ, dξ〉 − 〈ξ, dξ〉〈dξ, ξ〉

〈ξ, ξ〉2 .

In the last two formulas ξ is considered as the vector of homogeneous coordinates on
CPn−1. Note that the ray transform has the next homogeneity:

If(z, τξ) =
τ pτ q

|τ |2 If(z, ξ).

Consequently, the integrand in (2.17.2) has complex homogeneity of zero degree in ξ, i.e.,
it is defined on CPn−1.
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Theorem 2.17.4 The solenoidal part sf of a field f ∈ S(Sq
p) can be recovered from the

ray transform If by the formula

sf = − 1

4πn
∆

min(p,q)∑

l=0

(−1)l(n + p + q − l − 2)!

l!(p − l)!(q − l)!
(i − ∆−1dd)ljl(µIf),

where i = iδ, j = jδ, δ = (δi
j) ∈ S1

1 is the Kronecker tensor.

Note that in the case p = 0 or q = 0 this formula has the local character, i.e., a value
sf(z) is determined by integrals over complex straight lines that intersect any neibourhood
of the point z. In other cases the formula is nonlocal.

To describe the range of the ray transform we define the manifold M = {(z, ξ) | 〈z, ξ〉 =
0, ξ 6= 0}. By S(M) we mean the space of functions that are smooth on M and decrease,
together with all derivatives, rapidly in z and uniformly in ξ belonging to any compact
subset of Cn

0 .

Theorem 2.17.5 Let n ≥ 3. A function ψ ∈ C∞(Cn ×Cn
0 ) is the ray transform of some

field f ∈ S(Sq
p) if and only if the next four conditions are satisfied:

(1) ψ|M ∈ S(M);
(2) ψ(z + τξ, ξ) = ψ(z, ξ) for τ ∈ C;
(3) ψ(z, τξ) = (τ pτ q/|τ |2)ψ(z, ξ);
(4) For all indices,

(
∂2

∂zi1∂ξj1
− ∂2

∂zj1∂ξi1

)
. . .

(
∂2

∂zip+1∂ξjp+1
− ∂2

∂zjp+1∂ξip+1

)
ψ = 0,

(
∂2

∂zi1∂ξ
j1
− ∂2

∂zj1∂ξ
i1

)
. . .

(
∂2

∂ziq+1∂ξ
jq+1

− ∂2

∂zjq+1∂ξ
iq+1

)
ψ = 0.



Chapter 3

Some questions of tensor analysis

Here we will expose some notions and facts of tensor analysis that are used in the next
chapters for investigating integral geometry of tensor fields on Riemannian manifolds.

The first two sections contain a survey of tensor algebra and the theory of connections
on manifolds including the definition of a Riemannian connection. This survey is not
a systematic introduction to the subject; here the author’s only purpose is to represent
main notions and formulas in the form convenient for use in the book. Our presentation
of the connection theory is nearest to that of the book [61]; although there are many other
excellent textbooks on the subject [41, 81, 25].

In Section 3.3 the operators of inner differentiation and divergence are introduced on
the bundle of symmetric tensors of a Riemannian manifold; their duality is established.
Then we prove the theorem on decomposition of a tensor field, on a compact manifold,
into the sum of solenoidal and potential fields.

Sections 3.4–3.6 are devoted to exposing the main tools that are applied in the next
chapters to studying the kinetic equation on Riemannian manifolds. The so-called semi-
basic tensors are defined on the space of the tangent bundle; two differential operators,
vertical and horizontal covariant derivatives, are introduced on the bundle of semibasic
tensors. For these operators, formulas of Gauss-Ostrogradskĭı type are established. The
term “semibasic tensor field” is adopted from the book [39] in which a corresponding
notion is considered for exterior differential forms.

In Sections 3.3–3.6 our presentation mainly follows the paper [102].

3.1 Tensor fields

We shall use the terminology and notation of vector bundle theory. The reader is however
assumed to be acquainted only with the first notions of the theory. They can be found at
the first pages of the book [54].

By a manifold we mean a smooth Hausdorff paracompact manifold, possibly with a
boundary. The term “smooth” is used as a synonym of “infinitely differentiable.”

Let F be either the field C of complex numbers or the field R of real numbers. For a
manifold M, by C∞(M,F) we denote the ring of smooth F-valued functions on M. We
will write more briefly C∞(M) instead of C∞(M,C). Elements of the ring C∞(M) are
called smooth functions while elements of C∞(M,R) are called smooth real functions.

Given a smooth vector F-bundle α = (E, p,M) over a manifold M and open U ⊂ M,

81



82 CHAPTER 3. SOME QUESTIONS OF TENSOR ANALYSIS

we mean by C∞(α; U) the C∞(U,F)-module of smooth sections of the bundle α over U,
and by C∞

0 (α; U), the submodule of C∞(α; U) that consists of sections whose supports
are compact and contained in U. The notation C∞(α; M) will usually be abbreviated to
C∞(α). For α = (E, p,M), let α′ be the dual bundle, Ex be the fiber of α over a point x.
If N is a manifold and f : N → M is a smooth map, then by f∗α we mean the induced
bundle over N. Given two F-bundles α = (E, p,M) and β = (F, q,M), let L(α, β) be
the F-bundle whose fiber over x is the space of all F-linear mappings Ex → Fx. The
elements of C∞(M,F)-module C∞(L(α, β)) are called homomorphisms (over M) of the
bundle α into the bundle β. Thus a homomorphism of the bundle α into the bundle β is
a smooth mapping E → F linear on fibers and identical on the base. We shall use only
finite-dimensional vector bundles except the case in which we encounter graded vector
bundles of the type α∗ =

⊕∞
m=0α

m, where each αm is of finite dimension; such an object
can be viewed as a sequence of finite-dimensional bundles.

Given a manifold M , by τM = (TM, p, M) we denote the tangent bundle of M. Its
dual τ ′

M = (T ′M, p′,M) is called the cotangent bundle of the manifold M. Note that these
bundles are real. Their fibers TxM and T ′

xM are the spaces tangent and cotangent to
M at the point x. Their sections are called real vector and covector fields on M. A real
vector field v ∈ C∞(τM) can be considered as a derivative of the ring C∞(M,R), i.e., as
an R-linear mapping C∞(M,R) → C∞(M,R) such that

v(ϕ · ψ) = ψ · vϕ + ϕ · vψ. (3.1.1)

The number vϕ(x) is called the derivative of the function ϕ at the point x in the direction
v(x). For two such derivatives v and w, their commutator [v, w] = vw − wv is also a
derivative, i.e., a real vector field. It is called the Lie commutator of the fields v and w.

For nonnegative integers r and s, let Rτ r
s M = (RT r

s M, pr
s,M) be the real vector bundle

defined by the equality

Rτ r
s M = τM ⊗ . . . ⊗ τM ⊗ τ ′

M ⊗ . . . ⊗ τ ′
M , (3.1.2)

where the factor τM is repeated r times and τ ′
M is repeated s times; the tensor products

are taken over R. It is convenient to assume that Rτ r
s M = 0 for r < 0 or s < 0. Let

τ r
s M = (T r

s M, pr
s,M) be the complexification of the bundle Rτ r

s M, i.e.,

τ r
s M = C ⊗R (Rτ r

s M) (3.1.3)

where C is the trivial one-dimensional complex bundle. τ r
s M is called the bundle of

tensors of degree (r, s) on M, and its sections are called tensor fields of degree (r, s). A
tensor u ∈ T r

s M is said to be r times contravariant and s times covariant. The fiber of
τ r
s M over x ∈ M is denoted by T r

s,xM.
By definition (3.1.3), in the complex vector bundle τ r

s M the R-subbundle Rτ r
s M of real

tensors is distinguished. Consequently, any tensor u ∈ T r
s M can uniquely be represented

as u = v + iw with real v and w.
Tensor fields of degrees (0, 0), (1, 0) and (0, 1) are just smooth (complex) functions,

vector and covector fields respectively. A vector field v ∈ C∞(τ 1
0 M) can be considered

as a derivative of the ring C∞(M), i.e., as a C-linear mapping v : C∞(M) → C∞(M)
satisfying (3.1.1).

The bundles τ r
s M and τ s

r M are dual to one other and, consequently, C∞(τ r
s M) and

C∞(τ s
r M) are the mutually dual C∞(M)-modules. This implies, in particular, that a
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covariant tensor field u ∈ C∞(τ 0
s M) can be considered as C∞(M)-multilinear mapping

u : C∞(τ 1
0 M)× . . .×C∞(τ 1

0 M) → C∞(M). The last observation allows us to define the C-
linear map d : C∞(M) → C∞(τ 0

1 M) that sends a function ϕ ∈ C∞(M) to its differential
dϕ ∈ C∞(τ 0

1 M) by the formula dϕ(v) = vϕ. Similarly, a field u ∈ C∞(τ 1
s M) can be

considered as a C∞(M)-multilinear mapping u : C∞(τ 1
0 M)×. . .×C∞(τ 1

0 M) → C∞(τ 1
0 M).

We will now list some algebraic operations which are defined on tensors and tensor
fields.

Since C∞(τ r
s M) is a C∞(M)-module, tensor fields of the same degree can be summed

and multiplied by smooth functions.
Every permutation π of the set {1, . . . , r} (of the set {1, . . . , s}) determines the auto-

morphism ρπ (automorphism ρπ) of the bundle τ r
s M by the corresponding permutation

of first r (of last s) factors on the right-hand side of equality (3.1.2) and, consequently, it
determines the automorphism ρπ (automorphism ρπ) of the C∞(M)-module C∞(τ r

s M).
The automorphism ρπ(ρπ) is called the operator of transposition of upper (lower) indices.

For 1 ≤ k ≤ r and 1 ≤ l ≤ s the canonical pairing of the k-th factor in the first group
of (3.1.2) and the l-th factor in the second group defines the homomorphism Ck

l : τ r
s M →

τ r−1
s−1 M which is called the convolution with respect to k-th upper and l-th lower indices.

By the permutation of the factors TxM and T ′
xM, the isomorphism

T r
s,xM ⊗ CT r′

s′,xM = (C ⊗ TxM ⊗ . . . ⊗ TxM︸ ︷︷ ︸
r

⊗T ′
xM ⊗ . . . ⊗ T ′

xM︸ ︷︷ ︸
s

)⊗C

⊗C(C ⊗ TxM ⊗ . . . ⊗ TxM︸ ︷︷ ︸
r′

⊗T ′
xM ⊗ . . . ⊗ T ′

xM︸ ︷︷ ︸
s′

) ∼=

∼= C ⊗ TxM ⊗ . . . ⊗ TxM︸ ︷︷ ︸
r+r′

⊗T ′
xM ⊗ . . . ⊗ T ′

xM︸ ︷︷ ︸
s+s′

= T r+r′

s+s′,xM

is defined. The composition of the last isomorphism with the canonical projection T r
s,xM×

T r′

s′,xM → T r
s,xM ⊗ T r′

s′,xM allows us, given tensors u ∈ T r
s,xM and v ∈ T r′

s′,xM , to define

the tensor product u ⊗ v ∈ T r+r′

s+s′,xM. We thus turn τ ∗
∗M =

⊕∞
r,s=0τ

r
s M into a bundle of

bigraded C-algebras, and C∞(τ ∗
∗M) =

⊕∞
r,s=0C

∞(τ r
s M) into a bigraded C∞(M)-algebra.

We shall often use coordinate representation of tensor fields. If (x1, . . . , xn) is a local
coordinate system defined in a domain U ⊂ M, then the coordinate vector fields ∂i =
∂/∂xi ∈ C∞(τM ; U) and the coordinate covector fields dxi ∈ C∞(τ ′

M ; U) are defined. Any
tensor field u ∈ C∞(τ r

s M ; U) can be uniquely represented as

u = ui1...ir
j1...js

∂

∂xi1
⊗ . . . ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . ⊗ dxjs , (3.1.4)

where u = ui1...ir
j1...js

∈ C∞(U) are called the coordinates (or the components) of the field u
in the given coordinate system. Assuming that the choice of coordinates is clear from the
context, we will usually abbreviate equality (3.1.4) as follows:

u = (ui1...ir
j1...js

). (3.1.5)

For a point x ∈ U and a tensor u ∈ T r
s,xM equalities (3.1.4) and (3.1.5) also make

sense, but in this case the coordinates are complex numbers. If (x′1, . . . , x′n) is a second



84 CHAPTER 3. SOME QUESTIONS OF TENSOR ANALYSIS

coordinate system defined in a domain U ′, then in U ∩U ′ the components of a tensor field
with respect to two coordinate systems are connected by the transformation formulas:

u′i1...ir
j1...js

=
∂x′i1

∂xk1
. . .

∂x′ir

∂xkr

∂xl1

∂x′j1
. . .

∂xls

∂x′js
uk1...kr

l1...ls
. (3.1.6)

The above-listed operations on tensor fields are expressed in coordinate form by the
formulas

(ϕu + ψv)i1...ir
j1...js

= ϕui1...ir
j1...js

+ ψvi1...ir
j1...js

(ϕ, ψ ∈ C∞(M)),

(ρπu)i1...ir
j1...js

= u
iπ(1)...iπ(r)

j1...js
, (ρπu)i1...ir

j1...js
= ui1...ir

jπ(1)...jπ(s)
, (3.1.7)

(Ck
l u)

i1...ir−1

j1...js−1
= u

i1...ik−1pik...ir−1

j1...jl−1pjl...js−1
, (3.1.8)

(u ⊗ v)
i1...ir+r′

j1...js+s′
= ui1...ir

j1...js
v

ir+1...ir+r′

js+1...js+s′
. (3.1.9)

Note that the tensor fields ∂/∂xi and dxj commute with respect to tensor product,
i.e., ∂/∂xi ⊗ dxj = dxj ⊗ ∂/∂xi, while dxi and dxj (and also ∂/∂xi and ∂/∂xj) do not
commute. Moreover, if U is diffeomorphic to Rn, then the C∞(U)-algebra C∞(τ ∗

∗M ; U)
is obtained from the free C∞(U)-algebra with generators ∂/∂xi and dxi by the defining
relations ∂/∂xi ⊗ dxj = dxj ⊗ ∂/∂xi.

3.2 Covariant differentiation

A connection on a manifold M is a mapping ∇ : C∞(τM) × C∞(τM) → C∞(τM) sending
a pair of real vector fields u, v into the third real vector field ∇uv that is R-linear in
the second argument, and C∞(M,R)-linear in the first argument, while satisfying the
relation:

∇u(ϕv) = ϕ∇uv + (uϕ)v, (3.2.1)

for ϕ ∈ C∞(M,R).
By one of remarks in the previous section, C∞(Rτ 1

1 M) is canonically identified with the
set of C∞(M,R)-linear mappings C∞(τM) → C∞(τM). Consequently, a given connection
defines the R-linear mapping (which is denoted by the same letter)

∇ : C∞(τM) → C∞(Rτ 1
1 M) (3.2.2)

by the formula (∇v)(u) = ∇uv. Relation (3.2.1) is rewritten as:

∇(ϕv) = ϕ · ∇v + v ⊗ dϕ. (3.2.3)

Passing to complexifications in (3.2.2), we obtain the C-linear mapping

∇ : C∞(τ 1
0 M) → C∞(τ 1

1 M), (3.2.4)

that satisfies (3.2.3) for ϕ ∈ C∞(M). Conversely, any C-linear mapping (3.2.4), satisfying
condition (3.2.3) and sending real vector fields into real tensor fields, defines a connection.
The tensor field ∇v is called the covariant derivative of the vector field v (with respect
to the given connection).

The covariant differentiation, having been defined on vector fields, can be transferred
to tensor fields of arbitrary degree, as the next theorem shows.
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Theorem 3.2.1 Given a connection, there exist uniquely determined C-linear mappings

∇ : C∞(τ r
s M) → C∞(τ r

s+1M), (3.2.5)

for all integers r and s, such that
(1) ∇ϕ = dϕ for ϕ ∈ C∞(M) = C∞(τ 0

0 M);
(2) For r = 1 and s = 0, mapping (3.2.5) coincides with the above-defined mapping

(3.2.4);
(3) For 1 ≤ k ≤ r and 1 ≤ l ≤ s, operator (3.2.5) commutes with the convolution

operator Ck
l ;

(4) the operator ∇ is a derivative of the algebra C∞(τ ∗
∗M) in the following sense: for

u ∈ C∞(τ r
s M) and v ∈ C∞(τ r′

s′ M),

∇(u ⊗ v) = ρs+1(∇u ⊗ v) + u ⊗∇v, (3.2.6)

where ρs+1 is the transposition operator for lower indices corresponding to the permutation
{1, . . . , s, s + 2, . . . , s + s′ + 1, s + 1}.

We omit the proof of the theorem which can be accomplished in a rather elementary
way based on the local representation (3.1.4).

For a connection ∇, the mappings R : C∞(τM) × C∞(τM) × C∞(τM) → C∞(τM) and
T : C∞(τM) × C∞(τM) → C∞(τM) defined by the formulas

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

T (u, v) = ∇uv −∇vu − [u, v],

are C∞(M,R)-linear in all arguments and, consequently, they are real tensor fields of
degrees (1, 3) and (1, 2) respectively. They are called the curvature tensor and the
torsion tensor of the connection ∇. A connection with the vanishing torsion tensor is
called symmetric.

Let us present the coordinate form of the covariant derivative. If (x1, . . . , xn) is a
local coordinate system defined in a domain U ⊂ M, then the Christoffel symbols of the
connection ∇ are defined by the equalities

∇∂i
∂j = Γk

ij∂k, (3.2.7)

where ∂i = ∂/∂xi are the coordinate vector fields. We emphasize that the functions
Γk

ij ∈ C∞(U,R) are not components of any tensor field; under a change of the coordinates,
they are transformed by the formulas

Γ′k
ij =

∂x′k

∂xα

∂xβ

∂x′i

∂xγ

∂x′j
Γα

βγ +
∂x′k

∂xα

∂2xα

∂x′i∂x′j
. (3.2.8)

The torsion tensor and curvature tensor are expressed through the Christoffel symbols
by the equalities

T k
ij = Γk

ij − Γk
ji,

Rk
lij =

∂

∂xi
Γk

jl −
∂

∂xj
Γk

il + Γk
ipΓ

p
jl − Γk

jpΓ
p
il. (3.2.9)
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For a field

u = ui1...ir
j1...js

∂

∂xi1
⊗ . . . ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . ⊗ dxjs ,

the components of the field ∇u are denoted by ui1...ir
j1...js ; k or by ∇ku

i1...ir
j1...js

, i.e.,

∇u = ui1...ir
j1...js ; k

∂

∂xi1
⊗ . . . ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . ⊗ dxjs ⊗ dxk.

We emphasize that the factor dxk, corresponding to the number of the coordinate with
respect to which “the differentiation is taken”, is situated in the final position. Of course,
this rule is not obligatory, but some choice must be done. Our choice stipulates the
appearance the operator ρs+1 in equality (3.2.6). According to our choice, the notation
ui1...ir

j1...js ; k is preferable to ∇ku
i1...ir
j1...js

, since it has the index k in the final position. Neverthe-
less, we will also use the second notation because it is convenient to interpret ∇k as “the
covariant partial derivative”. The components of the field ∇u are expressed through the
components of u by the formulas

∇ku
i1...ir
j1...js

= ui1...ir
j1...js ; k =

∂

∂xk
ui1...ir

j1...js
+

+
r∑

m=1

Γim
kpu

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

Γp
kjm

ui1...ir
j1...jm−1pjm+1...js

. (3.2.10)

The second-order covariant derivatives satisfy the commutation relations:

(∇k∇l −∇l∇k)u
i1...ir
j1...js

=

=
r∑

m=1

Rim
pklu

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

Rp
jmklu

i1...ir
j1...jm−1pjm+1...js

. (3.2.11)

We recall that a Riemannian metric on a manifold M is a real tensor field g = (gij) ∈
C∞(τ 0

2 M) such that the matrix (gij(x)) is symmetric and positive-definite for every point
x ∈ M . A manifold M together with a fixed Riemannian metric is called Riemannian
manifold. We denote a Riemannian manifold by (M, g) or simply by M if it is clear what
metric is assumed. Given ξ, η ∈ TxM, by 〈ξ, η〉 = gij(x)ξiηj we mean the scalar product.
A Riemannian metric defines the canonical isomorphism of the bundles τM and τ ′

M by the
equality ξ(η) = 〈ξ, η〉 and, consequently, defines isomorphism of τ r

s M and τ s
r M. By this

reason we will not distinguish co- and contravariant tensors on a Riemannian manifold
and will speak about co- and contravariant coordinates of the same tensor. In coordinate
form this fact is expressed by the well-known rules of raising and lowering indices of a
tensor:

ui1...im = gi1j1 . . . gimjm
uj1...jm ; ui1...im = gimjm . . . gi1j1uj1...jm

,

where (gij) is the matrix inverse to (gij).
The scalar product is extendible to τ 0

r M by equality (2.1.3). Declaring τ 0
r M and τ 0

s M
orthogonal to one other in the case r 6= s, we turn τ∗M =

⊕∞
r=0τ

0
r M into a Hermitian

vector bundle. Consequently, we can define the scalar product in C∞
0 (τ∗M) by formula

(2.1.6) in which
dV n(x) = [det(gij)]

1/2dx1 ∧ . . . ∧ dxn (3.2.12)

is the Riemannian volume and integration is performed over M .
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A connection ∇ on a Riemannian manifold is called compatible with the metric, if
v〈ξ, η〉 = 〈∇vξ, η〉 + 〈ξ,∇vη〉 for every vector fields v, ξ, η ∈ C∞(τM). It is known that
on a Riemannian manifold there is a unique symmetric connection compatible with the
metric; it is called the Riemannian connection. Its Christoffel symbols are expressed
through the components of the metric tensor by the formulas

Γk
ij =

1

2
gkp

(
∂gjp

∂xi
+

∂gip

∂xj
− ∂gij

∂xp

)
. (3.2.13)

From now on we will use only this connection on a Riemannian manifold, unless we state
otherwise.

A smooth mapping γ : (a, b) → M is called a (parametrized) curve in the manifold
M, and C∞(γ∗τ r

s M) is called the space of tensor fields along the curve γ. In particular,
the vector field γ̇ ∈ C∞(γ∗τM) along γ defined by the equality γ̇ = dγ(d/dt) is called the
tangent vector field of the curve γ. A connection ∇ on M induces the operator of total
differentiation D/dt : C∞(γ∗τ r

s M) → C∞(γ∗τ r
s M) along γ which is defined in coordinate

form by the equality D/dt = γ̇i∇i. A field u is called parallel along γ if Du/dt = 0. If
u is parallel along γ, we say that the tensor u(γ(t)) is obtained from u(γ(0)) by parallel
displacement along γ.

A curve γ in a Riemannian manifold is called a geodesic if its tangent field γ̇ is parallel
along γ. In coordinate form the equations of geodesics coincide with (1.2.5). Given a
Riemannian manifold M without boundary, a geodesic γ : (a, b) → M (−∞ ≤ a < b ≤ ∞)
is called maximal if it is not extendible to a geodesic γ′ : (a−ε1, b+ε2) → M where ε1 ≥ 0,
ε2 ≥ 0 and ε1 + ε2 > 0. It is known that there is a unique geodesic issuing from any point
in any direction. More exactly, for every x ∈ M and ξ ∈ TxM, there exists a unique
maximal geodesic γx,ξ : (a, b) → M (−∞ ≤ a < 0 < b ≤ ∞) such that the initial
conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ are satisfied. In geometry the notation expx(tξ) is
widely used instead of γx,ξ(t), but the notation γx,ξ(t) is more convenient for our purposes
and it will be always used in the book.

Let Rijkl be the curvature tensor of the Riemannian manifold M. For a point x ∈ M
and a two-dimensional subspaces σ ⊂ TxM, the number

K(x, σ) = Rijklξ
iξkηjηk/

(
|ξ|2|η|2 − 〈ξ, η〉2

)
(3.2.14)

is independent of the choice of the basis ξ, η for σ. It is called the sectional curvature of
the manifold M at the point x and in the two-dimensional direction σ. This notion is very
popular in differential geometry [41].

3.3 Symmetric tensor fields

By Smτ ′
M = (SmT ′M, pm,M) we denote the subbundle of τ 0

mM which consists of tensors
that are invariant with respect to all transpositions of the indices. Another equivalent
definition explaining the notation is possible: Smτ ′

M is the complexification of the m-th
symmetric degree of the bundle τ ′

M . We call S∗τ ′
M =

⊕∞
m=0S

mτ ′
M the bundle of (co-

variant) symmetric tensors, and its sections are called the symmetric tensor fields. Let
σ : τ 0

mM → Smτ ′
M be the canonical projection (symmetrization) defined by the equality

σ = 1
m!

∑
π∈Πm

ρπ where Πm is the group of all purmutations of degree m. The symmetric
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product uv = σ(u ⊗ v) turns S∗τ ′
M into the bundle of the commutative graded algebras.

For a Riemannian manifold, S∗τ ′
M is a Hermitian vector bundle.

From now on we assume in this section that M is a Riemannian manifold. Let SmT ′
xM

be the fiber of the bundle Smτ ′
M over the point x, and S∗T ′

xM =
⊕∞

m=0S
mT ′

xM. Given
u ∈ S∗T ′

xM, by iu : S∗T ′
xM → S∗T ′

xM we denote the operator of symmetric multiplication
by u, and by ju we denote the dual of iu. In coordinate form these operators are expressed
by formulas (2.1.5). For u ∈ C∞(S∗τ ′

M), the homomorphisms iu, ju : S∗τ ′
M → S∗τ ′

M are
introduced by the relations iu(x) = iu(x), ju(x) = ju(x).

The operator of inner differentiation d : C∞(Smτ ′
M) → C∞(Sm+1τ ′

M) is defined by the
equality d = σ∇. The divergence operator δ : C∞(Sm+1τ ′

M) → C∞(Smτ ′
M) is defined in

coordinate form by the formula (δu)i1...im = ui1...imj ; kg
jk.

Theorem 3.3.1 The operators d and −δ are formally dual to one other. Moreover, for
a compact domain D ⊂ M bounded by piecewise smooth hypersurface ∂D and for every
fields u, v ∈ C∞(S∗τ ′

M), the next Green’s formula is valid:

∫

D

[〈du, v〉 + 〈u, δv〉] dV n =
∫

∂D

〈iνu, v〉 dV n−1, (3.3.1)

where dV n and dV n−1 are the Riemannian volumes on M and ∂D respectively, ν is the
exterior unit normal vector to ∂D.

P r o o f. It is known [55] that, for a vector field ξ ∈ C∞(τM), the next Gauss-
Ostrogradskĭı formula is valid:

∫

D

(δξ) dV n =
∫

D

ξi
; i dV n =

∫

∂D

〈ξ, ν〉 dV n−1. (3.3.2)

Given u ∈ C∞(Smτ ′
M) and v ∈ C∞(Sm+1τ ′

M), we write

〈du, v〉 + 〈u, δv〉 = ui1...im ; im+1v
i1...im+1 + ui1...imvi1...im+1

; im+1 = (ui1...imvi1...im+1) ; im+1 .

Introducing the vector field ξ by the equality ξj = ui1...imvi1...imj and applying (3.3.2) to
ξ, we arrive at (3.3.1).

We recall [97] that, for a smooth complex vector bundle α over a compact manifold
M and an integer k ≥ 0, the topological Hilbert space Hk(α) is defined of sections whose
components are locally square-integrable together with all derivatives up to the order k in
every local coordinate system. Let M be a compact Riemannian manifold with boundary,
Smτ ′

M |∂M be the restriction of the bundle Smτ ′
M to ∂M. By fixing a finite atlas on M and

a partition of unity subordinate to the atlas, we provide Hk(Smτ ′
M) and Hk(Smτ ′

M |∂M)
with the structures of Hilbert spaces. The norms of these spaces will be denoted by ‖ · ‖k.
We recall that, for k ≥ 1, the trace operator Hk(Smτ ′

M) → Hk−1(Smτ ′
M |∂M), u 7→ u|∂M

is bounded.

The next theorem generalizes the well-known fact about decomposition of a vector
field (m = 1) into potential and solenoidal parts to symmetric tensor fields of arbitrary
degree.
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Theorem 3.3.2 Let M be a compact Riemannian manifold with boundary; let k ≥ 1
and m ≥ 0 be integers. For every field f ∈ Hk(Smτ ′

M), there exist uniquely determined
sf ∈ Hk(Smτ ′

M) and v ∈ Hk+1(Sm−1τ ′
M) such that

f = sf + dv, δ sf = 0, v|∂M = 0. (3.3.3)

The estimates
‖sf‖k ≤ C‖f‖k, ‖v‖k+1 ≤ C‖δf‖k−1 (3.3.4)

are valid where a constant C is independent of f. In particular, sf and v are smooth if f
is smooth.

We call the fields sf and dv the solenoidal and potential parts of the field f .
P r o o f. Assuming existence of sf and v which satisfy (3.3.3) and applying the

operator δ to the first of these equalities, we see that v is a solution to the boundary
problem δdv = δf, v|∂M = 0. Conversely, if we establish that, for any u ∈ Hk−1(Smτ ′

M),
the boundary problem

δdv = u, v|∂M = 0 (3.3.5)

has a unique solution v ∈ Hk+1(Smτ ′
M) satisfying the estimate

‖v‖k+1 ≤ C‖u‖k−1, (3.3.6)

then we shall arrive at the claim of the theorem by putting u = δf and sf = f − dv.
We will show that problem (3.3.5) is elliptic with zero kernel and zero cokernel. After

this, applying the theorem on normal solvability [139], we shall obtain existence and
uniqueness of the solution to problem (3.3.5) as well as estimate (3.3.6).

To check ellipticity of problem (3.3.5) we have to show that the symbol σ2(δd) of the
operator δd is elliptic and to verify the Lopatinskĭı condition for the problem.

We use the definition and notation, for symbols of differential operators on vector
bundles, that are given in [97]. It is straightforward from the definition that the symbols
of operators d and δ are expressed by the formulas

σ1d(x, ξ) = iξ, σ1δ(x, ξ) = jξ (ξ ∈ T ′
xM),

where iξ and jξ are the operators defined in the previous section. Thus, σ2(δd)(ξ, u) =
jξiξu. Now we use the next

Lemma 3.3.3 Let M be a Riemannian manifold, x ∈ M and 0 6= ξ ∈ TxM. For an
integer m ≥ 0, the equality

jξiξ =
1

(m + 1)
|ξ|2E +

m

(m + 1)
iξjξ (3.3.7)

holds on SmT ′
xM , where E is the identity operator.

The lemma will be proved at the end of the section, and now we continue the proof
of the theorem. The operator iξjξ is nonnegative, as a product of two mutually dual
operators. Consequently, formula (3.3.7) implies positiveness of jξiξ for ξ 6= 0. Thus
ellipticity of the symbol σ2(δd) is proved.
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It will be convenient for us to verify the Lopatinskĭı condition in the form presented
in [139] (condition III of this paper; we note simultaneously that condition II of regular
ellipticity is satisfied since equation (3.3.5) has real coefficients). We choose a local coor-
dinates x1, . . . , xn−1, xn = t ≥ 0 in a neighbourhood of a point x0 ∈ ∂M in such a way
that the boundary ∂M is determined by the equation t = 0 gij(x0) = δij. For brevity
we denote d0(D) = σ1d(x0, D) and δ0(D) = σ1δ(x0, D) where D = (Dj), Dj = −i∂/∂xj.
Then

(d0(D)v)j1...jm+1 = iσ(j1 . . . jm+1)(Dj1vj2...jm+1), (3.3.8)

(δ0(D)v)j1...jm−1 = i
n∑

k=1

Dkvkj1...jm−1 . (3.3.9)

To verify the Lopatinskĭı condition for problem (3.3.5) we have to consider the next
boundary problem for a system of ordinary differential equations:

δ0(ξ
′, Dt) d0(ξ

′, Dt) v(t) = 0, (3.3.10)

v(0) = v0, (3.3.11)

where Dt = −id/dt; and to prove that this problem has a unique solution in N+ for every
0 6= ξ′ ∈ Rn−1 and every tensor v0 ∈ Sm(Rn). Here N+ is the space of solutions, to system
(3.3.10), which tend to zero as t → ∞.

Since the equation det (δ0(ξ
′, λ)d0(ξ

′, λ)) = 0 has real coefficients and has not a real
root for ξ′ 6= 0 as we have seen above, the space N of all solutions to system (3.3.10)
can be represented as the direct sum: N = N+

⊕N− where N− is the space of solutions
tending to zero as t → −∞. Moreover, dimN+ = dimN− = dim Sm(Rn). Consequently,
to verify the Lopatinskĭı condition it is sufficient to show that the homogeneous problem

δ0(ξ
′, Dt) d0(ξ

′, Dt) v(t) = 0, v(0) = 0 (3.3.12)

has only zero solution in the space N+. Before proving this, we will establish a Green’s
formula.

Let u(t) and v(t) be symmetric tensors, on Rn of degree m+1 and m respectively, which
depend smoothly on t ∈ [0,∞) and decrease rapidly together with all their derivatives as
t → 0. If v(0) = 0 then

∞∫

0

〈δ0(ξ
′, Dt)u, v〉 dt = −

∞∫

0

〈u, d0(ξ
′, Dt)v〉 dt. (3.3.13)

The scalar product is understood here according to definition (2.1.3) for gij = δij. Indeed,

∞∫

0

〈δ0(ξ
′, Dt)u, v〉 dt = i

∞∫

0

(
Dtunj1...jm

+
n−1∑

k=1

ξ′kukj1...jm

)
vj1...jmdt =

= i

∞∫

0

[
unj1...jm(Dtvj1...jm

) +
n−1∑

k=1

ξ′kukj1...jm
vj1...jm

]
dt.

Putting ξ = (ξ′1, . . . , ξ
′
n−1, Dt), we can rewrite this equality as:

∞∫

0

〈δ0(ξ
′, Dt)u, v〉 dt = i

∞∫

0

uj1...jm+1ξj1vj2...jm+1 dt. (3.3.14)
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By (3.3.8), we have (d0(ξ
′, Dt)v)j1...jm+1 = σ(j1 . . . jm+1)(ξj1vj2...jm+1). Consequently,

〈u, d0(ξ
′, Dt)v〉 = −iuj1...jm+1ξj1vj2...jm+1 . Comparing the last relation with (3.3.14), we

arrive at (3.3.13).
Let v(t) ∈ N+ be a solution to problem (3.3.12). Putting u(t) = d0(ξ

′, Dt)v(t) in
(3.3.13), we obtain

d0(ξ
′, Dt)v(t) = 0. (3.3.15)

Let us now prove that (3.3.15) and the initial condition v(0) = 0 imply that v(t) ≡ 0.
Definition (3.3.8) for the operator d0(ξ) can be rewritten as

(d0(ξ)v)j1...jm+1 =
i

m + 1

m+1∑

k=1

ξjk
v

j1...ĵk...jm+1
,

where the symbol ∧ posed over jk designates that this index is omitted. Putting ξ =
(ξ′, Dt), jm+1 = n in the last equality and taking (3.3.15) into account, we obtain

(d0(ξ
′, Dt)v)nj1...jm

=
i

m + 1


(l + 1)Dtvj1...jm

+
∑

jk 6=n

ξjk
v

nj1...ĵk...jm


 = 0. (3.3.16)

Here l = l(j1, . . . , jm) is the number of occurrences of the index n in (j1, . . . , jm). Thus
the field v(t) satisfies the homogeneous system (3.3.16) which is resolved with respect to
derivatives. The last claim, together with the initial condition v(0) = 0, implies that
v(t) ≡ 0. Ellipticity of problem (3.3.5) is proved.

For a field u ∈ C∞(Smτ ′
M) and a geodesic γ : (a, b) → M, the next equality is valid:

d

dt

[
ui1...im(γ(t))γ̇i1(t) . . . γ̇im(t)

]
= (du)i1...im+1(γ(t))γ̇i1(t) . . . γ̇im+1(t). (3.3.17)

It can be easily proved with the help of the operator D/dt = γ̇i∇i of total differentiation
along γ. Indeed, using the equality Dγ̇/dt = 0, we obtain

d

dt

(
ui1...im γ̇i1 . . . γ̇im

)
=

D

dt

(
ui1...im γ̇i1 . . . γ̇im

)
=

(
Du

dt

)

i1...im

γ̇i1 . . . γ̇im =

= ui1...im ; j γ̇
j γ̇i1 . . . γ̇im = (du)i1...im+1 γ̇

i1 . . . γ̇im+1 .

Let us prove that problem (3.3.5) has the trivial kernel; i.e., that the homogeneous
problem δdu = 0, u|∂M = 0 has only zero solution. By ellipticity, we can assume the field
u to be smooth. Putting v = du and D = M in the Green’s formula (3.3.1), we obtain
du = 0. Let x0 ∈ M \ ∂M, and x1 be a point in the boundary ∂M which is nearest to x0.
There exists a geodesic γ : [−1, 0] → M such that γ(−1) = x1 and γ(0) = x0. For a vector
ξ ∈ Tx0M, let γξ be the geodesic defined by the initial conditions γξ(0) = x0, γ̇ξ(0) = ξ.
If ξ is sufficiently close to γ̇(0), then γξ intersects ∂M for some t0 = t0(ξ) < 0. Using
(3.3.17), we obtain

ui1...im(x0)ξ
i1 . . . ξim = ui1...im(γξ(t0))γ̇

i1
ξ (t0) . . . γ̇im

ξ (t0)+

+

0∫

t0

(du)i1...im+1(γξ(t))γ̇
i1
ξ (t) . . . γ̇

im+1

ξ (t) dt = 0.
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Since the last equality is valid for all ξ in a neighbourhood of the vector γ̇(0) in Tx0M, it
implies that u(x0) = 0. This means that u ≡ 0 because x0 is arbitrary.

Let us prove that problem (3.3.5) has the trivial cokernel. Let a field f ∈ C∞(Smτ ′
M)

be orthogonal to the image of the operator of the boundary problem:
∫

M

〈f, δdu〉 dV n = 0 (3.3.18)

for every field u ∈ C∞(Smτ ′
M) satisfying the boundary condition

u|∂M = 0. (3.3.19)

We have to show that f = 0. We first take u such that supp u ⊂ M \ ∂M. From (3.3.18)
with the help of the Green’s formula, we obtain

0 =
∫

M

〈f, δdu〉 dV n = −
∫

M

〈df, du〉 dV n =
∫

M

〈δd f, u〉 dV n.

Since u ∈ C∞
0 (Smτ ′

M) is arbitrary, the last equality implies that

δd f = 0. (3.3.20)

Now let v ∈ C∞(Smτ ′
M |∂M) be arbitrary. One can easily see that there exists u ∈

C∞(Smτ ′
M) such that

u|∂M = 0, jνdu|∂M = v. (3.3.21)

From (3.3.18), (3.3.20) and (3.3.21) with the help of the Green’s formula, we obtain

0 =
∫

M

〈f, δdu〉 dV n = −
∫

M

〈d f, du〉 dV n +
∫

∂M

〈f, jνdu〉 dV n−1 =

=
∫

M

〈δd f, u〉 dV n +
∫

∂M

〈f, v〉 dV n−1 =
∫

∂M

〈f, v〉 dV n−1.

Thus
∫
∂M〈f, v〉 dV n−1 = 0 for every v ∈ C∞(Smτ ′

M |∂M) and, consequently, f |∂M = 0. As
we know, the last equality and (3.3.20) imply that f = 0. The theorem is proved.

P r o o f of Lemma 3.3.3. For a symmetric tensor u of degree m, we obtain

(jξiξu)i1...im = ξim+1σ(i1 . . . im+1)(ui1...imξim+1)

where σ(i1 . . . im+1) is the symmetrization in the indices i1 . . . im+1. Using the decompo-
sition of the symmetrization given by Lemma 2.4.1, we transform the right-hand side of
the last equality as follows:

(jξiξu)i1...im =
1

m + 1
ξim+1σ(i1...im)(ui1...imξim+1 + mui2...im+1ξi1) =

=
1

m + 1
σ(i1...im)(ui1...imξim+1ξ

im+1 + mξi1ui2...im+1ξ
im+1) =

=
(

1

m + 1
|ξ|2u +

m

m + 1
iξjξu

)

i1...im

.

The lemma is proved.
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3.4 Semibasic tensor fields

The modern mathematical style presumes that invariant (independent of the choice of
coordinates) notions are introduced by invariant definitions. Risking to look old-fashioned,
in the current and next sections the author consciously chooses the opposite approach.
The notions under consideration will first be introduced with the help of local coordinates.
We will pay particular attention to the rule of transformation of the quantities under
definition with respect to a change of coordinates. Only at the end of the sections we will
briefly discuss the possibility of an invariant definition.

Let M be a manifold of dimension n and τM = (TM, p, M) be its tangent bundle.
Points of the manifold TM are designated by the pairs (x, ξ) where x ∈ M, ξ ∈ TxM. If
(x1, . . . , xn) is a local coordinate system defined in a domain U ⊂ M, then by ∂i = ∂/∂xi ∈
C∞(τM ; U) we mean the coordinate vector fields and by dxi ∈ C∞(τ ′

M ; U) we mean the
coordinate covector fields. We recall that the coordinates of a vector ξ ∈ TxM are the
coefficients of the expansion ξ = ξi∂/∂xi. On the domain p−1(U) ⊂ TM, the family of the
functions (x1, . . . , xn, ξ1, . . . , ξn) is a local coordinate system (strictly speaking, we have
to write xi◦p; nevertheless we will use a more brief notation xi, hoping that it will not
lead to misunderstanding) which is called associated with the system (x1, . . . , xn). A local
coordinate system on TM will be called a natural coordinate system if it is associated with
some local coordinate system on M. From now on we will use only such coordinate systems
on TM . If (x′1, . . . , x′n) is another coordinate system defined in a domain U ′ ⊂ M, then
in p−1(U ∩ U ′) the associated coordinates are related by the transformation formulas

x′i = x′i(x1, . . . , xn); ξ′
i
=

∂x′i

∂xj
ξj. (3.4.1)

Unlike the case of general coordinates, these formulas have the next peculiarity: the first n
transformation functions are independent of ξi while the last n functions depend linearly
on these variables. This peculiarity is the base of all further constructions in the current
section.

The algebra of tensor fields of the manifold TM is generated locally by the coordi-
nate fields ∂/∂xi, ∂/∂ξi, dxi, dξi. Differentiating (3.4.1), we obtain the next rules for
transforming the fields with respect to change of natural coordinates:

∂

∂ξi
=

∂x′j

∂xi

∂

∂ξ′j
, dx′i =

∂x′i

∂xj
dxj, (3.4.2)

∂

∂xi
=

∂x′j

∂xi

∂

∂x′j
+

∂2x′j

∂xi∂xk
ξk ∂

∂ξ′j
, dξ′

i
=

∂2x′i

∂xj∂xk
ξkdxj +

∂x′i

∂xj
dξj. (3.4.3)

We note that formulas (3.4.2) contain only the first-order derivatives of the transformation
functions and take the observation as the basis for the next definition.

A tensor u ∈ T r
s,(x,ξ)(TM) of degree (r, s) at a point (x, ξ) of the manifold TM is

called semibasic if in some (and, consequently, in any) natural coordinate system it can
be represented as:

u = ui1...ir
j1...js

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs (3.4.4)
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with complex coefficients ui1...ir
j1...js

that are called the coordinates (or components) of the
tensor u. Assuming the choice of the natural coordinate system to be clear from the
context (or arbitrary), we will abbreviate equality (3.4.4) to the next one:

u = (ui1...ir
j1...js

). (3.4.5)

It follows from (3.4.2) that, under change of a natural coordinate system, the components
of a semibasic tensor are transformed by the formulas

u′i1...ir
j1...js

=
∂x′i1

∂xk1
. . .

∂x′ir

∂xkr

∂xl1

∂x′j1
. . .

∂xls

∂x′js
uk1...kr

l1...ls
(3.4.6)

which are identical in form with formulas (3.1.6) for transforming components of an
ordinary tensor on M. The set of all semibasic tensors of degree (r, s) constitutes the
subbundle in τ r

s (TM). We shall denote the subbundle by βr
sM = (Br

sM, pr
s, TM). Sections

of this bundle are called semibasic tensor fields of degree (r, s). For such a field u ∈
C∞(βr

sM), equalities (3.4.4) and (3.4.5) are valid in the domain p−1(U) in which a natural
coordinate system acts; here ui1...ir

j1...js
∈ C∞(p−1(U)). Note that C∞(β0

0M) = C∞(TM), i.e.,
semibasic tensor fields of degree (0, 0) are just smooth functions on TM. The elements of
C∞(β1

0M) are called the semibasic vector fields, and the elements of C∞(β0
1M) are called

semibasic covector fields.
Formula (3.4.6) establishes a formal analogy between ordinary tensors and semibasic

tensors. Using the analogy, we introduce some algebraic and differential operations on
semibasic tensor fields.

The set C∞(βr
sM) is a C∞(TM)-module, i.e., the semibasic tensor fields of the same

degree can be summed and multiplied by functions ϕ(x, ξ) depending smoothly on (x, ξ) ∈
TM.

For u ∈ C∞(βr
sM) and v ∈ C∞(βr′

s′ M) the tensor product u ⊗ v ∈ C∞(βr+r′

s+s′ M)
is defined in coordinate form by formula (3.1.9). With the help of (3.4.6) by standard
arguments, one proves correctness of this definition, i.e., that the field u⊗v is independent
of the choice of a natural coordinate system participating in the definition. The so-
obtained operation turns C∞(β∗

∗M) =
⊕∞

r,s=0C
∞(βr

sM) into a bigraded C∞(TM)-algebra.
This algebra is generated locally by the coordinate semibasic fields ∂/∂ξi and dxi.

The operations of transposition of upper and lower indices are defined by formulas
(3.1.7), and the convolution operators Ck

l : βr
sM → βr−1

s−1M are defined by (3.1.8). With
the help of (3.4.6), one verifies correctness of these definitions.

Tensor fields on M can be identified with the semibasic tensor fields on TM whose
components are independent of the second argument ξ. Let us call such the fields basic
fields. Formula (3.4.6) implies that this property is independent of choice of natural
coordinates. Thus we obtain the canonical imbedding

κ : C∞(τ r
s M) ⊂ C∞(βr

sM) (3.4.7)

which is compatible with all algebraic operations introduced above. Note that κ(∂/∂xi) =
∂/∂ξi and κ(dxi) = dxi.

Given u ∈ C∞(βr
sM), it follows from (3.4.6) that the set of the functions

v

∇ku
i1...ir
j1...js

=
∂

∂ξk
ui1...ir

j1...js
(3.4.8)
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is the set of components of a semibasic field of degree (r, s + 1). The equality

v

∇u =
v

∇ku
i1...ir
j1...js

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs ⊗ dxk (3.4.9)

defines correctly the differential operator
v

∇: C∞(βr
sM) → C∞(βr

s+1M) which will be

called the vertical covariant derivative. One can verify directly that
v

∇ commutes with
the convolution operators and is related to the tensor product by the equality

v

∇(u ⊗ v) = ρs+1(
v

∇u ⊗ v) + u ⊗ v

∇v (3.4.10)

for u ∈ C∞(βr
sM) where ρs+1 is the same as in (3.2.6).

In conclusion of the section we will formulate the invariant definitions of the above-
introduced notions.

Let p∗τ r
s M be the bundle, over TM, induced by projection p of the tangent bundle

from the bundle τ r
s M . By the definition of induced bundle, the fiber of p∗τ r

s M over a point
(x, ξ) ∈ TM can be identified with T r

s,xM. With the help of this identification, the opera-
tion on τ ∗

∗M introduced above (tensor product, convolution operators and transpositions
of indices) are transferred to p∗τ ∗

∗M =
⊕∞

r,s=0 p∗τ r
s M .

We could formulate the simplest invariant definition of the bundle of semibasic tensors
by declaring βr

sM coincident with p∗τ r
s M. However a semibasic tensor field defined in this

manner would not be a tensor field on TM. Therefore we will proceed otherwise by

constructing a monomorphism 0 → p∗τ r
s M

λ→ τ r
s (TM) and defining βr

sM as the image of
the monomorphism.

For x ∈ M we consider the next sequence of manifolds and smooth mappings:

TxM
i⊂ TM

p→ M, (3.4.11)

where i is the imbedding and p is the projection of the tangent bundle. The leftmost
manifold in the sequence is provided by the structure of vector space and, consequently,
its tangent space can be identified with TxM itself. The differentials of mappings (3.4.11)
form the exact sequence

0 → TxM
i∗−→ T(x,ξ)(TM)

p∗−→ TxM → 0 (3.4.12)

of vector spaces and linear mappings (recall that a sequence of vector spaces and linear
mappings is called exact if the image of every mapping coincides with the kernel of the
subsequent mapping). Passing to the dual spaces and mappings, we obtain the second
exact sequence

0 ← T ′
xM

i∗←− T ′
(x,ξ)(TM)

p∗←− T ′
xM ← 0. (3.4.13)

We define the monomorphism

0 → T r
s,xM

λ(x,ξ)−→ T r
s,(x,ξ)(TM) (3.4.14)

as the complexification of the mapping i∗ ⊗ . . . ⊗ i∗ ⊗ p∗ ⊗ . . . ⊗ p∗. Then λ(x,ξ) depends
smoothly on (x, ξ) ∈ TM and defines the monomorphism of the bundles

0 → p∗τ r
s M

λ−→ τ r
s (TM). (3.4.15)
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We define the bundle βr
sM of semibasic tensors as the image of this monomorphism. By

definition,
βr

sM ⊂ τ r
s (TM) (3.4.16)

and there is the isomorphism (denoted by the same letter)

0 → p∗τ r
s M

λ−→ βr
sM → 0, (3.4.17)

The tensor product, convolutions and transpositions of indices defined above on p∗τ r
s M

are transferred to βr
sM with the help of isomorphism (3.4.17).

For a natural coordinate system, the monomorphisms i∗ and p∗ in (3.4.12) and (3.4.13)
satisfy the relations i∗(∂/∂xi) = ∂/∂ξi and p∗(dxi) = dxi. Consequently, C∞(β∗

∗M) is a
C∞(TM)-subalgebra, of the algebra C∞(τ ∗

∗ (TM)), generated by the fields ∂/∂ξi, dxi.
Therefore the given invariant definition of semibasic tensor field is equivalent to the local
definition (3.4.4).

Note that the operators of tensor multiplication and transposition of indices defined
on the bundles β∗

∗M and τ ∗
∗ (TM) are compatible with imbedding (3.4.16), whereas the

convolution operators are not. Indeed, in the sense of τ ∗
∗ (TM) each convolution of every

semibasic tensor is equal to zero. Therefore, speaking about semibasic tensors, we will
always use the convolution in the sense of β∗

∗M.
The invariant definition of imbedding (3.4.7) is given by the equality (κu)(x, ξ) =

λ(x,ξ)u(x), for u ∈ C∞(τ r
s M), where λ(x,ξ) is monomorphism (3.4.14).

To formulate the invariant definition of the vertical covariant derivative we note pre-
liminary that, for a smooth mapping f : A → B of finite-dimensional vector spaces, the
differential of f can be considered as the smooth mapping d f : A → B ⊗ A′.

Let u ∈ C∞(βr
sM). Given x ∈ M, we define the mapping ux : TxM → T r

s,xM by the
equality ux(ξ) = λ−1u(x, ξ) where λ is isomorphism (3.4.17) and the fiber of p∗τ r

s M over
(x, ξ) is identified with T r

s,xM as above. Let

dux : TxM → T r
s,xM ⊗ T ′

xM = T r
s+1,xM

be the differential of the mapping ux. We define
v

∇u(x, ξ) = λ(x,ξ)dux(ξ), where λ(x,ξ) is
monomorphism (3.4.14).

3.5 The horizontal covariant derivative

In this section M is a Riemannian manifold with metric tensor g.
First of all we will give some heuristic argument which is to be considered as hint

leading to the formal definition introduced in the next paragraph. The reader not ac-
quainted with Chapter 1 can miss this paragraph. In Section 1.2 we saw that, for a
function u ∈ C∞(TM), there exists a function Hu ∈ C∞(TM) such that in a natural
coordinate system it is given by the formula

Hu =

(
ξi ∂

∂xi
− Γi

jkξ
jξk ∂

∂ξi

)
u = ξi

(
∂u

∂xi
− Γp

iqξ
q ∂u

∂ξp

)
. (3.5.1)

The first factor on the right-hand side of this equality is the component of the semibasic
vector field ξ = (ξi). Invariance of the function Hu suggests that the second factor on the
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right-hand side of (3.5.1) is also the component of some semibasic covector field. This
observation we use as a basis for the next definition.

The horizontal covariant derivative of a function u ∈ C∞(TM) = C∞(β0
0M) is the

semibasic covector field
h

∇u ∈ C∞(β0
1M) given in a natural coordinate system by the

equalities
h

∇u = (
h

∇ku)dxk,
h

∇ku =
∂u

∂xk
− Γp

kqξ
q ∂u

∂ξp
. (3.5.2)

To show correctness of the definition we have to prove that, under a change of the
natural coordinate system, the functions (3.5.2) are transformed by formulas (3.4.6) for
r = 0 and s = 1. Using (3.2.8), (3.4.2) and (3.4.3), we obtain

h

∇′
ku =

(
∂

∂x′k
− Γ′p

kqξ
′q ∂

∂ξ′p

)
u =

=

[
∂xα

∂x′k

∂

∂xα
+

∂2xα

∂x′k∂x′i
ξ′

i ∂

∂ξα
−

(
∂x′p

∂xα

∂xβ

∂x′k

∂xγ

∂x′q
Γα

βγ +
∂x′p

∂xα

∂2xα

∂x′k∂x′q

)
ξ′

q ∂xε

∂x′p

∂

∂ξε

]
u.

Changing the notation of summation indices, we rewrite this equality as follows:

h

∇′
ku =

∂xα

∂x′k

[
∂

∂xα
−

(
∂x′p

∂xβ

∂xε

∂x′p

)
∂xγ

∂x′q
ξ′

q
Γβ

αγ

∂

∂ξε

]
u +

+
∂2xα

∂x′k∂x′q
ξ′

q

[
∂

∂ξα
−

(
∂x′p

∂xα

∂xε

∂x′p

)
∂

∂ξε

]
u.

Using (3.4.1) and taking it into account that the matrices ∂x′/∂x and ∂x/∂x′ are inverse
to one other, we finally obtain

h

∇′
ku =

∂xα

∂x′k

(
∂u

∂xα
− Γβ

αγξ
γ ∂u

∂ξβ

)
=

∂xα

∂x′k

h

∇αu.

Thus correctness of the definition of the operator
h

∇: C∞(β0
0M) → C∞(β0

1M) is proved.
By analogy with Theorem 3.2.1 we formulate the next

Theorem 3.5.1 Let M be a Riemannian manifold. For all integers r and s there exist
uniquely determined C-linear operators

h

∇: C∞(βr
sM) → C∞(βr

s+1M) (3.5.3)

such that

(1) on the basis tensor fields,
h

∇ coincides with the operator ∇ of covariant differentia-

tion with respect to the Riemannian connection, i.e.,
h

∇(κu) = κ(∇u), for u ∈ C∞(τ r
s M),

where κ is imbedding (3.4.7);

(2) on C∞(β0
0M),

h

∇ coincides with operator (3.5.2);

(3)
h

∇ commutes with the convolution operators Ck
l for 1 ≤ k ≤ r, 1 ≤ l ≤ s;

(4)
h

∇ is related to the tensor product by the equality

h

∇(u ⊗ v) = ρs+1(
h

∇u ⊗ v) + u ⊗ h

∇v (3.5.4)
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for u ∈ C∞(βr
sM), where ρs+1 is the same as in (3.2.6).

In a natural coordinate system, for u ∈ C∞(βr
sM), the next local representation is

valid:
h

∇u =
h

∇ku
i1...ir
j1...js

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs ⊗ dxk, (3.5.5)

where
h

∇ku
i1...ir
j1...js

=
∂

∂xk
ui1...ir

j1...js
− Γp

kqξ
q ∂

∂ξp
ui1...ir

j1...js
+

+
r∑

m=1

Γim
kpu

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

Γp
kjm

ui1...ir
j1...jm−1pjm+1...js

. (3.5.6)

Pay attention to a formal analogy between the formulas (3.2.10) and (3.5.6): compar-
ing with (3.2.10), the right-hand side of (3.5.6) contains one additional summand related
to dependence of components of the field u on the coordinates ξi.

P r o o f. Let operators (3.5.3) satisfy conditions (1)–(4) of the theorem; let us prove
the validity of the local representation (3.5.5)–(3.5.6).

The tensor fields

∂

∂ξi1
⊗ . . .⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . .⊗ dxjs = κ

(
∂

∂xi1
⊗ . . . ⊗ ∂

∂xir
⊗ dxj1 ⊗ . . . ⊗ dxjs

)
(3.5.7)

are basic. By the first condition of the theorem,

h

∇
(

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs

)
=

=
r∑

m=1

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξim−1
⊗ Γp

kim

∂

∂ξp
⊗ ∂

∂ξim+1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs ⊗ dxk −

−
s∑

m=1

∂

∂ξi1
⊗ . . .⊗ ∂

∂ξir
⊗dxj1 ⊗ . . .⊗dxjm−1 ⊗Γjm

kp dxp⊗dxjm+1 ⊗ . . .⊗dxjs ⊗dxk. (3.5.8)

Given u ∈ C∞(βr
sM), we apply the fourth condition of the theorem and obtain

h

∇u =
h

∇
(
ui1...ir

j1...js

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs

)
=

= ρ1

[(
h

∇ui1...ir
j1...js

)
⊗ ∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs

]
+

+ ui1...ir
j1...js

h

∇
(

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs

)
, (3.5.9)

where the expression
h

∇ui1...ir
j1...js

denotes the result of applying
h

∇ to the scalar function

ui1...ir
j1...js

∈ C∞(β0
0M). By the second condition of the theorem, this expression can be found

by formula (3.5.2). Along the same lines by using (3.5.8), we transform equality (3.5.9)
as follows:

h

∇u =

(
∂

∂xk
ui1...ir

j1...js
− Γp

kqξ
q ∂

∂ξp
ui1...ir

j1...js

)
∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . . ⊗ dxjs ⊗ dxk +
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+
r∑

m=1

Γp
kim

ui1...ir
j1...js

∂

∂ξi1
⊗ . . .⊗ ∂

∂ξim−1
⊗ ∂

∂ξp
⊗ ∂

∂ξim+1
⊗ . . .⊗ ∂

∂ξir
⊗dxj1 ⊗ . . .⊗dxjs ⊗dxk−

−
s∑

m=1

Γjm

kp ui1...ir
j1...js

∂

∂ξi1
⊗ . . .⊗ ∂

∂ξir
⊗ dxj1 ⊗ . . .⊗ dxjm−1 ⊗ dxp ⊗ dxjm+1 ⊗ . . .⊗ dxjs ⊗ dxk.

Changing the limits of summation over the indices im and p in the first sum of the right-
hand side and changing the limits of summation over jm and p in the second sum, we
arrive at (3.5.5) and (3.5.6).

Conversely, let us define the operators
h

∇ by formulas (3.5.5)–(3.5.6) in a natural
coordinate system, With the help of arguments similar to those we have used just after
definition (3.5.2), one can prove correctness of this definition. Thereafter validity of claims
(1)–(4) of the theorem can easily be proved by a straightforward calculation in coordinate
form. The theorem is proved.

Theorem 3.5.2 The vertical and horizontal derivatives satisfy the next commutation re-
lations:

(
v

∇k

v

∇l −
v

∇l

v

∇k)u
i1...ir
j1...js

= 0, (3.5.10)

(
v

∇k

h

∇l −
h

∇l

v

∇k)u
i1...ir
j1...js

= 0, (3.5.11)

(
h

∇k

h

∇l −
h

∇l

h

∇k)u
i1...ir
j1...js

= −Rp
qklξ

q
v

∇pu
i1...ir
j1...js

+

+
r∑

m=1

Rim
pklu

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

Rp
jmklu

i1...ir
j1...jm−1pjm+1...js

. (3.5.12)

We again pay attention to a formal analogy between the formulas (3.2.11) and (3.5.12).

P r o o f. Equality (3.5.10) is evident, since
v

∇k = ∂/∂ξk. To prove (3.5.11) we
differentiate equality (3.5.6) with respect to ξl :

v

∇l

h

∇ku
i1...ir
j1...js

=
∂

∂xk

v

∇lu
i1...ir
j1...js

− Γp
kqξ

q ∂

∂ξp

v

∇lu
i1...ir
j1...js

− Γp
kl

v

∇pu
i1...ir
j1...js

+

+
r∑

m=1

Γim
kp

v

∇lu
i1...im−1pim+1...ir
j1...js

−
s∑

m=1

Γp
kjm

v

∇lu
i1...ir
j1...jm−1pjm+1...js

.

Including the third summand on the right-hand side into the last sum, we arrive at
(3.5.11).

We will prove (3.5.12) only for r = s = 0. In other cases this formula is proved by
similar but more cumbersome calculations. For u ∈ C∞(β0

0M), we obtain

h

∇k

h

∇lu =

(
∂

∂xk
− Γp

kqξ
q ∂

∂ξp

)
h

∇lu − Γp
kl

h

∇pu =

=

(
∂

∂xk
− Γp

kqξ
q ∂

∂ξp

) (
∂u

∂xl
− Γj

lrξ
r ∂u

∂ξj

)
− Γp

kl

(
∂u

∂xp
− Γj

pqξ
q ∂u

∂ξj

)
.

After opening the parenthesis and changing notation in summation indices, this equality
takes the form

h

∇k

h

∇lu =
∂2u

∂xk∂xl
− Γp

lqξ
q ∂2u

∂xk∂ξp
− Γp

kqξ
q ∂2u

∂xl∂ξp
+ Γp

kqΓ
j
lrξ

qξr ∂2u

∂ξp∂ξj
−
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− Γp
kl

∂u

∂xp
−

(
∂Γp

lq

∂xk
− Γj

kqΓ
p
lj − Γj

klΓ
p
jq

)
ξq

v

∇pu. (3.5.13)

Alternating (3.5.13) with respect to k and l, we come to

(
h

∇k

h

∇l −
h

∇l

h

∇k)u = −
(

∂Γp
lq

∂xk
− ∂Γp

kq

∂xl
+ Γj

lqΓ
p
kj − Γj

kqΓ
p
lj

)
ξq

v

∇pu.

By (3.2.9), the last equality coincides with (3.5.12) for r = s = 0. The theorem is proved.
Note that the next relations are valid:

v

∇kgij =
h

∇kgij = 0,
v

∇kδ
i
j =

h

∇kδ
i
j = 0,

h

∇kξ
i = 0,

v

∇kξ
i = δi

k.

In what follows we will also use the notation:
v

∇i = gij
v

∇j,
h

∇i = gij
h

∇j.
In conclusion of the section we will formulate an invariant definition of horizontal

covariant derivative. To this end we recall that every point x0 of a Riemannian manifold
M has some so-called normal neighbourhood U ⊂ M that is characterized by the following
property: for every x ∈ U there exists a unique geodesic γx0x such that it is in U and its
endpoints are x0 and x. For (x0, ξ0) ∈ TM and x ∈ U we denote by η(x0,ξ0)(x) ∈ TxM the
vector obtained from ξ0 by parallel displacement to the point x along γx0x. Thus we have
constructed the vector field η(x0,ξ0) ∈ C∞(τM ; U).

Let u ∈ C∞(βr
sM), (x0, ξ0) ∈ TM and U be a normal neighbourhood of the point

x0. We define the section ũ ∈ C∞(τ r
s M ; U) by the equality ũ(x) = λ−1

(x,η0(x))u(x, η0(x))
where η0 = η(x0,ξ0) is the vector field constructed in the previous paragraph and λ(x,ξ) is
isomorphism (3.4.14). We give an invariant definition of horizontal covariant derivative
by putting

h

∇u(x0, ξ0) = λ(x0,ξ0)∇ũ(x0). (3.5.14)

To show that definitions (3.5.5)–(3.5.6) and (3.5.14) are equivalent it is sufficient to
prove this fact for u ∈ C∞(β0

0M), since it is evident that the operator defined by formula
(3.5.14) satisfies conditions (1), (3) and (4) of Theorem 5.1.

Let u ∈ C∞(β0
0M) and (x0, ξ0) ∈ TM. We choose a local coordinate system in a

neighbourhood of the point x0. The above-constructed vector field η0 = η(x0,ξ0) satisfies
the relations

η0(x0) = ξ0,
∂ηi

0

∂xk
(x0) = −Γi

kq(x0)ξ
q
0. (3.5.15)

The function ũ ∈ C∞(U) participating in the definition (3.5.14) is expressed through u :

ũ(x) = u(x, η0(x)).

Differentiating this equality, we obtain

∇ũ(x) =
∂ũ

∂xk
dxk =

[
∂u

∂xk
(x, η0(x)) +

∂u

∂ξp
(x, η0(x))

∂ηp
0

∂xk
(x)

]
dxk.

Putting x = x0 here and using (3.5.15), we arrive at

∇ũ(x0) =

[
∂u

∂xk
(x0, ξ0) − Γp

kq(x0)ξ
q
0

∂u

∂ξp
(x0, ξ0)

]
dxk.

Inserting the last expression into the right-hand side of equality (3.5.14), we obtain (3.5.2).
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3.6 Formulas of Gauss-Ostrogradskĭı type

for vertical and horizontal derivatives

We recall that, on the space T ′M of the cotangent bundle of a manifold M, there is the
symplectic structure defined by the 2-form ω = d(ξidxi) = dξi ∧ dxi (from now on in this
section d is the operator of exterior differentiation). The symplectic volume form is the
2n-form dV 2n = (−1)n(n−1)/2ωn.

Let now (M, g) be a Riemannian manifold. As mentioned in Section 3.2, in this case
we have the canonical isomorphism between the tangent and cotangent bundles of M.
The isomorphism transfers dV 2n to some 2n-form on TM which will again be called
the symplectic volume form and be designated by the same symbol dV 2n. In a natural
coordinate system this form is given by the equality

dV 2n = det(gij) dξ ∧ dx = det(gij)dξ1 ∧ . . . ∧ dξn ∧ dx1 ∧ . . . ∧ dxn. (3.6.1)

In the domain of the natural coordinate system on the space TM of the tangent bundle
of a Riemannian manifold we introduce (2n − 1)-forms:

v
ωi = (−1)i−1g dξ1 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn ∧ dx, (3.6.2)

h
ωi = g

[
(−1)n+i−1dξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+

+
n∑

j=1

(−1)jΓj
ipξ

pdξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx
]
. (3.6.3)

We recall that the symbol ∧ over a factor designates that the factor is omitted. From
now on in this section g = det(gjk).

Lemma 3.6.1 The forms
v
ωi and

h
ωi have the following properties:

(1) under a change of a natural coordinate system, each of the families (
v
ωi) and (

h
ωi)

transforms according to the same rule as components of a semibasic covector field; conse-

quently, for every semibasic vector field u = (ui), the forms ui v
ωi and ui h

ωi are independent
of the choice of a natural coordinate system and are defined globally on TM ;

(2) For a semibasic vector field u = (ui) the next equalities are valid:

d(ui v
ωi) =

v

∇iu
i dV 2n, d(ui h

ωi) =
h

∇iu
i dV 2n. (3.6.4)

P r o o f. First of all we note that for coincidence of two (d − 1)-forms α and β
defined on a d-dimensional manifold X it is sufficient that the equality α ∧ dxi = β ∧ dxi

(i = 1, . . . , d) is valid for any local coordinate system (x1, . . . , xd) on X.
The first claim of the lemma say that, in the intersection of domains of two natural

coordinate systems, the next relations are valid:

v

ω′
i =

∂xj

∂x′i

v
ωj,

h

ω′
i =

∂xj

∂x′i

h
ωj.

By the above observation, to prove these equalities it is sufficient to show that, for every
k = 1, . . . , n,

v

ω′
i ∧ dx′k =

∂xj

∂x′i

v
ωj ∧ dx′k,

v

ω′
i ∧ dξ′

k
=

∂xj

∂x′i

v
ωj ∧ dξ′

k
, (3.6.5)
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h

ω′
i ∧ dx′k =

∂xj

∂x′i

h
ωj ∧ dx′k,

h

ω′
i ∧ dξ′

k
=

∂xj

∂x′i

h
ωj ∧ dξ′

k
. (3.6.6)

Validity of the first of equalities (3.6.5) is evident, since its sides are both equal to
zero, as follows from (3.6.2) and (3.4.2). By (3.6.1) and (3.6.2), the left-hand side of the
second of the equalities (3.6.5) is equal to −δk

i dV 2n. We calculate the right-hand side of
the second of equalities (3.6.5) with the help of (3.4.3):

∂xj

∂x′i

v
ωj ∧dξ′

k
= (−1)j−1 ∂xj

∂x′i
g dξ1∧ . . .∧ d̂ξj ∧ . . .∧dξn∧dx∧

(
∂2x′k

∂xp∂xq
ξpdxq +

∂x′k

∂xl
dξl

)
=

= − ∂xj

∂x′i

∂x′k

∂xl
δl
j dV 2n = −δk

i dV 2n.

The last equality of this chain is written because the matrices
(
∂xj/∂x′i

)
and

(
∂x′i/∂xj

)

are inverse to one other. Thus relations (3.6.5) are proved.
By (3.6.3) and (3.6.1), the left-hand side of the first of the equalities (3.6.6) is equal

to −δk
i dV 2n. The right-hand side of this equality we find with the help of (3.4.2):

∂xj

∂x′i

h
ωj ∧ dx′k = (−1)n+j−1 ∂xj

∂x′i

∂x′k

∂xl
g dξ ∧ dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn ∧ dxl =

= − ∂xj

∂x′i

∂x′k

∂xl
δl
j dV 2n = −δk

i dV 2n.

By (3.6.3), the left-hand side of the second of the formulas (3.6.6) is equal to

h

ω′
i ∧ dξ′

k
= Γ′k

iqξ
′q dV 2n =

∂x′q

∂xp
Γ′k

iqξ
p dV 2n. (3.6.7)

We calculate the right-hand side of this equality with the help of (3.4.3):

∂xj

∂x′i

h
ωj ∧ dξ′

k
= g

∂xj

∂x′i

[
(−1)n+j−1dξ ∧ dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn +

+
n∑

l=1

(−1)l Γl
jpξ

p dξ1 ∧ . . . ∧ d̂ξl ∧ . . . ∧ dξn ∧ dx
]
∧

(
∂2x′k

∂xq∂xr
ξq dxr +

∂x′k

∂xq
dξq

)
=

= g
∂xj

∂x′i

[
(−1)n+j−1 ∂2x′k

∂xq∂xr
ξq dξ ∧ dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn ∧ dxr +

+
n∑

l=1

(−1)l ∂x′k

∂xq
Γl

jp ξp dξ1 ∧ . . . ∧ d̂ξl ∧ . . . ∧ dξn ∧ dx ∧ dξq
]

=

=
∂xj

∂x′i

[
− ∂2x′k

∂xq∂xr
ξqδr

j +
n∑

l=1

∂x′k

∂xq
Γl

jpξ
pδq

l

]
dV 2n.

After summing over r and l, we obtain

∂xj

∂x′i

h
ωj ∧ dx′k =

∂xj

∂x′i

(
− ∂2x′k

∂xj∂xp
+

∂x′k

∂xl
Γl

jp

)
ξp dV 2n.
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Comparing the last relation with (3.6.7), we see that to prove the second of the equalities
(3.6.6) it is sufficient to show that

∂x′q

∂xp
Γ′k

iq =
∂xj

∂x′i

(
− ∂2x′k

∂xj∂xp
+

∂x′k

∂xl
Γl

jp

)
. (3.6.8)

These relations are equivalent to formulas (3.2.8) of transformation of the Christoffel
symbols, as one can verify by multiplying (3.6.8) by ∂x′i/∂xr and summing over i. Thus
the first claim of the lemma is proved.

The form
v
ωi is closed, as one can see directly from (3.6.2). We find the differential of

the form
h
ωi. From (3.6.3), we obtain

d
h
ωi = (−1)n+i−1 ∂g

∂xk
dxk ∧ dξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+

+ g
n∑

j=1

(−1)jΓj
ip dξp ∧ dξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx =

(
∂g

∂xi
− gΓj

ij

)
dξ ∧ dx.

From this, using the relation

Γj
ij =

1

2

∂

∂xi
(ln g), (3.6.9)

which follows from (3.2.13), we conclude that

d
h
ωi = Γj

ij dV 2n. (3.6.10)

Let us now prove the second claim of the lemma. Let u = (ui) be a semibasic vector

field. Taking it into account that the form
v
ωi is close, we obtain

d(ui v
ωi) = dui ∧ v

ωi = (−1)i−1g
∂ui

∂ξk
dξk ∧ dξ1 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn ∧ dx =

=
∂ui

∂ξi
dV 2n =

v

∇iu
i dV 2n.

Similarly, with the help of (3.6.10), we derive

d(ui h
ωi) = dui ∧ h

ωi + uid
h
ωi =

= g
n∑

i=1

(
∂ui

∂xk
dxk +

∂ui

∂ξk
dξk

)
∧

[
(−1)n+i−1dξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn +

+
n∑

j=1

(−1)jΓj
ip ξp ∧ dξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx

]
+ uiΓj

ij dV 2n =

= g

[
n∑

i=1

(−1)n+i−1 ∂ui

∂xk
dxk ∧ dξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn +

+
n∑

j=1

(−1)jΓj
ipξ

p ∂ui

∂ξk
dξk ∧ dξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx


 + uiΓj

ij dV 2n =
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=

(
∂ui

∂xi
+ Γj

iju
i − Γk

ipξ
p ∂ui

∂ξk

)
dV 2n =

h

∇iu
i dV 2n.

The lemma is proved.
Applying the Stokes theorem, from (3.6.4), we obtain the next two Gauss-Ostrogradskĭı

formulas for the vertical and horizontal divergences:

∫

D

v

∇iu
i dV 2n =

∫

∂D

ui v
ωi,

∫

D

h

∇iu
i dV 2n =

∫

∂D

ui h
ωi, (3.6.11)

which are valid for a semibasic vector field u = (ui) and a compact domain D ⊂ TM with
piecewise smooth boundary ∂D.

We will need the next simple assertion whose proof is omitted due to its clarity.

Lemma 3.6.2 Let α be a (d − 1)-form on a d-dimensional manifold X, and Y ⊂ X be
a submanifold of codimension one which is determined by an equation f(x) = 0 such that
d f(x) 6= 0 for x ∈ Y. The restriction of the form α to the submanifold Y equals zero if
and only if (α ∧ d f)(x) = 0 for all x ∈ Y.

Formulas (3.6.11) can be simplified essentially for some particular type of a domain
D which is of import for us. Let G be a compact domain in M with piecewise smooth
boundary ∂G. For 0 < ρ0 < ρ1, by Tρ0,ρ1G we denote the domain in TM that is defined
by the equality

Tρ0,ρ1G = {(x, ξ) ∈ TM | x ∈ G, ρ2
0 ≤ |ξ|2 = gijξ

iξj ≤ ρ2
1}.

The boundary of the domain is the union of three piecewise smooth manifolds:

∂(Tρ0,ρ1G) = Ωρ1G − Ωρ0G + Tρ0,ρ1(∂G), (3.6.12)

where
ΩρG = {(x, ξ) ∈ TM | x ∈ G, |ξ| = ρ},

Tρ0,ρ1(∂G) = {(x, ξ) ∈ TM | x ∈ ∂G, ρ0 ≤ |ξ| ≤ ρ1}.
We have the canonical diffeomorphism

µ : Ωρ0G → Ωρ1G, µ(x, ξ) = (x,
ρ1

ρ0

ξ). (3.6.13)

The second summand on the right-hand side of (3.6.12) is furnished with the minus sign
to emphasize that it enters into ∂(Tρ0,ρ1G) with the orientation opposite to that induced
by the diffeomorphism µ.

If the boundary ∂G is smooth near a point x0 ∈ ∂G, then a coordinate system can
be chosen in a neighbourhood of x0 in such a way that dxn = 0 on Tρ0,ρ1(∂G). Therefore

(3.6.2) implies that the restriction to Tρ0,ρ1(∂G) of each of the forms
v
ωi is equal to zero.

Let us show that the restriction to ΩρG of each of the forms
h
ωi is equal to zero. By

Lemma 3.6.2, to this end it is sufficient to verify the equality
h
ωi ∧ d|ξ|2 = 0, since ΩρG is

determined by the equation |ξ|2 = ρ2 = const. From (3.6.3), we obtain

h
ωi ∧ d|ξ|2 =

h
ωi ∧ d(gklξ

kξl) = g
[
(−1)n+i−1dξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn +
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+
n∑

j=1

(−1)jΓj
ip ξpdξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx

]
∧

(
∂gkl

∂xr
ξkξldxr + 2gklξ

kdξl

)
=

= g

[
(−1)n+i−1∂gkl

∂xr
ξkξldξ ∧ dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn ∧ dxr +

+2
n∑

j=1

(−1)jgklΓ
j
ip ξpξkdξ1 ∧ . . . ∧ d̂ξj ∧ . . . ∧ dξn ∧ dx ∧ dξl

]
=

=

(
−∂gkl

∂xi
ξkξl + 2gklΓ

l
ipξ

pξk

)
dV 2n.

After an evident transformation, the obtained result can be rewritten as:

h
ωi ∧ d|ξ|2 =

(
gipΓ

p
kl + gkpΓ

p
il −

∂gkl

∂xi

)
ξkξldV 2n.

The expression in parentheses on the right-hand side of this equality is equal to zero, as
follows from (3.2.13).

Thus, for D = Tρ0,ρ1G, formulas (3.6.11) assume the form
∫

Tρ0,ρ1G

v

∇iu
i dV 2n =

∫

Ωρ1G

ui v
ωi −

∫

Ωρ0G

ui v
ωi, (3.6.14)

∫

Tρ0,ρ1G

h

∇iu
i dV 2n =

∫

Tρ0,ρ1 (∂G)

ui h
ωi. (3.6.15)

We will do some further transformation of the obtained formulas. To this end, we
consider the (2n − 1)-form

dΣ2n−1 =
1

|ξ|ξ
i v
ωi (3.6.16)

which is defined on TM for ξ 6= 0. It is natural to call its restriction to ΩρG the volume
form of the manifold ΩρG, since d|ξ|∧dΣ2n−1 = dV 2n. For a semibasic vector field u = (ui),
the equality

ui v
ωi =

1

ρ
uiξi dΣ2n−1 (3.6.17)

is valid on ΩρG. Indeed, by Lemma 3.6.2, to prove (3.6.17) it is sufficient to show that

ui v
ωi ∧ d|ξ|2 =

1

|ξ|u
iξi dΣ2n−1 ∧ d|ξ|2.

Validity of the last equality can be obtained from definitions (3.6.2) and (3.6.16) by
calculations similar to those we have already done several times in this section. With the
help of (3.6.17), formula (3.6.14) obtains the form

∫

Tρ0,ρ1G

v

∇iu
i dV 2n =

1

ρ1

∫

Ωρ1G

〈u, ξ〉 dΣ2n−1 − 1

ρ0

∫

Ωρ0G

〈u, ξ〉 dΣ2n−1. (3.6.18)

Let ∂G is smooth near a point x0 ∈ ∂G. We can choose a coordinate system (x1, . . . , xn)
in a neighbourhood of the point x0 in such a way that gin = δin, ∂G is determined by the
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equation xn = 0 and xn > 0 outside G (it is one of the so-called semigeodesic coordinate

systems of the hypersurface ∂G). In these coordinates
h
ωα = 0 (1 ≤ α ≤ n − 1) on

Tρ0,ρ1(∂G), as follows from (3.6.3). One can easily see that the form

dV 2n−1 =
h
ωn = −g dξ ∧ dx1 ∧ . . . ∧ dxn−1, (3.6.19)

is independent of the arbitrariness in the choice of the indicated coordinate system and,
consequently, is defined globally on Tρ0,ρ1(∂G). It is natural to call this form the volume
form of the manifold Tρ0,ρ1(∂G), since dxn ∧ dV 2n−1 = dV 2n. Written in the above co-
ordinate system, the integrand of the right-hand side of equality (3.6.15) takes the form

ui h
ωi = un h

ωn = 〈u, ν〉 dV 2n−1, where ν is the unit vector of the outer normal to the
boundary. Thus formula (3.6.15) can be written as:

∫

Tρ0,ρ1G

h

∇iu
i dV 2n =

∫

Tρ0,ρ1 (∂G)

〈u, ν〉 dV 2n−1. (3.6.20)

We will carry out further simplification of formulas (3.6.18) and (3.6.20) under the
assumption that the semibasic vector field u = u(x, ξ) is positively homogeneous in its
second argument

u(x, tξ) = tλu(x, ξ) (t > 0). (3.6.21)

In this case the integrands of all integrals in (3.6.18) and (3.6.20) are homogeneous in ξ,
and we will make use of this fact.

First we transform the right-hand side of equality (3.6.18), putting 1 = ρ0 < ρ1 = ρ
and denoting ΩG = Ω1G. The integrand of the first integral on the right-hand side of
formula (3.6.18) is a positively homogeneous function of degree λ+n in ρ, as follows from
(3.6.21), (3.6.16) and (3.6.2). In other words, diffeomorphism (3.6.13) (for ρ0 = 1, ρ1 = ρ)
satisfies the equality

µ∗(〈u, ξ〉 dΣ2n−1) = ρλ+n〈u, ξ〉 dΣ2n−1.

Henceforth in this section, given a smooth mapping f : X → Y and a differential form α
on Y, by f∗α we mean the pushback of α. With the help of the last equality, we obtain

∫

ΩρG

〈u, ξ〉 dΣ2n−1 =
∫

ΩG

µ∗(〈u, ξ〉 dΣ2n−1) = ρλ+n
∫

ΩG

〈u, ξ〉 dΣ2n−1. (3.6.22)

Let us now transform the left-hand side of formula (3.6.18). To this end we define the
diffeomorphism

χ : [1, ρ] × ΩG → T1,ρG, χ(t; x, ξ) = (x, tξ). (3.6.23)

It satisfies the equality
[
χ∗(

v

∇iu
i dV 2n)

]
(t; x, ξ) = tλ+n−2(

v

∇iu
i)(x, ξ) dt ∧ dΣ2n−1(x, ξ). (3.6.24)

Indeed, (3.6.23) implies that χ∗(dxi) = dxi, χ∗(dξi) = t dξi + ξidt. Thus,

χ∗(
v

∇iu
i dV 2n) = χ∗[g

v

∇iu
i dξ ∧ dx] =

= g(
v

∇iu
i) (x, tξ) (t dξ1 + ξ1dt) ∧ . . . ∧ (t dξn + ξndt) ∧ dx.



3.6. THE GAUSS-OSTROGRADSKIĬ FORMULAS 107

By (3.6.21), (
v

∇iu
i)(x, tξ) = tλ−1(

v

∇iu
i)(x, ξ), and the previous formula takes the form

χ∗(
v

∇iu
i dV 2n) = tλ−1g(

v

∇iu
i)(x, ξ)×

×
[
tndξ + tn−1dt ∧

n−1∑

i=1

(−1)i−1ξidξ1 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn

]
∧ dx.

By the equality |ξ|2 = 1, the relation ξidξi = 0 is valid on ΩG, and, consequently, dξ = 0.
Taking to account the last equality and (3.6.2), we rewrite the previous formula as:

χ∗(
v

∇iu
idV 2n) = tλ+n−2(

v

∇iu
i)(x, ξ) dt ∧ ξi v

ωi.

By (3.6.16), the last equality coincides with (3.6.24).
With the help of (3.6.24), the left-hand side of formula (3.6.18) is transformed as

follows:

∫

T1,ρG

v

∇iu
i dV 2n =

∫

[1,ρ]×ΩG

χ∗
(

v

∇iu
i dV 2n

)
=

ρ∫

1

tλ+n−2dt
∫

ΩG

v

∇iu
i dΣ2n−1 =

=
ρλ+n−1 − 1

λ + n − 1

∫

ΩG

v

∇iu
i dΣ2n−1. (3.6.25)

Putting ρ0 = 1, ρ1 = ρ in (3.6.18) and inserting expressions (3.6.22) and (3.6.25) into this
formula, we obtain the final version of the Gauss-Ostrogradskĭı formula for the vertical
divergence: ∫

ΩG

v

∇iu
i dΣ2n−1 = (λ + n − 1)

∫

ΩG

〈u, ξ〉 dΣ2n−1. (3.6.26)

Repeating word by word the arguments that were used in the proof of (3.6.25), we
transform the left-hand side of equality (3.6.20):

∫

T1,ρG

h

∇iu
i dV 2n =

ρλ+n − 1

λ + n

∫

ΩG

h

∇iu
i dΣ2n−1. (3.6.27)

The distinction between the coefficients on the right-hand sides of equalities (3.6.25) and

(3.6.27) is due to the fact that the homogeneity degree of the function
h

∇iu
i is greater than

that of
v

∇iu
i by one.

To fulfil a similar transformation of the right-hand side of equality (3.6.20) we introduce
the manifold ∂ΩG = {(x, ξ) ∈ TM | x ∈ ∂G, |ξ| = 1} and consider the diffeomorphism

χ : [1, ρ] × ∂ΩG → T1,ρ(∂G); χ(t; x, ξ) = (x, tξ),

which is the restriction of the diffeomorphism (3.6.23) to [1, ρ]×∂ΩG. Let (x1, . . . , xn) be
the semigeodesic coordinate system used in definition (3.6.19) of the form dV 2n−1. In full
analogy with the proof of equality (3.6.24), the next relation is verified:

[χ∗(〈u, ν〉dV 2n−1)](t; x, ξ) = tλ+n−1〈u, ν〉(x, ξ) dt ∧ dΣ2n−2(x, ξ), (3.6.28)
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where the form dΣ2n−2 is defined in the indicated coordinate system by the equality

dΣ2n−2 = −g
n∑

i=1

(−1)i−1ξidξ1 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn ∧ dx1 ∧ . . . ∧ dxn−1. (3.6.29)

One can easily see that this form is independent of the arbitrariness in the choice of our
coordinate system and, consequently, is defined globally on ∂ΩG. It is natural to call this
form the volume form of the manifold ∂ΩG, since d|ξ| ∧dΣ2n−2 = dV 2n−1, as follows from
(3.6.19) and (3.6.29). With the help of (3.6.28), the right-hand side of (3.6.20) takes the
form: ∫

T1,ρ(∂G)

〈u, ν〉 dV 2n−1 =
ρλ+n − 1

λ + n

∫

∂ΩG

〈u, ν〉 dΣ2n−2. (3.6.30)

Inserting (3.6.27) and (3.6.30) into (3.6.20), we arrive at the final version of the Gauss-
Ostrogradskĭı formula for the horizontal divergence:

∫

ΩG

h

∇iu
i dΣ2n−1 =

∫

∂ΩG

〈u, ν〉 dΣ2n−2. (3.6.31)

The above-presented proof of formula (3.6.26) was fulfilled under the assumption that
λ + n − 1 6= 0, and the proof of formula (3.6.31) was fulfilled under the assumption
that λ + n 6= 0. Nevertheless, these formulas are valid for an arbitrary λ. Indeed, for
λ + n − 1 = 0, the factor (ρλ+n−1 − 1)/(λ + n − 1) in formula (3.6.25) is replaced by
ln ρ − 1; the remainder of the proof does not change. Similarly, for λ + n = 0, the factor
(ρλ+n−1)/(λ+n) in equalities (3.6.27) and (3.6.30) is replaced by ln ρ−1; the remainder
of the proof goes through without change.

The forms dΣ2n−1 and dΣ2n−2 participating in relations (3.6.26) and (3.6.31) have a
simple geometrical sense. To clarify it we note that, for every point x ∈ M, the tangent
space TxM is provided by the structure of a Euclidean vector space which is induced by
the Riemannian metric. By dV n

x (ξ) we denote the Euclidean volume form on TxM. In a
local coordinate system it is expressed by the formula

dV n
x (ξ) = g1/2dξ1 ∧ . . . ∧ dξn = g1/2dξ. (3.6.32)

By dωx(ξ) we denote the angle measure, on the unit sphere ΩxM = {ξ ∈ TxM | |ξ|2 =
gij(x)ξiξj = 1} of the space TxM, induced by the Euclidean structure of the space. In
coordinates this form is expressed as follows:

dωx(ξ) = g1/2
n∑

i=1

(−1)i−1ξidξ1 ∧ . . . ∧ d̂ξi ∧ . . . ∧ dξn. (3.6.33)

This equality can be verified with the help of Lemma 3.6.2. Indeed, it follows from (3.6.32)
and (3.6.33) that, for |ξ| = 1, the relation d|ξ|∧dωx(ξ) = dV n

x (ξ) is valid. The last equality
is just the definition of the angle measure on ΩxM.

Comparing definitions (3.6.16) and (3.6.29) of the forms dΣ2n−1 and dΣ2n−2 with
equality (3.6.33), we see that

dΣ2n−1 = dωx(ξ) ∧ dV n(x), dΣ2n−2 = (−1)ndωx(ξ) ∧ dV n−1(x) (3.6.34)
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where dV n(x) = g1/2dx is the Riemannian volume form on M and dV n−1(x) is the Rie-
mannian volume form on ∂G. In the semigeodesic coordinate system have been used in
definition (3.6.29), the last form is given by the formula dV n−1(x) = g1/2dx1∧ . . .∧dxn−1.

Let us formulate the obtained results.

Theorem 3.6.3 Let M be a Riemannian manifold of dimension n and u = u(x, ξ) be a
semibasic vector field on TM positively homogeneous of degree λ in ξ. For every compact
domain G ⊂ M with piecewise smooth boundary ∂G the next Gauss-Ostrogradskĭı formulas
are valid:

∫

G

∫

ΩxM

v

∇iu
i dωx(ξ) dV n(x) = (λ + n − 1)

∫

G

∫

ΩxM

〈u, ξ〉 dωx(ξ) dV n(x), (3.6.35)

∫

G

∫

ΩxM

h

∇iu
i dωx(ξ) dV n(x) = (−1)n

∫

∂G

∫

ΩxM

〈u, ν〉 dωx(ξ) dV n−1(x). (3.6.36)

Here dV n(x) and dV n−1(x) are the Riemannian volumes on M and ∂G respectively; dωx

is the angle measure, on the unit sphere ΩxM = {ξ ∈ TxM | |ξ| = 1}, induced by the
Riemannian metric; ν is the unit vector of the outer normal to ∂G.
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Chapter 4

The ray transform on a Riemannian
manifold

In Section 1.1, linearizing the problem of determining a metric from its hodograph, we
stated the definition of the ray transform of a symmetric tensor field on a simple Rie-
mannian manifold.

Unlike the Euclidean version considered in Chapter 2, the ray transform theory for
general Riemannian metrics is not abundant in results. Even an answer to the next main
question is not found yet: in what cases is the solenoidal part of a tensor field f of degree
m uniquely determined by the ray transform If? A positive answer to this question is
obtained only for m = 0 and m = 1 in the case of a simple metric.

In Section 4.1 we introduce a class of so-called dissipative Riemannian metrics. The
ray transform can be defined in a natural way for dissipative metrics. This class essentially
extends the class of simple metrics.

In Section 4.2 we introduce the ray transform on a compact dissipative Riemannian
manifold and prove that it is bounded with respect to the Sobolev norms.

In Section 4.3 we formulate a main result of the current chapter, Theorem 4.3.3, which
gives a positive answer to the above-mentioned question and a stability estimate under
some restrictions on the sectional curvature. The restrictions are of integral nature and
mean, roughly speaking, that positive values of the sectional curvature must not accu-
mulate along geodesics. We emphasize that no restrictions are imposed on the negative
values of the sectional curvature.

Sections 4.4–4.5 contain three auxiliary claims which are used in the proof of Theorem
4.3.3. Two of them, the Pestov identity and the Poincaré inequality for semibasic tensor
fields have certain significance besides the proof of Theorem 4.3.3; use of them will be
made in the next chapters.

In Sections 4.6–4.7 we expose the proof of Theorem 4.3.3. In Section 4.6 the theorem is
reduced to an inverse problem for the kinetic equation with the right-hand side depending
polynomially on the direction; some quadratic integral identity is proved for the equation.
In Section 4.7, for the summands of the last identity, some estimates are obtained which
lead to the claim of Theorem 4.3.3.

In Section 4.8 we prove two corollaries, Theorems 4.8.1 and 4.8.2, which relate to the
nonlinear problem of determining a metric from its hodograph. Together with these the-
orems, a reduction of the problem to an inverse problem for a system of kinetic equations

111
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is presented here which is of some interest by itself.

4.1 Compact dissipative Riemannian manifolds

Let M be a Riemannian manifold with boundary ∂M. For a point x ∈ ∂M, the second
quadratic form of the boundary

II (ξ, ξ) = 〈∇ξν, ξ〉 (ξ ∈ Tx(∂M))

is defined on the space Tx(∂M) where ν = ν(x) is the unit outer normal vector to the
boundary and ∇ is the Riemannian connection. We say that the boundary is strictly
convex if the form is positive-definite for all x ∈ ∂M.

A compact Riemannian manifold M with boundary is called a compact dissipative
Riemannian manifold (CDRM briefly), if it satisfies two conditions: 1) the boundary ∂M
is strictly convex; 2) for every point x ∈ M and every vector 0 6= ξ ∈ TxM, the maximal
geodesic γx,ξ(t) satisfying the initial conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ is defined on a
finite segment [τ−(x, ξ), τ+(x, ξ)]. We recall simultaneously that a geodesic γ : [a, b] → M
is called maximal if it cannot be extended to a segment [a − ε1, b + ε2], where εi ≥ 0 and
ε1 + ε2 > 0.

The second of the conditions participating in the definition of CDRM is equivalent to
the absence of a geodesic of infinite length in M.

Recall that by TM = {(x, ξ) | x ∈ M, ξ ∈ TxM} we denote the space of the tangent
bundle of the manifold M, and by ΩM = {(x, ξ) ∈ TM | |ξ|2 = gij(x)ξiξj = 1} we denote
its submanifold that consists of unit vectors. We introduce the next submanifolds of TM :

T 0M = {(x, ξ) ∈ TM | ξ 6= 0},

∂±ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M ; ±〈ξ, ν(x)〉 ≥ 0}.
Note that ∂+ΩM and ∂−ΩM are compact manifolds with the common boundary ∂0ΩM =
ΩM

⋂
T (∂M), and ∂ΩM = ∂+ΩM

⋃
∂−ΩM.

While defining a CDRM, we have determined two functions τ± : T 0M → R. It is
evident that they have the next properties:

γx,ξ(τ±(x, ξ)) ∈ ∂M ; (4.1.1)

τ+(x, ξ) ≥ 0, τ−(x, ξ) ≤ 0, τ+(x, ξ)) = −τ−(x,−ξ);

τ±(x, tξ) = t−1τ±(x, ξ) (t > 0); (4.1.2)

τ+|∂+ΩM = τ−|∂−ΩM = 0.

We now consider the smoothness properties of the functions τ±. With the help of
the implicit function theorem, one can easily see that τ±(x, ξ) is smooth near a point
(x, ξ) such that the geodesic γx,ξ(t) intersects ∂M transversely for t = τ±(x, ξ). By strict
convexity of ∂M, the last claim is valid for all (x, ξ) ∈ T 0M except for the points of the
set ∂0T

0M = T 0M
⋂

T (∂M). Thus we conclude that τ± are smooth on T 0M \ ∂0T
0M.

All points of the set ∂0T
0M are singular points for τ±, since one can easily see that

some derivatives of these functions are unbounded in a neighbourhood of such a point.
Nevertheless, the next claim is valid:
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Lemma 4.1.1 Let (M, g) be a CDRM. The function τ : ∂ΩM → R defined by the equality

τ(x, ξ) =





τ+(x, ξ), if (x, ξ) ∈ ∂−ΩM,

τ−(x, ξ), if (x, ξ) ∈ ∂+ΩM
(4.1.3)

is smooth. In particular, τ− : ∂+ΩM → R is a smooth function.

P r o o f. In some neighbourhood U of a point x0 ∈ ∂M, a semigeodesic coordinate sys-
tem (x1, . . . , xn) = (y1, . . . , yn−1, r) can be introduced such that the function r coincides
with the distance (in the metric g) from the point (y, r) to ∂M and gin = δin. In this coor-
dinate system, the Christoffel symbols satisfy the relations Γn

in = Γi
nn = 0, Γα

βn = −gαγΓn
βγ

(in this and subsequent formulas, Greek indices vary from 1 to n− 1; on repeating Greek
indices, the summation from 1 to n − 1 is assumed), the unit vector of the outer normal
has the coordinates (0, . . . , 0,−1). Putting j = n in (3.2.7), we see that the Christoffel
symbols Γn

αβ coincide with the coefficients of the second quadratic form. Consequently,
the condition of strict convexity of the boundary means that

Γn
αβ(y, 0)ηαηβ ≥ a|η|2 = a

n−1∑

α=1

(ηα)2 (a > 0). (4.1.4)

Let (y1, . . . , yn−1, r, η1, . . . , ηn−1, ρ) be the coordinate system on TM associated with
(y1, . . . , yn−1, r). As we have seen before the formulation of the lemma, the function
τ(y, 0, η, ρ) is smooth for ρ 6= 0. Consequently, to prove the lemma it is sufficient to
verify that this function is smooth for |η| ≥ 1/2 and |ρ| < ε with some ε > 0.

Let γ(y,η,ρ)(t) = (γ1
(y,η,ρ)(t), . . . , γ

n
(y,η,ρ)(t)) be the geodesic defined by the initial condi-

tions γ(y,η,ρ)(0) = (y, 0), γ̇(y,η,ρ)(0) = (η, ρ). Expanding the function r(t, y, η, ρ) = γn
(y,η,ρ)(t)

into the Taylor series in t and using equations (1.2.5) for geodesics, we obtain the repre-
sentation

r(t, y, η, ρ) = ρt − Γn
αβ(y, 0)ηαηβt2 + ϕ(t, y, η, ρ)t3 (4.1.5)

with some smooth function ϕ(t, y, η, ρ). For small ρ the equation r(t, y, η, ρ) = 0 has the
solutions t = 0 and t = τ(y, 0, η, ρ). Consequently, (4.1.5) implies that τ = τ(y, 0, η, ρ) is
a solution to the equation

F (τ, y, η, ρ) ≡ ρ − Γn
αβ(y, 0)ηαηβτ + ϕ(τ, y, η, ρ)τ 2 = 0.

It follows from (4.1.4) that ∂
∂τ |τ=0F (τ, y, η, ρ) 6= 0. Applying the implicit function theo-

rem, we see that τ(y, 0, η, ρ) is a smooth function. The lemma is proved.

Lemma 4.1.2 Let M be a CDRM. The function τ+(x, ξ)/(−〈ξ, ν(x)〉) is bounded on the
set ∂−ΩM \ ∂0ΩM .

P r o o f. It suffices to prove that the function is bounded on the subset Wε =
{(x, ξ) | 0 < −〈ξ, ν(x)〉 < ε, 1/2 ≤ |ξ| ≤ 3/2} of the manifold ∂(TM) for some ε > 0.
Decreasing ε, one can easily see that it suffices to verify boundedness of the function for
(x, ξ) ∈ Wε such that the geodesic γx,ξ : [0, τ+(x, ξ)] → M is wholly in the domain U
of the semigeodesic coordinate system introduced in the proof of Lemma 4.1.1. In these
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coordinates, (x, ξ) = (y, 0, η, ρ), 0 < −〈ξ, ν(x)〉 = ρ < ε, 1/2 ≤ |η| ≤ 3/2. The left-hand
side of equality (4.1.5) vanishes for t = τ+(x, ξ) :

[
Γn

αβ(y, 0)ηαηβ − ϕ(τ+(x, ξ), y, η, ρ)τ+(x, ξ)
] τ+(x, ξ)

ρ
= 1. (4.1.6)

By decreasing ε, we can achieve that τ+(x, ξ) < δ for (x, ξ) ∈ Wε with any δ > 0. Thus
the second summand in the brackets of (4.1.6) can be made arbitrarily small. Together
with (4.1.4), this implies that the expression in the brackets is bounded from below by
some positive constant. Consequently, 0 < −τ+(x, ξ)/〈ξ, ν(x)〉 = τ+(x, ξ)/ρ ≤ C. The
lemma is proved.

We need the next claim in Section 4.6.

Lemma 4.1.3 Let (M, g) be a CDRM and x0 ∈ ∂M. Let a semigeodesic coordinate system
(x1, . . . , xn) be chosen in a neighbourhood U of the point x0 in such a way that xn coincides
with the distance in the metric g from x to ∂M, and let (x1, . . . , xn, ξ1, . . . , ξn) be the
associated coordinate system on TM. There exists a neighbourhood U ′ ⊂ U of the point
x0 such that the derivatives

∂τ−(x, ξ)

∂xα
(α = 1, . . . , n − 1);

∂τ−(x, ξ)

∂ξi
(i = 1, . . . , n) (4.1.7)

are bounded on the set ΩM
⋂

p−1(U ′ \ ∂M), where p : TM → M is the projection of the
tangent bundle.

P r o o f. It suffices to prove boundedness of derivatives (4.1.7) only for (x, ξ) ∈
ΩM

⋂
p−1(U ′ \ ∂M) such that the geodesic γx,ξ : [τ−(x, ξ), 0] → M is wholly in U. By

γi(t, x, ξ) we denote the coordinates of the point γx,ξ(t). The point γx,ξ(τ−(x, ξ)) is in ∂M.
This means that γn(τ−(x, ξ), x, ξ) = 0. Differentiating the last equality, we obtain

∂τ−(x, ξ)

∂xi
= −∂γn

∂xi
(τ−, x, ξ)/γ̇n(τ−, x, ξ),

∂τ−(x, ξ)

∂ξi
= −∂γn

∂ξi
(τ−, x, ξ)/γ̇n(τ−, x, ξ).

(4.1.8)

Note that (∂γn/∂xα)(0, x, ξ) = 0 for 1 ≤ α ≤ n − 1. Consequently, a representa-
tion (∂γn/∂xα)(τ−, x, ξ) = ϕα(τ−, x, ξ)τ−(x, ξ) is possible with some functions ϕα(t′, x, ξ)
smooth on the set

W = {(t′, x, ξ) ∈ R × T 0M | τ−(x, ξ) ≤ t′ ≤ 0, γx,ξ(t) ∈ U for τ−(x, ξ) ≤ t ≤ 0}.

By the equality (∂γn/∂ξi)(0, x, ξ) = 0 (1 ≤ i ≤ n), a representation (∂γn/∂ξi)(τ−, x, ξ) =
ψi(τ−, x, ξ)τ−(x, ξ) is possible with some functions ψi(t

′, x, ξ) smooth on W. Consequently,
(4.1.8) is rewritten as

∂τ−(x, ξ)

∂xα
= ϕα(τ−, x, ξ)

−τ−(x, ξ)

γ̇n(τ−, x, ξ)
;

∂τ−(x, ξ)

∂ξi
= ψi(τ−, x, ξ)

−τ−(x, ξ)

γ̇n(τ−, x, ξ)
. (4.1.9)

Since the functions ϕα and ψi are smooth on W, they are bounded on any compact subset
of W. Consequently, (4.1.9) implies that the proof will be finished if we verify boundedness
of the ratio −τ−(x, ξ)/γ̇n(τ−(x, ξ), x, ξ) on ΩM

⋂
p−1(U \ ∂M).
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We denote y = y(x, ξ) = γx,ξ(τ−(x, ξ)), η = η(x, ξ) = γ̇x,ξ(τ−(x, ξ)); then (y, η) ∈
∂−ΩM \ ∂0ΩM, 0 ≤ −τ−(x, ξ) ≤ τ+(y, η) and γ̇n(τ−(x, ξ), x, ξ) = −〈η, ν(y)〉. Conse-
quently,

0 ≤ −τ−(x, ξ)

γ̇n(τ−(x, ξ), x, ξ)
≤ τ+(y, η)

−〈η, ν(y)〉 .

The last ratio is bounded on ∂−ΩM \ ∂0ΩM, by Lemma 4.1.2. The lemma is proved.

4.2 The ray transform on a CDRM

Let C∞(∂+ΩM) be the space of smooth functions on the manifold ∂+ΩM.

The ray transform on a CDRM M is the linear operator

I : C∞(Smτ ′
M) → C∞(∂+ΩM) (4.2.1)

defined by the equality

If(x, ξ) =

0∫

τ−(x,ξ)

〈f(γx,ξ(t)), γ̇
m
x,ξ(t)〉 dt =

0∫

τ−(x,ξ)

fi1...im(γx,ξ(t))γ̇
i1
x,ξ(t) . . . γ̇im

x,ξ(t) dt, (4.2.2)

where γx,ξ : [τ−(x, ξ), 0] → M is a maximal geodesic satisfying the initial conditions
γx,ξ(0) = x and γ̇x,ξ(0) = ξ. By Lemma 4.1.1, the right-hand side of equality (4.2.2) is a
smooth function on ∂+ΩM.

Recall that in Section 3.3 the Hilbert space Hk(Smτ ′
M) was introduced. In a similar

way the Hilbert space Hk(∂+ΩM) of functions on ∂+ΩM is defined.

Theorem 4.2.1 The ray transform on a CDRM is extendible to the bounded operator

I : Hk(Smτ ′
M) → Hk(∂+ΩM) (4.2.3)

for every integer k ≥ 0.

To prove the theorem we need the next
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Lemma 4.2.2 Let (M, g) be a CDRM, dΣ and dσ be smooth volume forms (differential
forms of the most degree that do not vanish at every point) on ΩM and ∂+ΩM respectively.
Let D be the closed domain in ∂+ΩM × R defined by the equality

D = {(x, ξ; t) | τ−(x, ξ) ≤ t ≤ 0},

and the mapping G : D → ΩM be defined by G(x, ξ; t) = Gt(x, ξ), where Gt is the
geodesic flow. Then the equality

(G∗dΣ)(x, ξ; t) = a(x, ξ; t)〈ξ, ν(x)〉dσ(x, ξ) ∧ dt (4.2.4)

holds on D with some function a ∈ C∞(D) not vanishing at every point.

P r o o f. Only the coefficient a changes in (4.2.4) under the change of the volume
form dΣ or dσ. Therefore it suffices to prove the claim for some forms dΣ and dσ.

We define the function r : M → R by putting r(x) = −ρ(x, ∂M), where ρ is the
distance in the metric g. The function r is smooth in some neighbourhood of ∂M , and
∇r(x) = ν(x) for x ∈ ∂M . We extend the form dσ to some neighbourhood of ∂+ΩM in
the manifold ΩM . According to the remark in the preceding paragraph, we can assume
that dΣ = dσ ∧ dr near ∂ΩM .

We first prove validity of representation (4.2.4) for t = 0. The differential of the
mapping G at a point (x, ξ; 0) is identical on T(x,ξ)(∂+ΩM) and maps the vector ∂/∂t into
H. Consequently,

(G∗dΣ)(x, ξ; 0) = G∗(dσ ∧ dr)(x, ξ; 0) = Hr dσ(x, ξ) ∧ dt. (4.2.5)

By (3.5.1), Hr = ξi ∂r
∂xi = 〈ξ, ν(x)〉. Inserting this expression into (4.2.5), we obtain

(G∗dΣ)(x, ξ; 0) = 〈ξ, ν(x)〉 dσ(x, ξ) ∧ dt. (4.2.6)

The mapping G satisfies the relation G(x, ξ; t + s) = Gt(G(x, ξ; s)). This implies the
equality

(G∗dΣ)(x, ξ; t) = a(x, ξ; t)(G∗dΣ)(x, ξ; 0) (4.2.7)

with some positive function a ∈ C∞(D). Formulas (4.2.6) and (4.2.7) imply (4.2.4). The
lemma is proved.

P r o o f of Theorem 4.2.1. Let us agree to denote various constants independent of f
by the same letter C.

First we will prove the estimate

‖If‖k ≤ C‖f‖k (4.2.8)

for f ∈ C∞(Smτ ′
M). To this end, we define a function F ∈ C∞(ΩM) by putting F (x, ξ) =

fi1...im(x)ξi1 . . . ξim . The inequality

‖F‖k ≤ C‖f‖k (4.2.9)

is evident. With the help of F , equality (4.2.2) is rewritten as:

If(x, ξ) = IF (x, ξ) ≡
0∫

τ−(x,ξ)

F (γx,ξ(t), γ̇x,ξ(t)) dt. (4.2.10)
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By (4.2.10), to prove (4.2.8) it suffices to establish the estimate

‖IF‖k ≤ C‖F‖k. (4.2.11)

Since operator (4.2.10) is linear, it suffices to prove (4.2.11) for a function F ∈ C∞(ΩM)
such that its support is contained in a domain V ⊂ ΩM of some local coordinate system
(z1, . . . , z2n−1) on the manifold ΩM .

Let (y1, . . . , y2n−2) be a local coordinate system on ∂+ΩM defined in a domain U ⊂
∂+ΩM , and ϕ be a smooth function whose support is contained in U . To prove (4.2.11)
it suffices to establish the estimate

‖ϕ · IF‖Hk(U) ≤ C‖F‖Hk(V ). (4.2.12)

Differentiating (4.2.10), we obtain

Dα
y [ϕ(x, ξ)IF (x, ξ)] =

∑

β+γ=α

(Dγ
yϕ)(x, ξ)

0∫

τ−(x,ξ)

Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))] dt +

+
∑

β+γ+δ=α

δ<α

Cα
βγδ(D

β
y ϕ)(x, ξ) · (Dγ

yτ−)(x, ξ) · Dδ
y[F (γx,ξ(τ−(x, ξ)), γ̇x,ξ(τ−(x, ξ)))]. (4.2.13)

We will prove that, for |α| ≤ k, the L2-norm of each of the summands on the right-hand
side of (4.2.13) can be estimated by C‖F‖Hk(V ).

By Lemma 4.1.1, the functions Dγ
yτ− are locally bounded, and the mapping

∂+ΩM → ∂−ΩM, (x, ξ) 7→ (γx,ξ(τ−(x, ξ)), γ̇x,ξ(τ−(x, ξ)))

is a diffeomorphism. Therefore the L2-norm of the second sum on the right-hand side of
(4.2.13) is not more than C‖F |∂−ΩM‖k−1. Using the boundedness of the trace operator
Hk(ΩM) → Hk−1(∂−ΩM), F 7→ F |∂−ΩM , we conclude that the L2-norm of the second
sum on the right-hand side of (4.2.13) is majorized by C‖F‖Hk(V ).

We now estimate the L2-norm of the integral on the right-hand side of (4.2.13). With
the help of the Cauchy-Bunyakovskĭı inequality, we obtain

∣∣∣
0∫

τ−(x,ξ)

Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))] dt

∣∣∣
2 ≤ −τ−(x, ξ)

0∫

τ−(x,ξ)

∣∣∣Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))]

∣∣∣
2

dt =

= −τ−(x, ξ)

0∫

τ−(x,ξ)

∑

γ≤β

Cβ
γ (x, ξ) |(Dγ

z F )(γx,ξ(t), γ̇x,ξ(t))]|2 dt,

where Cβ
γ (x, ξ) are smooth functions. Integrating the last inequality, we obtain

∥∥∥
0∫

τ−(x,ξ)

Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))] dt

∥∥∥
2

L2(U)
≤

≤
∑

γ≤β

Cβ
γ

∫

U

0∫

τ−(x,ξ)

|τ−(x, ξ)| |(Dγ
z F )(γx,ξ(t), γ̇x,ξ(t))|2 dt dy. (4.2.14)
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We change the integration variable in the integral on the right-hand side of (4.2.14) by the
formula z = G(x, ξ; t), where G is the mapping constructed in Lemma 4.2.2. By (4.2.4),
after the change inequality (4.2.14) takes the form

∥∥∥
0∫

τ−(x,ξ)

Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))] dt

∥∥∥
2

L2(U)
≤

∑

γ≤β

Cβ
γ

∫

V

∣∣∣∣∣
τ−(x, ξ)

〈ξ, ν(x)〉

∣∣∣∣∣ |(D
γ
z F )(z)|2 dz. (4.2.15)

By Lemma 4.1.1, the ratio τ−(x, ξ)/〈ξ, ν(x)〉 is bounded. Therefore (4.2.15) implies the
desired estimate

∥∥∥
0∫

τ−(x,ξ)

Dβ
y [F (γx,ξ(t), γ̇x,ξ(t))] dt

∥∥∥
L2(U)

≤ C‖F‖Hk(V ).

Thus, the estimate (4.2.8) is proved for f ∈ C∞(Smτ ′
M).

Let now f ∈ Hk(Smτ ′
M). We define F as above, estimate (4.2.9) remaining valid. From

the Fubini theorem we see that the integral on the right-hand side of equality (4.2.10)
is finite for almost all (x, ξ) ∈ ∂+ΩM and the function If, which is defined by this
equality, belongs to H0(∂+ΩM). We choose a sequence fν ∈ C∞(Smτ ′

M) (ν = 1, 2, . . .)
that converges to f in Hk(Smτ ′

M). The sequence Ifν converges to If in H0(∂+ΩM).
Applying estimate (4.2.8) for fν−fµ, we see that Ifν is a Cauchy sequence in Hk(∂+ΩM).
Consequently, If ∈ Hk(∂+ΩM) and estimate (4.2.8) is valid. The theorem is proved.

4.3 The problem of inverting the ray transform

Let M be a CDRM. Given a field v ∈ C∞(Sm−1τ ′
M) satisfying the boundary condition

v|∂M = 0, equality (3.3.17) and definition (4.2.2) of the ray transform imply immediately
that I(dv) = 0. From this, using Theorem 4.2.1 and boundedness of the trace operator
Hk+1(Smτ ′

M) → Hk(Smτ ′
M |∂M), v 7→ v|∂M , we obtain the next

Lemma 4.3.1 Let M be a CDRM, k ≥ 0 and m ≥ 0 be integers. If a field v ∈
Hk+1(Smτ ′

M) satisfies the boundary condition v|∂M = 0, then Idv = 0.

By Theorem 3.3.2, a field f ∈ Hk(Smτ ′
M) (k ≥ 1) can be uniquely decomposed into

solenoidal and potential parts:

f = sf + dv, δ sf = 0, v|∂M = 0, (4.3.1)

where sf ∈ Hk(Smτ ′
M) and v ∈ Hk+1(Sm−1τ ′

M). By Lemma 4.3.1, the ray transform pays
no heed to the potential part of (4.3.1): Idv = 0. Consequently, given the ray transform
If, we can hope to recover only the solenoidal part of the field f. Thus we come to the
next

Problem 4.3.2 (problem of inverting the ray transform) For which CDRM can
the solenoidal part of any field f ∈ Hk(Smτ ′

M) be recovered from the ray transform If?
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The main result of the current chapter, Theorem 4.3.3 stated below, gives an answer
for k = 1 under some assumption on the curvature of the manifold in question. Let us
now formulate the assumption.

Let M be a Riemannian manifold. Recall that, for a point x ∈ M and a two-
dimensional subspace σ ⊂ TxM , by K(x, σ) we denote the sectional curvature at the point
x and in the two-dimensional direction σ, which is defined by (3.2.14). For (x, ξ) ∈ T 0M
we put

K(x, ξ) = sup
σξ

K(x, σ), K+(x, ξ) = max{0, K(x, ξ)}. (4.3.2)

For a CDRM (M, g), we introduce the next characteristic:

k+(M, g) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tK+(γx,ξ(t), γ̇x,ξ(t)) dt. (4.3.3)

We recall that here γx,ξ : [0, τ+(x, ξ)] → M is a maximal geodesic satisfying the initial
conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ. Note that k+(M, g) is a dimensionless quantity,
i.e., it does not vary under multiplication of the metric g by a positive number.

Recall finally that, for x ∈ ∂M , we denote by ν(x) the unit vector of the outer normal
to the boundary and by jν : SmT ′

xM → Sm−1T ′
xM, the operator of convolution with the

vector ν.
We can now formulate the main result of the current chapter.

Theorem 4.3.3 Let m ≥ 0 be an integer. For every compact dissipative Riemannian
manifold (M, g) satisfying the condition

k+(M, g) < 1/(m + 1) (4.3.4)

and every tensor field f ∈ H1(Smτ ′
M), the solenoidal part sf is uniquely determined by the

ray transform If and the next conditional stability estimate is valid:

‖sf‖2
0 ≤ C

(
m‖jν

sf |∂M‖0 · ‖If‖0 + ‖If‖2
1

)
≤ C1

(
m‖f‖1 · ‖If‖0 + ‖If‖2

1

)
(4.3.5)

where constants C and C1 are independent of f.

We will make a few remarks on the theorem.
The first summand on the right-hand side of estimate (4.3.5) shows that the problem

of recovering sf from If is perhaps of conditionally-correct nature: for stably determining
sf, we are to have an a priori estimate for ‖f‖1. Note that this summand has appeared
due to the method applied in our proof; the author knows nothing about any example
demonstrating that the problem is conditionally-correct as a matter of fact. The factor
m before the first summand is distinguished so as to emphasize that in the case m = 0
the problem is correct.

In order to avoid complicated formulations and proofs, in the current and previous
chapters we use the spaces Hk only for integral k ≥ 0. If the reader is familiar with the
definition of these spaces for fractional k, he or she can verify, by examining the proof
below, that it is possible to replace the factor ‖f‖1 in (4.3.5) by ‖f‖1/2.

We emphasize that (4.3.4) is a restriction only on the positive values of the sectional
curvature, which is of an integral nature, moreover.
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The right-hand side of equality (4.3.4) takes its maximal value for m = 0. If a CDRM
(M, g) satisfies the condition

k+(M, g) < 1, (4.3.6)

then the next claims are valid: 1) M is diffeomorphic to the ball, and 2) the metric g is
simple in the sense of the definition given in Chapter 1. We will not give here the proof,
of the claims, which is beyond the scope of our book (and will not use these claims). We
will only discuss briefly a possible way of the proof. First of all, condition (4.3.6) implies
absence of conjugate points. This fact can be proved as follows: first, by arguments
similar to those used in the proof of the theorem on comparing indices [41], we reduce
the question to the two-dimensional case; then applying the Hartman-Wintner theorem
(Theorem 5.1 of [46]). With the absence of conjugate points available, our claims can
be established by arguments similar to those used in the proof of the Hadamard-Cartan
theorem [41].

Let us show that Theorem 4.3.3 follows from the next special case of it.

Lemma 4.3.4 Let a CDRM (M, g) satisfies (4.3.4). For a real field f ∈ C∞(Smτ ′
M)

satisfying the condition
δf = 0, (4.3.7)

the estimate
‖f‖2

0 ≤ C
(
m‖jνf |∂M‖0 · ‖If‖0 + ‖If‖2

1

)
(4.3.8)

holds with a constant C independent of f.

Indeed, we first note that it suffices to consider a real field f, since the general case can
be reduced to this one by writing down estimates (4.3.5) for both the real and imaginary
parts of f.

Given a real field f ∈ H1(Smτ ′
M), let

f = sf + dv, δ sf = 0, v|∂M = 0 (4.3.9)

be the decomposition into the solenoidal and potential parts, where sf ∈ H1(Smτ ′
M) and

v ∈ H2(Sm−1τ ′
M). By Theorem 3.3.2, the estimate

‖sf‖1 ≤ C1‖f‖1 (4.3.10)

holds. We choose a sequence, of real fields fk ∈ C∞(Smτ ′
M) (k = 1, 2, . . .), which converges

to f in H1(Smτ ′
M). Applying Theorem 3.3.2 to fk, we obtain the decomposition

fk = sfk + dvk, δ sfk = 0, vk|∂M = 0 (4.3.11)

with real sfk ∈ C∞(Smτ ′
M), vk ∈ C∞(Sm−1τ ′

M). Since sf in (4.3.9) depends continuously
on f , as have been shown in Theorem 3.3.2,

sfk → sf in H1(Smτ ′
M) as k → ∞. (4.3.12)

In the view of boundedness of the trace operator H1(Smτ ′
M) → H0(Smτ ′

M |∂M), (4.3.12)
implies that

sfk|∂M → sf |∂M in H0(Smτ ′
M |∂M) as k → ∞. (4.3.13)
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By Lemma 4.3.1, the equalities vk|∂M = 0 and v|∂M = 0 imply that I(dvk) = I(dv) = 0.
Therefore, from (4.3.10) and (4.3.12), we obtain

If = I sf, Ifk = I sfk. (4.3.14)

Applying Lemma 4.3.4 to sfk, we have

‖sfk‖2
0 ≤ C

(
m‖jν

sfk|∂M‖0 · ‖I sfk‖0 + ‖I sfk‖2
1

)
.

By (4.3.14), the last inequality can be rewritten as:

‖sfk‖2
0 ≤ C

(
m‖jν

sfk|∂M‖0 · ‖Ifk‖0 + ‖Ifk‖2
1

)
.

We pass to the limit in this inequality as k → ∞; and make use of (4.3.12), (4.3.13) and
continuity of I proved in Theorem 4.2.1. In such a way we arrive at the estimate

‖sf‖2
0 ≤ C

(
m‖jν

sf |∂M‖0 · ‖If‖0 + ‖If‖2
1

)
. (4.3.15)

Using (4.3.10) and continuity of the trace operator H1(Smτ ′
M) → H0(Smτ ′

M |∂M), we
obtain

‖jν
sf |∂M‖0 ≤ C2‖sf |∂M‖0 ≤ C3‖sf‖1 ≤ C4‖f‖1. (4.3.16)

Inequalities (4.3.15) and (4.3.16) give the claim of Theorem 4.3.3.

4.4 Pestov’s differential identity

Recall that in Chapter 3 we introduced the bundle βr
sM = (Br

sM, pr
s, TM) of semibasic

tensors of degree (r, s) over the space TM of the tangent bundle of a Riemannian manifold

(M, g) and defined the operators
v

∇,
h

∇: C∞(βr
sM) → C∞(βr

s+1M) of vertical and hori-
zontal differentiation. The metric g establishes the canonical isomorphism of the bundles
βr

sM
∼= βr+s

0 M ∼= β0
r+sM ; in coordinate form this fact is expressed by the known oper-

ations of raising and lowering indices of a tensor; we will use them everywhere. Similar

notation will be used for the derivative operators:
v

∇i = gij
v

∇j,
h

∇i = gij
h

∇j.
From now on in the current chapter we restrict ourselves to considering only real

tensors and tensor fields. The metric g allows us to introduce the scalar product on the
bundle βr

sM. Consequently, for u, v ∈ C∞(β0
mM) the scalar product 〈u, v〉 is a function

on TM expressible in coordinate form as

〈u(x, ξ), v(x, ξ)〉 = ui1...im(x, ξ)vi1...im(x, ξ). (4.4.1)

We also denote |u(x, ξ)|2 = 〈u(x, ξ), u(x, ξ)〉. The notations 〈u(x, ξ), v(x, ξ)〉 and |u(x, ξ)|2
can be considered as convenient abbreviations of the functions on the right-hand side of
(4.4.1), and we will make wide use of them.

The operator H : C∞(β0
mM) → C∞(β0

mM) defined by the equality H = ξi
h

∇i is called
the differentiation along geodesics and the equation

Hu(x, ξ) = f(x, ξ), (4.4.2)
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where f ∈ C∞(β0
mM) is a given tensor field and u ∈ C∞(β0

mM) is an unknown one, is
called the kinetic equation of the metric g. This operator has a simple interpretation for
m = 0, since C∞(β0

0M) = C∞(TM). In the last case the operator H is expressed in
coordinate form as

Hu(x, ξ) =

(
ξi ∂

∂xi
− Γi

jkξ
jξk ∂

∂ξi

)
u(x, ξ). (4.4.3)

Like any homogeneous first-order differential operator, H can be considered as a vec-
tor field on TM, which is called the geodesic vector field . The one-parameter group of
diffeomorphisms Gt of the manifold TM generated by H is called the geodesic flow (or
geodesic pulverization) of the metric g. It has a clear geometrical meaning: Gt(x, ξ) =
(γx,ξ(t), γ̇x,ξ(t)), for (x, ξ) ∈ TM, where γx,ξ is the geodesic defined by the initial con-
ditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ. This means, in particular, that the geodesic flow
preserves length of tangent vectors. In other words, at a point of the submanifold ΩM
the vector field H is tangent to ΩM. Thus H can be considered as differential operator
H : C∞(ΩM) → C∞(ΩM). Besides, the geodesic flow preserves the symplectic volume
(3.6.1), by the well-known Liouville theorem [13].

Recall also that a physical interpretation of the kinetic equation (4.4.2), for m = 0,
was discussed in Section 1.2.

Lemma 4.4.1 Let M be a Riemannian manifold. For a real semibasic tensor field u ∈
C∞(β0

mM), the next identity is valid on TM :

2〈 h

∇u,
v

∇(Hu)〉 = | h

∇u|2 +
h

∇iv
i +

v

∇iw
i−

− Rijklξ
iξk

v

∇jui1...im · v

∇lui1...im −
m∑

k=1

Rik
pqjξ

qui1...ik−1pik+1...im
v

∇jui1...im , (4.4.4)

where the semibasic vector fields v and w are defined by the equalities

vi = ξi
h

∇jui1...im · v

∇jui1...im − ξj
v

∇iui1...im · h

∇jui1...im , (4.4.5)

wi = ξj
h

∇iui1...im · h

∇jui1...im . (4.4.6)

P r o o f. From the definition of the operator H, we have

2〈 h

∇u,
v

∇(Hu)〉 = 2
h

∇iui1...im · v

∇i

(
ξj

h

∇jui1...im

)
.

Using the relation
v

∇iξ
j = δj

i , we obtain

2〈 h

∇u,
v

∇(Hu)〉 = 2
h

∇iui1...im · h

∇iui1...im + 2ξj
h

∇iui1...im · v

∇i

h

∇jui1...im . (4.4.7)

We transform the second summand on the right-hand side of the last relation. To this
end we define a function ϕ by the equality

2ξj
h

∇iui1...im · v

∇i

h

∇jui1...im =
v

∇i

(
ξj

h

∇iui1...im · h

∇jui1...im

)
+

h

∇j

(
ξj

h

∇iui1...im · v

∇iui1...im

)
−
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− h

∇i
(
ξj

v

∇iu
i1...im · h

∇jui1...im

)
− ϕ. (4.4.8)

Let us show that ϕ is independent of second-order derivatives of the field u. Indeed,
expressing the derivatives of the products on the right-hand side of (4.4.8) through the
derivatives of the factors, we obtain

ϕ = −2ξj
h

∇iui1...im · v

∇i

h

∇jui1...im +
h

∇iui1...im · h

∇iui1...im +

+ ξj
v

∇i

h

∇iui1...im · h

∇jui1...im + ξj
h

∇iui1...im · v

∇i

h

∇jui1...im +

+ ξj
h

∇j

h

∇iui1...im · v

∇iui1...im + ξj
h

∇iui1...im · h

∇j

v

∇iui1...im −

− ξj
h

∇i
v

∇iu
i1...im · h

∇jui1...im − ξj
v

∇iu
i1...im · h

∇i
h

∇jui1...im .

After evident transformations, this equality takes the form

ϕ =
h

∇iui1...im · h

∇iui1...im + ξj
h

∇iui1...im ·
(

h

∇j

v

∇i −
v

∇i

h

∇j

)
ui1...im+

+ ξj
h

∇ju
i1...im ·

(
v

∇i

h

∇i − h

∇i
v

∇i

)
ui1...im + ξj

v

∇iui1...im ·
(

h

∇j

h

∇i −
h

∇i

h

∇j

)
ui1...im .

Using commutation formulas for the operators
v

∇ and
h

∇ which are presented in Theorem
3.5.2, we obtain

ϕ =
h

∇iui1...im · h

∇iui1...im + ξj
v

∇iui1...im ·
(
−Rp

qjiξ
q

v

∇pui1...im −
m∑

k=1

Rp
ikjiui1...ik−1pik+1...im

)
.

Inserting this expression for the function ϕ into (4.4.8), we have

2ξj
h

∇iui1...im · v

∇i

h

∇jui1...im = − h

∇iui1...im · h

∇iui1...im +
h

∇iv
i +

v

∇iw
i−

− Rijklξ
iξk

v

∇jui1...im · v

∇lui1...im −
m∑

k=1

Rik
pqjξ

qui1...ik−1pik+1...im
v

∇jui1...im .

Finally, replacing the second summand on the right-hand side of (4.4.7) by the last value,
we arrive at (4.4.4). The lemma is proved.

Let us separately write down the claim of Lemma 4.4.1 for m = 0, i.e., for u ∈
C∞(TM). In this case equalities (4.4.4)–(4.4.6) take the form

2〈 h

∇u,
v

∇(Hu)〉 = | h

∇u|2 +
h

∇iv
i +

v

∇iw
i − Rijklξ

iξk
v

∇ju · v

∇lu, (4.4.9)

vi = ξi
h

∇ju · v

∇ju − ξj
v

∇iu · h

∇ju, (4.4.10)

wi = ξj
h

∇iu · h

∇ju. (4.4.11)
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4.5 Poincaré’s inequality for semibasic tensor fields

Lemma 4.5.1 Let M be a CDRM and λ be a continuous nonnegative function on ΩM.
For a semibasic tensor field f ∈ C∞(β0

mM) satisfying the boundary condition

f |∂−ΩM = 0, (4.5.1)

the next inequality is valid:
∫

ΩM

λ(x, ξ)|f(x, ξ)|2 dΣ ≤ λ0

∫

ΩM

|Hf(x, ξ)|2 dΣ, (4.5.2)

where

λ0 = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tλ(γx,ξ(t), γ̇x,ξ(t)) dt, (4.5.3)

γx,ξ : [0, τ+(x, ξ)] → M is a maximal geodesic defined by the initial conditions γx,ξ(0) = x
and γ̇x,ξ(0) = ξ, dΣ = dΣ2n−1 is the volume form on ΩM defined by formula (3.6.16).

By the Liouville theorem [13], the geodesic flow preserves the volume form dΣ. There-
fore, in the scalar case f = ϕ ∈ C∞(β0

0M), the lemma coincides, in fact, with the well-
known Poincaré inequality [82]. The case of an arbitrary semibasic field f ∈ C∞(β0

mM) is
reduced to the scalar one by introducing the function ϕ(x, ξ) = |f(x, ξ)|. Unfortunately,
in such a way an additional obstacle arises that relates to the singularities of the function
ϕ at zeros of the field f. For this reason we should reproduce the proof of the Poincaré
inequality, while taking the nature of the mentioned singularities into account. First of
all we will reduce Lemma 4.5.1 to the next claim:

Lemma 4.5.2 Let M,λ and λ0 be the same as in Lemma 4.5.1; a function ϕ ∈ C(ΩM)
be smooth on Ωϕ = {(x, ξ) ∈ ΩM | ϕ(x, ξ) 6= 0}. Suppose that

sup
(x,ξ)∈Ωϕ

|Hϕ(x, ξ)| < ∞. (4.5.4)

If ϕ satisfies the boundary condition

ϕ|∂−ΩM = 0, (4.5.5)

then the next estimate is valid:
∫

ΩM

λ(x, ξ) |ϕ(x, ξ)|2 dΣ ≤ λ0

∫

Ωϕ

|Hϕ(x, ξ)|2 dΣ. (4.5.6)

P r o o f of Lemma 4.5.1. Let a semibasic field f satisfy the conditions of Lemma 4.5.1.
We verify that the function ϕ = |f | satisfies the conditions of Lemma 4.5.2. The only
nontrivial condition is (4.5.4). The equality Hϕ = 〈f,Hf〉/|f | holds on Ωϕ. It implies
that |Hϕ| ≤ |Hf | and, consequently, (4.5.4) holds.

Assuming validity of Lemma 4.5.2, we have inequality (4.5.6). From this inequality
we obtain ∫

ΩM

λ|f |2 dΣ =
∫

ΩM

λ|ϕ|2 dΣ ≤ λ0

∫

Ωϕ

|Hϕ|2 dΣ =
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= λ0

∫

Ωϕ

|〈f,Hf〉|2
|f |2 dΣ ≤ λ0

∫

Ωϕ

|Hf |2 dΣ ≤ λ0

∫

ΩM

|Hf |2 dΣ.

The lemma is proved.
P r o o f of Lemma 4.5.2. We consider the domain D = {(x, ξ; t) | 0 ≤ t ≤ τ+(x, ξ)}

in the manifold ∂−ΩM × R and define a smooth mapping µ : D → ΩM by putting
µ(x, ξ; t) = (γx,ξ(t), γ̇x,ξ(t)). It maps the interior of D diffeomorphically onto ΩM \T (∂M).
Consequently, ∫

ΩM

λ|ϕ|2dΣ =
∫

D

(λ ◦ µ)|ϕ ◦ µ|2µ∗(dΣ). (4.5.7)

Differentiating the relation (h ◦ µ)(x, ξ; t) = h(γx,ξ(t), γ̇x,ξ(t)) with respect to t, we
obtain ∂(h ◦ µ)/∂t = (Hh) ◦ µ. Valid for every h ∈ C∞(ΩM), the last equality means
that the vector fields ∂/∂t and H are µ-connected (we recall that, given a diffeomorphism
f : X → Y of two manifolds, vector fields u ∈ C∞(τX) and v ∈ C∞(τY ) are called f -
connected if the differential of f transforms u into v; compare [41]). Since the form dΣ
is preserved by the geodesic flow, µ∗(dΣ) is preserved by the flow of the field ∂/∂t. This
implies, as is easily seen, that µ∗(dΣ) = dσ×dt for some volume form dσ on ∂−ΩM. Thus
(4.5.7) can be rewritten as:

∫

ΩM

λ|ϕ|2 dΣ =
∫

∂−ΩM

dσ(x, ξ)

τ+(x,ξ)∫

0

ρ(x, ξ; t)|ψ(x, ξ; t)|2dt, (4.5.8)

where ρ = λ ◦ µ and ψ = ϕ ◦ µ. In a similar way the integral on the right-hand side of
inequality (4.5.6) is transformed as follows

∫

Ωϕ

|Hϕ|2dΣ =
∫

Dψ

|∂ψ(x, ξ; t)/∂t|2dt dσ(x, ξ), (4.5.9)

where Dψ = {(x, ξ; t) | ψ(x, ξ; t) 6= 0}. The function ψ is continuous on D, smooth on Dψ

and, by (4.5.4) and (4.5.5), satisfies the conditions

sup
Dψ

|∂ψ(x, ξ; t)/∂t| < ∞, (4.5.10)

ψ(x, ξ; 0) = 0. (4.5.11)

The constant λ0 of Lemma 4.5.1 is expressed through ρ:

λ0 = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tρ(x, ξ; t) dt. (4.5.12)

We define the function ψ̇ : D → R by putting

ψ̇(x, ξ; t) =





∂ψ(x, ξ; t)/∂t, for (x, ξ; t) ∈ Dψ,

0, for (x, ξ; t) /∈ Dψ.
(4.5.13)
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By (4.5.8) and (4.5.9), inequality (4.5.6) under proof is equivalent to the next one

∫

∂−ΩM

dσ(x, ξ)

τ+(x,ξ)∫

0

ρ(x, ξ; t)|ψ(x, ξ; t)|2dt ≤ λ0

∫

∂−ΩM

dσ(x, ξ)

τ+(x,ξ)∫

0

|ψ̇(x, ξ; t)|2dt.

(4.5.14)
Let us consider the function ψy(t) = ψ(x, ξ; t), for a fixed y = (x, ξ), as a function

in the variable t ∈ Iy = (0, τ+(y)). We shall prove that it is absolutely continuous on Iy.
Indeed, let Jy = {t ∈ Iy | ψy(t) 6= 0}. As an open subset of Iy, the set Jy is a union of
pairwise disjoint intervals Jy =

⋃∞
i=1(ai, bi). The function ψy is smooth on each of these

intervals and, by (4.5.10), its derivative is bounded:

|dψy(t)/dt| ≤ C (t ∈ (ai, bi)), (4.5.15)

where a constant C is the same for all i. The function ψy vanishes on Iy \ Jy and is
continuous on Iy. The listed properties imply that

|ψy(t1) − ψy(t2)| ≤ C|t1 − t2| (4.5.16)

for all t1, t2 ∈ Iy. In particular, (4.5.16) implies absolute continuity of ψy. Consequently,
this function is differentiable almost everywhere on Iy and can be recovered from its
derivative:

ψy(t) =

t∫

0

dψy(τ)

dτ
dτ. (4.5.17)

While writing down the last equality, we took (4.5.11) into account. The derivative
dψy(t)/dt is bounded. From (4.5.17) with the help of the Cauchy-Bunyakovskĭı inequality,
we obtain

|ψy(t)|2 ≤ t

t∫

0

∣∣∣∣∣
dψy(τ)

dτ

∣∣∣∣∣

2

dτ ≤ t

τ+(y)∫

0

∣∣∣∣∣
dψy(t)

dt

∣∣∣∣∣

2

dt. (4.5.18)

Let us show that, almost everywhere on Iy, dψy(t)/dt coincides with the function
ψ̇(y; t) defined by formula (4.5.13). Indeed, by (4.5.13), dψy(t)/dt = ψ̇(y; t) if t ∈ Jy. If
t ∈ Iy \ Jy does not coincide with any of the endpoints of the intervals (ai, bi), then t is
a limit point of the set Iy \ Jy. Since ψy|Iy\Jy

= 0, existence of the derivative dψy(t)/dt

implies that it is equal to zero. The function ψ̇(y; t) vanishes on Iy \ Jy, by definition
(4.5.13). Thus the relation dψy(t)/dt = ψ̇(y; t) is proved for all t ∈ Iy such that the
derivative dψy(t)/dt exists, with the possible exception of the endpoints of the intervals
(ai, bi).

We can now rewrite (4.5.18) as:

|ψ(x, ξ; t)|2 ≤ t

τ+(x,ξ)∫

0

|ψ̇(x, ξ; t)|2dt.

We multiply this inequality by ρ(x, ξ; t) and integrate it with respect to t

τ+(x,ξ)∫

0

ρ(x, ξ; t)|ψ(x, ξ; t)|2dt ≤
τ+(x,ξ)∫

0

tρ(x, ξ; t) dt

τ+(x,ξ)∫

0

|ψ̇(x, ξ; t)|2dt.
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By (4.5.12), the first integral on the right-hand side of the last formula can be replaced
by λ0. Multiplying the so-obtained inequality by dσ(x, ξ) and integrating it over ∂−ΩM,
we arrive at (4.5.14). The lemma is proved.

To prove Lemma 4.3.4 we will need the next claim. It is of a purely algebraic nature,
although formulated in terms of analysis.

Lemma 4.5.3 Let M be a compact n-dimensional Riemannian manifold, f ∈C∞(Smτ ′
M),

m ≥ 1. Define the function ϕ ∈ C∞(TM) = C∞(β0
0M) and semibasic covector field

F ∈ C∞(β0
1M) by the equalities

ϕ(x, ξ) = fi1...im(x)ξi1 . . . ξim ; Fi(x, ξ) = fii2...im(x)ξi2 . . . ξim . (4.5.19)

Then the next inequality is valid:
∫

ΩM

|F |2dΣ ≤ n + 2m − 2

m

∫

ΩM

|ϕ|2dΣ. (4.5.20)

P r o o f. We shall show that this claim is reduced to a known property of eigenvalues of
the Laplacian on sphere.

It follows from (3.6.34) that inequality (4.5.20) is equivalent to the next one:

∫

M




∫

ΩxM

|F (x, ξ)|2dωx(ξ)


 dV n(x) ≤ n + 2m − 2

m

∫

M




∫

ΩxM

|ϕ(x, ξ)|2dωx(ξ)


 dV n(x).

Consequently, to prove the lemma it suffices to show that
∫

ΩxM

|F (x, ξ)|2dωx(ξ) ≤
n + 2m − 2

m

∫

ΩxM

|ϕ(x, ξ)|2dωx(ξ). (4.5.21)

for every x ∈ M.
Fixing a point x, we introduce coordinates in some of its neighbourhoods so that

gij(x) = δij. With the help of these coordinates we identify TxM and Rn, the latter
furnished with the standard Euclidean metric. Then ΩxM is identified with the unit
sphere Ω of the space Rn; the measure dωx, with the standard angle measure dω; the
function ϕ(x, ξ), by (4.5.19), with a homogeneous polynomial ψ of degree m on Rn; the
field F, with ∇ψ/m. Thus, to prove (4.5.21) it suffices to verify the inequality

∫

Ω

|∇ψ|2dω ≤ m(n + 2m − 2)
∫

Ω

|ψ|2dω (4.5.22)

on the space Pm(Rn) of homogeneous polynomials of degree m. Applying the Green’s
formula ∫

Ω

|∇ψ|2dω =
∫

Ω

ψ(m2 − ∆ω) ψ dω (ψ ∈ Pm(Rn)),

where ∆ω is the spherical Laplacian [131], we see that (4.5.22) is equivalent to the claim:
all eigenvalues µk of the operator m2 − ∆ω on the space Pm(Rn) do not exceed m(n +
2m − 2). It is known that the eigenvalues of the Laplacian ∆ω are precisely the numbers
λk = −k(n + k − 2) and the spherical harmonics of order k are just the eigenfunctions
belonging to λk. Therefore the eigenvalues of the operator m2 −∆ω on Pm(Rn) are those
of µk = m2 − λk for which k ≤ m. The maximal of them is m(n + 2m− 2). The lemma is
proved.
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4.6 Reduction of Theorem 4.3.3 to an inverse

problem for the kinetic equation

Let a field f ∈ C∞(Smτ ′
M) on a CDRM M satisfy the conditions of Lemma 4.3.4. We

define the function

u(x, ξ) =

0∫

τ−(x,ξ)

〈f(γx,ξ(t)), γ̇
m
x,ξ(t))〉 dt ((x, ξ) ∈ T 0M) (4.6.1)

on T 0M, using the same notation as used in definition (4.2.2) of the ray transform. The
difference between equalities (4.2.2) and (4.6.1) is the fact that the first of them is con-
sidered only for (x, ξ) ∈ ∂+ΩM while the second one, for all (x, ξ) ∈ T 0M. In particular,
we have the boundary condition

u|∂+ΩM = If. (4.6.2)

Since τ−(x, ξ) = 0 for (x, ξ) ∈ ∂−ΩM, we have the second boundary condition

u|∂−ΩM = 0. (4.6.3)

The function u(x, ξ) is smooth at the same points at which τ−(x, ξ) is smooth. The
last is true, as we know, at all points of the open set T 0M \T (∂M) of the manifold T 0M.

Let us show that the function u satisfies the kinetic equation

Hu = fi1...im(x)ξi1 . . . ξim (4.6.4)

on T 0M \ T (∂M).
Indeed, let (x, ξ) ∈ T 0M \ T (∂M) and γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M be the

geodesic defined by the initial conditions γ(0) = x and γ̇(0) = ξ. For sufficiently small s ∈
R, we put xs = γ(s) and ξs = γ̇(s). Then γxs,ξs

(t) = γ(t+ s) and τ−(xs, ξs) = τ−(x, ξ)− s.
Consequently,

u(γ(s), γ̇(s)) = u(xs, ξs) =

0∫

τ−(xs,ξs)

〈f(γxs,ξs
(t)), γ̇m

xs,ξs
(t))〉 dt =

=

s∫

τ−(x,ξ)

〈f(γx,ξ(t)), γ̇
m
x,ξ(t))〉 dt.

Differentiating this equality with respect to s and putting s = 0 in the so-obtained relation,
we come to

γ̇i(0)
∂u

∂xi
+ γ̈i(0)

∂u

∂ξi
= fi1...im(γ(0))γ̇i1(0) . . . γ̇im(0). (4.6.5)

Inserting γ(0) = x, γ̇(0) = ξ and the value γ̈i(0) = −Γi
jk(x)ξjξk from equation (1.2.5) of

geodesics into the last relation and taking (4.4.3) into account, we arrive at (4.6.4).
The function u(x, ξ) is homogeneous in its second argument:

u(x, λξ) = λm−1u(x, ξ) (λ > 0). (4.6.6)
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Indeed, since γx,λξ(t) = γx,ξ(λt), if follows from (4.6.1) that

u(x, λξ) =

0∫

τ−(x,λξ)

〈f(γx,λξ(t)), γ̇
m
x,λξ(t))〉 dt =

=

0∫

λ−1τ−(x,ξ)

〈f(γx,ξ(λt)), λmγ̇m
x,ξ(λt))〉 dt =

= λm−1

0∫

τ−(x,ξ)

〈f(γx,ξ(t)), γ̇
m
x,ξ(t))〉 dt = λm−1u(x, ξ).

Thus, the function u(x, ξ) is a solution to the boundary problem (4.6.2)–(4.6.4) and
satisfies the homogeneity condition (4.6.6). Besides, we recall that condition (4.3.7) is
imposed upon the field f in the right-hand side of equation (4.6.4). Lemma 4.3.4 thereby
reduces to the next problem: one has to estimate the right-hand side of the kinetic
equation (4.6.4) by the right-hand side of the boundary condition (4.6.2).

By Lemma 4.4.1, identity (4.4.9) is valid for the function u(x, ξ) on T 0M \ T (∂M).
Using (4.6.4), we transform the left-hand side of the identity

2〈 h

∇u,
v

∇(Hu)〉 = 2
h

∇iu · v

∇i(Hu) = 2
h

∇iu · ∂

∂ξi

(
fi1...imξi1 . . . ξim

)
=

= 2m
h

∇iu · fi i2...imξi2 . . . ξim =
h

∇i(2mufi i2...imξi2 . . . ξim) − 2mu(
h

∇ifii2...im)ξi2 . . . ξim =

=
h

∇iṽ
i − 2mu(δf)i1...im−1ξ

i1 . . . ξim−1 , (4.6.7)

where
ṽi = 2mugipfpi1...im−1ξ

i1 . . . ξim−1 . (4.6.8)

The second summand on the right-hand side of (4.6.7) vanishes by (4.3.7). Thus, the
application of Lemma 4.4.1 to function (4.6.1) leads to the next identity on T 0M \T (∂M) :

| h

∇u|2 − Rijklξ
iξk

v

∇ju · v

∇lu =
h

∇i(ṽ
i − vi) − v

∇iw
i, (4.6.9)

where the semibasic vector fields v, w and ṽ are defined by formulas (4.4.10), (4.4.11) and
(4.6.8).

We are going to integrate equality (4.6.9) over ΩM. In course of integration, some
precautions are needed against singularities of the function u on the set T (∂M). For this
reason we will proceed as follows. Let r : M → R be the distance to ∂M in the metric g.
In some neighbourhood of ∂M this function is smooth, and the boundary of the manifold
Mρ = {x ∈ M | r(x) ≥ ρ} is strictly convex for sufficiently small ρ > 0. The function u
is smooth on ΩMρ, since ΩMρ ⊂ T 0M \ T (∂M). We multiply (4.6.9) by the volume form
dΣ = dΣ2n−1 and integrate it over ΩMρ. Transforming then the right-hand side of the
so-obtained equality by the Gauss-Ostrogradskĭı formulas (3.6.35) and (3.6.36), we obtain

∫

ΩMρ

(| h

∇u|2 − Rijklξ
iξk

v

∇ju · v

∇lu) dΣ =
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=
∫

∂ΩMρ

〈ṽ − v, ν〉 dΣ2n−2 − (n + 2m − 2)
∫

ΩMρ

〈w, ξ〉 dΣ. (4.6.10)

The factor n + 2m − 2 is written before the last integral because the field w(x, ξ) is
homogeneous of degree 2m − 1 in its second argument, as one can see from (4.4.11) and
(4.6.6). Besides, (4.4.11) implies that 〈w, ξ〉 = (Hu)2 and, consequently, equality (4.6.10)
takes the form

∫

ΩMρ

[
| h

∇u|2 − Rijklξ
iξk

v

∇ju · v

∇lu + (n + 2m − 2)(Hu)2
]
dΣ =

∫

∂ΩMρ

〈ṽ − v, ν〉 dΣ2n−2.

(4.6.11)
Here ν = νρ(x) is the unit vector of the outer normal to the boundary of the manifold
Mρ.

We wish now to pass to the limit in (4.6.11) as ρ → 0. To this end, we first note
that both the sides of the last equality can be represented as integrals over domains
independent of ρ. Indeed, since ΩMρ ⊂ ΩM, the domain of integration ΩMρ for the
leftmost integral on (4.6.11) can be replaced with ΩM by multiplying simultaneously
the integrand by the characteristic function χρ(x) of the set Mρ. The right-hand side of
(4.6.11) can be transformed to an integral over ∂ΩM with the help of the diffeomorphism
µ : ∂ΩM → ∂ΩMρ defined by the equality µ(x, ξ) = (x′, ξ′), where a point x′ is such
that the geodesic γxx′ , whose endpoints are x and x′, has length ρ and intersects ∂M
orthogonally at the x, and the vector ξ′ is obtained by the parallel translation of the
vector ξ along γxx′ .

The integrands of (4.6.11) are smooth on ΩM \ ∂0ΩM and, consequently, converge to
their values almost everywhere on ∂ΩM as ρ → 0. We also note that the first and third
summands in the integrand on the left-hand side of (4.6.11) are nonnegative. Therefore,
to apply the Lebesgue dominated convergence theorem, it remains to show that: 1) the
second summand in the integrand on the left-hand side of (4.6.11) is summable over ΩM
and 2) the absolute value of the integrand on the right-hand side of (4.6.11) is majorized
by a function independent of ρ and summable over ∂ΩM. We shall demonstrate more,
namely, that the absolute values of the integrand on the right-hand side and of the second
summand in the integrand on the left-hand side of (4.6.11) are bounded by some constant
independent of ρ. Indeed, since these expressions are invariant, i.e., independent of the
choice of coordinates, to prove our claim it suffices to show that these functions are
bounded in the domain of some local coordinate system.

In a neighbourhood of a point x0 ∈ ∂M we introduce a semigeodesic coordinate system
similarly as in Lemma 4.1.3. Then gin = δin, νi = −δi

n. It follows from (4.4.10) and (4.6.8)
that

〈ṽ − v, ν〉 = ξn
h

∇αu · v

∇αu − ξα
h

∇αu · v

∇nu − 2mufn i1...im−1ξ
i1 . . . ξim−1 , (4.6.12)

In this formula (and in formula (4.6.14) below) the summation from 1 to n − 1 over the
index α is assumed. It is important that the right-hand side of (4.6.12) does not contain
h

∇nu. It follows from Lemma 4.1.3 and equality (4.6.1) that the derivatives
h

∇αu (1 ≤ α ≤
n − 1) and

v

∇iu (1 ≤ i ≤ n) are locally bounded.

Thus we have shown that passage to the limit is possible in (4.6.11) as ρ → 0. Accom-
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plishing it, we obtain the equality

∫

ΩM

[
| h

∇u|2 − Rijklξ
iξk

v

∇ju · v

∇lu + (n + 2m − 2)(Hu)2
]
dΣ =

=
∫

∂ΩM

(Lu − 2mu 〈jνf, ξm−1〉) dΣ2n−2, (4.6.13)

where L is the differential operator given in a semigeodesic coordinate system by the
formula

Lu = ξn
h

∇αu · v

∇αu − ξα
h

∇αu · v

∇nu. (4.6.14)

Note that until now we did not use the restriction on sectional curvatures and boundary
conditions (4.6.2)–(4.6.3); i.e., integral identity (4.6.13) is valid, for every solenoidal field
f on an arbitrary CDRM, in which the function u is defined by formula (4.6.1).

4.7 Proof of Theorem 4.3.3

In view of the boundary conditions (4.6.2)–(4.6.3), equality (4.6.13) can be written as:

∫

ΩM

[
| h

∇u|2 − Rijklξ
iξk

v

∇ju · v

∇lu + (n + 2m − 2)(Hu)2
]
dΣ =

=
∫

∂+ΩM

(L(If) − 2m(If) 〈jνf, ξm−1〉) dΣ2n−2. (4.7.1)

If (y1, . . . , y2n−2) is a local coordinate system on ∂+ΩM, then we see from (4.6.14)
that Lu is a quadratic form in variables u, ∂u/∂yi and ∂u/∂|ξ|. According to homogene-
ity (4.6.6), ∂u/∂|ξ| = (m− 1)u and, consequently, L is a quadratic first-order differential
operator on the manifold ∂+ΩM. So the absolute value of the right-hand side of rela-
tion (4.7.1) is not greater than C(m‖If‖0 · ‖jνf |∂M‖0 + ‖If‖2

1) with some constant C
independent of f. Consequently, (4.7.1) implies the inequality

∫

ΩM

| h

∇u|2dΣ + (n + 2m − 2)
∫

ΩM

(Hu)2 dΣ ≤

≤
∫

ΩM

Rijklξ
iξk

v

∇ju · v

∇lu dΣ + C(m‖If‖0 · ‖jνf |∂M‖0 + ‖If‖2
1). (4.7.2)

It turns out that the integral on the right-hand side of (4.7.2) can be estimated from
above by the left-hand side of this inequality. To prove this fact, we first note that, for
(x, ξ) ∈ ΩM, the integrand on the right-hand side of (4.7.2) can be estimated as:

Rijklξ
iξk

v

∇ju · v

∇lu ≤ K+(x, ξ)| v

∇u(x, ξ)|2, (4.7.3)

where K+(x, ξ) is defined by formula (4.3.2).
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In view of the boundary condition (4.6.2), the field
v

∇u satisfies the conditions of
Lemma 4.5.1. Applying this lemma, we obtain the estimate

∫

ΩM

K+(x, ξ)| v

∇u(x, ξ)|2dΣ ≤ k+
∫

ΩM

|H v

∇u|2dΣ, (4.7.4)

where k+ = k+(M, g) is given by equality (4.3.3).

Applying the operator
v

∇ to equation (4.6.4), since
v

∇ and
h

∇ commute, we obtain

H
v

∇u = mF − h

∇u, (4.7.5)

where F is the semibasic field defined by formula (4.5.19). It follows from (4.7.5) that

|H v

∇u|2 ≤ m2|F |2 + 2m|F || h

∇u| + | h

∇u|2 ≤ m(m + 1)|F |2 + (m + 1) | h

∇u|2, (4.7.6)

The arguments of the next paragraph are slightly different in the cases m = 0 and
m > 0.

First we assume that m ≥ 1. By Lemma 4.5.3, inequality (4.5.20) holds in which ϕ
is expressed by relation (4.5.19). Comparing (4.5.19) and (4.6.4), we see that ϕ = Hu.
Consequently, (4.5.20) can be rewritten as:

∫

ΩM

|F |2dΣ ≤ n + 2m − 2

m

∫

ΩM

(Hu)2dΣ. (4.7.7)

From (4.7.6) and (4.7.7) we obtain the inequality
∫

ΩM

|H v

∇u|2dΣ ≤ (m + 1)(n + 2m − 2)
∫

ΩM

(Hu)2dΣ + (m + 1)
∫

ΩM

| h

∇u|2dΣ.

This inequality is obtained for m ≥ 1. But it holds for m = 0 too, as follows from (4.7.5).
Together with (4.7.3) and (4.7.4), the last inequality gives

∫

ΩM

Rijklξ
iξk

v

∇ju · v

∇lu dΣ ≤ k+(m + 1)(n + 2m − 2)
∫

ΩM

(Hu)2dΣ +

+ k+(m + 1)
∫

ΩM

| h

∇u|2dΣ. (4.7.8)

Estimating the integral on the right-hand side of (4.7.2) with the help of (4.7.8), we
arrive at the inequality

[1 − k+(m + 1)]




∫

ΩM

| h

∇u|2dΣ + (n + 2m − 2)
∫

ΩM

(Hu)2dΣ


 ≤

≤ C
(
m‖If‖0 · ‖jνf |∂M‖0 + ‖If‖2

1

)
.

Under assumption (4.3.4) of Theorem 4.3.3, the quantity in the brackets is positive and
we obtain the estimate

∫

ΩM

| h

∇u|2dΣ ≤ C1(m‖If‖0 · ‖jνf |∂M‖0 + ‖If‖2
1). (4.7.9)
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It remains to note that equation (4.6.4) implies the estimate

‖f‖2
0 ≤ C2

∫

ΩM

|Hu|2dΣ ≤ C2

∫

ΩM

| h

∇u|2dΣ.

From (4.7.9) with the help of the last estimate we obtain (4.3.8). Lemma 4.3.4 is proved
as well as Theorem 4.3.3.

4.8 Consequences for the nonlinear problem

of determining a metric from its hodograph

We start with introducing the next definition that slightly differs from that of Section
1.1: a Riemannian metric on a compact manifold M with boundary is called simple if the
boundary is strictly convex and every two points p, q ∈ M are joint by a unique geodesic
depending smoothly on p, q. According to the definition, a simple metric is dissipative.

Recall that in Section 1.1 we introduced the hodograph of a simple Riemannian metric
and formulated Problem 1.1.1, that of determining metric from its hodograph. In the
current section we shall prove the next two claims related to this problem.

Theorem 4.8.1 Let gτ (0 ≤ τ ≤ 1) be a one-parameter family, of simple Riemannian
metrics on a compact manifold M , which depends smoothly on τ. If the hodograph Γgτ is
independent of τ and the metric g0 satisfies the inequality k+(M, g0) < 1/3, then there
exists a diffeomorphism ϕ : M → M such that ϕ|∂M = Id and ϕ∗g0 = g1.

Theorem 4.8.2 Let g0, g1 be two simple Riemannian metrics on a compact manifold M .
If their hodographs coincide, g0 satisfies the condition k+(M, g0) < 1/3 and g1 is flat (i.e.
with zero curvature tensor), then there exists a diffeomorphism ϕ : M → M such that
ϕ|∂M = Id and ϕ∗g0 = g1.

We say that a CDRM (M, g) satisfies Conjecture Im if the conclusion of Theorem 4.3.3
is valid for tensor fields of degree m on this manifold, i.e., if the solenoidal part of every
field f ∈ C∞(Smτ ′

M) is uniquely determined by the ray transform If. Let us show that
Theorem 4.8.1 follows from the next claim.

Lemma 4.8.3 Let gτ (0 ≤ τ ≤ 1) be a one-parameter family of simple metrics on a com-
pact manifold M. If every gτ satisfies Conjecture I2 and the hodograph Γgτ is independent
of τ, then there exists a diffeomorphism ϕ : M → M such that ϕ|∂M = Id and ϕ∗g0 = g1.

Indeed, by Theorem 4.3.3, a metric g satisfies Conjecture I2 if the condition k+(M, g) <
1/3 holds. So, under the conditions of Theorem 4.8.1, there exists τ0 > 0 such that gτ

satisfies Conjecture I2 for 0 ≤ τ ≤ τ0. Applying Lemma 4.8.3, we obtain a diffeomorphism
ϕ : M → M such that ϕ|∂M = Id and ϕ∗g0 = gτ0 . Since ϕ is an isometry of the Riemannian
manifold (M, g0) onto (M, gτ0), we have k+(M, gτ0) = k+(M, g0) < 1/3. Now we can
repeat the same reasoning for τ ∈ [τ0, 1], and the proof of Theorem 4.8.1 is accomplished
evidently.

Similarly, Theorem 4.8.2 follows from the next claim:
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Lemma 4.8.4 Let g0, g1 be two simple metrics on a compact manifold M. Suppose that
one of them is flat and the other satisfies Conjectures I1 and I2. If their hodographs
coincide, then there exists a diffeomorphism ϕ : M → M such ϕ|∂M = Id and ϕ∗g0 = g1.

P r o o f of Lemma 4.8.3. Repeating the arguments after the formulation of Problem
1.1.1, we make sure that Iτ (∂gτ/∂τ) = 0 for all τ, where Iτ is the ray transform corre-
sponding to the metric gτ . According to Conjecture I2, this implies, for every τ , existence
of a field vτ ∈ H2(τ ′

M) such that

−2dτvτ = ∂gτ/∂τ, vτ |∂M = 0. (4.8.1)

It follows from (4.8.1) that vτ (x) is smooth in (x, τ) ∈ M × [0, 1]. Indeed, as was noted
in Section 2.5, the operator of inner differentiation dτ is elliptic (it does not matter that in
Section 2.5 operator d is considered for the Euclidean metric and here, for a Riemannian
one; since its symbol is the same in the two cases). It is known that an elliptic operator
is hypoelliptic [111], i.e., smoothness of the right-hand side of equation (4.8.1) implies
smoothness of a solution vτ .

We consider the system of ordinary differential equations dyi/dτ = (gτ )ij(y)vτ
j (y, τ)

on M. The system has the solution ϕi(x, τ) defined for 0 ≤ τ ≤ 1 and satisfying the
initial condition ϕ(x, 0) = x. By boundary condition (4.8.1), the diffeomorphism ϕτ : x 7→
ϕ(x, τ) is identical on ∂M. Converting the argument that led us to (4.8.1), we see that
g0 = (ϕτ )∗gτ . The lemma is proved.

In the remainder of the section we shall show that Problem 1.1.1 is equivalent to some
nonlinear inverse problem for a system of kinetic equations. If one of the two metrics is
flat, then the above-mentioned problem is linear and we obtain the claim of Lemma 4.8.4.
Besides the proof of Lemma 4.8.4, this problem is of some independent interest, to the
author’s opinion.

Lemma 4.8.5 Let a CDRM M satisfies Conjecture Im. If a function w(x, ξ) continuous
on ΩM and smooth on ΩM \ ∂ΩM is a solution of the boundary problem

Hw = fi1...im(x)ξi1 . . . ξim , w|x∈∂M = vi1...im−1(x)ξi1 . . . ξim−1 ,

then w(x, ξ) is a homogeneous polynomial of degree m − 1 in ξ.

P r o o f. We extend v to a field continuous on M and smooth on M \ ∂M and put
w̃ = w − vi1...im−1(x)ξi1 . . . ξim−1 . Then w̃ is a solution to the boundary problem

Hw̃ = f̃i1...im(x)ξi1 . . . ξim , w̃|∂ΩM = 0. (4.8.2)

Converting the argument that led us to (4.6.2)–(4.6.4), we see that (4.8.2) implies the
equality If̃ = 0. By Conjecture Im, the last equality implies existence of a field ṽ such
that dṽ = f̃ and ṽ|∂M = 0. The function ṽi1...im−1(x)ξi1 . . . ξim−1 is a solution to the
boundary problem (4.8.2) and, consequently, coincides with w̃. The lemma is proved.

The hodograph Γg(x, y) of a simple metric is a smooth function for x 6= y. For x, y ∈
∂M, let a = Γg(x, y); γ : [0, a] → M be a geodesic such that γ(0) = x, γ(a) = y. By the
formula for the first variation of the length of a geodesic [41], the next equalities hold:

〈γ̇(0), ξ〉 = −∂Γg(x, y)/∂ξ for ξ ∈ Tx(∂M),

〈γ̇(a), ξ〉 = ∂Γg(x, y)/∂ξ for ξ ∈ Ty(∂M),
(4.8.3)
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which mean that the angles, at which γ intersects ∂M, are uniquely determined by the
hodograph.

Let g0 and g̃1 be two simple metrics whose hodographs coincide. These metrics induce
the same Riemannian metric on ∂M, i.e., g0

ij(x)ξiξj = g̃1
ij(x)ξiξj for (x, ξ) ∈ T (∂M). By

ν0 and ν̃1 we denote the unit outer normal vectors to ∂M with respect to these metrics.
Let us find a diffeomorphism ψ : M → M such that ψ|∂M = Id and (dψ)ν0 = ν̃1, and put
g1 = ψ∗g̃1. Then Γg0 = Γg1 and the metrics g0, g1 coincide on ∂M :

g0
ij(x)ξiξj = g1

ij(x)ξiξj for x ∈ ∂M, ξ ∈ TxM. (4.8.4)

If Problem 1.1.1 has a positive answer for g0, g1, then it has also a positive answer for
the initial pair g0, g̃1. Thus in studying the problem it suffices to consider pairs of metrics
meeting condition (4.8.4).

Lemma 4.8.6 Let g0, g1 be two simple metrics such that their hodographs coincide and
condition (4.8.4) is satisfied. For x ∈ ∂M and 0 6= ξ ∈ TxM, if γα : [0, aα] → M is the
maximal geodesic, of the metric gα (α = 0, 1), defined by the initial conditions γα(0) = x
and γ̇α(0) = ξ; then the equalities a0 = a1, γ0(a0) = γ1(a1) and γ̇0(a0) = γ̇1(a1) are valid.

P r o o f. We put |ξ| = (gα
ijξ

iξj)1/2, y = γ0(a0). Then |ξ|a0 = Γgα(x, y). Since g1 is
simple, there exists a geodesic γ̃1 : [0, a0] → M of this metric such that γ̃1(0) = x and
γ̃1(a0) = y. The length of the geodesic γ̃1 is equal to |ξ|a0 and, consequently,

| ˙̃γ1(0)| = | ˙̃γ1(a0)| = |ξ| = |γ̇0(0)| = |γ̇0(a0)|. (4.8.5)

By (4.8.3), the angles between any vector η ∈ Tx(∂M) (η ∈ Ty(∂M)) and the vectors
γ̇0(0), ˙̃γ1(0) (the vectors γ̇0(a0), ˙̃γ1(a0)) are equal. Together with (4.8.5), this gives

ξ = γ̇0(0) = ˙̃γ1(0), γ̇0(a0) = ˙̃γ1(a0). (4.8.6)

Both the mappings γ1 : [0, a1] → M and γ̃1 : [0, a0] → M are the maximal geodesics of the
metric g1 and satisfy the same initial conditions γ1(0) = γ̃1(0) = x and γ̇1(0) = ˙̃γ1(0) = ξ.
Consequently, they coincide, i.e., a0 = a1 and γ1(t) ≡ γ̃1(t). Now (4.8.6) implies the claim
of the lemma.

Remark. The function τ+ : ∂−ΩM → R introduced in Section 4.1 can be called the
angle hodograph of a dissipative metric g. Lemma 4.8.6 means that, if the hodographs
of two simple metrics coincide, then their angle hodographs coincide too. The author
does not know whether the converse assertion holds. It is just for this reason, that,
investigating Problem 1.1.1, we restrict ourselves to considering only simple metrics and
not formulating this problem for the class of dissipative metrics.

Let g0 and g1 be two simple metrics, on a compact manifold M with boundary, such
that their hodographs coincide and condition (4.8.4) is satisfied. Let us construct a
diffeomorphism Φ : T 0M → T 0M in the following way. Given (x, ξ) ∈ T 0M, let γ0

x,ξ :
[a, b] → M be a maximal geodesic of the metric g0 satisfying the initial conditions γ0

x,ξ(0) =
x and γ̇0

x,ξ(0) = ξ. We put y = γ0
x,ξ(a) and η = γ̇0

x,ξ(a). Then y ∈ ∂M and 〈η, ν(y)〉 ≤ 0.
Let γ1

y,η(t) be the maximal geodesic, of the metric g1, satisfying the conditions γ1
y,η(a) = y

and γ̇1
y,η(a) = η. By Lemma 4.8.6, such a geodesic is defined on [a, b]. We put Φ(x, ξ) =

(γ1
y,η(0), γ̇1

y,η(0)). Changing the roles of g0 and g1, we see that Φ is a diffeomorphism.
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By Lemma 4.8.6, the so-constructed diffeomorphism Φ satisfies the boundary condition

Φ(x, ξ) = (x, ξ) for x ∈ ∂M. (4.8.7)

It follows from the definition of Φ that it transfers the geodesic flow of the metric g0 into
the geodesic flow of the metric g1. Consequently, the geodesic vector fields H0 and H1 of
these metrics are Φ-connected.
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We will assume for simplicity that some global coordinate system can be introduced
over M. Let Φ(x, ξ) = (y(x, ξ), η(x, ξ)) be the coordinate form of Φ. Writing down the
condition of Φ-connectedness of H0 and H1 in coordinate form, we arrive at the system
of equations

H0yi = ηi, H0ηi = − 1

Γ
i
jk(y)ηjηk. (4.8.8)

By (4.8.7), the boundary conditions

yi(x, ξ) = xi, ηi(x, ξ) = ξi for x ∈ ∂M (4.8.9)

hold. If Problem 1.1.1 has a positive answer for the given pair of metrics, then y(x, ξ)
is independent of ξ and the mapping x 7→ y(x) coincides with the diffeomorphism ϕ
participating in the formulation of the problem. Thus we arrive at the next question
equivalent to Problem 1.1.1: is it true that, for any solution y(x, ξ), η(x, ξ) of boundary
problem (4.8.8)–(4.8.9), the functions yi are independent of ξ?

P r o o f of Lemma 4.8.4. If the metric is flat, then in some neighbourhood of every
point a coordinate system can be introduced such that its Christoffel symbols vanish
everywhere. Given the supplementary condition of simplicity of the metric, one can easily
see that such a coordinate system exists on the whole of M globally. So for flat g1, system
(4.8.8) simplifies as follows:

H0yi = ηi, H0ηi = 0. (4.8.10)

If g0 satisfies Conjectures I1 and I2, then (4.8.9) and (4.8.10) imply with the help of Lemma
4.8.5 that the functions ηi(x, ξ) are linear in ξ and yi(x, ξ) are independent of ξ. Thus we
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obtain the diffeomorphism ϕ : M → M, ϕ : x 7→ y(x) satisfying the boundary condition
ϕ|∂M = Id. The first of the equations (4.8.10) now takes the form η = dxϕ(ξ) and, conse-
quently, the above-constructed diffeomorphism Φ looks like: Φ(x, ξ) = (ϕ(x), dxϕ(ξ)). As
we have seen, Φ transforms the geodesic flow of the metric g0 into the same of g1. Since a
geodesic flow preserves the length of a tangent vector and these metrics coincide on ∂M ,
we obtain ϕ∗g0 = g1. The lemma is proved.

4.9 Bibliographical remarks

The general scheme of the method used in the proof of Theorem 4.3.3 is known in math-
ematical physics for a long time under the name of the method of energy estimates or
the method of quadratic integrals. At first, for classical equations, the main relations
of the method had a physical sense of energy integrals. While being extended later to
wider classes of equations, the method was treated in a more formal manner [30]. Roughly
speaking, the principal idea of the method can be explained as follows: given a differential
operator D, we try to find another differential operator L such that the product LuDu
can be decomposed into the sum of two summands in such a way that the first summand
is presented in divergence form and the second one is a positive-definite quadratic form in
the higher derivatives of the function u. The Pestov identity (4.4.9) is an example of such
decomposition. The first summand on the right-hand side of (4.4.9) is a positive-definite
quadratic form in derivatives ∂u/∂xi, the second and third summands are of divergence
form while the last summand is considered, from the viewpoint of the method, as an
undesirable term.

In integral geometry the method was at first applied by R. G. Mukhometov [83, 84, 85]
to a two-dimensional problem. Thereafter this approach to integral geometry problems
was developed by R. G. Mukhometov himself [86, 87, 88, 89] as well as others [7, 10, 12,
90, 108]. For multidimensional problems, the method have obtained a rather complicated
form, so almost every of the mentioned articles is not easy for reading. In this series,
some papers due to A. Kh. Amirov [3, 4, 5, 6] can be distinguished where some new ideas
have arisen.

The first and foremost difference between Mukhometov’s approach and Amirov’s one,
which determines other distinctions, is the choice of the coordinates on the manifold ΩM.
A. Kh. Amirov uses the same coordinates (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) as we have used
in this chapter, while R. G. Mukhometov uses the coordinates (x1, . . . , xn, z1, . . . , zn−1),
where z ∈ ∂M is a point at which the geodesic γx,ξ meets the boundary. Each of these
coordinate systems has its own merits and demerits. For instance, being written in the
coordinates (x, z), the kinetic equation is of a more simple structure (dose not contain
the derivatives with respect to z). But at the same time, if the right-hand side of the
equation depends on ξ in some way (for instance, in this chapter we are interested in
the polynomial dependence on ξ), then in the coordinates (x, z) the dependence obtains
very complicated character. On the other hand, using the coordinates (x, ξ), there is no
problem with the right-hand side. But at the same time, since the equation contains the
derivatives with respect to ξ, to apply the method successfully, we have to impose some
assumptions, on the coefficients of the equation, which require positive definiteness for a
quadratic form.

In [102] L. N. Pestov and V. A. Sharafutdinov implemented the method in covari-
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ant terms and demonstrated that, in this approach, the mentioned assumptions on the
coefficients of the equation turn into the requirement of nonpositivity for the sectional
curvature. Of course, the last requirement is more sensible from a geometrical standpoint.

In [116] the author used the coordinates (x, η) that differ from (x, ξ) as well as from
(x, z). Namely η is the vector tangent to the geodesic γx,ξ at the point z. By means of
these coordinates, the claim of Theorem 4.3.3 was obtained for a domain M ⊂ Rn and for
metrics C2-close to that of Euclidean space. The system (x, η) has the same advantage
as (x, z), i.e., the kinetic equation does not contain the derivatives with respect to η. At
the same time, if a metric is close to that of Euclidean space, the coordinates (x, η) and
(x, ξ) are close. The last circumstance makes application of the method a full success.

Finally, in [121] the author noticed that the Poincaré inequality allows one to obtain
estimate (4.7.8) that leads to Theorem 4.3.3 which unites and essentially strengthens the
results of [102] and [116]. Note that this observation is of a rather general nature, i.e., it
can be applied to other kinds of the kinetic equation, as we will see in the next chapters.
On the other hand, this observation allows one to extend essentially the scope of the
method, since making it possible to replace the assumptions of positive definiteness of
a quadratic form by conditions of the type “of a slightly perturbed system”. The last
conditions often turns out to be more acceptable for a physical interpretation.

Theorem 4.8.1 generalizes essentially a theorem due to R. Michel [80]. He proved
the same claim under the assumption that there exists a function K0(x) > 0 such that
the sectional curvature satisfies the inequalities −1/n < K(x, σ)/K0(x) + 1 < 1/n where
n = dim M.

Theorem 4.8.2 is a rather special case of a result due to M. Gromov [42]. He obtained
the same claim without the condition k+(M, g) < 1/3. A simple proof of the claim is
presented in the paper [22] by C. B. Croke.



Chapter 5

The transverse ray transform

It is known that anisotropy of each of the medium characteristics, the dielectric and
magnetic permeabilities, and conductivity, is followed by polarization effects for an elec-
tromagnetic wave propagating in the medium. A similar assertion is valid for elastic
waves in a solid body. A possibility arises of detection and quantitative estimation, of
the anisotropy of a medium contained in a bounded domain, by comparing the degrees
of polarization of the incoming and outcoming waves. In the framework of geometrical
optics, evolution of the polarization ellipse is usually described by a system of ordinary
differential equations which connects the values, on a light ray, of the electromagnetic field
and of the sought medium characteristic (for definiteness, we say here on electromagnetic
waves, although similar consideration is possible for elastic waves too). Consequently, for
every ray, the degree of polarization of the outcoming wave depends only on the values
of the medium characteristic on the ray, i.e., our problem is of a tomographic nature.
Thus, to settle the problem it is natural to use tomographic methods of measurements,
i.e., to measure polarization for each ray in a sufficiently large family. By polarization
tomography the author means the combination of methods for measurements and data
processing which arises in such a way. The domain of potential applications of polariza-
tion tomography is rather spacious: lightconductor optics, plasma physics, the earthquake
prediction problem and many others. There relate photoelasticity problems one of which
is considered in Section 2.16.

The mathematical nature of polarization tomography problems differs radically from
that of classical tomography. The difference is responsible for two next circumstances.
First, the polarization effects are due to the vector nature of waves. Consequently, it
is unnatural and mostly impossible to reduce the polarization tomography problem to
that of finding a scalar field, i.e., our problems are concerned to vector tomography as a
matter of fact. The second feature is related to the transverse character of electromagnetic
waves and is described as follows. The result of each measurement is “an integral along
a ray” with the integrand depending only on the component, of the desired medium
characteristic, which is orthogonal to the ray.

The first section of a physical nature has the only purpose of demonstrating that the
main notion of the current chapter, the transverse ray transform, relates to the above-
mentioned feature of polarization tomography rather than presents a product of idle
speculation. In Section 5.2 we define the transverse ray transform on a compact dissipative
Riemannian manifold and formulate the main result of the chapter, Theorem 5.2.2, which

139



140 CHAPTER 5. THE TRANSVERSE RAY TRANSFORM

asserts that the transverse ray transform is invertible in sufficiently simple cases and
admits a stable estimate. The remainder of the chapter is devoted to the proof of this
theorem.

5.1 Electromagnetic waves in quasi-isotropic media

In this section we derive the equations, firstly obtained by Yu. A. Kravtsov [62, 63], de-
scribing evolution of the polarization ellipse along a light ray under the assumption that
optical anisotropy of the media is comparable with the wavelength. Yu. A. Kravtsov
proposed to call such media quasi-isotropic (the term “slightly anisotropic media” is also
used). Our exposition as compared with that of [63] differs in systematical use of curvi-
linear coordinates and covariant differentiation. We shall first obtain the equations in
Riemannian form and then show that their Euclidean form coincides with Kravtsov’s
equations.

At the end of the section we will briefly discuss the nonlinear inverse problem of
determining the anisotropic part of the dielectric permeability tensor and show that the
linearization of this problem produces a problem of inverting the transverse ray transform
for a tensor field of degree 2.

5.1.1 The Maxwell equations

We consider the homogeneous Maxwell system (i.e., on assuming the absence of charges
and currents)

rotH− 1

c

∂

∂t
D = 0, divD = 0,

rot E +
1

c

∂

∂t
B = 0, divB = 0,

(5.1.1)

complemented by the material equations

Dj = εj
lE l, B = H. (5.1.2)

The magnetic permeability of the medium under study is assumed to be equal to unity.
Thus the only medium characteristic is the dielectric permeability tensor (εj

l (x)) that is
assumed to depend smoothly on a point x ∈ R3.

We restrict ourselves to considering fields that depend harmonically on the time:

E(x, t) = E(x) e−iωt, D(x, t) = D(x) e−iωt, H(x, t) = H(x) e−iωt.

In this case system (5.1.1)–(5.1.2) amounts to the following

rot H + ikD = 0, rot E − ikH = 0, (5.1.3)

Dj = εj
l E

l. (5.1.4)

where k = ω/c is the wave number,
We will assume that the tensor εj

l (x) is representable as

εj
l = εδj

l +
1

k
χj

l , (5.1.5)
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where ε = ε(x) is a smooth positive function. Representation (5.1.5) means that the
anisotropy of the medium is comparable in value with the wavelength. Such a medium is
called quasi-isotropic. In particular, in the case χ ≡ 0 we have an isotropic medium. The
function n =

√
ε is called the refraction coefficient .

The operator rot presumes that the space R3 is oriented. Therefore in the current
section we will use only coordinate systems that are compatible with the orientation. Let
x1, x2, x3 be a curviliner coordinate system, and the Euclidean metric is expressed by the
quadratic form

ds2 = gjkdxjdxk (5.1.6)

in these coordinates. As usual, we denote g = det (gjk). The operator rot is written in
coordinate form as:

(rot a)j = ejklak ; l, (5.1.7)

where (ejkl) is the discriminant tensor skew-symmetric in each pair of its indices and such
that e123 = g−1/2. One can easily see that these properties actually determine a tensor,
i.e., that its components are transformed by formulas (3.1.6) if coordinates are changed
in an orientation preserving way.

With the help of the discriminant tensor, system (5.1.3)–(5.1.5) is written as:

ejklHk ; l + ikDj = 0, (5.1.8)

ejklEk ; l − ikHj = 0, (5.1.9)

Dj = εEj +
1

k
χjkE

k. (5.1.10)

Recall that we use the rule of raising and lowering indices: Ej = gjkE
k, Ej = gjkEk;

The covariant derivatives participating in (5.1.8)–(5.1.9) are taken with respect to the
Euclidean metric (5.1.6).

5.1.2 The eikonal equation

Some version of the method of geometrical optics (or the ray method) is based on the
expansion of each of the fields A = E, H, D into the asymptotic series of the type

A(x) = eikτ(x)
∞∑

m=0

m

A (x)

(ik)m
, (5.1.11)

which are assumed to be valid in the topology of the space E(R3). We insert series (5.1.11)
into equations (5.1.8)–(5.1.10), implement differentiations and equate the coefficients of
the same powers of the wave number k on the left- and right-hand sides of the so-obtained
equalities. In such a way we arrive at the infinite system of equations

ejkl

(
m

Hkτ ; l +
m−1

H k ; l

)
+ ε

m

Ej + iχjk
m−1

E k = 0

ejkl

(
m

Ekτ ; l +
m−1

E k ; l

)
− m

Hj = 0





(m = 0, 1, . . .), (5.1.12)

where it is assumed that
−1

E =
−1

H = 0.
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Consider the initial terms of this chain. Putting m = 0 in (5.1.12), we have

ejkl
0

Hkτ ; l + ε
0

E
j = 0, (5.1.13)

ejkl
0

Ekτ ; l −
0

H
j = 0. (5.1.14)

We see that χ does not participate in (5.1.13)–(5.1.14). So the forthcoming consequences
of these equations are identical for isotropic and quasi-isotropic media. Inserting expres-

sion (5.1.14) for the vector
0

H into (5.1.13), we have

ejklekpq

0

E
pτ ; lτ ;

q + ε
0

E
j = 0.

One can easily verify the relation

ejklekpq = δj
qδ

l
p − δp

j δ
l
q

which allows us to rewrite the previous equation as:

0

E
lτ ; lτ ;

j − 0

E
jτ ;

lτ ; l + ε
0

E
j = 0,

or, in invariant form, as:

〈 0

E,∇τ〉∇τ +
(
ε − |∇τ |2

) 0

E = 0

where ∇τ is the gradient of τ . Taking the scalar product of the last equality and ∇τ , we
obtain

〈 0

E,∇τ〉 = 0. (5.1.15)

The previous equality now takes the form (ε − |∇τ |2) 0

E = 0. Since we are interested in the
case when system (5.1.13)–(5.1.14) has a nontrivial solution, the function τ must satisfy
the eikonal equation:

|∇τ |2 = n2 = ε. (5.1.16)

The eikonal equation characteristics (rays) are geodesics of the Riemannian metric

dℓ 2 = n2 ds2 = hjk dxj dxk, hjk = n2gjk, (5.1.17)

Note also that (5.1.14) implies the relations

〈 0

H,∇τ〉 = 〈 0

E,
0

H〉 = 0. (5.1.18)

Equalities (5.1.15) and (5.1.18) express the well-known fact of the transverse nature of an
electromagnetic wave within the scope of the zero approximation of geometrical optics.
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5.1.3 The amplitude of an electromagnetic wave

We fix a solution τ to the eikonal equation (5.1.16). In a neighbourhood of each point
one can introduce so-called ray coordinates , i.e., curvilinear coordinates x1, x2, x3 such
that x3 = τ and the coordinate surfaces x3 = x3

0 are orthogonal to the coordinate lines
x1 = x1

0, x2 = x2
0 that are the geodesics of metric (5.1.17). In these coordinates the

Euclidean metric (5.1.6) has the form

ds2 = gαβdxαdxβ + n−2dτ 2. (5.1.19)

From now on in the current section Greek indices range over the values 1,2; on repeating
Greek indices, summation from 1 to 2 is understood. The gradient of τ has the coordinates

τ ; α = τ ;
α = 0, τ ; 3 = 1, τ ;

3 = n2. (5.1.20)

By (3.2.13), the Christoffel symbols of the Euclidean metric in coordinates (5.1.19) look
as:

Γ3
αβ = −1

2
n2∂gαβ

∂τ
, Γβ

α3 =
1

2
gβγ ∂gαγ

∂τ
, Γ3

α3 = −n−1 ∂n

∂xα
,

Γα
33 = n−3gαβ ∂n

∂xβ
, Γ3

33 = −n−1∂n

∂τ
.

(5.1.21)

We introduce the notations

J2 = det(gαβ), g = det(gjk) = n−2J2. (5.1.22)

The quantity J is called the geometrical spreading . It is invariant in the following sense: if
the ray coordinates under studying are transformed so that they remain ray coordinates,
then J is multiplied by some factor constant on every ray xα = xα

0 . By (5.1.21) and
(3.6.9),

gαβ ∂gαβ

∂τ
= 2Γα

α3 = 2Γj
j3 − 2Γ3

33 =
1

g

∂g

∂τ
+ 2n−1∂n

∂τ
=

2

J

∂J

∂τ
. (5.1.23)

We also need the equalities

g11 = J−2g22, g22 = J−2g11, g12 = −J−2g12. (5.1.24)

In ray coordinates equations (5.1.13)–(5.1.14) of the zero approximation look as:

eαβ3
0

Hβ + ε
0

E
α = 0, (5.1.25)

eαβ3
0

Eβ − 0

H
α = 0. (5.1.26)

It follows from (5.1.18), (5.1.19) and (5.1.26) that, in ray coordinates, the components of

the vectors
0

E and
0

H satisfy the relations

0

E
3 =

0

E3 =
0

H
3 =

0

H3 = 0, (5.1.27)

0

H
1 = g−1/2

0

E2,
0

H
2 = −g−1/2

0

E1. (5.1.28)
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Conversely, if
0

E1, and
0

E2 are arbitrary functions, then we obtain a solution to system

(5.1.25)–(5.1.26), defining
0

H1 and
0

H2 by equalities (5.1.28). Thus the equations of the

zero approximation determine the vector fields
0

E and
0

H up to the functions
0

E1 and
0

E2

that remain arbitrary. Differential equations for these functions can be obtained from the
equations of the first approximation, that is equations (5.1.12) for m = 1, taking the next
form in ray coordinates:

ε
1

E
3 = −e3αβ

0

Hα ; β − iχ3α
0

Eα,
1

H
3 = e3αβ

0

Eα ; β. (5.1.29)

eαβ3
1

Hβ + ε
1

E
α = −eαkl

0

Hk ; l − iχαβ
0

Eβ, (5.1.30)

eαβ3
1

Eβ − 1

H
α = −eαkl

0

Ek ; l (5.1.31)

Indeed, equations (5.1.30)–(5.1.31) can be considered as a linear algebraic system of 4

equations with respect to 4 unknown variables
1

E1,
1

E2,
1

H1,
1

H2. Note that the matrix of this
system coincides with the matrix of the system (5.1.25)–(5.1.26). The eikonal equation
(5.1.16) can be considered as the condition that the determinant of the system (5.1.25)–
(5.1.26) vanishes. It is essential that the rank of the system (5.1.25)–(5.1.26) is equal to 2
provided (5.1.16) holds. So, for solvability of system (5.1.30)–(5.1.31), its right-hand side
must satisfy some pair of linear conditions. The last conditions will give us both desired

differential equations on the functions
0

E1 and
0

E2.
We start implementing the intended program with writing down equations (5.1.30)–

(5.1.31) in a more detailed form. Putting α = 1 and then α = 2 in (5.1.30), we obtain
the system

g−1/2
1

H2 + ε
1

E1 = g−1/2

(
0

H3 ; 2 −
0

H2 ; 3

)
− iχ1α

0

Eα

−g−1/2
1

H1 + ε
1

E2 = g−1/2

(
0

H1 ; 3 −
0

H3 ; 1

)
− iχ2α

0

Eα.
(5.1.32)

Similarly, equation (5.1.31) gives

1

H1 = g−1/2
1

E2 + g−1/2

(
0

E2 ; 3 −
0

E3 ; 2

)
,

1

H2 = −g−1/2
1

E1 + g−1/2

(
0

E3 ; 1 −
0

E1 ; 3

)
.

(5.1.33)

Inserting (5.1.33) into the equalities
1

Hα = gαβ

1

Hβ and using (5.1.24), we obtain

1

H1 = g1/2n2

(
1

E2 +
0

E2
; 3 −

0

E3 ;
2

)
,

1

H2 = g1/2n2

(
− 1

E1 +
0

E3 ;
1 − 0

E1
; 3

)
.

(5.1.34)

Finally, inserting expressions (5.1.34) for the functions
1

H1 and
1

H2 into (5.1.32), we arrive

at the desired differential equations for the vector fields
0

E and
0

H:

n2

(
0

E1
; 3 −

0

E3 ;
1

)
+ g−1/2

(
0

H3 ; 2 −
0

H2 ; 3

)
= iχ1α

0

Eα,

n2

(
0

E2
; 3 −

0

E3 ;
2

)
− g−1/2

(
0

H3 ; 1 −
0

H1 ; 3

)
= iχ2α

0

Eα,
(5.1.35)
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From now on we will omit the index 0 in the notations
0

E and
0

H, since the higher

amplitudes (
m

E and
m

H for m > 0 ) are not used further in the current section.
Let us exclude the vector H from system (5.1.35). To this end we first transform this

system to a more convenient form. Putting β = 1, we multiply the first equation of the
system by gβ1; the second, by gβ2 and sum the so-obtained equalities. Then we perform
the same procedure with β = 2. After simple transformations using (5.1.22) and (5.1.24),
we arrive at the next system equivalent to (5.1.35):

E1 ; 3 − E3 ; 1 + g1/2 (H3 ;
2 − H2

; 3) = in−2χα
1 Eα,

E2 ; 3 − E3 ; 2 − g1/2 (H3 ;
1 − H1

; 3) = in−2χα
2 Eα.

(5.1.36)

Since E3 ≡ 0,

Eα ; 3 − E3 ; α =
∂Eα

∂τ
. (5.1.37)

From (5.1.28) with the help of (3.6.9), we obtain

H1
; 3 =

∂(g−1/2E2)

∂τ
+ g−1/2

(
Γ1

31E2 − Γ1
32E1

)
=

= g−1/2

[
∂E2

∂τ
− Γ1

23E1 −
(
Γ2

23 + Γ3
33

)
E2

]
,

H2
; 3 = −∂(g−1/2E1)

∂τ
+ g−1/2

(
Γ2

31E2 − Γ2
32E1

)
=

= g−1/2

[
−∂E1

∂τ
+

(
Γ1

13 + Γ3
33

)
E1 + Γ2

13E2

]
.

Inserting values (5.1.21) of the Christoffel symbols into the last equalities, we have

H1
; 3 = g−1/2

[
∂E2

∂τ
− 1

2
g1α ∂g2α

∂τ
E1 −

(
1

2
g2α ∂g2α

∂τ
− n−1∂n

∂τ

)
E2

]
,

H2
; 3 = g−1/2

[
−∂E1

∂τ
+

(
1

2
g1α ∂g1α

∂τ
− n−1∂n

∂τ

)
E1 +

1

2
g2α ∂g1α

∂τ
E2

]
.

(5.1.38)

We now calculate the derivatives H3 ;
α. Using (5.1.27) and (5.1.28), we obtain

H3 ; α = −Γβ
α3Hβ = −gβγΓ

β
α3H

γ = g−1/2Γβ
α3 (g2βE1 − g1βE2) .

Inserting the Christoffel symbols (5.1.21), we come to

H3 ; α =
1

2
g−1/2

(
∂gα2

∂τ
E1 −

∂gα1

∂τ
E2

)
.

It follows from this that

H3 ;
α = gαβH3 ; β =

1

2
g−1/2gαβ

(
∂gβ2

∂τ
E1 −

∂gβ1

∂τ
E2

)
. (5.1.39)

Inserting (5.1.37)–(5.1.39) into (5.1.36), we arrive at the system

2
∂Eα

∂τ
+ aEα − ∂gαβ

∂τ
Eβ = in−2χβ

αEβ (α = 1, 2), (5.1.40)
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where the notation

a =
1

2
gαβ ∂gαβ

∂τ
+ n−1∂n

∂τ
(5.1.41)

is used. Equations (5.1.40) are just the above-mentioned solvability conditions for equa-
tions (5.1.30)–(5.1.31) of the first approximation. Observe that these conditions turn out
to be a system of ordinary differential equations along the ray xα = xα

0 . Of course, it is
not coincidental. The situation is similar when the method of geometrical optics is applied
to hyperbolic equations of a sufficiently wide class; compare with Chapter 2 of the book
[44]. We also draw the reader’s attention to the feature mentioned in the introduction to
the current chapter: system (5.1.40) contains only the components, of the tensor χ, which
are orthogonal to the ray.

The amplitude A of an electromagnetic wave is defined by the equality

A2 = |E|2 = gαβEαEβ (5.1.42)

On the base of (5.1.40), we obtain an equation for A. To this end, we differentiate equality
(5.1.42)

∂A2

∂τ
= 2Re

(
gαβ ∂Eα

∂τ
Eβ

)
+

∂gαβ

∂τ
EαEβ.

Inserting the expression for ∂Eα/∂τ which follows from (5.1.40) into the last equation,
we obtain

∂A2

∂τ
= Re

[(
gαγgβδ ∂gγδ

∂τ
− agαβ

)
EαEβ + in−2χαβEαE

β

]
+

∂gαβ

∂τ
EαEβ.

From now on we assume that the tensor χ is Hermitian, i.e., that χαβ = χβα. In this case
the second summand in the brackets is pure imaginary and, consequently, can be deleted.
The expression in the parentheses is symmetric in α and β and, consequently, the first
summand in the brackets is real. So the previous equality can be rewritten as:

∂A2

∂τ
=

(
∂gαβ

∂τ
+ gαγgβδ ∂gγδ

∂τ
− agαβ

)
EαEβ

By differentiating the identity gαβgβγ = δα
γ , we obtain the relation

∂gαβ

∂τ
+ gαγgβδ ∂gγδ

∂τ
= 0. (5.1.43)

with help of which the previous formula takes the form

2A
∂A

∂τ
= −agαβEαEβ = −aA2

or

2
∂A

∂τ
+ aA = 0. (5.1.44)

By (5.1.23), equality (5.1.41) takes the form

a =
1

n

∂n

∂τ
+

1

J

∂J

∂τ
. (5.1.45)
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Inserting this value into (5.1.44), we arrive at the equation

∂

∂τ

[
ln

(
n1/2J1/2A

)]
= 0.

Integrating this equation, we obtain the classical formula for the amplitude of an electro-
magnetic wave:

A =
C√
nJ

, (5.1.46)

where C is a constant depending on a ray. Observe that the tensor χ does not enter this
formula, i.e., the amplitude of a wave in a quasi-isotropic medium coincides with that of
the corresponding isotropic medium. As is known, the physical interpretation of formula
(5.1.46) is as follows: within the scope of the zero approximation of geometrical optics,
the energy of an electromagnetic wave propagates along a ray tube.

5.1.4 Rytov’s law

We transform system (5.1.40), changing variables

Eα = An−1ηα (5.1.47)

where A is the amplitude defined by (5.1.42). Using (5.1.40) and (5.1.44), we obtain

2
∂ηα

∂τ
= 2

∂

∂τ

(
n

A
Eα

)
= 2

n

A

∂Eα

∂τ
− 2

n

A2

∂A

∂τ
Eα +

2

A

∂n

∂τ
Eα =

=
n

A

(
gβγ ∂gαβ

∂τ
Eγ − aEα + in−2χβ

αEβ

)
+

na

A
Eα +

2

A

∂n

∂τ
Eα =

= gβγ ∂gαβ

∂τ
ηγ +

2

n

∂n

∂τ
ηα + in−2χβ

αηβ.

Thus we have arrived at the system

∂ηα

∂τ
− 1

2
gβγ ∂gαβ

∂τ
ηγ −

1

n

∂n

∂τ
ηα =

i

2n2
χβ

αηβ (α = 1, 2). (5.1.48)

Until now all our calculations were performed with respect to the Euclidean metric. Let
us invoke the Riemannian metric (5.1.17) that assumes the next form in ray coordinates:

dℓ 2 = hαβdxαdxβ + (dτ)2, gαβ = n−2hαβ. (5.1.49)

Note that the vector η has unit length with respect to this metric, which fact explains
the meaning of the change (5.1.47). Inserting expression (5.1.49) for gαβ into (5.1.48), we
transform this equation so as to have

∂ηα

∂τ
− 1

2
hβγ ∂hαβ

∂τ
ηγ =

i

2n2
χβ

αηβ. (5.1.50)

Let Γ̃i
jk be the Christoffel symbols of metric (5.1.49); they are expressed from hαβ by

formulas similar to (5.1.21). In particular, Γ̃γ
α3 = 1

2
hβγ∂hαβ/∂τ . From this, by the rule

for calculating a covariant derivative, we see that equation (5.1.50) can be rewritten as:

ηα ; 3 =
i

2n2
χβ

αηβ (α = 1, 2). (5.1.51)
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As mentioned above, the field η is orthogonal to the ray γ : xα = xα
0 , i.e.,

〈η, γ̇〉 = ηj γ̇
k = η3 = 0, (5.1.52)

and has unit length:
|η|2 = hjkηjηk = 1. (5.1.53)

It follows from (5.1.52) and (5.1.53) that

η3 ; 3 = 0 (5.1.54)

The index 3 is distinguished in (5.1.51) and (5.1.54), since these equations are written
in ray coordinates. In an arbitrary coordinate system equalities (5.1.51) and (5.1.54) are
replaced with the next ones:

(
Dη

dτ

)

j
=

i

2n2

(
δk
j − 1

|γ̇|2 γ̇j γ̇
k

)
χl

kηl (5.1.55)

where D/dτ = γ̇k∇k is the operator of absolute differentiation along a ray γ. Validity of
(5.1.55) follows from the fact that this formula is invariant under change of coordinates
and coincides with (5.1.51), (5.1.54) in ray coordinates.

To find a coordinate-free form of equation (5.1.55), we note that the tensor χ = (χk
l )

can be considered as a linear operator χ : R3 → R3. For 0 6= ξ ∈ R3, we denote by
Pξ : R3 → R3 the orthogonal projection onto the plane ξ⊥ = {η ∈ R3 | 〈ξ, η〉 = 0}. In
coordinate form this operator is given by the formulas

(Pξa)j =

(
δk
j − 1

|ξ|2 ξjξ
k

)
ak.

Thus equation (5.1.55) is written in coordinate-free form as follows:

Dη

dτ
=

i

2n2
Pγ̇χη. (5.1.56)

The right-hand side of equation (5.1.56) is understood in the following sense: considered
as a linear operator, the tensor χ is applied to the vector η; the operator Pγ̇ is then
applied to the so-obtained vector. In the next section we shall see that the right-hand
side of (5.1.56) can be understood in another way: first the operator Pγ̇ is applied to the
tensor χ and the so-obtained linear operator is then applied to the vector η,

In the case χ = 0, i.e., for an isotropic medium, equation (5.1.56) means that the
vector field η is parallel along the ray γ in the sense of the Riemannian metric (5.1.17).
This fact is well known to be equivalent to the Rytov law (we will discuss the Rytov
law for isotropic media in detail in the beginning of the next chapter). Therefore we call
equation (5.1.56) the Rytov law for quasi-isotropic media.

5.1.5 The Euclidean form of the Rytov law

We fix a point on the ray γ, and identify the origin of some Cartesian coordinate system
(x1, x2, x3) = (x, y, z) with the point and its coordinate vectors with the Frenet frame
λ, ν, β of the ray γ at the point. In this coordinate system metric (5.1.17) has the form

dℓ 2 = n2(dx2 + dy2 + dz2). (5.1.57)
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At the coordinate origin the next relations are valid:

Dν

dτ
=

1

n
∇1ν =

1

n

(
dν

ds
+ Γ1

12λ + Γ2
12ν + Γ3

12β

)
,

Dβ

dτ
=

1

n
∇1β =

1

n

(
dβ

ds
+ Γ1

13λ + Γ2
13ν + Γ3

13β

)
,

(5.1.58)

where s is the Euclidean arc length of γ. The vector γ̇ = n−1λ is parallel along γ in the
sense of metric (5.1.57) and, consequently, at the origin

0 = n2D(n−1λ)

∂τ
= n∇1(n

−1λ) = ∇1λ − nx

n
λ =

dλ

ds
+ Γ1

11λ + Γ2
11ν + Γ3

11β − nx

n
λ.

Here nx = ∂n/∂x. Inserting the values of dλ/ds, dν/ds and dβ/ds which follow from the
Frenet formulas ( K is the curvature and κ is the torsion of the ray)

dλ

ds
= Kν,

dν

ds
= −Kλ − κβ,

dβ

ds
= κν (5.1.59)

and the values
Γ1

11 =
nx

n
, Γ2

11 = −ny

n
, Γ3

11 = −nz

n
,

Γ1
12 =

ny

n
, Γ2

12 =
nx

n
, Γ3

12 = 0,

Γ1
13 =

nz

n
, Γ2

13 = 0, Γ3
13 =

nx

n

(5.1.60)

for the Christoffel symbols of metric (5.1.57) into the previous equality, we see that the
relations ny = Kn, nz = 0 hold at the origin. Now formulas (5.1.58) take the form

Dν

dτ
=

1

n

(
nx

n
ν − κβ

)
,

Dβ

dτ
=

1

n

(
κν +

nx

n
β

)
. (5.1.61)

We change variables in equation (5.1.56) by the formula η = n−1F . The vector field
F is of unit length in the sense of the Euclidean metric (5.1.6) and is orthogonal to the
tangent vector λ of the ray γ. Consequently, it can be represented as F = Fνν + Fββ
where Fν and Fβ are functions on the ray γ. We will obtain equations for these functions
which follow from (5.1.56). To this end we introduce the matrix




χλλ χλν χλβ

χνλ χνν χνβ

χβλ χβν χββ




of components of the tensor χ in the basis λ, ν, β. First we calculate the right-hand side
of equation (5.1.56)

Pγ̇χη = Pλχ(n−1(Fνν + Fββ)) = n−1(FνPλχν + FβPλχβ) =

= n−1 [Fν(χννν + χνββ) + Fβ(χβνν + χβββ)] =

= n−1 [(χννFν + χνβFβ)ν + (χβνFν + χββFβ)β] . (5.1.62)
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Now we calculate the left-hand side of (5.1.56)

Dη

dτ
=

D

dτ

(
Fν

n
ν +

Fβ

n
β

)
=

= − 1

n2

dn

dτ
(Fνν + Fββ) +

1

n

dFν

dτ
ν +

1

n

dFβ

dτ
β +

Fν

n

Dν

dτ
+

Fβ

n

Dβ

dτ
,

Using the relation dτ = n ds and (5.1.61), at the origin we have

Dη

dτ
= −nx

n3
(Fνν + Fββ) +

1

n2

dFν

ds
ν +

1

n2

dFβ

ds
β +

Fν

n2

(
nx

n
ν − κβ

)
+

Fβ

n2

(
κν +

nx

n
β

)
,

Dη

dτ
=

1

n2

[(
dFν

ds
+ κFβ

)
ν +

(
dFβ

ds
− κFν

)
β

]
. (5.1.63)

Inserting (5.1.62) and (5.1.63) into (5.1.56), we arrive at the system

dFν

ds
=

i

2n
(χννFν + χνβFβ) − κFβ

dFβ

ds
=

i

2n
(χβνFν + χββFβ) + κFν

(5.1.64)

which is just the Euclidean form of the Rytov law. Although we have proved (5.1.64) only
at the origin, these equations hold at each point of the ray, since they are independent of
choice of coordinates. Equations (5.1.64) were obtained by Yu. A. Kravtsov.

5.1.6 The inverse problem

We denote f = iχ/(2n2) and rewrite (5.1.56) as

Dη

dτ
= Pγ̇fη. (5.1.65)

Assume a quasi-isotropic medium under investigation to be contained in a bounded do-
main D ⊂ R3. We also assume that the isotropic part εδαβ of the dielectric permeability
tensor (5.1.5) is known from some considerations, i.e., the metric (5.1.17) and its geo-
desics are known. Our problem consists in determining the anisotropic part χαβ of the
dielectric permeability tensor. To this end we can to fulfil tomographic measurements of
the following type: to examine the domain D along every geodesic of the metric (5.1.17)
(for instance, with the help of a laser in the case of the optical band), choosing arbitrary
polarization parameters for the incoming light and measuring them for the outcoming
light.

The mathematical formulation of our problem is as follows. Metric (5.1.17) is known
on a domain D. For every geodesic γ : [0, 1] → D with the endpoints in the boundary of
D the value η(1) of the solution to system (5.1.65) is known as a function of the initial
value η(0) and geodesic γ:

η(1) = U(γ)η(0). (5.1.66)

In other words, the fundamental matrix U(γ) of system (5.1.65) is known. We have to
determine f(x) from U(γ).
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With the problem formulated, we now distract ourselves from the initial physical
situation and consider the above-stated problem for a domain D ⊂ Rn(n ≥ 2) and for a
Riemannian metric

dt2 = gijdxidxj (5.1.67)

of the general type which is given on D. Of course, the factor Pγ̇ in (5.1.65) is now the
orthogonal projection in the sense of metric (5.1.67).

Note that the version of our problem obtained by omitting the factor Pγ̇ in (5.1.65),
i.e., by replacing (5.1.65) with the equation

Dη

dt
= fη,

is also sensible from a mathematical (and, perhaps, from an applied) standpoint. Such a
problem of vector tomography is considered in [137], uniqueness of a solution and a stable
estimate are obtained under some conditions on the smallness of the domain D and the
desired field f . Until now there is no success in extending the methods of [137] to the
case of equation (5.1.65).

The above-formulated inverse problem is nonlinear. Now linearize it. To this end we
fix a geodesic γ : [0, 1] → D whose endpoints belong to the boundary of D and introduce
an orthonormal basis e1(t), . . . , en−1(t), en(t) = cγ̇(t) that is parallel along γ. In this basis,
system (5.1.65) looks like:

η̇i =
n−1∑

j=1

fijη
j (1 ≤ i ≤ n − 1).

We represent a solution to the Cauchy problem of the system by the Neumann series

η(1) =


I +

1∫

0

F (t)dt +

1∫

0

F (t)dt

t∫

0

F (t1)dt1 + . . .


 η(0), (5.1.68)

where F = (fij)
n−1
i,j=1 and I is the identity matrix. Deleting the terms that are nonlinear

in f , we obtain

ηi(1) − ηi(0) =

1∫

0

n−1∑

j=1

fij(t)η
j(0)dt (1 ≤ i ≤ n − 1). (5.1.69)

Multiplying each of the equalities (5.1.69) by ξi and summing them up, we arrive at the
relation

Jf(γ; ξ, η) =

1∫

0

n−1∑

i,j=1

fij(t)ξ
iηj(0)dt, (5.1.70)

where Jf(γ; ξ, η) =
n−1∑
i=1

ξi(ηi(1) − ηi(0)) is a known function. To write equation (5.1.70)

in invariant form, we put ξn = ηn = 0 and increase the upper summation limit in (5.1.70)
to n. Then we note that the vector fields ξ(t) = ξiei(t) and η(t) = ηi(0)ei(t) are parallel
along γ and perpendicular to the vector γ̇. Now equation (5.1.70) takes the form

Jf(γ; ξ, η) =

1∫

0

fij(γ(t))ξi(t)ηj(t) dt. (5.1.71)
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The integrand in (5.1.71) is evidently independent of the choice of a local coordinate
system in a neighbourhood of the point γ(t). Thus we arrive at the next linear problem:

Problem 5.1.1 Let a Riemannian metric (5.1.67) be given in a domain D ⊂ Rn. De-
termine a tensor field f = (fij) that is defined on D, if for every geodesic γ : [0, 1] → D
whose endpoints are in the boundary of D, bilinear form (5.1.71) is known for all ξ, η ∈ γ⊥,
where γ⊥ is the space of vector fields parallel along γ and orthogonal to γ̇.

In what follows we restrict ourselves to considering symmetric tensor fields fij = fji.
In this case bilinear form (5.1.71) can be replaced with the quadratic one

Jf(γ, η) =

1∫

0

fij(γ(t))ηi(t)ηj(t) dt (η ∈ γ⊥). (5.1.72)

The function Jf(γ, η) defined by the last equality is called the transverse ray transform
of the field f.

Like every tomography problem, the problem of inverting the transverse ray transform
is overdetermined in dimensions n > 2 : the desired field f depends on the n-dimensional
variable x ∈ D while the known function Jf(γ, η) depends on the 2(n − 1)-parameter
family of geodesics γ. At the same time our problem is underdetermined with respect to the
number of the sought functions: we have to determine n(n+1)/2 components of the field
f provided that only n(n−1)/2 coefficients of the quadratic form Jf(γ, η) = aij(f, γ)ηiηj

are known (since dim γ⊥ = n − 1).
At the conclusion of the section we will show that, in the case when metric (5.1.67)

coincides with the Euclidean one (i.e., ε = const in (5.1.5)), the problem of inverting the
transverse ray transform is reduced to the classical tomography problem of inverting the
ray transform for a scalar function (for n = 3, to the problem of inverting the Radon
transform). Indeed, in this case geodesics coincide with straight lines that can be para-
meterized by a point x ∈ Rn and a direction vector 0 6= ξ ∈ Rn. Extending f by zero
outside D, in this case we can rewrite equation (5.1.72) as follows:

Jf(γ, η) =

∞∫

−∞

fij(x + ξt)ηiηjdt (x, η ∈ Rn, 0 6= ξ ∈ Rn, η⊥ξ). (5.1.73)

We fix 0 6= η ∈ Rn and define the function ϕ(y) = fij(y)ηiηj on the hyperplane Rn−1
η,p =

{y ∈ Rn | 〈y, η〉 = p}. By (5.1.73), we know the integrals of ϕ along all straight lines
contained in Rn−1

η,p . So we can determine the values of ϕ on every hyperplane Rn−1
η,p , and,

consequently, the field f on Rn too.

5.2 The transverse ray transform on a CDRM

Let (M, g) be a Riemannian manifold with boundary. By SmπM = (SmΠM, q, ∂+ΩM)
we denote the bundle over ∂+ΩM induced from Smτ ′

M by the restriction p : ∂+ΩM →
M of the projection of the tangent bundle, i.e., SmπM = p∗Smτ ′

M . Thus sections ϕ ∈
C∞(SmπM) of this bundle are functions sending a point (x, ξ) ∈ ∂+ΩM to some tensor
ϕ(x, ξ) ∈ SmT ′

xM.
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Recall that, for a vector ξ ∈ TxM , by iξ : SmT ′
xM → Sm+1T ′

xM and jξ : Sm+1T ′
xM →

SmT ′
xM we denote the operators of the symmetric multiplication by ξ and convolution

with ξ. These operators are dual to one other and, consequently, we have the orthogonal
decomposition SmT ′

xM = Ker jξ ⊕ Im iξ. Let Pξ : SmT ′
xM → SmT ′

xM be the orthogonal
projection onto the first summand of the decomposition. As follows from Lemma 2.6.1,
for ξ 6= 0, this operator is given in coordinate form by the equality

(Pξu)i1...im =

(
δj1
i1 − 1

|ξ|2 ξi1ξ
j1

)
. . .

(
δjm

im − 1

|ξ|2 ξimξjm

)
uj1...jm

. (5.2.1)

The transverse ray transform on a CDRM (M, g) is the linear operator

J : C∞(Smτ ′
M) → C∞(SmπM), (5.2.2)

defined by the equality

Jf(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Pγ̇(t)f(γ(t))) dt ((x, ξ) ∈ ∂+ΩM), (5.2.3)

where γ = γx,ξ : [τ−(x, ξ), 0] → M is a maximal geodesic satisfying the initial conditions
γ(0) = x and γ̇(0) = ξ; I t,0

γ is the parallel translation along γ from the point γ(t) to the
point γ(0) = x.

Let us explain the relationship between this definition and definition (5.1.72) given in
Section 5.1. To this end we note that, for ξ, η ∈ TxM , (5.2.1) implies the relation

Pξη
m = (Pξη)m. (5.2.4)

Let (x, ξ) ∈ ∂+ΩM, η ∈ TxM, 〈ξ, η〉 = 0; and η(t) be a vector field parallel along γ = γx,ξ

and such that η(0) = η. We take the scalar product of equality (5.2.3) with (η + aξ)m,
where a ∈ R. Using (5.2.4), we transform the integrand of the so-obtained equality as
follows:

〈I t,0
γ (Pγ̇(t)f(γ(t))), (η + aξ)m〉 = 〈Pγ̇(t)f(γ(t)), I0,t

γ (η + aξ)m〉 =

= 〈Pγ̇(t)f(γ(t)), (η(t) + aγ̇(t))m〉 = 〈f(γ(t)), Pγ̇(t)(η(t) + aγ̇(t))m〉 =

= 〈f(γ(t)), (Pγ̇(t)(η(t) + aγ̇(t)))m〉 = 〈f(γ(t)), (η(t))m〉.
We thus obtain the equality

〈Jf(x, ξ), (η + aξ)m〉 = 〈Jf(x, ξ), ηm〉 =

0∫

τ−(x,ξ)

fi1...im(γ(t))ηi1(t) . . . ηim(t) dt, (5.2.5)

which coincides up to a factor with (5.1.72) for m = 2.
It is interesting to compare (5.2.5) with operator (4.2.2), which may be called, in the

context of the current chapter, the longitudinal ray transform. First, for m = 0 these
transforms coincide. Second, for n = 2 they reduce to one other by a diffeomorphism
TM → TM mapping (x, ξ) into (x, ξ′), where ξ′ is obtained from ξ by the rotation of
π/2 in the positive direction (for simplicity, we assume M to be oriented). For the other
values of m,n the operators I and J provide us with different information on a field f.
Simultaneous consideration of these transforms seems to be of some interest, but in this
book we leave aside this question.

The next claim is proved in exact analogy with Theorem 4.2.1.
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Theorem 5.2.1 For a CDRM M , the transverse ray transform (5.2.3) can be extended
to a bounded operator

J : Hk(Smτ ′
M) → Hk(SmπM) (5.2.6)

for every integer k ≥ 0.

For x ∈ M , we put
K(x) = sup

σ
|K(x, σ)|, (5.2.7)

where K(x, σ) is the sectional curvature defined by formula (3.2.14).
For a CDRM (M, g), we introduce the characteristic

k(M, g) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tK(γx,ξ(t)) dt, (5.2.8)

where γ = γx,ξ is a maximal geodesic defined by the initial conditions γx,ξ(0) = x, γ̇x,ξ(0) =
ξ. Note distinctions of this characteristic from the quantity k+(M, g) introduced by for-
mula (4.3.3). First, the integrand of (4.3.3) depends only on sectional curvatures in the
two-dimensional directions containing the vector γ̇x,ξ(t) while the integrand of (5.2.8) de-
pends on all two-dimensional planes at the point γ(t). Second, the quantity k+(M, g) is
determined only by positive values of the sectional curvature while k(M, g) depends on
the negative values too.

We can now formulate the main result of the current chapter.

Theorem 5.2.2 For integers m and n satisfying the inequalities n ≥ 3 and n > m, there
exists a positive number ε(m,n) such that, for every compact dissipative Riemannian
manifold (M, g) of dimension n satisfying the condition

k(M, g) < ε(m,n), (5.2.9)

the transverse ray transform

J : H1(Smτ ′
M) → H1(SmπM)

is injective. For a field f ∈ H1(Smτ ′
M), the stability estimate

‖f‖0 ≤ C‖Jf‖1 (5.2.10)

holds with a constant C independent of f .

In the theorem the condition n ≥ 3 is essential, since we have seen that, for n = 2, the
operator J reduces to the operator I with nontrivial kernel. The second condition n > m
seems to be unessential; it is due to the method of the proof.

In what follows we assume that m ≥ 1, since for m = 0, as we have seen, J coincides
with I and Theorem 5.2.2 is a consequence of Theorem 4.3.3.

The remainder of the chapter is devoted to the proof of Theorem 5.2.2. It has much in
common with the proof of Theorem 4.3.3, but at the same time it has some new principal
moments. Now we only note that, with the help of Theorem 5.2.1 and in exact analogy
with the argument presented just after the formulation of Lemma 4.3.4, one can easily
show that it suffices to prove Theorem 5.2.2 for a real field f ∈ C∞(Smτ ′

M).
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5.3 Reduction of Theorem 5.2.2 to an inverse prob-

lem for the kinetic equation

Let (M, g) be a CDRM, f ∈ C∞(Smτ ′
M). Define a semibasic tensor field u = (ui1...im(x, ξ))

on T 0M by the equality

u(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Pγ̇(t)f(γ(t))) dt ((x, ξ) ∈ T 0M), (5.3.1)

where the same notations are used as in definition (5.2.3) of the transverse ray transform.
The difference between formulas (5.2.3) and (5.3.1) is the fact that (5.2.3) is considered
only for (x, ξ) ∈ ∂+ΩM while (5.3.1), for all (x, ξ) ∈ T 0M. In particular, we have the
boundary condition for u

u|∂+ΩM = Jf. (5.3.2)

Since τ−(x, ξ) = 0 for (x, ξ) ∈ ∂−ΩM, we have the second boundary condition

u|∂−ΩM = 0. (5.3.3)

The field u depends smoothly on (x, ξ) ∈ T 0M except for the points of the set T 0(∂M)
where some derivatives of u can be infinite. Consequently, some of the integrals considered
below are improper and we have to verify their convergence. The verification is performed
in the same way as in Section 4.6, since the singularities of the field u are due only to
the singularities of the lower integration limit in (5.3.1). So we will not pay attention to
these singularities in what follows.

The field u(x, ξ) is homogeneous in its second argument

u(x, tξ) = t−1u(x, ξ) (t > 0) (5.3.4)

and satisfies the differential equation

Hu(x, ξ) = Pξf(x) (5.3.5)

on T 0M \ T 0(∂M). Relations (5.3.4) and (5.3.5) are derived from definition (5.3.1) by
repeating the corresponding arguments of Section 4.6 almost word by word, we omit the
proofs.

We note finally that the field u = (ui1...im(x, ξ)) is symmetric in all its indices and
satisfies the relation

jξu(x, ξ) = 0, (5.3.6)

as follows immediately from the fact that the integrand of (5.3.1) has the same properties.
Observe a specific character of the right-hand side of equation (5.3.5). Conditionally

speaking, it is a product of the two factors depending upon different arguments. This
circumstance is crucial for what follows.

Written in coordinate form, equation (5.3.5) presents a system of differential equations
for components of the field u. This constitutes a principal distinction with Chapter 4 where
one equation was considered.
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Thus we have arrived at the following inverse problem for the kinetic equation: one
has to estimate the factor f(x) on the right-hand side of (5.3.5) by boundary value (5.3.2)
of a solution to the equation.

For a field u(x, ξ) satisfying (5.3.2)–(5.3.6), we write down the Pestov differential
identity (4.4.4), multiply it by the volume form ∂Σ and integrate over ΩM. Transforming
the divergent terms of the so-obtained equality in accord with the Gauss-Ostrogradskĭı
formulas (3.6.35) and (3.6.36), we arrive at the relation

∫

ΩM

[
| h

∇u|2 + (n − 2)〈w, ξ〉
]
dΣ =

= 2
∫

ΩM

〈h

∇u,
v

∇(Hu)〉 dΣ −
∫

∂ΩM

〈v, ν〉 dΣ2n−2 +
∫

ΩM

R1[u] dΣ, (5.3.7)

where ν is the outer normal to ∂M, the semibasic vector fields v and w are defined by
formulas (4.4.5), (4.4.6) and the notation

R1[u] = Rijklξ
iξk

v

∇jui1...im · v

∇lui1...im +
m∑

k=1

Rik
pqjξ

qui1...ik−1pik+1...im
v

∇jui1...im (5.3.8)

is used. The coefficient n − 2 at the second summand of the integrand on the left-hand
side of (5.3.7) is due to the fact that the field w(x, ξ) is homogeneous of degree −1 in
its second argument as follows from (4.4.6) and (5.3.4). Moreover, (4.4.6) implies that
〈w, ξ〉 = |Hu|2, and equality (5.3.7) takes the form

∫

ΩM

[
| h

∇u|2 + (n − 2)|Hu|2
]
dΣ =

= 2
∫

ΩM

〈 h

∇u,
v

∇(Hu)〉 dΣ −
∫

∂ΩM

〈v, ν〉 dΣ2n−2 +
∫

ΩM

R1[u] dΣ. (5.3.9)

5.4 Estimation of the summand related to the

right-hand side of the kinetic equation

Most of difficulties are caused by the first summand on the right-hand side of (5.3.9). As
is seen from (4.6.7), in the previous chapter the integrand of the corresponding summand
was in divergent form; in the present case this is not so.

By the definition of the operator Pξ, the right-hand side of equation (5.3.5) can be
represented as

Pξf(x) = f(x) − iξy(x, ξ) (5.4.1)

with some symmetric semibasic field y of degree m− 1 which in turn can be decomposed
into the sum

y(x, ξ) = ỹ(x, ξ) + iξh(x, ξ), jξỹ(x, ξ) = 0. (5.4.2)

From (5.3.5) and (5.4.1), we obtain

v

∇(Hu) =
v

∇(f − iξy) = − v

∇(iξy).
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Written in coordinate form, this relation gives

v

∇i(Hu)i1...im = − v

∇i(iξy)i1...im = −σ(i1 . . . im)
v

∇i(ξi1yi2...im) =

= −σ(i1 . . . im)(gii1yi2...im + ξi1

v

∇iyi2...im),

where σ(i1 . . . im) is symmetrization in the indices i1, . . . , im. This implies that

〈 h

∇u,
v

∇(Hu)〉 =
h

∇iui1...im · v

∇i(Hu)i1...im = − h

∇iui1...im(gii1yi2...im + ξi1

v

∇iyi2...im) =

= − h

∇iu
i i2...im · yi2...im − h

∇i(ξi1u
i1i2...im) · v

∇iyi2...im = − h

∇i
ui i2...im · yi2...im .

Writing the last equality of this chain, we used condition (5.3.6). Inserting expression
(5.4.2) for y into this relation and using (5.3.6) again, we obtain

〈 h

∇u,
v

∇(Hu)〉 = − h

∇iu
i i2...im · (ỹi2...im + ξi2hi3...im) =

= − h

∇iu
ii2...im · ỹi2...im − h

∇i(ξi2u
i i2...im) · hi3...im = − h

∇iu
ii2...im · ỹi2...im . (5.4.3)

Introducing a semibasic tensor field
h

δu by the equality

(
h

δu)i1...im−1 =
h

∇pupi1...im−1 , (5.4.4)

we rewrite (5.4.3) in coordinate-free form

〈 h

∇u,
v

∇(Hu)〉 = −〈h

δu, ỹ〉. (5.4.5)

From (5.4.5) with the help of the inequality between the arithmetical and geometrical
means, we obtain

2|〈 h

∇u,
v

∇(Hu)〉| ≤ b|hδu|2 +
1

b
|ỹ|2, (5.4.6)

where b is an arbitrary positive number. We transform the first summand on the right-
hand side of inequality (5.4.6), extracting the divergent part from this term. To this end
we write

|hδu|2 = (
h

δu)i2...im(
h

δu)i2...im =
h

∇pu
p i2...im · h

∇quq i2...im =

=
h

∇p(u
p i2...im

h

∇quq i2...im) − up i2...im
h

∇p

h

∇quq i2...im =

=
h

∇p(u
p i2...im

h

∇quq i2...im) − up
· i2...im

h

∇p

h

∇q
uq i2...im . (5.4.7)

By commutation formula (3.5.12) for the operator
h

∇,

h

∇p

h

∇qu
q i2...im =

h

∇q

h

∇pu
q i2...im − Ri

jpqξ
j

v

∇iu
q i2...im +

+ Rq
jpqu

j i2...im +
m∑

s=2

Ris
jpqu

q i2...is−1j is+1...im .
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Inserting this expression into the second summand on the right-hand side of (5.4.7), we
obtain

|hδu|2 = −up
·i2...im

h

∇q

h

∇pu
q i2...im +

h

∇p(u
p i2...im

h

∇quqi2...im) + R2[u], (5.4.8)

where the notation
R2[u] = Rijklξ

juk
·i2...im

v

∇iul i2...im −

− Rk
ijku

j
·i2...imui i2...im +

m∑

s=2

Ris
jklu

k
·i2...imul i2...is−1j is+1...im . (5.4.9)

is used for brevity.
We now transform the first summand on the right-hand side of (5.4.8) in the order

reverse to that used in (5.4.7):

|hδu|2 = − h

∇q(u
p
·i2...im

h

∇pu
q i2...im) +

h

∇qu
p
·i2...im · h

∇pu
q i2...im+

+
h

∇p(u
p i2...im

h

∇quq i2...im) + R2[u] =
h

∇puq i2...im · h

∇qup i2...im+

+
h

∇i(u
i i2...im

h

∇juj i2...im − uji2...im

h

∇jui i2...im) + R2[u]. (5.4.10)

Defining a semibasic vector field ṽ by the formula

ṽi = ui i2...im
h

∇juj i2...im − uj i2...im

h

∇jui i2...im , (5.4.11)

we write the above-obtained relation (5.4.10) in the form

|hδu|2 =
h

∇iuj i2...im · h

∇jui i2...im +
h

∇iṽ
i + R2[u]. (5.4.12)

We introduce one else semibasic tensor field (the last one!) z on T 0M by the equality

h

∇iui1...im =
ξi

|ξ|2 (Hu)i1...im + zi i1...im . (5.4.13)

The idea of this new notation is the fact that the tensor z is orthogonal to the vector ξ
in all its indices:

ξizi i1...im = ξi1zi i1...im = 0, (5.4.14)

while the tensor
h

∇u = (
h

∇iui1...im) has the mentioned property only in the last m indices.
Indeed, the second of the equalities (5.4.14) follows from (5.3.6), and the first follows from
(5.4.13) and the definition of the operator H.

From (5.4.14) we conclude that the summands on the right-hand side of (5.4.13) are
orthogonal to one other and, consequently,

| h

∇u|2 = |Hu|2 + |z|2. (5.4.15)

The first summand on the right-hand side of (5.4.12) can by expressed through z.
Indeed,

h

∇iuj i2...im · h

∇jui i2...im =
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=

(
zi j i2...im +

1

|ξ|2 ξi(Hu)j i2...im

) (
zj i i2...im +

1

|ξ|2 ξj(Hu)i i2...im

)
=

= zi j i2...imzj i i2...im +
1

|ξ|2 ξjz
i j i2...im(Hu)i i2...im+

+
1

|ξ|2 ξizj i i2...im(Hu)j i2...im +
1

|ξ|4 ξiξj(Hu)j i2...im(Hu)i i2...im .

The last three summands on the right-hand side of the preceding formula are equal to
zero, by (5.3.5) and (5.4.14), and we obtain the relation

h

∇iuj i2...im · h

∇jui i2...im = zi j i2...imzj i i2...im .

With the help of the above formula, (5.4.12) implies the inequality

|hδu|2 ≤ |z|2 +
h

∇iṽ
i + R2[u]. (5.4.16)

From (5.4.6) and (5.4.16), we conclude that

2|〈 h

∇u,
v

∇(Hu)〉| ≤ b|z|2 +
1

b
|ỹ|2 + b

h

∇iṽ
i + bR2[u]. (5.4.17)

Now express ỹ through f. To this end, recall relations (5.4.1) and (5.4.2) that, if
combined, give

f = Pξf + iξỹ + i2ξh, jξỹ = 0. (5.4.18)

Applying the operator jξ to the first of the equalities (5.4.18), we obtain

jξf = jξiξỹ + jξi
2
ξh. (5.4.19)

Now use the next

Lemma 5.4.1 For an integer k ≥ 1 the equality

jξi
k
ξ =

k

m + k
|ξ|2ik−1

ξ +
m

m + k
ikξjξ

holds on the space of symmetric semibasic tensor fields of degree m.

In the case k = 1 this claim coincides with Lemma 3.3.3 (it does not matter that
Lemma 3.3.3 is formulated for ordinary tensors and the present claim, for semibasic ones;
the proof remains the same). In the general case the claim is easily proved by induction
on k.

Transforming each of the summands on the right-hand side of (5.4.19) with the help
of Lemma 5.4.1 and taking the second of the equalities (5.4.18) into account, we obtain

jξf =
|ξ|2
m

ỹ + iξ

(
2

m
|ξ|2 +

m − 2

m
iξjξ

)
h.

The second summand on the right-hand side of the last relation is in the kernel of the
operator Pξ, so it implies that

ỹ =
m

|ξ|2Pξjξf.
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Inserting this expression into (5.4.17), we obtain

2|〈 h

∇u,
v

∇(Hu)〉| ≤ b|z|2 +
m2

b|ξ|4 |Pξjξf |2 + b
h

∇iṽ
i + bR2[u]. (5.4.20)

Integrating inequality (5.4.20) and then transforming the third summand on the right-
hand side of the so-obtained inequality with the help of the Gauss-Ostrogradskĭı formula
for the horizontal derivative, we find

2
∫

ΩM

|〈 h

∇u,
v

∇(Hu)〉| dΣ ≤
∫

ΩM

(
b|z|2 +

m2

b
|Pξjξf |2

)
dΣ+

+ b
∫

∂ΩM

〈ṽ, ν〉 dΣ2n−2 + b
∫

ΩM

R2[u] dΣ. (5.4.21)

It follows from (5.3.9) and (5.4.21) that

∫

ΩM

[
| h

∇u|2 + (n − 2)|Hu|2
]
dΣ ≤

∫

ΩM

(
b|z|2 +

m2

b
|Pξjξf |2

)
dΣ+

+
∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2 +
∫

ΩM

R[u] dΣ, (5.4.22)

where

R[u] = R1[u] + bR2[u]. (5.4.23)

Replacing the summands of the integrand on the left-hand side of (5.4.22) with their
expressions by formulas (5.3.5) and (5.4.15) and using factorization (3.6.34) of the form
dΣ, we rewrite inequality (5.4.22) as

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n − 1)|Pξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ)





dV n(x) ≤

≤
∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2 +
∫

ΩM

R[u] dΣ. (5.4.24)

Now an intermediate summary is in order. For a solution u to equation (5.3.5) satisfy-
ing conditions (5.3.4) and (5.3.6), we obtained inequality (5.4.24) where b is an arbitrary
positive number, the semibasic vector fields v and ṽ are defined by formulas (4.4.5) and
(5.4.11), the function R[u] is defined by (5.3.8), (5.4.9) and (5.4.23). As far as the field z
participating in (5.4.24) is concerned, in what follows we shall use only the equality

| h

∇u|2 = |z|2 + |Pξf |2. (5.4.25)

which is a consequence of (5.3.5) and (5.4.15). Note that boundary conditions (5.3.2) and
(5.3.3) were not used until now.
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5.5 Estimation of the boundary integral and

summands depending on curvature

First we will estimate the last of the integrals on the right-hand side of inequality (5.4.24)

through
∫
ΩM | h

∇u|2dΣ.
Agree to denote various constants that depend only on m and n by the same letter C.
For a Riemannian manifold (M, g), a point x ∈ M and vectors ξ, η, λ, µ ∈ TxM , the

inequality
|Rijkl(x)ξiηjλkµl| ≤ CK(x)|ξ||η||λ||µ|, (5.5.1)

holds where K(x) is defined by formula (5.2.7). It follows, for instance, from the ex-
plicit expression, of components of the curvature tensor through the sectional curvature,
presented on p. 112 of the book [41].

From (5.3.8), (5.4.9) and (5.4.23) with the help of (5.5.1), we see that the inequality

|R[u](x, ξ)| ≤ CK(x)(|u(x, ξ)|2 + | v

∇u(x, ξ)|2) (5.5.2)

holds on ΩM under the assumption that the number b in (5.4.23) satisfies the condition
0 < b ≤ 1.

By boundary condition (5.3.3), the fields u and
v

∇u vanish on ∂−ΩM. Integrating
(5.5.2) and applying Lemma 4.5.1, we arrive at the relation

∫

ΩM

|R[u]|dΣ ≤ Ck
∫

ΩM

(|Hu|2 + |H v

∇u|2)dΣ, (5.5.3)

where k = k(M, g) is given by formula (5.2.8).

Estimate
∫
ΩM |H v

∇u|2dΣ through
∫
ΩM | h

∇u|2dΣ. To this end, note that the definition

of H implies the commutation formula
v

∇H−H
v

∇ =
h

∇. With the help of the last formula,
we obtain

|H v

∇u|2 ≤ 2(| h

∇u|2 + | v

∇Hu|2). (5.5.4)

Moreover, the inequality

|Hu|2 = |〈ξ, h

∇〉u|2 ≤ | h

∇u|2. (5.5.5)

holds on ΩM . Using (5.5.4) and (5.5.5), we transform (5.5.3) to find

∫

ΩM

|R[u]| dΣ ≤ Ck




∫

ΩM

| h

∇u|2dΣ +
∫

M




∫

ΩxM

| v

∇Hu|2dωx(ξ)


 dV n(x)


 . (5.5.6)

We fix a point x ∈ M and choose coordinates in some of its neighbourhoods so that

gij(x) = δij. Applying the operator
v

∇i = ∂/∂ξi to the equality

(Hu)i1...im =

(
δj1
i1 − ξi1ξ

j1

|ξ|2
)

. . .

(
δjm

im − ξimξjm

|ξ|2
)

fj1...jm
(x),

that follows from (5.3.5) and (5.2.1), we obtain the representation

(
v

∇Hu)i1...im+1 = |ξ|−2m−2P j1...jm

i1...im+1
(ξ)fj1...jm(x)
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with some polynomials P j1...jm

i1...im+1
(ξ) independent of x. The representation implies the

estimate ∫

ΩxM

| v

∇Hu|2dωx(ξ) ≤ C|f(x)|2. (5.5.7)

It follows from Lemma 5.6.1 given below that the quadratic form
∫
ΩxM |Pξf |2dωx(ξ) is

positive-definite on SmT ′
xM , and the estimate

|f |2 ≤ C
∫

ΩxM

|Pξf |2dωx(ξ) (5.5.8)

holds with a constant C independent of x.
Combining (5.5.7) and (5.5.8), we obtain

∫

ΩxM

| v

∇Hu|2dωx(ξ) ≤ C
∫

ΩxM

|Hu|2dωx(ξ). (5.5.9)

Inequalities (5.5.5) and (5.5.9) allows estimate (5.5.6) to take its final form:

∫

ΩM

|R[u]| dΣ ≤ Ck
∫

ΩM

| h

∇u|2dΣ. (5.5.10)

With the help of (5.5.10), our main inequality (5.4.24) implies the next one:

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n − 1)|Pξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ)





dV n(x) −

− Ck
∫

ΩM

| h

∇u|2dΣ ≤
∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2. (5.5.11)

Note that, deriving this estimate, we have used boundary condition (5.3.3), but (5.3.2)
was not used until now.

We now estimate the right-hand side of (5.5.11) through Jf.
From (4.4.5) and (5.4.11) we obtain, on ∂ΩM ,

〈bṽ − v, ν〉 = b(νiu
ii2...im

h

∇juji2...im − νiuji2...im
h

∇juii2...im)+

+ νiξ
j

v

∇iui1...im · h

∇jui1...im − νiξ
i

h

∇jui1...im · v

∇jui1...im . (5.5.12)

Show that the right-hand side of (5.5.12) depends only on the restriction of u to
∂ΩM. To this end we choose a coordinate system x1, . . . xn in a neighbourhood of a point
x0 ∈ ∂M such that the boundary ∂M is determined by the equation xn = 0 and gin = δin.
Then the vector ν has the coordinates (0, . . . , 0, 1) and (5.5.12) is written as:

〈bṽ − v, ν〉 = Lu ≡ b(un i2...im
h

∇αuαi2...im − uαi2...im
h

∇αun i2...im)+

+ ξα
v

∇nui1...im · h

∇αui1...im − ξn
h

∇αui1...im · v

∇αui1...im , (5.5.13)

where the summation from 1 to n − 1 over index α is performed.
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It is essential that Lu does not contain the derivative
h

∇n u. So if y1, . . . , y2n−2 is
a local coordinate system on ∂ΩM , then Lu is expressible by a quadratic form in the
components of the fields u, ∂u/∂yi and ∂u/∂|ξ|. By homogeneity (5.3.4), ∂u/∂|ξ| = −u
and, consequently, L is a quadratic differential operator on the bundle p∗(Smτ ′

M) where
p : ∂ΩM → M is the restriction of the projection of the tangent bundle. So (5.5.13)
implies the estimate ∣∣∣∣∣∣

∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2

∣∣∣∣∣∣
≤ D‖u|∂ΩM‖2

1, (5.5.14)

where a constant D depends on m and (M, g), unlike the constant C on (5.5.11). Depen-
dence D on b can be extracted by assuming that 0 < b ≤ 1.

Recalling boundary conditions (5.3.2) and (5.3.3), we rewrite estimate (5.5.14) as
∣∣∣∣∣∣

∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2

∣∣∣∣∣∣
≤ D‖Jf‖2

1. (5.5.15)

With the help of (5.5.15), our main inequality (5.5.11) takes the form

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n − 1)|Pξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ)





dV n(x) −

− Ck
∫

ΩM

| h

∇u|2dΣ ≤ D‖Jf‖2
1. (5.5.16)

5.6 Proof of Theorem 5.2.2

The next claim contains the main algebraic difficulties of our problem.

Lemma 5.6.1 Let m,n be integers satisfying the conditions n ≥ 3, n > m ≥ 1. For
every Riemannian manifold (M, g) of dimension n and every point x ∈ M , the quadratic
form

〈Bf, f〉 =
∫

ΩxM

[
(n − 1)|Pξf |2 − m2|Pξjξf |2

]
dωx(ξ) (5.6.1)

is positive-definite on SmT ′
xM and the estimate

∫

ΩxM

[
(n − 1)|Pξf |2 − m2|Pξjξf |2

]
dωx(ξ) ≥ δ|f |2 (5.6.2)

holds with a positive coefficient δ depending only on m and n.

The proof of this lemma will be given later, and now we will finish the proof of Theorem
5.2.2 by making use of the lemma.

Proving Lemma 5.6.1, we will see that the estimate
∫

ΩxM

|Pξf |2dωx(ξ) ≤ C|f |2 (5.6.3)
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holds with a constant C depending only on m and n. From (5.6.2) and (5.6.3), we obtain
the inequality

∫

ΩxM

[
(n − 1)|Pξf |2 − m2|Pξjξf |2

]
dωx(ξ) ≥ δ

∫

ΩxM

|Pξf |2dωx(ξ), (5.6.4)

where the coefficient δ differs from that used in (5.6.2), but is also positive and depends
only on m and n.

In particular, (5.6.2) implies that
∫

ΩxM

|Pξjξf |2dωx(ξ) ≤ C1

∫

ΩxM

|Pξf |2dωx(ξ) (5.6.5)

with a constant C1 depending only on m and n.
Assuming that 0 < b ≤ 1, it follows from (5.6.4) and (5.6.5) that

∫

ΩxM

[
(n − 1)|Pξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ) =

=
∫

ΩxM

[
(n − 1)|Pξf |2 − m2|Pξjξf |2

]
dωx(ξ) − m2(1/b − 1)

∫

ΩxM

|Pξjξf |2dωx(ξ) ≥

≥
(
δ − m2C1 (1/b − 1)

) ∫

ΩxM

|Pξf |2dωx(ξ).

With the help of this inequality, (5.5.16) implies that

∫

ΩM

[
(1 − b)|z|2 +

(
δ − m2C1 (1/b − 1)

)
|Pξf |2 − Ck| h

∇u|2
]
dΣ ≤ D‖Jf‖2

1. (5.6.6)

Until now the number b was subordinate to the only condition 0 < b ≤ 1. We choose
it in such a way that

δ − m2C1 (1/b − 1) = δ/2

and denote by δ1 the minimum of the numbers 1 − b and δ/2. then (5.6.6) implies that

∫

ΩM

[
δ1(|z|2 + |Pξf |2) − Ck| h

∇u|2
]
dΣ ≤ D‖Jf‖2

1.

Recalling (5.4.25), we rewrite the last inequality as:

(δ1 − Ck)
∫

ΩM

| h

∇u|2dΣ ≤ D‖Jf‖2
1. (5.6.7)

The constants δ1 and C on (5.6.7) depend only on m and n, and the quantity k =
k(M, g) satisfies condition (5.2.9) of Theorem 5.2.2. Choosing the value of ε(m,n) in the
formulation of the theorem in such a way that δ1 − Cε(m,n) = δ1/2, (5.6.7) implies the
estimate ∫

ΩM

| h

∇u|2dΣ ≤ D1‖Jf‖2
1, (5.6.8)
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where D1 = 2D/δ1.
With the help of the inequality

|f(x)|2 ≤ C
∫

ΩxM

|Pξf(x)|2dωx(ξ)

following from Lemma 5.6.1 and equation (5.3.5), we obtain

‖f‖2
0 =

∫

M

|f(x)|2dV n(x) ≤ C
∫

M




∫

ΩxM

|Pξf(x)|2dωx(ξ)


 dV n(x) = C

∫

ΩM

|Hu|2dΣ.

Using (5.5.5), we transform the last inequality to obtain:

‖f‖2
0 ≤ C

∫

ΩM

| h

∇u|2dΣ. (5.6.9)

Inequalities (5.6.8) and (5.6.9) imply estimate (5.2.10). Theorem 5.2.2 is proved.

5.7 Decomposition of the operators A0 and A1

The remainder of the chapter is devoted to the proof of Lemma 5.6.1.
Under the conditions of this lemma, we choose an orthonormal basis for TxM and,

with its help, identify TxM and the space Rn provided with the standard scalar product
〈, 〉. Then SmT ′

xM is identified with Sm = SmRn, the m-th symmetric power of the space
Rn; the sphere ΩxM is identified with Ω = {ξ ∈ Rn | |ξ| = 1}; and the measure dωx, with
the standard angle measure dω on Ω. Let ω = 2πn/2/Γ(n/2) be the volume of Ω.

We define the operators A0, A1 : Sm → Sm by the equalities

A0 =
1

ω

∫

Ω

Pξ dω(ξ), A1 =
1

ω

∫

Ω

iξPξjξ dω(ξ) (5.7.1)

and put
B = (n − 1)A0 − m2A1. (5.7.2)

Then, for f ∈ Sm,

〈Bf, f〉 =
1

ω

∫

Ω

[
(n − 1)|Pξf |2 − m2|Pξjξf |2

]
dω(ξ).

Thus Lemma 5.6.1 is equivalent to positive definiteness of the operator B.
Let δ = (δij) ∈ S2 be the Kronecker tensor. By i : Sm → Sm+2 we denote the operator

of symmetric multiplying by δ and by j : Sm+2 → Sm, the operator of convolution with
δ. The operators i and j are dual to one other.

Lemma 5.7.1 For m ≥ 1, the equalities

Aα = (m − α)! Γ
(

n

2

) [m/2]∑

p=0

aα(p,m, n)ipjp (α = 0, 1) (5.7.3)
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hold on Sm, where [m/2] is the integral part of m/2 and

aα(p,m, n) =
(−1)α

22p(p!)2

m∑

k=2p

(−1)k (1 + αk − α)k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) . (5.7.4)

P r o o f. First of all we note that the set {ηm | η ∈ Rn} generates the vector space
Sm, as follows from the equality

∂m

∂tβ

∣∣∣∣∣
t=0

(∑

i

tiei

)m

= m! eβ

valid for a basis e1, . . . , en for the space Rn and every multi-index β of length |β| = m.
By the last observation, to prove equalities (5.7.3) it suffices to show that the relations

〈Aαηm, ζm〉 = (m − α)! Γ
(

n

2

) [m/2]∑

p=0

aα(p,m, n)〈ipjpηm, ζm〉 (5.7.5)

hold for every η, ζ ∈ Ω.
Note that, for |η| = |ζ| = 1,

〈ipjpηm, ζm〉 = 〈jpηm, jpζm〉 = 〈ηm−2p, ζm−2p〉 = 〈η, ζ〉m−2p.

Thus the desired equalities (5.7.5) can be rewritten as:

〈Aαηm, ζm〉 = (m − α)! Γ
(

n

2

) [m/2]∑

p=0

aα(p,m, n)〈η, ζ〉m−2p. (5.7.6)

By definition (5.7.1) of the operators Aα,

〈Aαηm, ζm〉 =
1

ω

∫

Ω

〈Pξj
α
ξ ηm, jα

ξ ζm〉 dω(ξ) (α = 0, 1). (5.7.7)

Note that, for |ξ| = |η| = 1, the relation

jξη
m = 〈η, ξ〉ηm−1 (5.7.8)

is valid and, as one can easily see from (5.2.1),

Pξη
m = (Pξη)m = (η − 〈η, ξ〉ξ)m. (5.7.9)

By (5.7.8) and (5.7.9), the integrand of (5.7.7) can be transformed as follows:

〈Pξj
α
ξ ηm, jα

ξ ζm〉 = (〈η, ξ〉〈ζ, ξ〉)α〈Pξη
m−α, ζm−α〉 =

= (〈η, ξ〉〈ζ, ξ〉)α(〈η, ζ〉 − 〈η, ξ〉〈ζ, ξ〉)m−α.

Inserting this expression into (5.7.7) and denoting x = 〈η, ζ〉 for brevity, we obtain

〈Aαηm, ζm〉 = (−1)α
m∑

l=0

(−1)l

(
m − α
l − α

)
xm−l 1

ω

∫

Ω

(〈η, ξ〉 〈ζ, ξ〉)l dω(ξ). (5.7.10)
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From now on agree that

(
p
q

)
= 0 for q < 0.

Calculate the integral on the right-hand side of (5.7.10). To this end choose an ortho-
normal basis e1, . . . , en for Rn such that η = e1, ζ = xe1 + (1 − x2)1/2e2. Then

〈η, ξ〉 = ξ1, 〈ζ, ξ〉 = xξ1 + (1 − x2)1/2ξ2.

Consequently,

1

ω

∫

Ω

(〈η, ξ〉 〈ζ, ξ〉)l dω(ξ) =
1

ω

∫

Ω

ξl
1[xξ1 + (1 − x2)1/2ξ2]

l dω(ξ) =

=
[l/2]∑

r=0

(
l
2r

)
xl−2r(1 − x2)r 1

ω

∫

Ω

ξ2l−2r
1 ξ2r

2 dω(ξ). (5.7.11)

As is known [112],

1

ω

∫

Ω

ξ2l−2r
1 ξ2r

2 dω(ξ) =
Γ

(
n
2

)

πΓ
(
l + n

2

)Γ
(
l − r +

1

2

)
Γ

(
r +

1

2

)
.

Inserting this expression into (5.7.11), we obtain

1

ω

∫

Ω

(〈η, ξ〉〈ζ, ξ〉)l dω(ξ) =
Γ

(
n
2

)

πΓ
(
l + n

2

)
[l/2]∑

r=0

(
l
2r

)
Γ

(
l − r +

1

2

)
Γ

(
r +

1

2

)
xl−2r(1 − x2)r.

Replacing the integral of (5.7.10) with its value from the last equality, changing the
summation limits in the so-obtained double sum and introducing the notation

cα(r,m, n) = Γ
(
r +

1

2

) m∑

l=2r

(−1)l

(
m − α
l − α

) (
l
2r

)
Γ

(
l − r + 1

2

)

Γ
(
l + n

2

) , (5.7.12)

we arrive at the relation

〈Aαηm, ζm〉 = (−1)α
Γ

(
n
2

)

π

[m/2]∑

r=0

cα(r,m, n)xm−2r(1 − x2)r.

Expanding the factor (1− x2)r on the right-hand side of this equality in powers of x and
changing the summation limits in the so-obtained double sum, we obtain

〈Aαηm, ζm〉 = (−1)α
Γ

(
n
2

)

π

[m/2]∑

p=0

(−1)p




[m/2]∑

r=p

(−1)r

(
r
p

)
cα(r,m, n)


 xm−2p. (5.7.13)

Recalling that x = 〈η, ζ〉 and comparing the above-obtained relation (5.7.13) with the
desired equality (5.7.5), we see that relations (5.7.5) hold with

aα(p,m, n) =
(−1)p+α

π(m − α)!

[m/2]∑

r=p

(−1)r

(
r
p

)
cα(r,m, n). (5.7.14)



168 CHAPTER 5. THE TRANSVERSE RAY TRANSFORM

Now to finish the proof we have to verify that equalities (5.7.14) are equivalent to formula
(5.7.4).

Inserting expression (5.7.12) for cα(r,m, n) into (5.7.14), changing the summation
limits in the so-obtained double sum and introducing the notation

γ(p, l) =
[l/2]∑

r=p

(−1)r

(
r
p

) (
l
2r

)
Γ

(
r +

1

2

)
Γ

(
l − r +

1

2

)
, (5.7.15)

we arrive at the equality

aα(p,m, n) =
(−1)p+α

π(m − α)!

m∑

l=2p

(−1)l

(
m − α
l − α

)
γ(p, l)

Γ
(
l + n

2

) . (5.7.16)

It turns out that sum (5.7.15) can be simplified. To this end, use the well-known
relations

Γ
(
r +

1

2

)
=

(2r − 1)!!

2r

√
π, Γ

(
l − r +

1

2

)
=

(2l − 2r − 1)!!

2l−r

√
π.

Inserting these expressions into (5.7.15), we obtain

γ(p, l) =
π

2l

[l/2]∑

r=p

(−1)r

(
r
p

) (
l
2r

)
(2r − 1)!!(2l − 2r − 1)!!.

After simple transformations the last equality takes the form:

γ(p, l) =
π(l!)2

22lp!(l − p)!

[l/2]∑

r=p

(−1)r

(
l − p
r − p

) (
2l − 2r

l

)
.

We change the summation index of this sum according to the formula k = r − p:

γ(p, l) = (−1)p π(l!)2

22lp!(l − p)!

[l/2]−p∑

k=0

(−1)k

(
l − p

k

) (
2l − 2p − 2k

l

)
. (5.7.17)

We now use the known relation ([103], p. 620, formula (62))

[n/2]∑

k=0

(−1)k

(
n
k

) (
2n − 2k
n + m

)
= 2n−m

(
n
m

)
.

Putting n = l − p, m = p in this formula, we obtain

[ l−p
2 ]∑

k=0

(−1)k

(
l − p

k

) (
2l − 2p − 2k

l

)
= 2l−2p

(
l − p

p

)
. (5.7.18)

Note that the upper summation limit in this formula can be decreased to [l/2] − p, since(
2l − 2p − 2k

l

)
= 0 for k > [l/2] − p. Inserting (5.7.18) into (5.7.17), we obtain

γ(p, l) = (−1)p π(l!)2

2l+2p(p!)2(l − 2p)!
. (5.7.19)

Finally, inserting the value of γ(p, l) from the last equality into (5.7.16), we arrive at
(5.7.4). The lemma is proved.
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5.8 Proof of Lemma 5.6.1

We first shall show that Lemma 5.6.1 is a consequence of the next

Lemma 5.8.1 For n ≥ 3,m ≥ 1 and 0 ≤ p ≤ [m/2], the numbers a0(p,m, n) defined by
equality (5.7.4) are positive. The numbers ã(p,m, n) defined by the formula

ã(p, m, n) =
1

22p(p!)2

m∑

k=2p

(−1)k (k + 1)!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) (5.8.1)

are positive in each of the next two cases: 1) n = 3, 1 ≤ m ≤ 2, 0 ≤ p ≤ [m/2]; and 2)
n ≥ 4, m ≥ 1, 0 ≤ p ≤ [m/2].

Indeed, by Lemma 5.7.1 the operator B = (n − 1)A0 − m2A1 can be represented as:

B = m! Γ
(

n

2

) [m/2]∑

p=0

b(p,m, n)ipjp, (5.8.2)

where
b(p,m, n) = (n − 1)a0(p,m, n) − ma1(p,m, n). (5.8.3)

On assuming that n > m ≥ 1 and using positiveness of a0(p,m, n), from equality (5.8.3)
it follows that

b(p,m, n) ≥ m[a0(p,m, n) − a1(p,m, n)]. (5.8.4)

Comparing (5.7.4) and (5.8.1), we see that

a0(p,m, n) − a1(p,m, n) = ã(p,m, n). (5.8.5)

Relations (5.8.4) and (5.8.5) show that positiveness of ã(p,m, n) implies the same for
b(p,m, n).

Thus, for n > m ≥ 1 and n ≥ 3 all coefficients of sum (5.8.2) are positive. So, for
0 6= f ∈ Sm,

〈Bf, f〉 = m!Γ
(

n

2

) [m/2]∑

p=0

b(p,m, n)〈jpf, jpf〉 ≥ m! Γ
(

n

2

)
b(0,m, n)|f |2 > 0.

This proves Lemma 5.6.1.
P r o o f of Lemma 5.8.1. We consider the integral

Iα(p,m, n) =

1∫

0

x2p+α(1 − x)n/2−2−α
(
1 − x

2

)m−2p

dx. (5.8.6)

It converges under the next restrictions on the parameters:

0 ≤ p ≤ [m/2], 0 ≤ α <
n

2
− 1 (5.8.7)

and, evidently, it is a positive number.
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We transform the right-hand side of (5.8.6), expanding the last factor of the integrand
in powers of x :

Iα(p,m, n) = (m − 2p)!
m−2p∑

r=0

(−1)r

2rr!(m − 2p − r)!

1∫

0

xr+2p+α(1 − x)n/2−2−αdx.

Expressing the integral on the right-hand side of the last equality through the Γ-function,
we obtain

Iα(p,m, n) = Γ
(

n

2
− 1 − α

)
(m − 2p)!

m−2p∑

r=0

(−1)r Γ(r + 2p + α + 1)

2rr!(m − 2p − r)!Γ
(
r + 2p + n

2

) .

Changing the summation index of the last sum by the formula k = r + 2p, we arrive at
the relation

Iα(p,m, n) = 22pΓ
(

n

2
− 1 − α

)
(m − 2p)!

m∑

k=2p

(−1)k Γ(k + 1 + α)

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) .

(5.8.8)
We put α = 0 in (5.8.8), In this case restrictions (5.8.7) look as: n ≥ 3, 0 ≤ p ≤ [m/2].
As the result, we have

I0(p, m, n) = 22pΓ
(

n

2
− 1

)
(m − 2p)!

m∑

k=2p

(−1)k k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) .

The right-hand side of the last equality differs only by a positive factor from the right-
hand side of (5.7.4) for α = 0. So positiveness of I0(p,m, n) implies that of a0(p, m, n).
Thus the first claim of the lemma is proved.

We now put α = 1 in (5.8.8). In this case restrictions (5.8.7) look as: n ≥ 5, 0 ≤ p ≤
[m/2]. As a result, we have

I1(p, m, n) = 22pΓ
(

n

2
− 2

)
(m − 2p)!

m∑

k=2p

(−1)k (k + 1)!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) .

The right-hand side of the last equality differs only by a positive factor from the right-
hand side of (5.8.1) and, consequently, positiveness of I1(p,m, n) implies that of ã(p, m, n).
This proves the second claim of the lemma for n ≥ 5.

For n = 4, equality (5.8.1) has the form

ã(p,m, 4) =
1

22p(p!)2

m∑

k=2p

(−1)k 1

2k(m − k)!(k − 2p)!
.

Changing the summation index by the formula k = 2p + r, we obtain

ã(p,m, 4) =
1

24p(p!)2(m − 2p)!

m−2p∑

r=0

(−1)r

(
m − 2p

r

)
1

2r
=

(1 − 1/2)m−2p

24p(p!)2(m − 2p)!
> 0.

Finally, for n = 3, the second claim of the lemma is verified by the direct calculation
according to formula (5.8.1).



5.9. FINAL REMARKS 171

5.9 Final remarks

As we have already noted, the restriction n > m is most likely to be unessential for
validity of Theorem 5.2.2, it is rather due to the method of the proof. But this restriction
does not exhaust the possibilities of our method. Indeed, this restriction has been used
only in the proof of Lemma 5.6.1. The claim of the lemma is equivalent to the positive
definiteness of the operator B. Thus Theorem 5.2.2 is valid in all cases when the next
question has a positive answer.

Problem 5.9.1 For what values of m and n is the operator

B = (n − 1)A0 − m2A1 =
1

ω

∫

Ω

[(n − 1)Pξ − m2iξPξjξ]dω(ξ)

positive-definite on the space SmRn?

Lemma 5.6.1 gives only a partial answer to this question. The author failed in finding
a full answer.

If the condition n > m is replaced with n − 1 ≥ βm for some β < 1, then inequality
(5.8.4) becomes

b(p,m, n) ≥ m[βa0(p,m, n) − a1(p,m, n)] = mãβ(p,m, n),

where

ãβ(p,m, n) =
1

22p(p!)2

m∑

k=2p

(−1)k (k + β)k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) .

Thus the problem reduces to the question: for what β are the numbers ãβ(p,m, n) positive
in the domain n − 1 ≥ βm, 0 ≤ p ≤ [m/2]?

Another possible approach to Problem 5.9.1 is in finding the eigenvalues of the operator
B and examining their positiveness. As one can show, each of the operators Aα (α = 0, 1)
has [m/2] + 1 eigenspaces Sm

k ⊂ Sm such that Sm
k (0 ≤ k ≤ [m/2]) consists of the tensors

of the type ikf, where f ∈ Sm−2k satisfies the condition jf = 0. The space Sm
k belongs to

the eigenvalue λ0(m − 2k,m, n), of the operator A0, which is expressed by the equality

λ0(m − 2k, m, n) =
n − 2

n + 2m − 4k − 2
µ(m − 2k, m, n)

through the coefficients of the Fourier expansion

tm|t|n−2

(1 − t2)(n−2)/2
=

[m/2]∑

k=−∞

µ(m − 2k, m, n)C
(n/2−1)
m−2k (t) (5.9.1)

in the Gegenbauer polynomials. At the same time Sm
k belongs to the eigenvalue λ1(m −

2k,m, n) of the operator A1 related, for m−2k > 0, to the coefficients of expansion (5.9.1)
by the equality

λ1(m − 2k, m, n) =
n − 2

m(n + 2m − 4k − 2)
×

×[(m + n − 2)µ(m − 2k, m, n) − (m + n − 3)µ(m − 2k, m − 2, n)]
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If m − 2k = 0, then the correspondent eigenvalue of the operator A1 is zero. Thus our
problem reduces to verification, of positiveness of some linear combinations of the coeffi-
cients of expansion (5.9.1), which is connected with tremendous algebraic difficulties. In
despair of finding a theoretical solution to Problem 5.9.1, the author took an experimental
way and calculated the eigenvalues of the operator B for 1 ≤ m,n ≤ 50. The results of the
calculation allow one to formulate the conjecture that the problem has a positive answer
for n ≥ (8m + 23)/13.



Chapter 6

The truncated transverse ray
transform

The reader, perhaps, has already paid attention to the distinction, between systems
(2.16.1) and (5.1.64), which exists even in the case of a homogeneous medium when the
torsion κ is equal to zero. Meanwhile, both systems describe the same physical process,
evolution of the polarization ellipse along a light ray.

The mentioned distinction relates to polarization measurements performed in practice.
In the previous chapter we assumed that fundamental matrix (5.1.66) of system (5.1.65)
is known for every ray. In physical terms, it means that one has to measure not only
polarization ellipse but also the phases of electric vector oscillations in two mutually
perpendicular directions. However, only the difference of the phases is usually measured
in practical polarimetry. This circumstance compels us to replace (5.1.65) with a system
similar to (2.16.1) and the transverse ray transform, with some new integral geometry
operator which is called the truncated transverse ray transform.

In the first section we discuss the transition from (5.1.65) to a system of the type of
(2.16.1). This transition is well known in the physical literature (for instance, see [1]). In
the remainder of the chapter our presentation mainly follows the paper [127].

In Section 6.2 we define the truncated transverse ray transform of a tensor field of
degree m on a compact dissipative Riemannian manifold of dimension n and formulate
the main result of the chapter, Theorem 6.2.2, which asserts that in sufficiently simple
cases this transform is invertible on the subspace of fields orthogonal to the metric tensor.
Sections 6.3–6.5 contain the proof of Theorem 6.2.2. It is interesting that, for n > 3 the
proof repeats, almost word by word, the corresponding arguments of the previous chapter;
a supplementary complication arises only in the case n = 3,m = 2 which is of the main
interest from the standpoint of the physical interpretation. In Section 6.6 we obtain an
inversion formula for the truncated transverse ray transform on Euclidean space in the
case n = 3, m = 2.

6.1 The polarization ellipse

Let us return to considering equation (5.1.56) on assumption that the tensor χ = χij is real
and symmetric. We fix a ray γ : [0, 1] → R3 and an orthonormal basis e1(τ), e2(τ), e3(τ) =
cγ̇(τ) that is parallel along γ in the sense of metric (5.1.17). Let η(τ) = η1(τ)e1(τ) +

173
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η2(τ)e2(τ) be the expansion of a solution to equation (5.1.56) in this basis, and χij be the
components of the tensor χ in this basis. Equation (5.1.56) is equivalent to the system

dη1

dτ
=

i

2n2
(χ11η1 + χ12η2) ,

dη2

dτ
=

i

2n2
(χ21η1 + χ22η2) .

(6.1.1)

The vectors η and E = An−1η are complex. It is the real vector

ξ(τ, t) = Re
[
η(τ)ei(kτ−ωt)

]

that has a physical meaning. We fix a point τ = τ0 on the ray. The end of the vector

ξ(t) = Re
[
(η1e1 + η2e2) ei(kτ−ωt)

]
(6.1.2)

runs an ellipse in the plane of the vectors e1, e2; it is called the polarization ellipse. Let
us express its parameters through η1, η2.

✲ e1

✻
e2

✟✟✟✟✟✟✟✟✟✟✟✟✟✯f1

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆❑
f2

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆ ✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡

✟✟✟✟✟✟✟✟✟✟✟

❆
❆
❆
❆
❆
❆

α

|ψ|

a

b

♣♣♣♣♣
♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
♣♣♣♣♣♣♣♣
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Fig. 3

Let f1, f2 be an orthonormal basis for the polarization plane whose orientation coin-
cides with that of e1, e2 and the vector f1 is directed along the major axis of the polar-
ization ellipse. Let α be the angle of the rotation from the basis e1, e2 to the basis f1, f2,
i.e.,

f1 = e1 cos α + e2 sin α, f2 = −e1 sin α + e2 cos α (6.1.3)

If a, b are the semiaxes of the ellipse, then

ξ(t) = a cos(ϕ0 − ωt)f1 ± b sin(ϕ0 − ωt)f2 = Re
[
(af1 ∓ ibf2) ei(ϕ0−ωt)

]
. (6.1.4)
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The choice of the sign in these equalities depends on whether the polarization is right or
left, i.e., on the direction in which the end of the vector ξ(t) runs over the ellipse as the
time increases. Inserting values (6.1.3) of the vectors f1 and f2 into the last formula, we
obtain

ξ(t) = Re
[
((a cos α ± ib sin α)e1 + (a sin α ∓ ib cos α)e2) ei(ϕ0−ωt)

]
.

Comparing this equality with (6.1.2), we conclude

η1 = (a cos α ± ib sin α)ei(ϕ0−kτ), η2 = (a sin α ∓ ib cos α)ei(ϕ0−kτ). (6.1.5)

The vector η has unit length in metric (5.1.17), i.e., |η1|2 + |η2|2 = n−2. In view of the
last equality from formulas (6.1.4) we find a2 + b2 = n−2. We define the angle ψ by the
conditions

a = n−2 cos ψ, b = n−2 sin ψ, −π/2 < ψ ≤ π/2. (6.1.6)

Note that |ψ| coincides with the angle between the major axis of the polarization ellipse
and its diagonal, i.e., determines the shape of the ellipse. The sign of ψ depends on
whether the polarization is right or left.

We define a complex number Φ by the conditions

tan Φ = η2/η1, −π/2 < Re Φ ≤ π/2. (6.1.7)

From (6.1.5) and (6.1.6), we obtain

tan Φ =
tan α − i tan ψ

1 + i tan α tan ψ
. (6.1.8)

This formula shows that Φ is uniquely determined by the angles α and ψ. To make this
dependence clearer, we introduce some new quantity ψ̃ by the relations

tan ψ = − tanh ψ̃, −∞ < ψ̃ ≤ ∞. (6.1.9)

Note that (6.1.9) establishes a one-to-one correspondence between ψ and ψ̃. Now formula
(6.1.8) takes the form:

tan Φ =
tan α + i tanh ψ̃

1 − i tan α tanh ψ̃
=

tan α + tan(iψ̃)

1 − tan α tan(iψ̃)
= tan(α + iψ̃).

By the above-imposed restrictions on α and Re Φ, this implies that

Φ = α + iψ̃ (6.1.10)

The next claim summarizes the above considerations: the complex ratio η2/η1 of the
components of the vector η is in one-to-one correspondence with the pair of the angles
(α, ψ) that determine the shape and disposition of the polarization ellipse.

In the case of an isotropic medium, when χ ≡ 0, the vector η(τ) is parallel along the
ray γ and, consequently, the ratio η2/η1 is constant on the ray. Thus we arrive to the
Rytov law for isotropic media: the angles α and ψ are constant along a ray. To find a
Euclidean version of the law, we address system (5.1.64) that has the next form in the
case of an isotropic medium:

dFν/ds = −κFβ, dFβ/ds = κFν . (6.1.11)
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Introduce a complex number Ψ by the conditions

tan Ψ = Fβ/Fν , −π/2 < Re Ψ ≤ π/2 (6.1.12)

and denote by θ the angle between the vectors F and ν. As above, we obtain the equality

Ψ = θ + iψ̃. (6.1.13)

From (6.1.12), we conclude

dΨ

ds
=

d

ds

(
arctan

Fβ

Fν

)
= κ.

Comparing the last equality with (6.1.13), we arrive at the Euclidean version of the Rytov
law:

dθ

ds
= κ. (6.1.14)

We return to considering a quasi-isotropic medium. In practical polarimetry one
usually measures the angles α and ψ that are represented in Fig. 3. As far as the
phase ϕ0 in (6.1.5) is concerned, measuring this quantity is connected with measuring
distances that are comparable with the wavelength; therefore the phase ϕ0 is not usually
measured.

Let us address the inverse problem of determining the tensor field χ from results of
polarization measurements. We assume that a quasi-isotropic medium under investigation
is contained in a bounded domain D ⊂ R3, metric (5.1.17) is known, and the angles α
and ψ can be measured for outcoming light along every geodesic γ : [0, 1] → D with the
endpoints on the boundary of D. We denote by U(γ) the fundamental matrix of system
(6.1.1), i.e.,

(
η1(1)
η2(1)

)
=

(
u11 u12

u21 u22

) (
η1(0)
η2(0)

)
, U(γ) =

(
u11 u12

u21 u22

)
(6.1.15)

In Section 5.1, considering the inverse problem, we assumed the matrix U(γ) to be com-
pletely known. Now, by the above conclusion, we assume that the ratio η2(1)/η1(1) is
known as a function of the ratio η2(0)/η1(0), for all solutions to system (6.1.1). As one can
easily see, this is equivalent to the fact that the matrix U(γ) is known up to an arbitrary
scalar factor. In other words, the results of the measurement do not change if a solution
(η1(τ), η2(τ)) is multiplied by eiλ(τ), where λ(τ) is an arbitrary real function on the ray.

Using the last observation, we change the variables in system (6.1.1) as follows:

f =
i

2n2
χ, ζ = exp


− i

4n2

τ∫

τ0

(χ11 + χ22) dτ


 η.

Then system (6.1.1) is transformed to the next one

dζ1

dτ
=

1

2
(f11 − f22) ζ1 + f12ζ2,

dζ2

dτ
= f21ζ1 +

1

2
(f22 − f11) ζ2

(6.1.16)
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that is similar to (2.16.1) in structure.

As compared with (6.1.1), system (6.1.16) has the next advantage: the results of the
measurements allow us to completely determine the fundamental matrix U(γ) of system
(6.1.16). Indeed, note that the trace of the matrix of this system is equal to zero. Therefore
the fundamental matrix of the system satisfies the condition

det U(γ) = 1. (6.1.17)

Assume that, for every solution ζ(τ) to system (6.1.16), the ratio ζ2(1)/ζ1(1) is known as
a function on ζ2(0)/ζ1(0). As above, this allows us to determine the matrix U(γ) up to
some factor. This factor is found from condition (6.1.17).

Equations (6.1.16) are written in a basis e1(τ), e2(τ), e3(τ) = cγ̇(τ) related to the ray
γ. To find an invariant form of the equations, we note that the matrix of system (6.1.16)
considered as a symmetric tensor on R3

Qγ̇f =




1
2
(f11 − f22) f12 0

f21
1
2
(f22 − f11) 0

0 0 0




is the orthogonal projection of the tensor f = (fij) onto the subspace Ker j
⋂

Ker jγ̇, of
the space S2R3 of symmetric tensors of degree 2, which is defined by the equations

jf = hijfij = 0, (jγ̇f)i = fij γ̇
j = 0,

where (hij) is metric tensor (5.1.17). The subspace Ker j
⋂

Ker jγ̇ ⊂ S2R3 depends only on
the vector γ̇(τ) but not on the choice of the orthonormal basis e1(τ), e2(τ), e3(τ) = cγ̇(τ).
Consequently, the orthogonal projection Qγ̇ : S2R3 → S2R3 onto this subspace is well-
defined. Thus system (6.1.16) takes the invariant form:

Dζ

dτ
= (Qγ̇f)ζ. (6.1.18)

As in Section 5.1.6, we now distract ourselves from the initial physical situation and
consider equation (6.1.18) for a domain D ⊂ Rn and for a Riemannian metric (5.1.67),
of general type, which is given on D.

If the tensor field f is a multiple of the metric tensor, i.e., fij = λ(x)gij (x ∈ D), then
Qγ̇f = 0 and equation (6.1.18) degenerates. Therefore it is natural to consider only the
tensor fields that satisfy the condition jf = fijg

ij = 0. Thus we arrive at the next inverse
problem.

A Riemannian metric g is given on a bounded domain D ⊂ Rn; a symmetric tensor
field f of degree 2 is defined on D and satisfies the condition jf = 0. For every geodesic
γ : [0, 1] → D with the endpoints in the boundary of D, the value ζ(1) of any solution
to equation (6.1.18) is known as a function of the initial value ζ(0) and the geodesic γ.
In other words, the fundamental matrix U(γ) of system (6.1.18) is known. One has to
determine the field f(x) from U(γ).

Linearizing this problem in accord with the scheme of Section 5.6.1, we arrive at the
next
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Problem 6.1.1 (the problem of polarization tomography) Let a Riemannian met-
ric g be given in a bounded domain D ⊂ Rn. Determine a symmetric tensor field f = (fij)
that is defined on D and satisfies the condition jf = fijg

ij = 0, if the tensor

Kf(γ) =

1∫

0

I t,0
γ (Qγ̇(t)f(γ(t))) dt

is known for every geodesic γ : [0, 1] → D with endpoints in the boundary of D. Here I t,0
γ

is the parallel translation along γ from the point γ(t) to the point γ(0).

6.2 The truncated transverse ray transform

Recall that, for a Riemannian manifold (M, g) and a point x ∈ M , by i : SmT ′
xM →

Sm+2T ′
xM , we denote the operator of symmetric multiplication by the metric tensor g

and by j : Sm+2T ′
xM → SmT ′

xM , the operator of convolution with g. For ξ ∈ TxM , let
iξ : SmT ′

xM → Sm+1T ′
xM and jξ : Sm+1T ′

xM → SmT ′
xM be the symmetric multiplication

by the vector ξ and the convolution with ξ. Let Qξ : SmT ′
xM → SmT ′

xM be the orthogonal
projection onto the intersection of the kernels of the operators j and jξ. Recall also that
Pξ : SmT ′

xM → SmT ′
xM denotes the orthogonal projection onto Ker jξ. The next claim is

an analog of Lemma 2.6.1.

Lemma 6.2.1 For (x, ξ) ∈ TM and f ∈ SmT ′
xM (m ≥ 0), there exist uniquely deter-

mined tensors y ∈ Sm−1T ′
xM and a ∈ Sm−2T ′

xM such that

f = Qξf + iξy + ia, (6.2.1)

jξa = 0. (6.2.2)

The tensor y can be represented as

y = ỹ + iξh, jξỹ = 0, (6.2.3)

where ỹ is expressed via f by the equality

ỹ = mPξjξf. (6.2.4)

The proof of the lemma will be given in Section 6.4.
The truncated transverse ray transform on a CDRM (M, g) is the linear operator

K : C∞(Smτ ′
M) → C∞(SmπM), (6.2.5)

defined by the equality

Kf(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Qγ̇(t)f(γ(t))) dt ((x, ξ) ∈ ∂+ΩM), (6.2.6)

where the notation is the same as in the definition (5.2.3) of the operator J.
As in the previous two chapters, one shows that (6.2.5) is extendible to a bounded

operator
K : Hk(Smτ ′

M) → Hk(SmπM) (6.2.7)

for every integer k ≥ 0.
The main result of the current chapter is the next
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Theorem 6.2.2 For integers m and n satisfying the inequalities n ≥ 3 and n > m, there
exists a positive number ε(m,n) such that, for every compact dissipative Riemannian
manifold (M, g) of dimension n satisfying the condition

k(M, g) < ε(m,n), (6.2.8)

where k(M, g) is defined by formula (5.2.8), every field f ∈ H1(Smτ ′
M) satisfying the

condition
jf = 0 (6.2.9)

is uniquely determined by Kf. The stability estimate

‖f‖0 ≤ C‖Kf‖1 (6.2.10)

holds with a constant C independent of f .

In the theorem the condition n ≥ 3 is essential, since Qξ = 0 and the operator K is
equal to zero in the case m ≥ 2 = n. As far as the second condition n > m is concerned,
remarks are possible that are similar to those of Section 5.9.

In what follows we assume that m ≥ 2, since Qξ = Pξ and the operator K coincides
with J for m < 2.

As in the previous two chapters, using the boundedness of operator (6.2.7), one can
see that it suffices to prove Theorem 6.2.2 for a real field f ∈ C∞(Smτ ′

M). The proof is
presented in the next section. Our exposition of arguments similar to those used in the
previous chapter will be kept at a minimum.

6.3 Proof of Theorem 6.2.2

The next claim is an analog of Lemma 5.6.1.

Lemma 6.3.1 Let (M, g) be a Riemannian manifold of dimension n. For every point
x ∈ M and every tensor f ∈ SmT ′

xM (m ≥ 0) satisfying (6.2.9), the equality

〈Bf, f〉 =
1

ω

∫

ΩxM

[
(n − 1)|Qξf |2 − m2|Pξjξf |2

]
dωx(ξ) = χ(m,n)|f |2 (6.3.1)

holds with a coefficient χ(m,n) depending only on m and n. The coefficient χ(m,n) is
positive for n > m ≥ 3 or n − 1 > m = 2 and equal to zero for n − 1 = m = 2.

The proof of the lemma is presented in Section 6.5.
Now we start proving Theorem 6.2.2. As above, we denote by the letter C various

constants depending only on m and n. For a real field f ∈ C∞(Smτ ′
M) (m ≥ 2, n =

dim M ≥ 3) satisfying (6.2.9), we define a semibasic tensor field u = (ui1...im(x, ξ)) on
T 0M by the equality

u(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Qγ̇(t)f(γ(t))) dt ((x, ξ) ∈ T 0M), (6.3.2)
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where the same notations are used as in (5.3.1). This field satisfies the equation

Hu(x, ξ) = Qξf(x), (6.3.3)

with boundary conditions (5.3.3) and

u|∂+ΩM = Kf. (6.3.4)

The field u is symmetric in all its indices, satisfies the homogeneity relation (5.3.4), con-
dition (5.3.6), and the next equality

ju(x, ξ) = 0. (6.3.5)

Writing down the Pestov identity for u and integrating it, we arrive at relation (5.3.9).
Using decomposition (6.2.1), we transform the integrand of the first integral on the right-
hand side of (5.3.9) as follows:

〈 h

∇u,
v

∇(Hu)〉 = 〈 h

∇u,
v

∇(Qξf)〉 = 〈 h

∇u,
v

∇(f − iξy − ia)〉 =

= −〈 h

∇u,
v

∇(iξy)〉 − 〈 h

∇u,
v

∇(ia)〉. (6.3.6)

Let us show that the second summand on the right-hand side of (6.3.6) is equal to zero.
Indeed,

〈 h

∇u,
v

∇(ia)〉 =
h

∇iui1...im · (gi1i2

v

∇iai3...im) =
h

∇i(ju)i3...im · v

∇iai3...im .

By (6.3.5), the right-hand side of the last formula is equal to zero. Thus (6.3.6) gives

〈 h

∇u,
v

∇(Hu)〉 = −〈 h

∇u,
v

∇(iξy)〉. (6.3.7)

With the help of representations (6.2.3) and (6.2.4), we transform the right-hand side
of equality (6.3.7) in the same way as in Section 5.4. As a result, we arrive at inequality
(5.4.22) where some semibasic field z = (zii1...im) is defined by formula (5.4.13), symmetric
in the last m indices, satisfies (5.4.14), (5.4.15) and the relations

gi1i2zi i1i2...im = 0, (6.3.8)

h

∇iuj i2...im · h

∇jui i2...im = zi j i2...imzj i i2...im . (6.3.9)

Besides, for the field
h

δu defined by formula (5.4.4), equality (5.4.5) holds. Using (6.3.3)
and (5.4.15), we transform inequality (5.4.22) to obtain

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n − 1)|Qξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ)





dV n(x) ≤

≤
∫

∂ΩM

〈bṽ − v, ν〉 dΣ2n−2 +
∫

ΩM

R[u] dΣ. (6.3.10)
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Recall that here b is an arbitrary positive number, the semibasic vector fields v and ṽ are
defined by formulas (4.4.5) and (5.4.11), the function R[u] is defined by formulas (5.3.8),
(5.4.9) and (5.4.23). The field z satisfies the equality

| h

∇u|2 = |z|2 + |Qξf |2 (6.3.11)

that follows from (5.4.15) and (6.3.3).
The integrals on the right-hand side of (6.3.10) satisfy the estimates similar to those

of Section 5.5. With the help of these estimates, (6.3.10) implies the next analog of
inequality (5.5.16):

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n − 1)|Qξf |2 −

m2

b
|Pξjξf |2

]
dωx(ξ)





dV n(x)−

− Ck
∫

ΩM

| h

∇u|2dΣ ≤ D‖Kf‖2
1. (6.3.12)

For n > m ≥ 3 or n − 1 > m = 2, the quadratic form 〈Bf, f〉 in (6.3.12) is positive-
definite, by Lemma 6.3.1, and the proof of Theorem 6.2.2 is completed in the same way
as in Section 5.6.

In the case n − 1 = m = 2 the quadratic form 〈Bf, f〉 is equal to zero, and therefore
the first summand on the right-hand side of equality (5.3.9) must be investigated more
carefully. The next circumstance turns out to be crucial here: the factors on the right-
hand side of (6.3.9) differ from one other by the transposition of the first two indices.
According to this observation, we decompose the field z = (zijk) into the sum of two fields

z = z+ + z−, (6.3.13)

where

z+
ijk =

1

2
(zijk + zjik), z−

ijk =
1

2
(zijk − zjik). (6.3.14)

Summands on the right-hand side of (6.3.13) are orthogonal to one other and, conse-
quently,

|z|2 = |z+|2 + |z−|2. (6.3.15)

Moreover, (6.3.13) and (6.3.14) imply that

zijkzjik = |z+|2 − |z−|2. (6.3.16)

By (6.3.15) and (6.3.16), equalities (6.3.9) and (5.4.15) take the form

h

∇iujk · h

∇juik = |z+|2 − |z−|2, (6.3.17)

| h

∇u|2 = |Hu|2 + |z+|2 + |z−|2. (6.3.18)

In Section 5.4, for the field
h

δu, the relation

|hδu|2 =
h

∇iujk · h

∇juik +
h

∇iṽ
i + R2[u], (6.3.19)
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was obtained. Together with (6.3.17), it implies the equality

|hδu|2 = |z+|2 − |z−|2 +
h

∇iṽ
i + R2[u]. (6.3.20)

From (5.4.5), using (6.3.20), we obtain the estimate

2|〈 h

∇u,
v

∇(Hu)〉| ≤ |z+|2 − |z−|2 + |ỹ|2 +
h

∇iṽ
i + R2[u]. (6.3.21)

Let us reproduce the arguments used in deriving (6.3.12) from inequality (5.3.9); but
now, instead of relations (5.4.15) and (5.4.17), we use (6.3.18) and (6.3.21) respectively.
As a result, instead of (6.3.12), we arrive at the next more precise inequality:

∫

M





∫

ΩxM

[
2|z−|2 + (n − 1)|Qξf |2 − m2|Pξjξf |2

]
dωx(ξ)





dV n(x) ≤

≤ Ck
∫

ΩM

| h

∇u|2dΣ + D‖Kf‖2
1.

By Lemma 6.3.1, in the case n = 3, m = 2 under consideration, the sum of the last
two summands on the left-hand side vanishes after integration over ΩxM . Thus, the last
inequality takes the form:

∫

ΩM

|z−|2dΣ ≤ Ck
∫

ΩM

| h

∇u|2dΣ + D‖Kf‖2
1. (6.3.22)

Introducing the notations

‖f‖2 =
∫

M

|f(x)|2dV n(x), ‖z−‖2 =
∫

ΩM

|z−|2dΣ, ‖ h

∇u‖2 =
∫

ΩM

| h

∇u|2dΣ,

we rewrite estimate (6.3.22) as

‖z−‖2 ≤ Ck‖ h

∇u‖2 + D‖Kf‖2
1. (6.3.23)

It turns out that the norm ‖ h

∇u‖2 can be estimated from above by ‖f‖ · ‖z−‖. To this
end, we multiply the equality

z−ijk =
1

2

[
h

∇iujk −
1

|ξ|2 ξi(Hu)jk −
h

∇juik +
1

|ξ|2 ξj(Hu)ik

]
,

which follows from (6.3.14) and (5.4.13), by gjk and perform the summation with respect
to j, k. Taking the equalities ju = j(Hu) = jξ(Hu) = 0 into account, we obtain

(
h

δu)i = −2z−ijkg
jk.

Inserting this expression into (5.4.5), we conclude

〈 h

∇u,
v

∇(Hu)〉 = 2z−ijkỹ
igjk.
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This relation implies the estimate

|〈 h

∇u,
v

∇(Hu)〉| ≤ C|z−| · |ỹ|.

Multiplying the last inequality by the volume form dωx(ξ), integrating it and applying
the Cauchy-Bunyakovskĭı inequality, we arrive at the estimate

∫

ΩxM

|〈 h

∇u,
v

∇(Hu)〉| dωx(ξ) ≤ C




∫

ΩxM

|z−|2dωx(ξ)




1/2 


∫

ΩxM

|ỹ|2dωx(ξ)




1/2

(6.3.24)

with a constant C independent of x.
The expression (6.2.4) of the tensor ỹ(x, ξ) from f(x) implies the estimate

∫

ΩxM

|ỹ|2dωx(ξ) ≤ C1|f(x)|2

with some constant C1 independent of x. Comparing the last relation with (6.3.24), we
obtain the inequality

∫

ΩxM

|〈 h

∇u,
v

∇(Hu)〉| dωx(ξ) ≤ C|f(x)|




∫

ΩxM

|z−|2 dωx(ξ)




1/2

.

Multiplying this inequality by dV n(x) and integrating it over M , we obtain

∫

ΩM

|〈 h

∇u,
v

∇(Hu)〉| dΣ ≤ C‖f‖ · ‖z−‖. (6.3.25)

It follows from (5.3.9) and (6.3.25) that

‖ h

∇u‖2 ≤ C‖f‖ · ‖z−‖ −
∫

∂ΩM

〈v, ν〉 dΣ2n−2 +
∫

ΩM

R1[u] dΣ.

The integrals on the right-hand side of this relation are estimated as above, and we arrive
at the inequality

‖ h

∇u‖2 ≤ C‖f‖ · ‖z−‖ + C1k‖
h

∇u‖2 + D1‖Kf‖2
1. (6.3.26)

Recall that the quantity k = k(M, g) is subordinate to condition (6.2.8) of the theorem.
The constants C and C1 on (6.3.26) are universal unlike the coefficient D1 depending on
(M, g). Choose the value of ε(m, n) in the formulation of the theorem in such a way that
C1k < 1. Then (6.3.26) implies the relation

‖ h

∇u‖2 ≤ C‖f‖ · ‖z−‖ + D1‖Kf‖2
1,

which can be transformed as follows with the help of the inequality between arithmetical
and geometrical means:

‖ h

∇u‖2 ≤ b‖f‖2 +
C1

b
‖z−‖2 + D1‖Kf‖2

1, (6.3.27)
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where b is an arbitrary positive number.
The final part of the proof consists in comparing estimates (6.3.23) and (6.3.27). Ma-

jorizing the second summand on the right-hand side of (6.3.27) with the help of (6.3.23),
we obtain the inequality

‖ h

∇u‖2 ≤ b‖f‖2 +
C1

b

(
Ck‖ h

∇u‖2 + D‖Kf‖2
1

)
+ D1‖Kf‖2

1,

which can be written as
(

1 − Ck

b

)
‖ h

∇u‖2 ≤ b‖f‖2 +
D

b
‖Kf‖2

1. (6.3.28)

Furthermore, we have the estimate

‖f‖2 ≤ C1‖
h

∇u‖2, (6.3.29)

which is concluded in full analogy with inequality (5.6.9). From (6.3.28) and (6.3.29), we
obtain (

1 − Ck

b
− C1b

)
‖ h

∇u‖2 ≤ D

b
‖Kf‖2

1. (6.3.30)

We choose the quantities b and ε(m,n) in such a way that the number in the parentheses
is positive. Then (6.3.30) gives

‖ h

∇u‖2 ≤ D1‖Kf‖2
1. (6.3.31)

From (6.3.29) and (6.3.31), we finally obtain

‖f‖2 ≤ D2‖Kf‖2
1.

The theorem is proved.

6.4 Decomposition of the operator Qξ

Before proving Lemma 6.2.1, we will expose a few auxiliary claims. For ξ ∈ TxM, on
SmT ′

xM (m ≥ 0, n = dim M) the next commutation formulas are valid:

jξi
k
ξ =

k

m + k
|ξ|2ik−1

ξ +
m

m + k
ikξjξ, (6.4.1)

jik =
2k(n + 2m + 2k − 2)

(m + 2k − 1)(m + 2k)
ik−1 +

m(m − 1)

(m + 2k − 1)(m + 2k)
ikj, (6.4.2)

jiξ =
2

m + 1
jξ +

m − 1

m + 1
iξj, (6.4.3)

jξi =
2

m + 2
iξ +

m

m + 2
ijξ, (6.4.4)

The first of these formulas have been proved above (Lemmas 3.3.3 and 5.4.1). Equalities
(6.4.2) and (6.4.3) can be proved by arguments similar to those in the proof of Lemma
3.3.3; we omit them. Relation (6.4.4) is obtained from (6.4.3) by passing to the dual
operators. Strictly speaking, (6.4.1) and (6.4.2) are meaningful only for k > 0; nevertheless
we can assume these equalities to hold for k = 0 too, since the coefficient of the first
summand on the right-hand side is equal to zero in this case.
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Lemma 6.4.1 For ξ 6= 0, the next commutation formulas are valid:

Pξi = iPξ −
1

|ξ|2 i2ξPξ, (6.4.5)

jPξ = Pξj −
1

|ξ|2Pξj
2
ξ . (6.4.6)

P r o o f. It suffices to verify the first formula, since it implies the second by passing
to dual operators.

The operator iξjξ is nonnegative, since it is the product of two operators dual to one
other. Therefore (6.4.1) implies that jξiξ is positive for ξ 6= 0 and, consequently, has an
inverse operator (jξiξ)

−1.
Recall that Pξ is the orthogonal projection onto the first summand of the decomposi-

tion
SmT ′

xM = Ker jξ ⊕ Im iξ. (6.4.7)

Let P ξ = E −Pξ (E is the identity operator) be the projection onto the second summand
of this decomposition. The next formula is valid:

E − Pξ = P ξ = iξ(jξiξ)
−1jξ. (6.4.8)

Indeed, the operator defined by equality (6.4.8) vanishes on the first summand of decom-

position (6.4.7) and satisfies the relations P
2
ξ = P ξ, P ξiξ = iξ. These properties uniquely

determine the projection onto the second summand.
Using (6.4.8) and (6.4.4), we obtain

P ξi = iξ(jξiξ)
−1(jξi) = iξ(jξiξ)

−1
(

2

m + 2
iξ +

m

m + 2
ijξ

)
,

P ξi =
2

m + 2
iξ(jξiξ)

−1iξ +
m

m + 2
iξ(jξiξ)

−1ijξ. (6.4.9)

By (6.4.4), taking permutability of the operators i and iξ into account, we write

(jξiξ)i = (jξi)iξ =
(

2

m + 3
iξ +

m + 1

m + 3
ijξ

)
iξ =

2

m + 3
i2ξ +

m + 1

m + 3
i(jξiξ).

Multiplying the extreme terms of this chain of equalities by (jξiξ)
−1 from left and right,

we obtain

(jξiξ)
−1i =

m + 3

m + 1
i(jξiξ)

−1 − 2

m + 1
(jξiξ)

−1i2ξ(jξiξ)
−1.

The last relation holds on SmT ′
xM ; therefore we have to decrease the value of m by one,

applying this equality for transformation of the second summand on the right-hand side
of (6.4.9). We thus obtain

P ξi =
2

m + 2
iξ(jξiξ)

−1iξ +
m

m + 2
iξ

[
m + 2

m
i(jξiξ)

−1 − 2

m
(jξiξ)

−1i2ξ(jξiξ)
−1

]
jξ.

Rewriting the last formula as

P ξi = iξi(jξiξ)
−1jξ +

2

m + 2
iξ(jξiξ)

−1iξ(E − iξ(jξiξ)
−1jξ)
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and recalling (6.4.8), we obtain

P ξi = iP ξ +
2

m + 2
iξ(jξiξ)

−1iξPξ.

This implies that

Pξi = (E − P ξ)i = i − P ξi = i − iP ξ −
2

m + 2
iξ(jξiξ)

−1iξPξ,

i.e.,

Pξi = iPξ −
2

m + 2
iξ(jξiξ)

−1iξPξ. (6.4.10)

We put k = 2 in equality (6.4.1), multiply it by Pξ from the right and use the relation
jξPξ = 0; as a result we have

iξPξ =
m + 2

2|ξ|2 jξi
2
ξPξ.

Multiplying the last equality by (jξiξ)
−1 from the left, we obtain

(jξiξ)
−1iξPξ =

m + 2

2|ξ|2 iξPξ. (6.4.11)

(6.4.10) and (6.4.11) imply (6.4.5). The lemma is proved.

Lemma 6.4.2 For ξ 6= 0, the operator jPξi maps isomorphically the space Ker jξ onto
itself.

P r o o f. We consider the operator jPξi : SmT ′
xM → SmT ′

xM. With the help of
the equality PξjPξ = jPξ following from (6.4.6), we obtain jPξi = PξjPξi. Consequently,
Im(jPξi) ⊂ Ker jξ. Let us prove that the restriction

jPξi : Ker jξ → Ker jξ (6.4.12)

is an isomorphism. Let a tensor u of degree m be in the kernel of operator (6.4.12), then

jξu = 0, jPξiu = 0. (6.4.13)

Taking the scalar product of the second of these equalities with u, we obtain

0 = 〈jPξiu, u〉 = 〈Pξiu, iu〉 = 〈Pξiu, Pξiu〉.

Thus, system (6.4.13) is equivalent to the next one:

jξu = 0, Pξiu = 0. (6.4.14)

We transform the second of equations (6.4.14) with the help of (6.4.5):

0 = Pξiu = iPξu − 1

|ξ|2 i2ξPξu.



6.4. DECOMPOSITION OF THE OPERATOR Qξ 187

By the first of the equations (6.4.14), Pξu = u, and therefore the previous equality
gives

iu =
1

|ξ|2 i2ξu.

We take the scalar product of the last relation with iu and transform the so-obtained
formula to the form

〈jiu, u〉 =
1

|ξ|2 〈iξu, jξiu〉. (6.4.15)

By (6.4.2), (6.4.4) and the first of the equations (6.4.14), we obtain

jiu =
2(n + 2m)

(m + 1)(m + 2)
u +

m(m − 1)

(m + 1)(m + 2)
iju,

jξiu =
2

m + 2
iξu.

Inserting these expressions into (6.4.15), we arrive at the equality

2(n + 2m)

m + 1
|u|2 +

m(m − 1)

m + 1
|ju|2 =

2

|ξ|2 |iξu|
2. (6.4.16)

Finally, using (6.4.1) and the first of equations (6.4.14), we obtain

|iξu|2 = 〈jξiξu, u〉 =
|ξ|2

m + 1
|u|2.

Inserting the last value into the right-hand side of (6.4.16), we conclude that

2(n + 2m)|u|2 + m(m − 1)|ju|2 = 2|u|2.

This equality can hold only for u = 0. The lemma is proved.
P r o o f of Lemma 6.2.1. First we prove uniqueness of representation (6.2.1), (6.2.2).

Successively applying the operators j and jξ to the first of these equalities, we obtain

jiξy + jia = jf, (6.4.17)

jξiξy + jξia = jξf. (6.4.18)

From (6.4.18), we infer
y = −(jξiξ)

−1jξia + (jξiξ)
−1jξf (6.4.19)

and substitute the obtained expression into (6.4.17)

jia − jiξ(jξiξ)
−1jξia = jf − jiξ(jξiξ)

−1jξf.

Rewriting the last equation as

j(E − iξ(jξiξ)
−1jξ)ia = j(E − iξ(jξiξ)

−1jξ)f

and using (6.4.8), we obtain
jPξia = jPξf. (6.4.20)
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The right-hand side of (6.4.20) belongs to Ker jξ, since jξjPξ = jjξPξ = 0. Therefore, by
Lemma 6.4.2, equation (6.4.20) has a unique solution satisfying (6.2.2). Together with
(6.4.19), this proves uniqueness.

We now prove existence. Let f ∈ SmT ′
xM. By Lemma 6.4.2, equation (6.4.20) has a

unique solution a satisfying (6.2.2). Defining y by formula (6.4.19) and f̃ , by the equality

f = f̃ + iξy + ia, (6.4.21)

one can easily see that jf̃ = jξf̃ = 0 and the summands on the right-hand side of (6.4.21)
are orthogonal to one other. Consequently, f̃ = Qξf.

Finally, we prove validity of (6.2.4). Inserting the value (6.2.3) of y into (6.4.18), we
obtain

jξiξỹ + jξi
2
ξh + jξia = jξf. (6.4.22)

We transform each of the summands on the left-hand side of this equality with the help
of (6.4.1) and (6.4.4), taking (6.2.2) and the second of equations (6.2.3) into account:

jξiξỹ =
|ξ|2
m

ỹ, jξi
2
ξh =

2|ξ|2
m

iξh +
m − 2

m
i2ξjξh, jξia =

2

m
iξa.

Inserting these values into (6.4.22), we obtain

|ξ|2
m

ỹ + iξ

(
2|ξ|2
m

h +
m − 2

m
iξjξh +

2

m
a

)
= jξf.

Applying the operator Pξ to the last equality and taking the relation Pξiξ = 0 into account,
we arrive at (6.2.4). The lemma is proved.

In Section 6.5 we will need the decomposition, of the operator Qξ, which is given by
the next

Lemma 6.4.3 For 0 6= ξ ∈ TxM and a tensor f ∈ SmT ′
xM satisfying the condition

jf = 0, the representation

Qξf =
[m/2]∑

k=0

cmk
1

|ξ|2k
Pξi

kj2k
ξ f (6.4.23)

is valid where

cmk =
m!

2kk!(m − 2k)!

n + 2m − 3

(n + 2m − 3)(n + 2m − 5)...(n + 2m − 2k − 3)
. (6.4.24)

First we will prove an auxiliary relation.

Lemma 6.4.4 For k ≥ 0, the equality

Pξj
2
ξ i

k =
2k

(m + 2k − 1)(m + 2k)
|ξ|2Pξi

k−1 +
m(m − 1)

(m + 2k − 1)(m + 2k)
Pξi

kj2
ξ . (6.4.25)

is valid on SmT ′
xM .
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P r o o f proceeds by induction on k. For k = 0, validity of (6.4.25) is trivial, since
the factor at the first summand on the right-hand side is equal to zero. Assume (6.4.25)
to hold for k = l. Increasing the value of m on this equality by 2 and multiplying it by i
from the right, we arrive at the formula

Pξj
2
ξ i

l+1 =
2l

(m + 2l + 1)(m + 2l + 2)
|ξ|2Pξi

l +
(m + 1)(m + 2)

(m + 2l + 1)(m + 2l + 2)
Pξi

lj2
ξ i. (6.4.26)

valid on SmT ′
xM .

Using (6.4.2) and (6.4.4), we obtain

j2
ξ i = jξ(jξi) = jξ

(
2

m + 2
iξ +

m

m + 2
ijξ

)
=

2

m + 2
jξiξ +

m

m + 2
(jξi)jξ =

=
2

m + 2

(
1

m + 1
|ξ|2E +

m

m + 1
iξjξ

)
+

m

m + 2

(
2

m + 1
iξ +

m − 1

m + 1
ijξ

)
jξ =

=
2

(m + 1)(m + 2)
|ξ|2E +

m(m − 1)

(m + 1)(m + 2)
ij2

ξ +
4m

(m + 1)(m + 2)
iξjξ.

Multiplying the end terms of this chain of equalities by Pξi
l from the left, we obtain

Pξi
lj2

ξ i =
2

(m + 1)(m + 2)
|ξ|2Pξi

l +
m(m − 1)

(m + 1)(m + 2)
Pξi

l+1j2
ξ +

4m

(m + 1)(m + 2)
Pξi

liξjξ.

(6.4.27)
The last summand on the right-hand side of this formula is equal to zero, since i commutes
with iξ and Pξiξ = 0. Deleting this summand and replacing the second term on the right-
hand side of (6.4.26) with its value (6.4.27), we arrive at (6.4.25) for k = l+1. The lemma
is proved.

P r o o f of Lemma 6.4.3. We denote the right-hand side of formula (6.4.23) by f̃ . To
prove the equality Qξf = f̃ we have to show that

jξf̃ = 0, jf̃ = 0 (6.4.28)

and

f − f̃ ∈ Im iξ + Im i. (6.4.29)

First we prove (6.4.29). By (6.4.24), cm0 = 1 and sum (6.4.23) can be written as:

f̃ = Pξf +
[m/2]∑

k=1

cmk
1

|ξ|2k
Pξi

kj2k
ξ f. (6.4.30)

Since f −Pξf ∈ Im iξ, to prove (6.4.29) it suffices to show that each summand of the sum
on (6.4.30) belongs to Im iξ + Im i. But this fact follows evidently from (6.4.5).

Validity of the first of the relations (6.4.28) follows directly from (6.4.30), since jξPξ =
0. To verify the second, we apply the operator j to equality (6.4.30):

jf̃ =
[m/2]∑

k=0

cmk
1

|ξ|2k
jPξi

kj2k
ξ f. (6.4.31)
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Using (6.4.6), we obtain

jPξi
kj2k

ξ f = Pξji
kj2k

ξ f − 1

|ξ|2Pξj
2
ξ i

kj2k
ξ f.

Transposing the operators j and ik in the first summand with the help of (6.4.2) and then
using permutability of j and jξ and the condition jf = 0, we obtain

jPξi
kj2k

ξ f =
2k(n + 2m − 2k − 2)

m(m − 1)
Pξi

k−1j2k
ξ f − 1

|ξ|2Pξj
2
ξ i

kj2k
ξ f.

Transforming the second summand with the help of Lemma 6.4.4, we arrive at the relation

jPξi
kj2k

ξ f =
2k(n + 2m − 2k − 3)

m(m − 1)
Pξi

k−1j2k
ξ f − (m − 2k − 1)(m − 2k)

m(m − 1)

1

|ξ|2Pξi
kj2k+2

ξ f.

Inserting the last value into (6.4.31), we obtain

jf̃ =
1

m(m − 1)

[m/2]∑

k=1

[2k(n + 2m − 2k − 3)cmk −

− (m − 2k + 1)(m − 2k + 2)cm,k−1]
1

|ξ|2k
Pξi

k−1j2k
ξ f.

Thus, to verify the second of equalities (6.4.28) it suffices to show that the numbers in
brackets are equal to zero. This fact follows directly from (6.4.24). The lemma is proved.

6.5 Proof of Lemma 6.3.1

By Lemma 5.7.1, for a tensor f ∈ SmT ′
xM satisfying (6.2.9), the equality

1

ω

∫

ΩxM

iξPξjξf dωx(ξ) = µ(m,n)f (6.5.1)

holds where

µ(m, n) = −(m − 1)! Γ
(

n

2

) m∑

k=0

(−1)k k

2k(m − k)!Γ
(
k + n

2

) . (6.5.2)

Consequently,

1

ω

∫

ΩxM

|Pξjξf |2dωx(ξ) =

〈
1

ω

∫

ΩxM

iξPξjξf dωx(ξ), f

〉
= µ(m,n)|f |2. (6.5.3)

Given 0 ≤ k ≤ [m/2], we consider the operator Ak : SmT ′
xM → SmT ′

xM defined by
the formula

Ak =
1

ω

∫

ΩxM

Pξi
kj2k

ξ dωx(ξ). (6.5.4)
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Let us show that it can be expanded as follows

Ak =
[m/2]∑

p=0

ak(p,m, n) ipjp (6.5.5)

and find the first coefficient of the expansion.
By the same arguments as in Section 5.7, we can assume that SmT ′

xM = SmRn and
ΩxM coincides with the unit sphere Ω of the space Rn. To prove (6.5.5) it suffices to show
that

〈Akη
m, ζm〉 =

[m/2]∑

p=0

ak(p,m, n)〈η, ζ〉m−2p (6.5.6)

for η, ζ ∈ Ω.
We write

〈Pξi
kj2k

ξ ηm, ζm〉 = 〈j2k
ξ ηm, jk(Pξζ)m〉 = 〈ξ, η〉2k|Pξζ|2k〈η, Pξζ〉m−2k =

= 〈ξ, η〉2k(1 − 〈ξ, ζ〉2)k(〈η, ζ〉 − 〈ξ, η〉〈ξ, ζ〉)m−2k.

Inserting this expression into (6.5.4) and introducing the notation x = 〈η, ζ〉, we obtain

〈Akη
m, ζm〉 =

1

ω

∫

Ω

〈η, ξ〉2k(1 − 〈ζ, ξ〉2)k(x − 〈η, ξ〉〈ζ, ξ〉)m−2k dω(ξ).

We expand the integrand in powers of x :

〈Akη
m, ζm〉 =

m−2k∑

l=0

(−1)l

(
m − 2k

l

)
xm−2k−l 1

ω

∫

Ω

〈η, ξ〉2k+l〈ζ, ξ〉l(1−〈ζ, ξ〉2)k dω(ξ). (6.5.7)

The integral on (6.5.7) is found by arguments similar to the corresponding paragraph of
Section 5.7:

1

ω

∫

Ω

〈η, ξ〉2k+l〈ζ, ξ〉l(1 − 〈ζ, ξ〉2)kdω(ξ) =

=
Γ

(
n
2

)

π

k∑

p=0

(−1)p

(
k
p

) p+[l/2]∑

r=0

(
2p + l

2r

)
Γ(k + l + p − r + 1

2
)Γ(r + 1

2
)

Γ(k + l + p + n
2
)

x2p+l−r(1 − x2)r.

Inserting the last expression into (6.5.7) and expanding the right-hand side of the so-
obtained equality in powers of x, we obtain

〈Akη
m, ζm〉 =

Γ
(

n
2

)

π

m−2k∑

l=0

k∑

p=0

p+[l/2]∑

r=0

r∑

s=0

(−1)l+p+s

(
m − 2k

l

) (
k
p

) (
2p + l

2r

) (
r
s

)
×

×
Γ

(
k + l + p − r + 1

2

)
Γ

(
r + 1

2

)

Γ
(
k + l + p + n

2

) xm−2k+2p−2r+2s. (6.5.8)

Equality (6.5.8) implies, first, possibility of the representation

〈Akη
m, ζm〉 =

[m/2]∑

p=0

ak(p,m, n)xm−2p, (6.5.9)
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i.e., validity of (6.5.5)–(6.5.6) and, second, the fact that the coefficient of xm on (6.5.9)
depends only on the summands of (6.5.8) that relate to p = k, s = r. In other words,

ak(0,m, n) =

=
Γ

(
n
2

)

π

m−2k∑

l=0

k+[l/2]∑

r=0

(−1)k+l+r

(
m − 2k

l

) (
2k + l

2r

)
Γ

(
2k + l − r + 1

2

)
Γ

(
r + 1

2

)

Γ
(
2k + l + n

2

) . (6.5.10)

Transforming (6.5.10) by changing the summation index of the first sum with respect to
the formula 2k + l = p, we obtain

ak(0,m, n) =

= (−1)k
Γ

(
n
2

)

π

m∑

p=2k

(−1)p

Γ
(
p + n

2

)
(
m − 2k
m − p

) [p/2]∑

r=0

(−1)r

(
p
2r

)
Γ

(
p − r +

1

2

)
Γ

(
r +

1

2

)
.

(6.5.11)
Note that the inner sum coincides with the quantity γ(0, p) defined by formula (5.7.15).
Inserting the value (5.7.19) of this quantity into (6.5.11), we arrive at the equality

ak(0,m, n) = (−1)kΓ
(

n

2

)
(m − 2k)!

m∑

p=2k

(−1)p p!

2p(m − p)!(p − 2k)!Γ
(
p + n

2

) . (6.5.12)

Thus we have shown that, for a tensor f ∈ SmT ′
xM satisfying (6.2.9), the equality

Akf =
1

ω

∫

ΩxM

Pξi
kj2k

ξ f dωx(ξ) = ak(0,m, n)f (0 ≤ k ≤ [m/2]) (6.5.13)

holds with the coefficients ak(0,m, n) given by formula (6.5.12). From this with the help
of Lemma 6.4.3, we obtain

1

ω

∫

ΩxM

Qξf dωx(ξ) = λ(m,n)f, (6.5.14)

where

λ(m, n) = m!Γ
(

n

2

) [m/2]∑

p=0

(−1)p

2pp!

n + 2m − 3

(n + 2m − 3)(n + 2m − 5)...(n + 2m − 2p − 3)
×

×
m∑

k=2p

(−1)k k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) . (6.5.15)

Relations (6.5.3) and (6.5.14) imply equality (6.3.1) with

χ(m,n) = (n − 1)λ(m,n) − m2µ(m,n). (6.5.16)

We have now to demonstrate that the last claim of Lemma 6.3.1 is valid for the quantity
χ(m,n) given by formulas (6.5.2), (6.5.15) and (6.5.16).
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For m = 2, by the direct calculation relevant to formulas (6.5.2) and (6.5.15), we
obtain the equality χ(2, n) = n − 3, which proves the claim of Lemma 6.3.1 in the case
m = 2. Therefore, we further assume that

n > m ≥ 3. (6.5.17)

The quantity λ(m,n) is nonnegative, so the inequality

(n − 1)λ(m,n) − m2µ(m, n) ≥ m[λ(m,n) − mµ(m,n)].

holds under assumption (6.5.17). By (6.5.2) and (6.5.15),

1

m!Γ
(

n
2

) [λ(m,n) − mµ(m,n)] =

=
[m/2]∑

p=0

(−1)p 1

2pp!

n + 2m − 3

(n + 2m − 3)(n + 2m − 5)...(n + 2m − 2p − 3)
×

×
m∑

k=2p

(−1)k k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) +
m∑

k=0

(−1)k k

2k(m − k)!Γ
(
k + n

2

) .

Extracting the summands that correspond to p = 0 and p = 1 from the first sum on the
right-hand side and including them into the second sum, we rewrite the latter equality in
the form

1

m!Γ
(

n
2

) [λ(m, n) − mµ(m,n)] = ν(m,n) + κ(m,n), (6.5.18)

where

ν(m,n) =
m∑

k=0

(−1)k k + 1

2k(m − k)!Γ
(
k + n

2

) − 1

2

1

n + 2m − 5

m∑

k=2

(−1)k k(k − 1)

2k(m − k)!Γ
(
k + n

2

) ,

(6.5.19)

κ(m,n) =
[m/2]∑

p=2

(−1)p

2pp!

n + 2m − 3

(n + 2m − 3)(n + 2m − 5)...(n + 2m − 2p − 3)
×

×
m∑

k=2p

(−1)k k!

2k(m − k)!(k − 2p)!Γ
(
k + n

2

) (6.5.20)

with κ(3, n) = 0. Let us prove that ν(m,n) > 0 under condition (6.5.17) and κ(m,n) > 0
under the condition n > m ≥ 4, thereby we shall complete the proof.

Recall that integral (5.8.6) was introduced in Section 5.8, and equality (5.8.8) was
established for it. Taking α = 1 and p = 0 in (5.8.8), we obtain

m∑

k=0

(−1)k k + 1

2k(m − k)!Γ
(
k + n

2

) =
1

m!Γ
(

n
2
− 2

)I1(0,m, n). (6.5.21)

As is seen from (5.8.6), the integral I1(0,m, n) converges only for n ≥ 5. So we assume
for a while that n ≥ 5. Taking α = 0 and p = 1 in (5.8.8), we obtain

m∑

k=2

(−1)k k(k − 1)

2k(m − k)!Γ
(
k + n

2

) =
1

4(m − 2)!Γ
(

n
2
− 1

)I0(1,m, n). (6.5.22)
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We insert values (6.5.21) and (6.5.22) into (6.5.19):

ν(m,n) =
1

m!Γ
(

n
2
− 2

)
[
I1(0,m, n) − m(m − 1)

4(n − 4)(n + 2m − 5)
I0(1,m, n)

]
. (6.5.23)

From this, using positiveness of I0(1,m, n) and the inequality

m(m − 1)

4(n − 4)(n + 2m − 5)
≤ 1

2
,

valid under the assumptions n ≥ 5 and (6.5.17), we conclude

ν(m,n) ≥ 1

m!Γ
(

n
2
− 2

)
[
I1(0,m, n) − 1

2
I0(1, m, n)

]
.

Inserting the expressions of I1(0,m, n) and I0(1,m, n) given by formula (5.8.6) into the
last equality, we obtain

ν(m,n) ≥ 1

m!Γ
(

n
2
− 2

)
1∫

0

x(1 − x)n/2−3
(
1 − x

2

)m−2
[(

1 − x

2

)2

− 1

2
x(1 − x)

]
dx.

The integrand is positive for 0 < x < 1. Thus positiveness of ν(m,n) is proved in the
case n ≥ 5. For n = 4, according to (6.5.17), we should only examine the case m = 3.
Positiveness of ν(3, 4) is checked by a direct calculation by formula (6.5.19).

For m = 4 or m = 5, the outer sum in (6.5.20) consists of a single positive term.
Therefore, we further assume that

n > m ≥ 6. (6.5.24)

Collecting the terms of the outer sum in (6.5.20) in pairs corresponding to even values,
p = 2q, and odd values, p = 2q + 1, we rewrite (6.5.20) as

κ(m,n) ≥
∑

2≤2q<[m/2]

1

22q(2q)!

n + 2m − 3

(n + 2m − 3)(n + 2m − 5)...(n + 2m − 4q − 3)
κq(m,n),

where

κq(m,n) =
m∑

k=4q

(−1)kk!

2k(m − k)!(k − 4q)!Γ
(
k + n

2

)−

− 1

2(2q + 1)(n + 2m − 4q − 5)

m∑

k=4q+2

(−1)kk!

2k(m − k)!(k − 4q − 2)!Γ
(
k + n

2

) . (6.5.25)

We shall show that quantities (6.5.25) are positive. Putting in (5.8.8) first α = 0, p =
2q, and then α = 0, p = 2q + 1, we have

m∑

k=4q

(−1)k k!

2k(m − k)!(k − 4q)!Γ
(
k + n

2

) =
1

24qΓ
(

n
2
− 1

)
(m − 4q)!

I0(2q, m, n),
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m∑

k=4q+2

(−1)k k!

2k(m − k)!(k − 4q − 2)!Γ
(
k + n

2

) =

=
1

24q+2Γ
(

n
2
− 1

)
(m − 4q − 2)!

I0(2q + 1,m, n).

Inserting these values into (6.5.25), we obtain

κq(m,n) =

=
1

24qΓ
(

n
2
− 1

)
(m − 4q)!

[
I0(2q, m, n) − (m − 4q − 1)(m − 4q)

8(2q + 1)(n + 2m − 4q − 5)
I0(2q + 1,m, n)

]
.

(6.5.26)
Let us integrate

I0(2q, m, n) =

1∫

0

x4q(1 − x)n/2−2
(
1 − x

2

)m−4q

dx

by parts:

I0(2q,m, n) =
1

4q + 1

1∫

0

dx4q+1

dx
(1 − x)n/2−2

(
1 − x

2

)m−4q

dx =

=
n − 4

2(4q + 1)

1∫

0

x4q+1(1 − x)n/2−3
(
1 − x

2

)m−4q

dx +

+
m − 4q

2(4q + 1)

1∫

0

x4q+1(1 − x)n/2−2
(
1 − x

2

)m−4q−1

dx.

Inserting this expression for I0(2q, m, n) and value (5.8.6) for I0(2q+1,m, n) into (6.5.26),
we obtain

κq(m,n) =
1

24q+1Γ
(

n
2
− 1

)
(m − 4q)!

1∫

0

x4q+1(1 − x)n/2−3
(
1 − x

2

)m−4q−2

f(x) dx,

where

f(x) =
n − 4

4q + 1

(
1 − x

2

)2

+
m − 4q

4q + 1
(1 − x)

(
1 − x

2

)
−

− (m − 4q − 1)(m − 4q)

4(2q + 1)(n + 2m − 4q − 5)
x(1 − x).

Thus, for completing the proof it suffices to show the function f to be positive on the
interval (0, 1) under conditions (6.5.24) and

4 ≤ 4q < m. (6.5.27)

First, since 4q + 1 < 2(2q + 1),

f(x) >
1

2(2q + 1)

[
(n − 4)

(
1 − x

2

)2

+ (m − 4q)(1 − x)
(
1 − x

2

)
−
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− (m − 4q − 1)(m − 4q)

2(n + 2m − 4q − 5)
x(1 − x)

]
.

Then, (6.5.24) and (6.5.27) imply the inequality n − 4 > m − 4q from which we obtain

f(x) >
m − 4q

2(2q + 1)

[(
1 − x

2

)2

+ (1 − x)
(
1 − x

2

)
− m − 4q − 1

2(n + 2m − 4q − 5)
x(1 − x)

]
.

Finally, (6.5.24) and (6.5.27) lead to

m − 4q − 1

2(n + 2m − 4q − 5)
<

1

2
,

and, hence,

f(x) >
m − 4q

2(2q + 1)

[(
1 − x

2

)2

+ (1 − x)
(
1 − x

2

)
− 1

2
x(1 − x)

]
> 0.

Lemma 6.3.1 is proved.

6.6 Inversion of the truncated transverse ray

transform on Euclidean space

As have been mentioned at the end of Section 5.1, inversion of the transverse ray transform
on Euclidean space reduces to the problem of inverting the ray transform of a scalar
function. The situation is different for the truncated transverse ray transform. In the
current section we will obtain an inversion formula for the operator K in the case m =
2, n = 3, which is of profound interest for polarization tomography. In the general case this
formula is not found yet. Our arguments will appreciably follow the scheme of Sections
2.11–2.13.

We will use only Cartesian coordinate systems on R3. We use lower indices for denoting
tensor components; on repeating indices the summation from 1 to 3 is understood.

For a tensor field f ∈ S(S2) (see the definition in Section 2.1), the truncated transverse
ray transform is defined by the formula

Kf(x, ξ) =

∞∫

−∞

Qξf(x + tξ) dt (x ∈ R3, ξ ∈ R3
0). (6.6.1)

According to one remark of Section 6.1, we consider the problem of inverting operator
(6.6.1) on the subspace of S(S2) defined by the condition

jf = fkk = 0. (6.6.2)

As is seen from (6.4.23), for such tensors, the projection Qξ is given in coordinate form
as follows

(Qξf)ij = fij −
1

|ξ|2 (fipξpξj + fjpξpξi) +
1

2|ξ|4fpqξpξqξiξj +
1

2|ξ|2fpqξpξqδij. (6.6.3)
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We define the operator µ : C∞(S2;R3×R3
0) → C∞(S2;R3) by the equality (an analog

of formula (2.11.1))

µϕ(x) =
1

4π

∫

Ω

ϕ(x, ξ) dω(ξ), (6.6.4)

where Ω is the unit sphere of the space R3.
Let us calculate the composition µK : S(S2) → C∞(S2). Starting with (6.6.1) and

(6.6.3), we repeat the correspondent arguments of Section 2.11. In such a way, for a field
f satisfying (6.6.2), we obtain

µKf = B1f + B2f + B3f + B4f, (6.6.5)

where

B1f =
1

2π
f ∗ |x|−2, (6.6.6)

(B2f)ij = − 1

2π

(
fik ∗

xjxk

|x|4 + fjk ∗
xixk

|x|4
)

, (6.6.7)

(B3f)ij =
1

4π
fkl ∗

xixjxkxl

|x|6 , (6.6.8)

(B4f)ij =
1

4π
fkl ∗

xkxl

|x|4 δij. (6.6.9)

Denoting h = 2
π
µKf and applying the Fourier transform to relations (6.6.5)–(6.6.9), we

arrive at the algebraic system of equations:

f̂ij −
1

2

(
f̂ikεjk + f̂jkεik

)
+

3

16
f̂klε

2
ijkl +

1

4
f̂klεklδij = |y|ĥij, (6.6.10)

where the notations ei = yi/|y| and εij = δij − eiej are used.
System (6.6.10) is uniquely solvable, as the next claim shows.

Lemma 6.6.1 If the right-hand side meets the condition jĥ = 0, then system (6.6.10)
has a unique solution satisfying the condition jf̂ = 0. The solution is expressed through
the right-hand side by the formula

f̂ij = 2|y|
[
4ĥij − 3

(
ĥikekej + ĥjkekei

)
+ ĥklekeleiej +

5

3
ĥklekelδij

]
. (6.6.11)

P r o o f. One can directly verify that the operators A : f̂ 7→ ĥ and B : ĥ 7→ f̂ defined
by formulas (6.6.10) and (6.6.11) map the space Ker j into itself. So, it suffices to establish
validity on Ker j of the identity obtainable by inserting value (6.6.11) for f into the left-
hand side of equation (6.6.10). This identity is also verified by a direct calculation. The
lemma is proved.

Writing (6.6.11) in invariant form

f̂(y) = 2|y|
(

4 − 6

|y|2 iyjy +
1

|y|4 i2yj
2
y +

5

3

1

|y|2 ij2
y

)
ĥ(y),

applying the inverse Fourier transform to the last equality and using arguments sited
before the formulation of Theorem 2.12.2, we arrive at the next
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Theorem 6.6.2 A tensor field f ∈ S(S2) on R3 satisfying condition (6.6.2) is recovered
from its truncated transverse ray transform by the formula

f =
4

π
(−∆)1/2

(
4 − 6∆−1dδ + ∆−2d2δ2 +

5

3
i∆−1δ2

)
µKf,

where the operator µ is defined by equality (6.6.4), ∆ is the Laplacian, d is the operator of
inner differentiation, δ is the divergence and i is the operator of symmetric multiplication
by the Kronecker tensor.



Chapter 7

The mixed ray transform

Here we will investigate the equations of dynamic elasticity by the same scheme as that
which was applied to the Maxwell system in Chapter 5.

In Section 7.1 the traditional method of geometrical optics is applied to quasi-isotropic
elastic media. We restrict ourselves to considering the zero approximation. We show that,
relative to the classical case of isotropic media, in our case formulas for the zero approxi-
mation have the next features. First, the formula for the amplitude of a compression wave
contains some factor that describes the accumulation, due to anisotropy, of the wave phase
along a ray. Second, the Rytov law for shear waves contains a term that depends linearly
on the anisotropic part of the elasticity tensor. Then we discuss the inverse problems
of determining the anisotropic part of the elasticity tensor. For compression waves, the
inverse problem is equivalent to the problem of inverting the (longitudinal) ray transform
I, of a tensor field of degree 4, which was investigated in Chapter 4. For shear waves, the
inverse problem, after linearization, leads to a new operator L of integral geometry which
is called the mixed ray transform.

In Section 7.2 the definition of the mixed ray transform is generalized to tensor fields
of degree m + l symmetric in the first m and last l indices. This generalization is given
to emphasize that the already-investigated operators I (the ray transform) and J (the
transverse ray transform) are special cases of the operator L.

The problem of inverting the operator L is considered in Section 7.3. Our exposition
of arguments similar to those used in the previous chapters is kept at a minimum. As in
the cases of the operators J and K, our problem reduces in the long run to some algebraic
question generalizing Problem 5.9.1. The author could solve the latter only for m = l = 2,
so the final result is obtained only in this case. The algebraic problem is considered in
Section 7.4.

The material of the chapter is first published in this book.

7.1 Elastic waves in quasi-isotropic media

7.1.1 The equations of dynamic elasticity

Let (x1, x2, x3) be a curvilinear coordinate system in R3 in which the Euclidean metric
is given by quadratic form (5.1.6). Elastic oscillations are described by the displacement
vector u(x, t) = (u1, u2, u3). Within the frames of linear elasticity theory the strain tensor
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is introduced by the equality

εjk =
1

2
(uj ; k + uk ; j) , (7.1.1)

while determining the stress tensor by the formula

σjk = ajklmεlm, (7.1.2)

where a = (ajklm) is called the elasticity tensor . It is assumed to possess the symmetries

ajklm = akjlm = ajkml = almjk. (7.1.3)

System (7.1.1), (7.1.2) is closed with the equilibrium equations

σjk ;
k − ρ

∂2uj

∂t2
= 0, (7.1.4)

where ρ is the density of a medium. The covariant derivatives are taken in the Euclidean
metric (5.1.6). We restrict ourselves to considering waves harmonic in the time: u(x, t) =
u(x)e−iωt. Equations (7.1.1) and (7.1.2) do not change, and (7.1.4) is replaced with

σjk ;
k + ω2ρuj = 0. (7.1.5)

We assume the elasticity tensor to be representable as

ajklm = λgjkglm + µ (δjlδkm + δjmδkl) +
1

ω
cjklm (7.1.6)

where λ and µ are positive functions called the Lame parameters , and c is referred to as
the anisotropic part of the elasticity tensor. A medium satisfying (7.1.6) is called quasi-
isotropic (the term “slightly anisotropic medium” is also used). In particular, in the case
c ≡ 0 we have an isotropic medium. Equation (7.1.2) is rewritten as follows:

σjk = λglmεlmgjk + 2µεjk +
1

ω
cjklmεlm. (7.1.7)

We assume λ, µ, ρ, cjklm to be smooth real functions of a point x = (x1, x2, x3).

7.1.2 The eikonal equation

The method of geometrical optics consists in representating a solution to system (7.1.1),
(7.1.5), (7.1.7) by the asymptotic series

uj = eiωτ
∞∑

m=0

m
uj

(iω)m
, εjk = eiωτ

∞∑

m=−1

m
εjk

(iω)m
, σjk = eiωτ

∞∑

m=−1

m
σjk

(iω)m
,

where τ = τ(x) is a real function. We insert the series into the equations under consid-
eration, implement differentiations and equate the coefficients of the same powers of the
frequency ω on the left- and right-hand sides of the so-obtained equalities. In such a way
we arrive at the infinite system of equations

m
εjk =

1

2

(
m
uj ; k +

m
uk ; j +

m+1
u jτ ; k +

m+1
u kτ ; j

)
(m = −1, 0, ...), (7.1.8)
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m
σjk = λgpq m

εpqgjk + 2µ
m
εjk + icjkpq

m−1
ε pq (m = −1, 0, ...). (7.1.9)

m
σjk ;

k +
m+1
σjkτ ;

k − ρ
m+2
u j = 0 (m = −2,−1, ...), (7.1.10)

where it is assumed that
−1
u =

−2
ε =

−2
σ = 0.

Consider the initial terms of this chain. Putting m = −1 in (7.1.8), (7.1.9) and m = −2
in (7.1.10), we have

−1
εjk =

1

2

(
0
ujτ ; k +

0
ukτ ; j

)
, (7.1.11)

−1
σjk = λgpq −1

εpqgjk + 2µ
−1
εjk, (7.1.12)

−1
σjkτ ;

k − ρ
0
uj = 0. (7.1.13)

We see that c does not participate in (7.1.11)–(7.1.13). So the conclusions to be derived
from these equations are identical for isotropic and quasi-isotropic media.

From (7.1.11) and (7.1.12), we obtain

−1
σjk = λ

0
upτ ;

pgjk + µ(
0
ujτ ; k +

0
ukτ ; j). (7.1.14)

Inserting the last expression into (7.1.13), we arrive at the relation

(λ + µ)
0
upτ ;

pτ ; j + µτ ; pτ ;
p 0
uj − ρ

0
uj = 0

which can be written in invariant form

(λ + µ)〈0
u,∇τ〉∇τ + (µ|∇τ |2 − ρ)

0
u = 0. (7.1.15)

If the equality
|∇τ |2 = ρ/µ (7.1.16)

holds, then (7.1.15) implies the relation

〈0
u,∇τ〉 = 0. (7.1.17)

If (7.1.16) does not hold, by taking the scalar product of (7.1.15) and ∇τ, we obtain
|∇τ |2 = ρ/(λ + 2µ). Inserting the last expression into (7.1.15), we have

0
u =

λ + 2µ

ρ
〈0
u,∇τ〉∇τ = Ap

∇τ

|∇τ | . (7.1.18)

Thus, we have arrived at the next conclusion: the function τ satisfies the eikonal
equation

|∇τ |2 = n2 (7.1.19)

whose right-hand side assumes one of the two values:

n2 = n2
p = ρ/(λ + 2µ) (7.1.20)

or
n2 = n2

s = ρ/µ. (7.1.21)

The reciprocals vp = 1/np and vs = 1/ns are called the velocities of compression and shear
waves respectively. For n = np a wave has a longitudinal nature within the scope of the
zero approximation: the displacement vector is a multiple of ∇τ. For n = ns a wave is of
a transversal nature within the scope of the zero approximation: the displacement vector
is orthogonal to ∇τ.

The characteristics (rays) of the eikonal equation are geodesics of the Riemannian
metric (5.1.17).
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7.1.3 The amplitude of a compression wave

The amplitude Ap of a compression wave is defined by (7.1.18). A formula for Ap is
obtained from equilibrium equation (7.1.10) for m = −1. To simplify calculations we use
ray coordinates.

We fix a solution τ to the eikonal equation (7.1.19) for n = np. In some neighbourhood
of any point one can introduce ray coordinates x1, x2, x3 = τ as was explained in Section
5.1.3. The Euclidean metric (5.1.6) has the form (5.1.19) in these coordinates. The

gradient of τ is given by equalities (5.1.20). By (7.1.18), the vector field
0
u has the

coordinates
0
uα =

0
uα = 0,

0
u3 = n−1Ap,

0
u3 = nAp. (7.1.22)

In the current section Greek indices assume the values 1,2; on repeating Greek indices,
summation from 1 to 2 is understood. By (5.1.20) and (7.1.22), formulas (7.1.14) take
the form

−1
σαβ = λngαβAp,

−1
σα3 = 0,

−1
σ33 = (λ + 2µ)n−1Ap. (7.1.23)

In the derivation of a formula for Ap we will need only the following equations, of system
(7.1.8)–(7.1.10), which are written down below, while taking (5.1.19) and (5.1.20) into
account:

0
εαβ =

1

2

(
0
uα ; β +

0
uβ ; α

)
,

0
ε33 =

0
u3 ; 3 +

1
u3, (7.1.24)

0
σ33 = λn−2gαβ 0

εαβ + (λ + 2µ)
0
ε33 + ic33pq

−1
ε pq, (7.1.25)

−1
σ3k ;

k + n2 0
σ33 − ρ

1
u3 = 0. (7.1.26)

Using (5.1.21) and (7.1.22)–(7.1.23), we obtain

0
uα ; β =

1

2
n

∂gαβ

∂τ
Ap,

0
u3 ; 3 = n−1∂Ap

∂τ
, (7.1.27)

−1
σ3α ; β = µn

∂gαβ

∂τ
Ap,

−1
σ33 ; 3 = (λ + 2µ)n−1∂Ap

∂τ
+

[
n−1∂(λ + 2µ)

∂τ
+ (λ + 2µ)n−2∂n

∂τ

]
Ap.

The last two equalities imply

−1
σ3k ;

k = (λ + 2µ)n
∂Ap

∂τ
+

[
µngαβ ∂gαβ

∂τ
+ n

∂(λ + 2µ)

∂τ
+ (λ + 2µ)

∂n

∂τ

]
Ap. (7.1.28)

From (7.1.24) and (7.1.27), we obtain

0
εαβ =

1

2
n

∂gαβ

∂τ
Ap,

0
ε33 = n−1∂Ap

∂τ
+

1
u3. (7.1.29)

With the help of the last formulas, (7.1.25) implies

0
σ33 = (λ + 2µ)n−1∂Ap

∂τ
+

1

2
λn−1gαβ ∂gαβ

∂τ
Ap + ic33pq

−1
ε pq + (λ + 2µ)

1
u3.
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Inserting the found value for
0
σ33 and value (7.1.28) for

−1
σ3k ;

k into (7.1.26), we arrive at
the relation

2(λ + 2µ)n
∂Ap

∂τ
+

[
1

2
(λ + 2µ)ngαβ ∂gαβ

∂τ
+ n

∂(λ + 2µ)

∂τ
+ (λ + 2µ)

∂n

∂τ

]
Ap+

+ in2c33pq
−1
ε pq + [(λ + 2µ)n2 − ρ]

1
u3 = 0.

By (7.1.20), the coefficient of
1
u3 in this formula is equal to zero. Thus, inserting into the

last formula the expressions

−1
ε αβ =

−1
ε α3 = 0,

−1
ε 33 = n3Ap

that follows from (7.1.11), (5.1.20) and (7.1.22), we arrive at the equation for the ampli-
tude Ap:

∂Ap

∂τ
+

(
1

4
gαβ ∂gαβ

∂τ
+

1

2

1

λ + 2µ

∂(λ + 2µ)

∂τ
+

1

2

1

n

∂n

∂τ
+

i

2

n4c3333

λ + 2µ

)
Ap = 0. (7.1.30)

Using notation (5.1.22) and formula (5.1.23), we transform equation (7.1.30) so as to
obtain

∂

∂τ

[
ln

(
ApJ

1/2n1/2(λ + 2µ
)1/2

]
= − i

2

n4

λ + 2µ
c3333,

which, with (7.1.20) and (5.1.22) taken into account, implies

∂

∂τ

[
ln

(
Ap

√
Jρvp

)]
= − i

2ρv6
p

c3333.

Integrating the last equation, we obtain the formula for the amplitude of a compression
wave:

Ap =
C√
Jρvp

exp


−i

τ∫

τ0

1

2ρv6
p

c3333 dτ


 (7.1.31)

where C is a constant depending on a ray; dτ is the length element of the ray in metric
(5.1.17); the integration is executed starting from a fixed point of the ray to the current
point in which the amplitude is calculated.

Formula (7.1.31) is obtained in a ray coordinate system for the ray xα = xα
0 . For an

arbitrary ray γ = (γ1, γ2, γ3), in arbitrary coordinates this formula looks like

Ap =
C√
Jρvp

exp


−i

∫

γ

1

2ρv6
p

cjklmγ̇j γ̇kγ̇lγ̇mdτ


 , (7.1.32)

where γ̇j = dγj/dτ . Validity of (7.1.32) follows from the fact that this formula is invariant
under change of coordinates, and coincides with (7.1.31) in ray coordinates.

For c ≡ 0, (7.1.32) gives the classical formula for the amplitude of a compression wave
in an isotropic elastic medium:

Ap =
C√
Jρvp

(7.1.33)

Comparing (7.1.32) and (7.1.33), we conclude that slight elastic anisotropy leads to the
accumulation, of the phase of a compression wave along a ray, which is expressed by the
integral in (7.1.32). A formula close to (7.1.32) is obtained in [17] in another way.
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7.1.4 The amplitude of a shear wave

We fix a solution τ to the eikonal equation (7.1.19) for n = ns and introduce a ray
coordinate system as above. Formulas (5.1.20) are preserved and (7.1.22), (7.1.23) are
replaced with:

0
u3 =

0
u3 = 0, (7.1.34)

−1
σαβ = 0,

−1
σα3 = µ

0
uα,

−1
σ33 = 0. (7.1.35)

From system (7.1.8)–(7.1.10), in this case we use only the next equations

0
εα3 =

1

2
(

0
uα ; 3 +

0
u3 ; α +

1
uα), (7.1.36)

0
σα3 = 2µ

0
εα3 + icα3pq

−1
ε pq, (7.1.37)

−1
σαk ;

k + n2 0
σα3 − ρ

1
uα = 0. (7.1.38)

Inserting value (7.1.36) for
0
εα3 and the expressions

−1
ε αβ = 0,

−1
ε α3 =

1

2
n2 0

uα,
−1
ε 33 = 0

that follow from (7.1.11), (5.1.20) and (7.1.34) into (7.1.37), we obtain

0
σα3 = µ(

0
uα ; 3 +

0
u3 ; α +

1
uα) + in2cα3β3

0
uβ. (7.1.39)

From (7.1.34) and (7.1.35), we find the covariant derivatives

0
uα ; 3 =

∂
0
uα

∂τ
− 1

2
gβγ ∂gαβ

∂τ

0
uγ,

0
u3 ; α = −1

2
gβγ ∂gαβ

∂τ

0
uγ, (7.1.40)

−1
σαβ ; γ =

1

2
µn2

(
∂gαγ

∂τ

0
uβ +

∂gβγ

∂τ

0
uα

)
,

−1
σα3 ; 3 =

∂(µ
0
uα)

∂τ
− 1

2
µgβγ ∂gαβ

∂τ

0
uγ + µn−1∂n

∂τ

0
uα.

By (5.1.23), the last two equalities imply

−1
σαk ;

k = µn2


∂

0
uα

∂τ
+

(
1

J

∂J

∂τ
+

1

n

∂n

∂τ
+

1

µ

∂µ

∂τ

)
0
uα


 . (7.1.41)

From (7.1.39) and (7.1.40), we obtain the representation

0
σα3 = µ


∂

0
uα

∂τ
− gβγ ∂gαβ

∂τ

0
uγ +

1
uα


 + in2cα3β3

0
uβ

and insert it into (7.1.38)

−1
σαk ;

k + µn2


∂

0
uα

∂τ
− gβγ ∂gαβ

∂τ

0
uγ


 + (µn2 − ρ)

1
uα + in4cα3β3

0
uβ = 0.
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By (7.1.21) the coefficient of
1
uα in the last formula is equal to zero. Inserting expression

(7.1.41) for the first term in the last formula and introducing the notation

a =
1

J

∂J

∂τ
+

1

n

∂n

∂τ
+

1

µ

∂µ

∂τ
. (7.1.42)

we arrive at the next system for the functions
0
uα :

2
∂

0
uα

∂τ
+ a

0
uα − gβγ ∂gαβ

∂τ

0
uγ = −i

n2

µ
cα3β3

0
uβ (α = 1, 2). (7.1.43)

From now on we will omit the index 0 in the notation
0
u, since other amplitudes (

m
u for

m 6= 0) are not used further in the current section.
The amplitude As of a shear wave is defined by the equality

A2
s = |u|2 = gαβuαuβ. (7.1.44)

From (7.1.43), we will obtain an equation for As. To this end, we differentiate (7.1.44)

∂A2
s

∂τ
= 2Re

(
gαβ ∂uα

∂τ
uβ

)
+

∂gαβ

∂τ
uαuβ.

Inserting the expression for ∂uα/∂τ , which follows from (7.1.43), into the last formula,
we obtain

∂A2
s

∂τ
= Re

[(
gαγgβδ ∂gγδ

∂τ
− agαβ

)
uαuβ − i

n2

µ
cα3β3u

αuβ

]
+

∂gαβ

∂τ
uαuβ.

The tensor c has the same symmetries (7.1.3) as the tensor a. Therefore, the second
summand in the brackets is pure imaginary and, consequently, can be omitted. The ex-
pression in the parentheses is symmetric in α and β and, consequently, the first summand
in the brackets is real. So the last formula can be rewritten as:

∂A2
s

∂τ
=

(
∂gαβ

∂τ
+ gαγgβδ ∂gγδ

∂τ
− agαβ

)
uαuβ.

In view of (5.1.43), this equation takes the form

2As
∂As

∂τ
= −agαβuαuβ = −aA2

s,

or

2
∂As

∂τ
+ aAs = 0. (7.1.45)

Inserting value (7.1.42) for a into the last equation and using (7.1.21), we obtain

∂

∂τ

[
ln

(
As

√
Jρvs

)]
= 0.

Integrating, we arrive at the classical formula for the amplitude of a shear wave:

As =
C√
Jρvs

,

where C is a constant depending on a ray. Observe that this formula remains the same
for an isotropic and quasi-isotropic media.
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7.1.5 Rytov’s law

We transform system (7.1.43) by changing variables

uα = Asn
−1ηα, (7.1.46)

where As is the amplitude defined by formula (7.1.44). Using (7.1.43) and (7.1.45), we
obtain

2
∂ηα

∂τ
= 2

∂

∂τ

(
n

As

uα

)
= 2

n

As

∂uα

∂τ
− 2

n

A2
s

∂As

∂τ
uα +

2

As

∂n

∂τ
uα =

=
n

As

(
gβγ ∂gαβ

∂τ
uγ − auα − i

n2

µ
cα3β3u

β

)
+

na

As

uα +
2

As

∂n

∂τ
uα =

= gβγ ∂gαβ

∂τ
ηγ +

2

n

∂n

∂τ
ηα − i

n4

µ
cα3β3η

β.

We thus arrive at the equation

∂ηα

∂τ
− 1

2
gβγ ∂gαβ

∂τ
ηγ −

1

n

∂n

∂τ
ηα = − i

2

n2

µ
cα3β3g

βγηγ. (7.1.47)

Until now all our calculations were performed in the Euclidean metric. Let us invoke
the Riemannian metric (5.1.17), which assumes the form (5.1.49) in ray coordinates. Note
that the vector η has unit length with respect to this metric. Inserting expression (5.1.49)
for gαβ into (7.1.47), we transform this equation as follows

∂ηα

∂τ
− 1

2
hβγ ∂hαβ

∂τ
ηγ = − i

2

n4

µ
cα3β3η

β. (7.1.48)

It is essential that raising the index of the vector η is performed with respect to metric
(5.1.49), i.e., ηβ = hβγηγ. We convince ourselves in the same manner as in Section 5.1.4
that equation (7.1.48) is equivalent to the next one

ηα ; 3 = −i
1

2ρv6
s

cα3β3η
β (α = 1, 2). (7.1.49)

Besides, the relations |η|2 = 1 and 〈η, γ̇〉 = 0 imply that

η3 ; 3 = 0 (7.1.50)

In (7.1.49) and (7.1.50) the covariant derivatives are taken in metric (5.1.49). The
index 3 is distinguished in these equations, since the former are written in ray coordinates.
In an arbitrary coordinate system these equations are replaced with the next:

(
Dη

dτ

)

j
= −i

1

2ρv6
s

(δq
j − γ̇j γ̇

q)cqklmγ̇kγ̇mηl, (7.1.51)

where δj
q is the Kronecker tensor. Validity of (7.1.51) follows from the fact that this

formula is invariant under change of coordinates and coincides with (7.1.49), (7.1.50) in
ray coordinates. We call equation (7.1.51) the Rytov law for a quasi-isotropic elastic
medium (in Riemannian form). For an isotropic medium it takes the form

Dη

dτ
= 0 (7.1.52)

and means that the vector field η is parallel along a ray in the sense of metric (5.1.17).
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7.1.6 The inverse problem for compression waves

First of all we emphasize that the inverse problems considered below are of a rather
formal character due to the next two circumstances. First, we deal only with the problem
of determining the anisotropic part of the elasticity tensor while the isotropic part is
assumed to be known. In practice, the latter is usually found as a solution of an inverse
problem. The information given in such an inverse problem is usually the travel times field.
The anisotropic part of the elasticity tensor gives some distortion into the travel times
field. Thus, it stands to reason to consider both inverse problems simultaneously. Second,
we impose no boundary condition on the boundary of a domain under consideration.
Thus, we treat the problems as if the waves propagate in an unbounded medium, and
use the boundary only as a surface at which the sources and detectors of oscillations are
disposed. In point of fact, due to the reflection effects on the boundary, the possibility
of registrating information that is used below as the data for inverse problems, seems to
be rather problematic. Here we will not settle this question but only attract the reader’s
attention to the fact of existence of it and similar questions.

Let an elastic medium be contained in a bonded domain D ⊂ R3. We assume that the
coefficient np of refraction for compression waves is known, i.e., metric (5.1.17) and its
geodesics are known. Our problem is that of determining the tensor field c in the Hooke
law (7.1.7). To this end, assume that we can dispose a source of compression waves in
every point of the boundary ∂D and measure the phase of a compression wave on the same
surface ∂D. We introduce the notation bjklm = σcjklm/(2ρv6

p) where σ is symmetrization,
as the reader would recall. By (7.1.32), the problem is equivalent to the next: one has
to determine a tensor field b which is defined on D, provided the number exp[−iIb(γ)] is
known for every geodesic γ whose endpoints are in ∂D; here I is the ray transform. By
the conventional monodromy principle, the function Ib(γ) can be uniquely recovered from
exp[−iIb(γ)], if the boundary ∂D is connected. Thus, our problem reduces to inverting
the operator I.

In the three-dimensional case the tensor c possessing symmetries (7.1.3) has 21 dif-
ferent components. The symmetric tensor b = σc has only 15 different components.
Consequently, 6 components of the desired tensor are lost just in posing the problem.
As we know, b is recovered from Ib up to a potential field of the type dv, where v is a
symmetric tensor field of degree 3 depending on 10 arbitrary functions. Thus our problem
allows us to determine 15 − 10 = 5 independent local functionals of the desired field.

7.1.7 The inverse problem for shear waves

Introduce a tensor field f by the equality

fjklm = −i
1

4ρv6
s

(cjlkm + cjmkl).

It follows from (7.1.3) that f possesses the symmetries

fjklm = fkjlm = fjkml, (7.1.53)

fjklm = flmjk, (7.1.54)
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and c is recovered from f by the formula

cjklm = 2iρv6
s(fjlkm + fjmkl − fjklm).

Further we do not use symmetry (7.1.54) and consider the inverse problem for tensor
fields possessing only (7.1.53). The question is formulated as follows: for every geodesic
γ : [a, b] → D with endpoints in ∂D, the value η(b) of a solution to system (7.1.51) is
known as a function of the initial value η(a) and the geodesic, η(b) = U(γ)η(a); one has
to determine the field f(x) from U(γ). Linearizing this problem by the scheme of Section
5.1.6, we arrive at the next linear problem.

Problem 7.1.1 Given is a Riemannian metric in a bounded domain D ⊂ Rn. Determine
a tensor field f = (fjklm) that is defined on D and has symmetries (7.1.53), if for every
geodesic γ : [a, b] → D whose endpoints are in ∂D, the quadratic form

Lf(γ, η) =

b∫

a

fjklm(γ(t))ηj(t)ηk(t)γ̇l(t)γ̇m(t) dt (η ∈ γ⊥) (7.1.55)

is known on the space γ⊥ of vector fields parallel along γ and orthogonal to γ̇.

The operator L defined by equality (7.1.55) is called the mixed ray transform, according
to the fact that the integrand in (7.1.55) depends on the component of the field f, whose
two indices are directed along a ray and two other indices are orthogonal to the ray.

Note that (7.1.55) is obtained from the equations of elasticity by two asymptotic
passages. The first of them is the expansion into asymptotic series in ω, and the second
one is the linearization of the inverse problem. They are applicable together provided
that ω−1 ≪ cjklm ≪ 1.

7.2 The mixed ray transform

Given a Riemannian manifold (M, g), let Smτ ′
M ⊗Slτ ′

M be the bundle of covariant tensors
of degree m + l symmetric in the first m and last l indices. For (x, ξ) ∈ TM , we define
the operator

Λξ : SmT ′
xM ⊗ SlT ′

xM → SmT ′
xM

by the equality
(Λξf)i1...im = fi1...imj1...jl

ξj1 . . . ξjl .

By the mixed ray transform on a CDRM (M, g) we mean the operator

L : C∞(Smτ ′
M ⊗ Slτ ′

M) → C∞(SmπM), (7.2.1)

that is defined by the formula

Lf(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Pγ̇(t)Λγ̇(t)f(γ(t))) dt ((x, ξ) ∈ ∂+ΩM), (7.2.2)

where γ = γx,ξ and the notation of Section 5.2 is used.
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The relationship between (7.2.2) and (7.1.55) is expressed by the equality

〈Lf(x, ξ), (η + aξ)m〉 =

0∫

τ−(x,ξ)

fi1...imj1...jl
(γ(t))ηi1(t) . . . ηim(t)γ̇j1(t) . . . γ̇jl(t) dt (7.2.3)

which holds for 〈ξ, η〉 = 0. This equality is verified in the same manner as (5.2.5).
As in Chapter 4, we convince ourselves that (7.2.1) is extendible to a unique bounded

operator
L : Hk(Smτ ′

M ⊗ Slτ ′
M) → Hk(SmπM) (k ≥ 0).

Note that in the case m = 0 the operator L coincides with the (longitudinal) ray transform
I investigated in Chapter 4; and in the case l = 0, with the transverse ray transform J of
Chapter 5.

To what extent does Lf determine the field f? In order to answer the question, we
introduce the next two mutually dual algebraic operators

Smτ ′
M ⊗ Slτ ′

M

µ→←
λ

Sm−1τ ′
M ⊗ Sl−1τ ′

M (7.2.4)

by the equalities
(µu)i1...im−1j1...jl−1

= ui1...imj1...jl
gimjl ,

(λu)i1...imj1...jl
= σ(i1 . . . im)σ(j1 . . . jl)(gi1j1ui2...imj2...jl

).

If f = λw for some w ∈ C∞(Sm−1τ ′
M ⊗ Sl−1τ ′

M), then the integrand in (7.2.3) is identical
zero and, consequently, L(λw) = 0.

We also introduce some differential operators (analogs of d and δ of Section 3.3)

C∞(Smτ ′
M ⊗ Slτ ′

M)
δ′→←
d′

C∞(Smτ ′
M ⊗ Sl−1τ ′

M) (7.2.5)

by the formulas
(d′u)i1...imj1...jl

= σ(j1 . . . jl)ui1...imj1...jl−1 ; jl
,

(δ′u)i1...imj1...jl−1
= ui1...imj1...jl ; jl+1

gjljl+1 .

If f = d′v and the field v ∈ C∞(Smτ ′
M⊗Sl−1τ ′

M) satisfies the boundary condition v|∂M = 0,
then the integrand in (7.2.3) is the total derivative with respect to t and, consequently,
L(d′v) = 0.

For the operators d′ and λ considered together, the next analog of Theorem 3.3.2 is
valid:

Lemma 7.2.1 Let M be a compact Riemannian manifold, k ≥ 1. For every field f ∈
Hk(Smτ ′

M ⊗ Slτ ′
M), there exist sf ∈ Hk(Smτ ′

M ⊗ Slτ ′
M), v ∈ Hk+1(Smτ ′

M ⊗ Sl−1τ ′
M) and

w ∈ Hk(Sm−1τ ′
M ⊗ Sl−1τ ′

M) such that

f = sf + d′v + λw, (7.2.6)

δ′ sf = µ sf = 0, µv = 0, v|∂M = 0. (7.2.7)

The field sf is uniquely determined by the field f , and the estimate

‖sf‖k ≤ C‖f‖k (7.2.8)

is valid with a constant C independent of f .
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Note that uniqueness of v and w is not asserted. The author does not know whether
the uniqueness holds. As before, we call sf the solenoidal part of the field f.

P r o o f. By directly calculating in coordinates, we verify that d′ and λ commute.
Let H̃k+1(Smτ ′

M ⊗ Sl−1τ ′
M) be the subspace, of the space Hk+1(Smτ ′

M ⊗ Sl−1τ ′
M), which

consists of all the fields v satisfying the boundary condition v|∂M = 0. For the operators
d′ and δ′, an analog of Theorem 3.3.2 holds which is formulated and proved by repeating,
almost word by word, the content of Section 3.3. In particular, it implies that the operator

d′ : H̃k+1(Smτ ′
M ⊗ Sl−1τ ′

M) → Hk(Smτ ′
M ⊗ Slτ ′

M)

has closed range. Since λ and µ are algebraic operators, the decomposition

Hk(Smτ ′
M ⊗ Slτ ′

M) = Ker µ ⊕ Im λ, (7.2.9)

holds and, consequently, the range Im λ is closed. Thus, Im d′ + Im λ is a closed subspace
of Hk(Smτ ′

M ⊗ Slτ ′
M), and therefore the decomposition

Hk(Smτ ′
M ⊗ Slτ ′

M) = (Ker δ′ ∩ Ker µ) ⊕ (Im d′ + Im λ). (7.2.10)

holds. By sf we denote the result of projecting the field f onto the first summand of the
decomposition (7.2.10). Since the projection is bounded, estimate (7.2.8) is valid. By
(7.2.10), the representation

f = sf + d′v′ + λw′, (7.2.11)

exists with some field v′ satisfying the boundary condition v′|∂M = 0. Now, according to
(7.2.9), we represent v′ as

v′ = v + λw′′, µv = 0. (7.2.12)

It follows from the condition v′|∂M = 0 that v|∂M = 0. Inserting (7.2.12) into (7.2.11) and
using permutability of d′ and λ, we arrive at (7.2.6) and (7.2.7) with w = w′ + d′w′′. The
lemma is proved.

The main result of the current chapter is the next

Theorem 7.2.2 For n ≥ 2, there exists ε(n) > 0 such that, for every CDRM (M, g) of
dimension n satisfying the condition

k(M, g) < ε(n) (7.2.13)

whose left-hand side is defined by formula (5.2.8) and for every field f ∈ H1(S2τ ′
M⊗S2τ ′

M),
the solenoidal part sf of the field f is uniquely determined by Lf. The conditional stable
estimate

‖sf‖2
0 ≤ C1

(
‖jν

sf |∂M‖0 · ‖Lf‖0 + ‖Lf‖2
1

)
≤ C2

(
‖f‖1 · ‖Lf‖0 + ‖Lf‖2

1

)
, (7.2.14)

holds with constants C1 and C2 independent of f ; here (jν
sf)i1i2j1 = sfi1i2j1j2ν

j2 and ν is
the unit normal vector to ∂M.

The proof of the theorem is presented in the next section. The proof is performed
for arbitrary m, l. Only after reducing the proof to a purely algebraic question, we put
m = l = 2.
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7.3 Proof of Theorem 7.2.2

First of all, repeating the arguments that are presented after the formulation of Lemma
4.3.4, we see that it suffices to prove Theorem 7.2.2 for a real field f ∈ C∞(Smτ ′

M ⊗Slτ ′
M)

satisfying the conditions
d′f = 0, (7.3.1)

µf = 0. (7.3.2)

The solenoidal part of such a field coincides with f.
We define a semibasic tensor field u(x, ξ) = (ui1...im) on T 0M by the equality

u(x, ξ) =

0∫

τ−(x,ξ)

I t,0
γ (Pγ̇(t)Λγ̇(t)f(γ(t))) dt ((x, ξ) ∈ T 0M). (7.3.3)

The field u is symmetric in all its indices, homogeneous in its second argument:

u(x, tξ) = tl−1u(x, ξ) (t > 0), (7.3.4)

satisfies the algebraic condition
jξu(x, ξ) = 0, (7.3.5)

the differential equation
Hu(x, ξ) = PξΛξf(x) (7.3.6)

and the boundary conditions
u|∂−ΩM = 0, (7.3.7)

u|∂+ΩM = Lf. (7.3.8)

We write down the Pestov identity (4.4.4) for u, integrate it over ΩM and transform
the divergent terms of the so-obtained equality by the Gauss-Ostrogradskĭı formulas for
the horizontal and vertical divergence. We thus arrive at the relation

∫

ΩM

[
| h

∇u|2 + (n + 2l − 2)|Hu|2
]
dΣ = 2

∫

ΩM

〈 h

∇u,
v

∇Hu〉 dΣ−

−
∫

∂ΩM

〈v, ν〉 dΣ2n−2 +
∫

ΩM

R1[u] dΣ, (7.3.9)

where the semibasic vector fields v and w are defined by formulas (4.4.5) and (4.4.6);
the expression R1[u], by equality (5.3.8). We write down the second summand of the
integrand on the left-hand side of (7.3.9), taking homogeneity (7.3.4) and the equality
〈w, ξ〉 = |Hu|2 into account.

By the definition of the operator Pξ, the right-hand side of equation (7.3.6) can be
represented as

PξΛξf(x) = Λξf(x) − iξy(x, ξ) (7.3.10)

with some symmetric semibasic field y which, in turn, can be represented according to
(5.4.2). The field ỹ participating in (5.4.2) is expressed through f as follows:

ỹ =
m

|ξ|2PξjξΛξf. (7.3.11)
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We apply the operator
v

∇ to equality (7.3.10) and take the scalar product of the so-

obtained equality and
h

∇u. In such a way, taking (7.3.6) into account, we obtain

〈 h

∇u,
v

∇Hu〉 = 〈 h

∇u,
v

∇Λξf〉 − 〈 h

∇u,
v

∇iξy〉. (7.3.12)

Transforming the second summand on the right-hand side of (7.3.12) in the same manner
as in the beginning of Section 5.4, we arrive at the equality

〈 h

∇u,
v

∇Hu〉 = 〈 h

∇u,
v

∇Λξf〉 − 〈h

δu, ỹ〉, (7.3.13)

where
h

δu is defined by formula (5.4.4).
Now address the first summand on the right-hand side of (7.3.13). By the definition

of Λξ,

〈 h

∇u,
v

∇Λξf〉 =
h

∇kui1...im · v

∇k

(
fi1...imj1...jl

ξj1 . . . ξjl

)
=

= l
h

∇kui1...im · fi1...imkj2...jl
ξj2 . . . ξjl =

=
h

∇k
(
lui1...imfi1...imkj2...jl

ξj2 . . . ξjl

)
− lui1...im

(
gkpfi1...imkj2...jl ; p

)
ξj2 . . . ξjl .

The second term on the right-hand side of the last formula is equal to zero, by (7.3.1).
Thus, introducing a semibasic vector field w̃ by the equality

w̃k = lui1...imfi1...imkj2...jl
ξj2 . . . ξjl , (7.3.14)

we have the representation 〈 h

∇u,
v

∇Λξf〉 =
h

∇iw̃
i. In view of this representation, (7.3.13)

takes the form

〈 h

∇u,
v

∇Hu〉 =
h

∇iw̃
i − 〈h

δu, ỹ〉. (7.3.15)

Estimate the last summand on the right-hand side of (7.3.15). To this end, repeat
the arguments of the second half of Section 5.4. As a result, arrive at the inequality (an
analog of (5.4.17))

2|〈 h

∇u,
v

∇Hu〉| ≤ b|z|2 +
1

b
|ỹ|2 + b

h

∇iṽ
i +

h

∇iw̃
i + bR2[u], (7.3.16)

where b is an arbitrary positive number; the quantities z, ṽ and R2[u] are defined by
formulas (5.4.9), (5.4.11) and (5.4.13). Equality (5.4.15) holds.

By (7.3.11), (7.3.16) and (5.4.15); formula (7.3.9) implies the inequality (an analog of
(5.4.24))

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n + 2l − 1)|PξΛξf |2

m2

b
|PξjξΛξf |2

]
dωx(ξ)





dV n(x) ≤

≤
∫

∂ΩM

〈bṽ + w̃ − v, ν〉 dΣ2n−2 +
∫

ΩM

R[u] dΣ, (7.3.17)

where notation (5.4.23) is used.
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By repeating the corresponding arguments of Sections 5.5 and 4.7, we establish that
estimate (5.5.10) holds for the last integral on the right-hand side of (7.3.17) and the
absolute value of the first integral on the right-hand side of (7.3.17) does not exceed the
quantity D(l‖jνf |∂M‖0 · ‖Lf‖0 + ‖Lf‖2

1), where D is a constant depending on (M, g).
Using these estimates, (7.3.17) implies the next analog of inequality (5.5.16):

∫

M





∫

ΩxM

[
(1 − b)|z|2 + (n + 2l − 1)|PξΛξf |2 −

m2

b
|PξjξΛξf |2

]
dωx(ξ)





dV n(x) −

− Ck
∫

ΩM

| h

∇u|2dΣ ≤ D
(
l‖jνf |∂M‖0‖Lf‖0 + ‖Lf‖2

1

)
.

Finally, repeating the arguments of Section 5.6, we find out that Theorem 7.2.2 holds in
the case of those l,m, n, that answer the next question:

Problem 7.3.1 Let Sm = Sm(Rn). For what values of l, m, n is the quadratic form

〈Bf, f〉 =
1

ω

∫

Ω

[
(n + 2l − 1)|PξΛξf |2 − m2|PξjξΛξf |2

]
dωx(ξ) (7.3.18)

positive-definite on the space Ker µ ⊂ Sm ⊗Sl, where the operator µ is defined by formula
(7.2.4)?

This problem is a generalization of Problem 5.9.1. Addressing the problem, the author
failed in applying the method that was used in the previous two chapters for studying
similar questions. In the next section we use another approach to answering the question
in the case m = l = 2.

7.4 The algebraic part of the proof

In this section Sm = Sm(Rn) (see Section 2.1). Only the Cartesian coordinates in Rn are
in use; all tensor indices are written in the lower position; on repeating indices summation
from 1 to n is assumed. We restrict ourselves to considering real tensors only. For f ∈ Sm,
alongside with the norm |f | generated by the scalar product (2.1.3), we will need the norm
‖f‖ that is defined by the equality

‖f‖2 =
1

ω

∫

Ω

|〈f, ξm〉|2dω(ξ); (7.4.1)

recall, that here Ω is the unit sphere of Rn and ω is its volume. We also recall that
the operators, i : Sm → Sm+2 of symmetric multiplication by the Kronecker tensor and
j : Sm → Sm−2 of convolution with this tensor, were introduced in Section 2.1.

Lemma 7.4.1 For f ∈ Sm satisfying the condition jf = 0, the equality

‖f‖2 =
m!

n(n + 2) . . . (n + 2m − 2)
|f |2. (7.4.2)

holds.
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P r o o f. We will show that this claim follows from a known property of spherical
harmonics. Note that in coordinates the polynomial ϕ(ξ) = 〈f, ξm〉 can be written twofold:

ϕ(ξ) = fi1...imξi1 . . . ξim =
∑

|α|=m

fαξα. (7.4.3)

In the last sum α = (α1, . . . , αn) is a multi-index, ξα = ξα1
1 . . . ξαn

n . The coefficients of these

two sums are related by the equality fα = m!
α! fi(α) where i(α) = (1 . . . 1 2 . . . 2 . . . n . . . n);

the index 1 is repeated α1 times, 2 is repeated α2 times, and so on. For |α| = m, (7.4.3)
implies that Dαϕ = α!fα and, consequently,

|f |2 =
1

m!

∑

|α|=m

α!|fα|2 =
1

m!

∑

|α|=m

1

α!
|Dαϕ|2. (7.4.4)

By (7.4.3), the condition jf = 0 means that ∆ϕ = 0, i.e., that ϕ is a solid spherical
harmonic of degree m. By Lemma XI.1 of [131], the equality

∑

|α|=m

m!

α!

∫

Ω

|Dαϕ(ξ)|2dω(ξ) =
2mΓ

(
n
2

+ m
)

Γ(m + 1)

Γ
(

n
2

)
∫

Ω

|ϕ(ξ)|2dω(ξ),

holds. Comparing it with (7.4.1) and (7.4.4), we arrive at (7.4.2). The lemma is proved.

Lemma 7.4.2 The next equalities are valid:

‖f‖2 =
1

n(n + 2)
(2|f |2 + |jf |2), for f ∈ S2, (7.4.5)

‖f‖2 =
3

n(n + 2)(n + 4)
(2|f |2 + 3|jf |2), for f ∈ S3, (7.4.6)

‖f‖2 =
3

n(n + 2)(n + 4)(n + 6)
(8|f |2 + 24|jf |2 + 3|j2f |2), for f ∈ S4. (7.4.7)

P r o o f. We will only prove (7.4.6), the other two relations are proved in a similar
way. First, with the help of commutation formula (6.4.2) for i and j, possibility of the
representation

f = f̃ + iv, jf̃ = 0 (7.4.8)

is established for f ∈ S3, where f̃ and v are expressed through f as follows:

f̃ = f − 3

n + 2
ijf, v =

3

n + 2
jf. (7.4.9)

The summands of expansion (7.4.8) are orthogonal to one another in the sense of the
scalar product generating norm (7.4.1), since the functions 〈f̃ , ξ3〉 and 〈iv, ξ3〉|Ω = 〈v, ξ〉
are spherical harmonics of different degrees. Therefore, by Lemma 7.4.1, (7.4.8) and
(7.4.9) imply the equality

‖f‖2 = ‖f̃‖2 + ‖v‖2 =
6

n(n + 2)(n + 4)
|f̃ |2 +

1

n
|v|2 =

=
6

n(n + 2)(n + 4)
|f̃ |2 +

9

n(n + 2)2
|jf |2.

(7.4.10)
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Taking the scalar product of the first of the relations (7.4.9) and f̃ and using the fact that
the operators i and j are dual to one other, we obtain |f̃ |2 = |f |2 − 3

(n+2)
|jf |2. Inserting

the last expression into (7.4.10), we arrive at (7.4.6). The lemma is proved.
The operator Λξ : S2 ⊗ S2 → S2 introduced at the beginning of Section 7.2, for

m = l = 2 is given in coordinate form by the equality

(Λξf)ij = fijklξkξl. (7.4.11)

For f ∈ S2 ⊗ S2 and 1 ≤ i, j ≤ n, we define a tensor fij ∈ S2 by putting (fij)kl = fijkl

and a tensor fi ∈ S3, by putting (fi)jkl = σ(jkl)fijkl.

Lemma 7.4.3 For f ∈ S2⊗S2, the quadratic form B defined by formula (7.3.18) satisfies
the relation

〈Bf, f〉 = (n + 3)
∑

i,j

‖fij‖2 − 2(n + 5)
∑

i

‖fi‖2 + (n + 7)‖σf‖2. (7.4.12)

P r o o f. Given ξ ∈ Ω, by using (7.4.11) and coordinate representation (5.2.1) of the
operator Pξ, we obtain

(PξΛξf)ij = fpqkl(δip − ξiξp)(δjq − ξjξq)ξkξl.

This implies the equality

|PξΛξf |2 = (PξΛξf)ij(PξΛξf)ij = fijpqfijrsξpξqξrξs −

− 2fipqrfistuξpξqξrξsξtξu + fpqrsftuvwξpξqξrξsξtξuξvξw

which can be written in the form

|PξΛξf |2 =
∑

i,j

〈fij, ξ
2〉2 − 2

∑

i

〈fi, ξ
3〉2 + 〈σf, ξ4〉2.

Integrating the last relation, we obtain

1

ω

∫

Ω

|PξΛξf |2dω(ξ) =
∑

i,j

‖fij‖2 − 2
∑

i

‖fi‖2 + ‖σf‖2. (7.4.13)

In a similar way we obtain the coordinate representation

(PξjξΛξf)i = fpjkl(δip − ξiξp)ξjξkξl,

which implies
1

ω

∫

Ω

|PξjξΛξf |2dω(ξ) =
∑

i

‖fi‖2 − ‖σf‖2. (7.4.14)

Inserting (7.4.13) and (7.4.14) into (7.3.18), we arrive at (7.4.12). The lemma is proved.
Recall that in Section 7.2 the operator µ was introduced. For m = l = 2 it is given in

coordinate form as follows: (µf)ik = fipkp.
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Lemma 7.4.4 For a tensor f ∈ S2 ⊗ S2 satisfying the condition µf = 0, the inequality

n(n + 2)(n + 4)

2
〈Bf, f〉 ≥ (n2 +5n+2)|f |2−4(n+5)fijklfikjl +

12(n + 7)

n + 6
|σf |2. (7.4.15)

holds.

P r o o f. Expressing the norms ‖ · ‖ that participate in (7.4.12) through | · | with the
help of Lemma 7.4.2, we arrive at the relation

n(n + 2)〈Bf, f〉 = 2(n + 3)
∑

i,j

|fij|2 + (n + 3)
∑

i,j

|jfij|2 −
12(n + 5)

n + 4

∑

i

|fi|2 −

− 18(n + 5)

n + 4

∑

i

|jfi|2 +
3(n + 7)

(n + 4)(n + 6)
(8|σf |2 + 24|jσf |2 + 3|j2σf |2). (7.4.16)

The quantities on the right-hand side of this equality are expressed as:

∑

i,j

|fij|2 = fijklfijkl = |f |2, (7.4.17)

∑

i,j

|jfij|2 =
∑

i,j

(fijpp)
2 = |jf |2, (7.4.18)

(jfi)j = (fi)jklδkl =
1

3
(fijkl + fikjl + filjk)δkl =

1

3
fijpp +

2

3
fipjp.

Under the condition µf = 0, the second summand on the right-hand side of the last
formula is equal to zero, and we obtain

∑

i

|jfi|2 =
1

9
|jf |2. (7.4.19)

Next,

∑

i

|fi|2 =
1

3
(fijkl + fikjl + filjk)fijkl =

1

3
|f |2 +

1

3
fikjlfijkl +

1

3
filjkfijkl.

Observing that the last two terms on the right-hand side of this equality coincide, we
obtain ∑

i

|fi|2 =
1

3
|f |2 +

2

3
fijklfikjl. (7.4.20)

Inserting (7.4.17)–(7.4.20) into (7.4.16), we arrive at the relation that implies inequality
(7.4.15). The lemma is proved.

To estimate the second summand on the right-hand side of (7.4.15), we represent the
tensor f as the sum

f = f+ + f−, (7.4.21)

where

f+
ijkl =

1

2
(fijkl + fikjl), f−

ijkl =
1

2
(fijkl − fikjl). (7.4.22)
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The summands on the right-hand side of (7.4.21) are orthogonal to one another and,
consequently,

|f |2 = |f+|2 + |f−|2. (7.4.23)

It follows from (7.4.22) that f+ and f− possess the symmetries

f+
ijkl = f+

ikjl, f−
ijkl = −f−

ikjl,

with whose help we find the second summand on the right-hand side of (7.4.15):

fijklfikjl = (f+
ijkl + f−

ijkl)(f
+
ikjl + f−

ikjl) =

= (f+
ijkl + f−

ijkl)(f
+
ijkl − f−

ijkl) = |f+|2 − |f−|2. (7.4.24)

Inserting (7.4.23) and (7.4.24) into (7.4.15), we arrive at the inequality

n(n + 2)(n + 4)

2
〈Bf, f〉 ≥ (n2 + n − 18)|f |2 + 8(n + 5)|f−|2 +

12(n + 7)

n + 6
|σf |2. (7.4.25)

The tensor f ∈ S2 ⊗ S2 is expressed through f− and σf by the relation

fijkl = (σf)ijkl +
5

12
(f−

ijkl + f−
ijlk + f−

jikl + f−
jilk) −

1

12
(f−

klij + f−
klji + f−

lkij + f−
lkji) (7.4.26)

that is verified by inserting the expressions (7.4.22) and

(σf)ijkl =
1

6
(fijkl + fikjl + filjk + fjkil + fjlik + fklij)

into the right-hand side of (7.4.26). The first summand on the right-hand side of (7.4.26)
is orthogonal to the others and, consequently,

|f |2 = |σf |2 + |h|2 (7.4.27)

where

hijkl =
5

12
(f−

ijkl + f−
ijlk + f−

jikl + f−
jilk) −

1

12
(f−

klij + f−
klji + f−

lkij + f−
lkji).

The last formula implies the inequality

|h| ≤ 5

3
|f−| + 1

3
|f−| = 2|f−|

which, together with (7.4.27), gives

|f−|2 ≥ 1

4
|f |2 − 1

4
|σf |2.

With the help of the last inequality, (7.4.25) implies

n(n + 2)(n + 4)

2
〈Bf, f〉 ≥ (n2 + 3n − 8)|f |2 − 2

(n + 5)(n + 6) − 6(n + 7)

n + 6
|σf |2.

Finally, using the evident relation |σf | ≤ |f |, we arrive at the estimate

n(n + 2)(n + 4)(n + 6)

2
〈Bf, f〉 ≥ (n3 + 7n2 − 24)|f |2

that implies positive definiteness of the form 〈Bf, f〉 for n ≥ 2.
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Chapter 8

The exponential ray transform

Since recently the so-called problem of emission tomography gains popularity in mathe-
matical tomography. In physical terms the problem reads as follows: given is a bounded
domain which contains a medium that can absorb particles (or radiation); one has to
determine a distribution of sources of particles inside the domain from the known flux
on the boundary of the domain. Stated mathematically, the problem consists in invert-
ing the operator that differs from the ray transform (4.2.2) by the presence of the factor

exp
[
− ∫ 0

t ε(s; γ̇x,ξ(s)) ds
]

in the integrand. The function ε(x, ξ) is called the absorption

(or the attenuation), and the corresponding integral geometry operator is called the ex-
ponential ray transform (the term “attenuated ray transform” is also in use). We will
denote this operator by Iε.

Statements of problems of emission tomography can vary considerably. For instance,
the problem of simultaneously determining the source f and the absorption ε is of great
practical import. We will here deal with a more modest problem of determining the source
f on condition that the absorption ε is known. Moreover, we will assume the absorption
ε(x, ξ) to be isotropic, i.e., independent of the second argument. Emphasize that the
absorption ε(x) can be complex. In this connection recall that, for wave processes, the
imaginary part of the absorption describes the frequency dispersion.

In the current chapter we will restrict ourselves to considering the exponential ray
transform of scalar functions, i.e., the case m = 0 in (4.2.2). In the case m > 0 investiga-
tion of the exponential ray transform comes across the next fundamental question: does
there exist, for Iε, an analog of the operator d of inner differentiation?

In the first section we give a definition of the exponential ray transform on a compact
dissipative Riemannian manifold and formulate the main result of the chapter, Theorem
8.1.1, which asserts that this operator is invertible under some condition on the metric and
absorption. This condition requires absence of conjugate points, on every geodesic, of some
system of equations whose coefficients depend on the curvature tensor and absorption. We
give also three consequences of the theorem which concern the cases of the zero absorption
and zero curvature.

Section 8.2 contains the exposition of some new notion of tensor analysis, the so-called
modified horizontal derivative, which plays the main role in the proof of Theorem 8.1.1.
In the author’s opinion, this notion will find other applications in integral geometry in
future. So the exposition of the second section is rather detailed.

Section 8.3 contains the proof of Theorem 8.1.1. In Sections 8.4 and 8.5 we apply

219



220 CHAPTER 8. THE EXPONENTIAL RAY TRANSFORM

the modified horizontal derivative to two questions related to the nonlinear problem of
determining a metric from its hodograph. First, we obtain a formula which expresses the
volume of a simple compact Riemannian manifold through its hodograph. Then we prove
that a simple metric is uniquely determined by its hodograph in a prescribed conformal
class.

In Section 8.6 we discuss the relationship of our theorems to previous results on the
subject.

The material of the current chapter is published in this book for the first time.

8.1 Formulation of the main definitions and results

Let (M, g) be a CDRM. We fix a (complex) function ε ∈ C∞(M) which is further called
the absorption. Given the absorption ε, by the exponential ray transform we mean the
linear operator

Iε : C∞(M) → C∞(∂+ΩM) (8.1.1)

defined by the equality

Iεf(x, ξ) =

0∫

τ−(x,ξ)

f(γx,ξ(t)) exp


−

0∫

t

ε(γx,ξ(s)) ds


 dt ((x, ξ) ∈ ∂+ΩM), (8.1.2)

where γx,ξ : [τ−(x, ξ), 0] → M is a maximal geodesic defined by the initial conditions
γx,ξ(0) = x and γ̇x,ξ(0) = ξ.

As in Section 4.2, one can show that operator (8.1.1) has some bounded extension

Iε : Hk(M) → Hk(∂+ΩM) (8.1.3)

for any integer k ≥ 0.
Recall that a system of linear equations

d2y

dt2
+ A(t)y = 0 (a ≤ t ≤ b; y = (y1, . . . , yn))

is said to be without conjugate points on the segment [a, b] if there is no nontrivial solution
to this system which vanishes in two distinct points of the segment [a, b].

Theorem 8.1.1 Let a compact dissipative Riemannian manifold (M, g) and a function
ε ∈ C∞(M) be such that, for every (x, ξ) ∈ ΩM , the equation

D2y

dt2
+

ε

R(γ̇, y)γ̇ = 0 (8.1.4)

has no pair of conjugate points on the geodesic γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M . Here

D/dt is the total derivative along γ (see Section 3.2), and
ε

R(γ̇, y) : Tγ(t)M → Tγ(t)M is
the linear operator that in coordinate form is defined by the equalities

(
ε

R(γ̇, y))i
l =

ε

R
i
jklγ̇

jyk,

ε

Rijkl = Rijkl + |ε|2(gikgjl − gilgjk), (8.1.5)
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and (Rijkl) is the curvature tensor. Then the operator

Iε : H1(M) → H1(∂+ΩM) (8.1.6)

is injective and, for f ∈ H1(M), the stability estimate

‖f‖0 ≤ C‖Iεf‖1 (8.1.7)

holds with a constant C independent of f .

For practical applications, the case is important in which the absorption ε is not
smooth. Of course, our assumption ε ∈ C∞(M) is excessive. It suffices to assume that
ε ∈ C1(M). In this case, operator (8.1.6) is bounded and depends continuously on ε ∈
C1(M). In the case when ε is a piecewise smooth function, the possibility of introducing
bounded operator (8.1.6) depends on the geometry of the surfaces of discontinuity of the
function ε and its first-order derivatives.

If ε ≡ 0, then the operator Iε = I coincides with the ray transform (4.2.1) for m = 0.

In this case
ε

R = R and (8.1.4) coincides with the classical Jacobi equation [41]. A
Riemannian manifold (M, g) is said to have no pair of conjugate points if the Jacobi
equation has no pair of conjugate points on every geodesic. Such a CDRM is simple in
the sense of the definition given in Section 1.1.

Corollary 8.1.2 Let (M, g) be a CDRM without conjugate points. The ray transform

I : H1(M) → H1(∂+ΩM)

is injective and, for f ∈ H1(M), the stability estimate

‖f‖0 ≤ C‖If‖1

holds with a constant C independent of f .

We will now briefly discuss the role of the curvature tensor in Theorem 8.1.1 and
Corollary 8.1.2. It is well known that if all sectional curvatures are nonpositive, then the
Jacobi equation has no pair of conjugate points on every geodesic. Of course, when the
right-hand side of (8.1.5) is added with the summand containing |ε|2, the last claim can
become wrong; but a general tendency remains valid: the more negative is the sectional
curvature, the more values of |ε| are allowed without violating the assumptions of Theorem
8.1.1. In other words: large values of the absorption can be compensated by negative
values of the curvature.

We now consider the case in which M is a bounded domain in Rn and the metric g
coincides with the Euclidean one. The integration in (8.1.2) is performed over straight
lines, i.e., this definition is replaced with the next

Iεf(x, ξ) =

0∫

τ−(x,ξ)

f(x + tξ) exp


−

0∫

t

ε(x + sξ) ds


 dt ((x, ξ) ∈ ∂+ΩM). (8.1.8)

System (8.1.4) reduces to the scalar equation

d2y

dt2
+ |ε|2y = 0.

We thus obtain
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Corollary 8.1.3 Let M be a bounded domain in Rn with smooth strictly convex boundary
∂M ; ε ∈ C1(M) be a function such that the equation

d2y

dt2
+ |ε|2(γ(t))y = 0 (8.1.9)

has no pair of conjugate points on every straight-line segment γ : [a, b] → M . Then
operator (8.1.6), which is defined by formula (8.1.8), is injective and estimate (8.1.7)
holds.

A few conditions are known ensuring the absence of conjugate points for scalar equa-
tion (8.1.9). Some of them are based on the Sturm comparison theorems, while the others,
on Lyapunov’s integral estimates [46]. The simplest of them guarantees the absence of
conjugate points under the assumption that the inequality

ε0 diamM < π (8.1.10)

holds, where
ε0 = sup

x∈M
|ε(x)|, diamM = sup

x,y∈M
|x − y|. (8.1.11)

We thus arrive at

Corollary 8.1.4 Let M be a closed domain in Rn with smooth strictly convex boundary,
and let a function ε ∈ C1(M) be such that the quantities ε0 and diamM defined by
equalities (8.1.11) satisfy condition (8.1.10). Then operator (8.1.6), which is defined by
(8.1.8), is injective and estimate (8.1.7) holds.

8.2 The modified horizontal derivative

Before starting with a formal exposition, we will informally discuss an idea that underlines
the proof of Theorem 8.1.1.

The Pestov identity (4.4.4) played the main role in our proofs of all the main results
of the previous four chapters. For the sake of convenience, we write down the identity
here in the simplest case when m = 0:

2〈 h

∇u,
v

∇(Hu)〉 = | h

∇u|2 +
h

∇iv
i +

v

∇iw
i − Rijklξ

iξk
v

∇ju · v

∇lu. (8.2.1)

Here v and w are the semibasic vector fields determined through the function u by formulas
(4.4.10) and (4.4.11). We applied this identity to inverse problems for various kinds of the
kinetic equation. Let us reproduce here one of these equations, namely equation (4.6.4)
in the simplest case m = 0:

Hu(x, ξ) = f(x). (8.2.2)

Let us now discuss the question: has the Pestov identity (8.2.1) any modifications ap-
propriate for investigating inverse problems for equation (8.2.2) as well as identity (8.2.1)
itself?

The application of the operator
v

∇ to equation (8.2.2) seems to be justified, since
the operator annihilates the right-hand side of the equation. On the other hand, the
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multiplication of the vector
v

∇(Hu) just by
h

∇u, which is performed on the left-hand
side of identity (8.2.1), is not dictated by equation (8.2.2). Appropriateness of such the
multiplication is rather explained by the form of the right-hand side of identity (8.2.1) that

consists of the positive-definite quadratic form | h

∇u|2 and divergent terms
h

∇iv
i and

v

∇iw
i.

The right-hand side of (8.2.1) also contains the fourth summand Rijklξ
iξk

v

∇ju · v

∇lu, but
the very term is just undesirable for us. Using a rather remote analogy, our observation

can be expressed by the next, leading but nonrigorous statement:
h

∇u is an integrating

factor for the equation
v

∇(Hu) = 0. Does this equation admit other integrating factors?
To answer the question, let us analyze the proof of the Pestov identity which is pre-

sented in Section 4.4. What properties of the horizontal derivative
h

∇ were used in the
proof? First of all, such were commutation formulas (3.5.11) and (3.5.12). As far as the

properties of the operator
h

∇ listed in Theorem 3.5.1 are concerned, they were used in a
rather incomplete manner. Namely, the first of the properties listed in Theorem 3.5.1 was
not utilized at all, and instead of the second we made use of a weaker claim:

Hu = ξi
h

∇iu. (8.2.3)

If the first hypothesis of Theorem 3.5.1 is omitted and the second is replaced by (8.2.3);

then, of course, the claim of the theorem about uniqueness of the operator
h

∇ is not valid.

It turns out that in this case the operator
h

∇ is determined up to an arbitrary semibasic
tensor field of degree 2. This arbitrariness can be used for compensating the last term on
the right-hand side of (8.2.1); this is the main idea of the proof of Theorem 8.1.1.

Now we turn to the formal exposition.
Let (M, g) be a Riemannian manifold. We fix a real semibasic tensor field a = (aij) ∈

C∞(β2
0M) such that it is symmetric

aij = aji, (8.2.4)

positive-homogeneous in its second argument

aij(x, λξ) = λaij(x, ξ) (λ > 0) (8.2.5)

and orthogonal to the vector ξ:
aij(x, ξ)ξj = 0. (8.2.6)

With the help of this tensor field, we define the modified horizontal derivative

a

∇ : C∞(βr
sM) → C∞(βr+1

s M) (8.2.7)

by the equality

a

∇u =
a

∇kui1...ir
j1...js

∂

∂ξi1
⊗ . . . ⊗ ∂

∂ξir
⊗ ∂

∂ξk
⊗ dxj1 ⊗ . . . ⊗ dxjs (8.2.8)

where
a

∇kui1...ir
j1...js

=
h

∇kui1...ir
j1...js

+ Akui1...ir
j1...js

(8.2.9)
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and

Akui1...ir
j1...js

= akp
v

∇pu
i1...ir
j1...js

−
r∑

m=1

v

∇pa
kim · ui1...im−1pim+1...ir

j1...js
+

s∑

m=1

v

∇jm
akp · ui1...ir

j1...jm−1pjm+1...js
.

(8.2.10)

The operator
a

∇ is evidently independent of the choice of a natural coordinate system
presenting in formulas (8.2.8)–(8.2.10) and, consequently, the operator is globally defined.
Let us consider its main properties.

First of all,
a

∇ commutes with the convolution operators Ck
l and is a derivative relative

to the tensor product in the next sense:

a

∇(u ⊗ v) = ρr+1(
a

∇u ⊗ v) + u ⊗ a

∇v (u ∈ C∞(βr
s(M))

where ρr+1 is the permutation of upper indices which translates the (r + 1)-th index to
the last position (compare with Theorem 3.5.1). Both of these properties are verified by
direct calculations in coordinates and thus omitted.

Let us find out the interrelation between
a

∇ and H. To this end we multiply equality
(8.2.10) by ξk and perform the summation over k. Using (8.2.5) and (8.2.6), we obtain

ξkA
kui1...ir

j1...js
= −

r∑

m=1

ξk

v

∇pa
kim · ui1...im−1pim+1...ir

j1...js
+

s∑

m=1

ξk

v

∇jm
akp · ui1...ir

j1...jm−1pjm+1...js
=

=
r∑

m=1

aim
p u

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

ap
jm

ui1...ir
j1...jm−1pjm+1...js

.

Here, as usual, the rule ai
j = gjka

ik of lowering indices is used. Consequently,

ξk

a

∇kui1...ir
j1...js

= (Hu)i1...ir
j1...js

+
r∑

m=1

aim
p u

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

ap
jm

ui1...ir
j1...jm−1pjm+1...js

. (8.2.11)

In particular, for a scalar function u ∈ C∞(TM),

Hu = ξi

a

∇iu. (8.2.12)

From (8.2.6) and the equality ξp
v

∇pa
ij = aij following from (8.2.5), we obtain

a

∇iξj =
a

∇iξj = 0. (8.2.13)

In the case of a general field a, the metric tensor is not parallel with respect to
a

∇. Indeed,

a

∇igjk =
v

∇ja
ip · gpk +

v

∇ka
ip · gjp =

v

∇ja
i
k +

v

∇ka
i
j.

In view of this fact one must exercise some care while raising and lowering indices in

expressions that contain
a

∇. It explains why we preferred to start with defining the

operator
a

∇i with the upper index.

We will now obtain a commutation formula for the operators
a

∇ and
v

∇. Using (3.5.11),
we derive (

a

∇i
v

∇j −
v

∇j

a

∇i
)

ui1...ir
j1...js

=
(
Ai

v

∇j −
v

∇jA
i
)

ui1...ir
j1...js

.
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Transforming the right-hand side of this equality in accord with definition (8.2.10), after
simple calculations we arrive at the formula

(
a

∇i
v

∇j −
v

∇j

a

∇i
)

ui1...ir
j1...js

=

=
r∑

m=1

v

∇j

v

∇pa
iim · ui1...im−1pim+1...ir

j1...js
−

s∑

m=1

v

∇j

v

∇jm
aip · ui1...ir

j1...jm−1pjm+1...js
. (8.2.14)

In particular, for a scalar function u ∈ C∞(TM),
(

a

∇i
v

∇j −
v

∇j

a

∇i
)

u = 0. (8.2.15)

We will now obtain a commutation formula for
a

∇i and
a

∇j. First, consider the case of
a scalar function u ∈ C∞(TM). By (8.2.9),

(
a

∇i
a

∇j − a

∇j
a

∇i
)

u =
(

h

∇i
h

∇j − h

∇j
h

∇i
)

u +

+
(

h

∇iAj − Aj
h

∇i
)

u +
(
Ai

h

∇j − h

∇jAi
)

u +
(
AiAj − AjAi

)
u. (8.2.16)

Calculate the last term on the right-hand side of (8.2.16):
(
AiAj − AjAi

)
u =

= aip
v

∇p(A
ju) − v

∇pa
ij · Apu − ajp

v

∇p(A
iu) +

v

∇pa
ji · Apu =

= aip
v

∇p(A
ju) − ajp

v

∇p(A
iu) = aip

v

∇p(a
jq

v

∇qu) − ajp
v

∇p(a
iq

v

∇qu).

Using permutability of
v

∇p and
v

∇q, obtain

(
AiAj − AjAi

)
u =

(
aip

v

∇pa
jq − ajp

v

∇pa
iq

)
v

∇qu. (8.2.17)

We now calculate the second term on the right-hand side of (8.2.16):

(
h

∇iAj − Aj
h

∇i
)

u =
h

∇i(ajp
v

∇pu) − ajp
v

∇p

h

∇iu +
v

∇pa
ij · h

∇pu.

Using permutability of
h

∇i and
v

∇p, we infer

(
h

∇iAj − Aj
h

∇i
)

u =
h

∇iajp · v

∇pu +
v

∇pa
ij · h

∇pu.

By alternating the last equality with respect to i and j, derive
(

h

∇iAj − Aj
h

∇i
)

u +
(
Ai

h

∇j − h

∇jAi
)

u =
(

h

∇iajp − h

∇jaip
)

v

∇pu. (8.2.18)

Inserting (8.2.17), (8.2.18) and (3.5.12) into the right-hand side of (8.2.16), we obtain

(
a

∇i
a

∇j − a

∇j
a

∇i
)

u = −
(
Rpqijξq +

h

∇jaip − h

∇iajp + ajq
v

∇qa
ip − aiq

v

∇qa
jp

)
v

∇pu. (8.2.19)
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We introduce the semibasic tensor field

a

Rijkl = Rijkl +
h

∇l

v

∇jaik −
h

∇k

v

∇jail +

+ alp

v

∇p
v

∇jaik − akp

v

∇p
v

∇jail +
v

∇paik ·
v

∇jalp −
v

∇pail ·
v

∇jakp. (8.2.20)

Performing the convolution of this equality with ξj and taking homogeneity (8.2.5) into
account, we obtain

a

Rijklξ
j = Rijklξ

j +
h

∇laik −
h

∇kail + alp

v

∇paik − akp

v

∇pail. (8.2.21)

In view of (8.2.21), formula (8.2.19) takes the final form:

(
a

∇i
a

∇j − a

∇j
a

∇i
)

u = − a

R
pqijξq

v

∇pu. (8.2.22)

Similar but more cumbersome calculations show that, for a semibasic tensor field of
arbitrary degree, the next commutation formula is valid:

(
a

∇k
a

∇l − a

∇l
a

∇k
)

ui1...ir
j1...js

= − a

R
pqklξq

v

∇pu
i1...ir
j1...js

+

+
r∑

m=1

gpq

a

R
imqklu

i1...im−1pim+1...ir
j1...js

−
s∑

m=1

gjmq

a

R
pqklui1...ir

j1...jm−1pjm+1...js
. (8.2.23)

The semibasic tensor field (
a

Rijkl) defined by (8.2.21) will be called the curvature tensor

for the modified horizontal derivative
a

∇. As follows from (8.2.21), it is skew-symmetric in
the indices k and l but, in general, it is not skew-symmetric in i and j in contrast to an
ordinary curvature tensor. We shall need the following properties of the tensor:

a

Ripkqξ
pξq = Ripkqξ

pξq + ξp
h

∇paik + aipa
p
j =

a

Rpiqkξ
pξq, (8.2.24)

a

Ripkqξ
pξq =

a

Rkpiqξ
pξq,

a

Rpqirξ
pξqξr =

a

Ripqrξ
pξqξr = 0. (8.2.25)

Relations (8.2.25) follow from (8.2.24) with the help of (8.2.6). To prove the first of
equalities (8.2.24), we multiply (8.2.21) by ξl and summarize over l. Using (8.2.6), we
obtain

a

Rijklξ
jξl = Rijklξ

jξl + ξl
h

∇laik − akpξ
l

v

∇pail. (8.2.26)

It follows from (8.2.6) that

ξi
v

∇jaik = −aik. (8.2.27)

Transforming the last summand on the right-hand side of (8.2.26) with the help of (8.2.27),
we obtain the first of equalities (8.2.24). To prove the second one, we multiply (8.4.20)
by ξiξk and summarize over i and k:

a

Rijklξ
iξk = Rijklξ

iξk +
h

∇l(ξ
iξk

v

∇jaik) − ξk
h

∇k(ξ
i

v

∇jail) +

+ alpξ
iξk

v

∇p
v

∇jaik + ξiξk
v

∇paik ·
v

∇jalp − ξi
v

∇pail · ξk
v

∇jakp.
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Transforming the summands on the right-hand side of the last formula with the help of
(8.2.27), we arrive at the second of equalities (8.2.24).

Since the above-obtained properties of the operator
a

∇ are quite similar to the corre-

sponding properties of
h

∇, we can assert that an analog of the Pestov identity (4.4.9) is

valid for
a

∇. Nevertheless, we will give the detailed proof of this identity, since in Section
4.4 it was obtained only for real functions while here we need it for complex functions.

Lemma 8.2.1 Let M be a Riemannian manifold. For a function u ∈ C∞(TM), the
identity

2Re 〈 a

∇u,
v

∇(Hu)〉 = | a

∇u|2 +
a

∇ivi +
v

∇iw
i − a

Rijklξ
iξk

v

∇ju · v

∇lu (8.2.28)

holds, with

vi = Re
(
ξi

a

∇ju · v

∇ju − ξj

v

∇iu · a

∇ju
)

, (8.2.29)

wi = Re
(
ξj

a

∇iu · a

∇ju
)

. (8.2.30)

P r o o f. By (8.2.12),

2〈 a

∇u,
v

∇(Hu)〉 = 2
a

∇iu · v

∇i(ξj

a

∇ju) = 2| a

∇u|2 + 2ξj

a

∇iu · v

∇i

a

∇ju.

Therefore

4Re〈 a

∇u,
v

∇(Hu)〉 = 4| a

∇u|2 + 2ξj

a

∇iu · v

∇i

a

∇ju + 2ξj

a

∇iu · v

∇i

a

∇ju. (8.2.31)

We introduce a function ϕ by the equality

2ξj

a

∇iu · v

∇i

a

∇ju + 2ξj

a

∇iu · v

∇i

a

∇ju =
v

∇i

(
ξj

a

∇iu · a

∇ju + ξj

a

∇iu · a

∇ju
)

+

+
a

∇j
(
ξj

a

∇iu · v

∇iu + ξj

a

∇iu · v

∇iu
)
− a

∇i
(
ξj

v

∇iu · a

∇ju + ξj

v

∇iu · a

∇ju
)
− ϕ. (8.2.32)

Show that ϕ is independent of the second-order derivatives of the function u. To this
end express the derivatives of the products taking part in the last equality through the
derivatives of the factors. Using (8.2.13), obtain

ϕ = −2ξj

a

∇iu · v

∇i

a

∇ju − 2ξj

a

∇iu · v

∇i

a

∇ju +

+ 2| a

∇u|2 + ξj

v

∇i

a

∇iu · a

∇ju + ξj

a

∇iu · v

∇i

a

∇ju + ξj

v

∇i

a

∇iu · a

∇ju + ξj

a

∇iu · v

∇i

a

∇ju +

+ ξj

a

∇j
a

∇iu · v

∇iu + ξj

a

∇iu · a

∇j
v

∇iu + ξj

a

∇j
a

∇iu · v

∇iu + ξj

a

∇iu · a

∇j
v

∇iu −

− ξj

a

∇i
v

∇iu · a

∇ju − ξj

v

∇iu · a

∇i
a

∇ju − ξj

a

∇i
v

∇iu · a

∇ju − ξj

v

∇iu · a

∇i
a

∇ju.

After evident transformations, this equality takes the form

ϕ = 2| a

∇u|2 + ξj

a

∇iu ·
(

a

∇j
v

∇i −
v

∇i

a

∇j
)

u + ξj

a

∇iu ·
(

a

∇j
v

∇i −
v

∇i

a

∇j
)

u +
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+ ξj

a

∇ju ·
(

v

∇i

a

∇i − a

∇i
v

∇i

)
u + ξj

a

∇ju ·
(

v

∇i

a

∇i − a

∇i
v

∇i

)
u +

+ ξj

v

∇iu ·
(

a

∇j
a

∇i − a

∇i
a

∇j
)

u + ξj

v

∇iu ·
(

a

∇j
a

∇i − a

∇i
a

∇j
)

u.

Applying commutation formulas (8.2.15) and (8.2.22), obtain

ϕ = 2| a

∇u|2 +
a

R
pqijξqξj

v

∇iu · v

∇pu +
a

R
pqijξqξj

v

∇iu · v

∇pu.

The last two summands on the right-hand side of this formula are equal. Thus we derive

ϕ = 2| a

∇u|2 + 2
a

Rijklξ
iξk

v

∇ju · v

∇lu.

Inserting the last expression into (8.2.32) and then (8.2.32) into (8.2.31), we arrive at the
claim of the lemma.

We will now try to compensate the last term on the right-hand side of Pestov identity
(8.2.28). Since additional terms of the same kind can arise in applications of the identity,
we formulate our result in the following form.

Theorem 8.2.2 Let (M, g) be a CDRM and S ∈ C∞(β0
4M ; T 0M) be a real semibasic

tensor field on T 0M possessing the properties

Sipjqξ
pξq = Sjpiqξ

pξq = Spiqjξ
pξq, Sipqrξ

pξqξr = 0

and positive homogeneous of degree zero in ξ:

Sijkl(x, tξ) = Sijkl(x, ξ) (t > 0).

Assume that, for every (x, ξ) ∈ ΩM , the equation

D2y

dt2
+ (R + S)(t)y = 0 (8.2.33)

has no pair of conjugate points on the geodesic γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M ; here

[(R + S)(t)]pk = gip(Rijkl + Sijkl)(γ(t), γ̇(t))γ̇j(t)γ̇l(t).

Then there exists a real semibasic tensor field a = (aij) ∈ C∞(β2
0M ; T 0M) satisfying

conditions (8.2.4)–(8.2.6) and the equation

(
a

Rijkl + Sijkl)ξ
iξk = 0. (8.2.34)

P r o o f. By (8.2.24), equation (8.2.34) is equivalent to the next:

(Ha)ij + aipa
p
j + R̃ipjqξ

pξq = 0, (8.2.35)

where we put R̃ = R + S for brevity.
If the field a(x, ξ) is positively-homogeneous of degree 1 in ξ, then the left-hand side

of equation (8.2.35) is homogeneous of degree 2. Consequently, if we find a solution to
equation (8.2.35) on ΩM , then we obtain a solution on the whole T 0M with the help of
extension by homogeneity. Therefore we further consider equation (8.2.35) on ΩM .
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We represent ΩM as the union of disjoint one-dimensional submanifolds, the orbits of
the geodesic flow. Restricted to an orbit, (8.2.35) gives a system of ordinary differential
equations. For distinct orbits, these systems does not relate to one other. We have to
find a solution on every orbit in such a way that the family of the solutions forms a field
smooth on the whole ΩM . The last requirement can be satisfied by appropriate choosing
the initial values for the orbits. We start to realize our plan.

Given (x, ξ) ∈ ∂−ΩM , we consider a maximal geodesic γ = γx,ξ : [0, τ+(x, ξ)] → M
defined by the initial conditions γ(0) = x, γ̇(0) = ξ. Taking x = γ(t) and ξ = γ̇(t) in
(8.2.35), we obtain the system of the ordinary differential equations of the Riccati type:

(
Da

dt

)

ij
+ aipa

p
j + R̃ipjqγ̇

pγ̇q = 0. (8.2.36)

To prove the theorem, it suffices to establish existence of a symmetric solution (aij(t)) to
system (8.2.36) on the segment [0, τ+(x, ξ)], which depends smoothly on (x, ξ) ∈ ∂−ΩM
and satisfies the additional condition

aij(t)γ̇
j(t) = 0. (8.2.37)

Taking the convolution of (8.2.36) with γ̇j, we see that an arbitrary solution to system
(8.2.36) satisfies (8.2.37), provided this condition is satisfied for t = 0. Let us show that
a similar assertion is valid for symmetry. Indeed, a solution aij(t) to system (8.2.36) is
represented as aij = a+

ij + a−
ij where a+

ij is symmetric and a−
ij is skew-symmetric. Inserting

this expression into (8.2.36), we obtain




(
Da+

dt

)

ij

+ gpq
(
a+

ipa
+
qj + a−

ipa
−
qj

)
+ R̃ipjqγ̇

pγ̇q


 +

+




(
Da−

dt

)

ij

+ gpq
(
a+

ipa
−
qj + a−

ipa
+
qj

)

 = 0.

The expression in the first brackets is symmetric and the expression in the second brackets
is skew-symmetric. Consequently,

(
Da−

dt

)

ij

+ gpq
(
a+

ipa
−
qj + a−

ipa
+
qj

)
= 0.

The last equalities can be considered as a homogeneous linear system on a−
ij. This system,

together with the initial condition a−(0) = 0, implies that a− ≡ 0.
Thus, symmetry of the field (aij) and its orthogonality to the vector ξ are insured by

the choice of the initial value. We now consider the question of existence of a solution to
system (8.2.36). Raising the index i, we rewrite this system as:

(
Da

dt

)i

j
+ ai

pa
p
j + R̃i

j = 0 (R̃i
j = R̃i

pjqγ̇
pγ̇q)

or in matrix form
Da

dt
+ a2 + R̃ = 0. (8.2.38)
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We look for a solution to this equation in the form

a =
Db

dt
b−1 (8.2.39)

Inserting (8.2.39) into (8.2.38), we arrive at the equation

D2b

dt2
+ R̃b = 0. (8.2.40)

Conversely, if equation (8.2.40) has a nondegenerate solution b, then equation (8.2.38) is
satisfied by the matrix a defined by formula (8.2.39).

We denote by z = (zi
j(x, ξ; t)) the solution to equation (8.2.40) which satisfies the

initial conditions

z(0) = 0,
(

Dz

dt
(0)

)i

j
= δi

j. (8.2.41)

Observe that the field z(x, ξ; t) is smooth with respect to the set of its arguments. By
the condition of the theorem about the absence of conjugate points, the matrix zi

j(x, ξ; t)
is nondegenerate for 0 < t ≤ τ+(x, ξ). By initial conditions (8.2.41), there is t0 > 0

such that the matrices z(x, ξ; t) and Dz
dt (x, ξ; t) are positive-definite for 0 < t ≤ τ(x, ξ) =

min (t0, τ+(x, ξ)). Consequently, the matrix

b̃(x, ξ; t) =
Dz

dt
+ λz (8.2.42)

is nondegenerate for 0 ≤ t ≤ τ(x, ξ) and any λ > 0. The determinant of the matrix
z(x, ξ; t) is bounded from below by some positive constant on the segment t0 ≤ t ≤
τ+(x, ξ). Consequently, choosing a sufficiently large positive constant λ in (8.2.42), we
can guarantee that the matrix b̃(x, ξ; t) is nondegenerate for all (x, ξ; t) belonging to the
set

G = {(x, ξ; t) | (x, ξ) ∈ ∂+ΩM, 0 ≤ t ≤ τ+(x, ξ)}.
Thus, we have found a nondegenerate solution b̃ = (b̃i

j(x, ξ; t)) to equation (8.2.40)
depending smoothly on (x, ξ; t) ∈ G and satisfying the initial conditions

b̃i
j(0) = δi

j,

(
Db̃

dt
(0)

)i

j

= λδi
j. (8.2.43)

We now define

bi
j(x, ξ; t) = b̃i

j(x, ξ; t) − λtγ̇i
x,ξ(t)γ̇j,x,ξ(t) ((x, ξ; t) ∈ G). (8.2.44)

The matrix b = (bi
j) meets equation (8.3.24) and the initial conditions

bi
j(0) = δi

j,

(
Db

dt
(0)

)i

j

= λ(δi
j − ξiξj). (8.2.45)

Let us show that the matrix b(x, ξ; t) is nondegenerate for all (x, ξ; t) ∈ G. Indeed, let
γ = γx,ξ and η ∈ Tγ(t)M be a nonzero vector. We represent it as η = η̃ + µγ̇(t) where
η̃⊥γ̇(t) and |η̃|2 + µ2 > 0. Then

bi
j(t)η

j = (b̃i
j − λtγ̇iγ̇j)(η̃

j + µγ̇j) = b̃i
j η̃

j + µ(b̃i
j γ̇

j − λtγ̇i). (8.2.46)
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Equation (8.2.40) and initial conditions (8.2.43) imply that

b̃i
j(t)γ̇

j(t) = (1 + λt)γ̇i(t).

Inserting this expression into (8.2.46), we obtain

bi
j(t)η

j = b̃i
j(t)

[
η̃j +

µ

1 + λt
γ̇j(t)

]
. (8.2.47)

The vector in the brackets is nonzero, since λ > 0, t ≥ 0 and η̃⊥γ̇(t). Since the matrix
(b̃i

j(t)) is nondegenerate, the right-hand side of equality (8.2.47) is not equal to zero for
η 6= 0. Since this is true for any t, the matrix b = (bi

j(x, ξ; t)) is nondegenerate. Thus
we have constructed the nondegenerate solution b = (bi

j(x, ξ; t)) to equation (8.2.40),
which satisfies initial conditions (8.2.45). Consequently, the matrix a = (ai

j(x, ξ; t)) that
is defined by formula (8.2.39) satisfies equation (8.2.38) and the initial conditions

ai
j(x, ξ; 0) = λ(δi

j − ξiξj).

Lowering the index i, we obtain

aij(x, ξ; 0) = λ(gij − ξiξj).

Whence we see that the tensor aij(x, ξ; 0) is symmetric and orthogonal to the vector ξ.
As was noted, validity of these properties for t = 0 implies their validity for all t. The
theorem is proved.

In conclusion of the section we will obtain a Gauss-Ostrogradskĭı formula for the

divergence
a

∇iui, where u ∈ C∞(β0
1M) is a semibasic covector field. By definition (8.2.8)–

(8.2.10),

a

∇iui =
h

∇iui + Aiui =
h

∇iui + aip
v

∇pui +
v

∇ia
ip · up =

h

∇iui +
v

∇p(a
ipui). (8.2.48)

We now assume the field u to be homogeneous in its second argument:

u(x, tξ) = tλu(x, ξ) (t > 0).

We multiply equality (8.2.29) by dΣ2n−1, integrate it and transform the integrals on the
right-hand side of the so-obtained equality by the Gauss-Ostrogradskĭı formulas for the
horizontal and vertical divergences. As a result, we obtain

∫

ΩM

a

∇iui dΣ2n−1 =
∫

∂ΩM

νiui dΣ2n−2 + (λ + n − 1)
∫

ΩM

ξpa
ipui dΣ2n−1.

We observe that the integrand of the second integral on the right-hand side of this equality
is equal to zero by (8.2.6). We thus obtain the next Gauss-Ostrogradskĭı formula:

∫

ΩM

a

∇iui dΣ2n−1 =
∫

∂ΩM

〈ν, u〉 dΣ2n−2. (8.2.49)
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8.3 Proof of Theorem 8.1.1

First of all we note that to prove the theorem it suffices to establish estimate (8.1.7) for
a smooth function f .

For f ∈ C∞(M), we define a function u ∈ C∞(T 0M) by the equality

u(x, ξ) =

0∫

τ−(x,ξ)

f(γx,ξ(t)) exp


−|ξ|

0∫

t

ε(γx,ξ(s)) ds


 dt. (8.3.1)

This function satisfies the equation

Hu(x, ξ) + ε(x)|ξ|u(x, ξ) = f(x), (8.3.2)

the boundary conditions
u|∂−ΩM = 0, u|∂+ΩM = Iεf (8.3.3)

and the condition of homogeneity

u(x, λξ) = λ−1u(x, ξ) (λ > 0). (8.3.4)

Let a = (aij) ∈ C∞(β2
0M) be some semibasic tensor field satisfying conditions (8.2.4)–

(8.2.6); a choice of this field will be specified later. By
a

∇ we denote the modified horizontal
derivative that is defined with the help of a. We define a semibasic covector field y = (yi)
and a semibasic vector field z = (zi) on T 0M by the equalities

v

∇iu = − u

|ξ|2 ξi + yi, (8.3.5)

a

∇iu =
Hu

|ξ|2 ξi + zi. (8.3.6)

The summands on the right-hand side of each of these equalities are orthogonal to one
other. Indeed, taking the scalar product of each of these equalities and ξ, we obtain

ξi
v

∇iu = −u + 〈y, ξ〉, ξi

a

∇iu = Hu + 〈z, ξ〉. (8.3.7)

By (8.3.4) and (8.2.12), ξi
v

∇iu = −u and ξi

a

∇iu = Hu. Therefore (8.3.7) implies that
〈y, ξ〉 = 〈z, ξ〉 = 0. Thus, for |ξ| = 1, it follows from (8.3.6) that

| a

∇u|2 = |Hu|2 + |z|2. (8.3.8)

Applying the operator
v

∇ to equation (8.3.2), we obtain

v

∇Hu + ε|ξ| v

∇u +
εu

|ξ|ξ = 0.

Together with (8.3.5) this implies that

v

∇Hu = −ε|ξ|y.
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Taking the scalar product of the last equality with
a

∇u and using (8.3.6), we obtain

〈 a

∇u,
v

∇(Hu)〉 = −ε|ξ|〈z, y〉.

From the last equality, we derive the estimate

2|〈 a

∇u,
v

∇(Hu)〉| ≤ 2(|ε| |ξ| |y|) |z| ≤ |ε|2|ξ|2|y|2 + |z|2. (8.3.9)

Let us write down the Pestov identity (8.2.28) for the function u. Estimating the
left-hand side of the identity by (8.3.9) and replacing the first summand on its right-hand
side with expression (8.3.8), we obtain the inequality

|Hu|2 ≤ |ε|2|y|2 − a

∇ivi −
v

∇iw
i +

a

Rijklξ
iξk

v

∇ju · v

∇lu, (8.3.10)

which is valid for |ξ| = 1; here the fields (vi) and (wi) are defined by formulas (8.2.29),
(8.2.30).

We transform the last term on the right-hand side of (8.3.10) by using (8.3.5) and the

symmetries of the tensor
a

Rijkl:

a

Rijklξ
iξk

v

∇ju · v

∇lũ =
a

Rijkl(ξ ∧
v

∇u)ij(ξ ∧ v

∇u)kl =
a

Rijkl(ξ ∧ y)ij(ξ ∧ y)kl =
a

Rijklξ
iξkyjyl.

Inserting the last expression into (8.3.10), we obtain

|Hu|2 ≤ − a

∇ivi −
v

∇iw
i +

(
a

Rijklξ
iξk + |ε|2gjl

)
yjyl.

Using the relations |ξ|2 = gijξ
iξj = 1 and 〈y, ξ〉 = gijξ

iyj = 0, the last inequality takes
the form:

|Hu|2 ≤ − a

∇ivi −
v

∇iw
i +

[
a

Rijkl + |ε|2(gikgjl − gilgjk)
]
ξiξkyjyl. (8.3.11)

Taking a in (8.3.11) to be some tensor field that exists by Theorem 8.2.2 with Sijkl =
|ε|2(gikgjl − gilgjk), we transform this inequality as follows

|Hu|2 ≤ − a

∇ivi −
v

∇iw
i.

We multiply the last inequality by the volume form dΣ = dΣ2n−1, integrate it over ΩM
and apply Gauss-Ostrogradskĭı formulas (8.2.49) and (3.6.35). As a result, we obtain the
inequality ∫

ΩM

|Hu|2 dΣ ≤ −
∫

∂ΩM

〈v, ν〉 dΣ2n−2 − (n − 2)
∫

ΩM

〈w, ξ〉 dΣ.

The coefficient of the second integral on the right-hand side is due to the homogeneity
of the field w which ensues from (8.2.26) and (8.3.4). It also follows from (8.2.26) that
〈w, ξ〉 = |Hu|2 and, consequently, the last inequality takes the form

(n − 1)
∫

ΩM

|Hu|2 dΣ ≤ −
∫

∂ΩM

〈v, ν〉 dΣ2n−2. (8.3.12)
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In the same way as in the previous chapters (see the arguments at the end of Section
4.6 and in the beginning of Section 4.7) we show that boundary conditions (8.3.3) and
formula (8.2.29) imply the estimate

∣∣∣∣∣∣

∫

∂ΩM

〈v, ν〉 dΣ2n−2

∣∣∣∣∣∣
≤ C‖Iεf‖2

1

with a constant C dependent on (M, g) and the tensor field a but independent of f . In
view of the estimate, (8.3.12) implies the inequality

‖Hu‖2 =
∫

ΩM

|Hu|2 dΣ ≤ C‖Iεf‖2
1. (8.3.13)

It remains to observe that equation (8.3.2) implies the estimate

‖f‖2
0 ≤ 2‖Hu‖2 + 2ε2

0‖u‖2 (8.3.14)

where ε0 is defined by formula (8.1.11). With the help of the Poincaré inequality (Lemma
4.5.1), the first of the boundary conditions (8.3.3) implies the estimate

‖u‖2 ≤ C1‖Hu‖2.

Whence and from (8.3.14) it follows that

‖f‖2
0 ≤ C2‖Hu‖2. (8.3.15)

Finally, (8.3.13) and (8.3.15) imply (8.1.7). The theorem is proved.

8.4 The volume of a simple compact

Riemannian manifold

Recall that in Section 4.8 we accepted the next definition: a compact Riemannian manifold
(M, g) is called simple if the boundary ∂M is strictly convex and every two points x, y ∈ M
are joint by a unique geodesic which depends smoothly on x, y. The definition implies
that (M, g) is a CDRM without conjugate points. The converse claim is also valid: a
CDRM without conjugate points is simple; we will not prove this assertion here (compare
with one of remarks after the formulation of Theorem 4.3.3). Given a simple Riemannian
manifold, the distance function ρ(x, y) is smooth for x 6= y.

As was established in Section 4.8, for a simple compact Riemannian manifold (M, g),
the function τ+ : ∂−ΩM → R (which can be called the angle hodograph) is uniquely
determined by the hodograph Γg : ∂M × ∂M → R.

Recall that, for 0 6= ξ ∈ TxM , by Pξ we denote the orthogonal projection onto the
hyperplane orthogonal to ξ, i.e., Pξη = η − 〈ξ, η〉ξ/|ξ|2.

The main result of the current section is the next
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Theorem 8.4.1 Let (M, g) be a simple compact Riemannian manifold of dimension n.
The Riemannian volume V n(M) is expressed through the angle hodograph τ+ : ∂ΩM → R
by the formula

V n(M) = − Γ(n/2)

2(n − 1)πn/2

∫

∂M

∫

Ω−
x M

〈Pξ

v

∇τ+, ν〉 dωx(ξ) dV n−1(x), (8.4.1)

where ν is the unit vector of the outer normal to the boundary, dV n−1 is the Riemannian
volume of ∂M , Ω−

x M = {ξ ∈ ΩxM | 〈ξ, ν〉 ≤ 0} and dωx is the angle measure on the
sphere ΩxM .

Possibly, formula (8.4.1) will be clearer after the next remark: the vector Pξ

v

∇τ+(x, ξ)
is the gradient of the restriction of the function τ+(x, ·) to the unit sphere ΩxM , where the
latter is considered as a Riemannian manifold whose metric is induced by the Euclidean
structure of TxM (which in turn is induced by the Riemannian metric g).

We introduce the notation ∂−TM = {(x, ξ) ∈ TM | x ∈ ∂M, 〈ξ, ν〉 ≤ 0}. Our proof
of Theorem 8.4.1 is based on the next claim which will also be used in the next section.

Lemma 8.4.2 Let (M, g) be a simple compact Riemannian manifold. There exists a
semibasic tensor field a ∈ C∞(β2

0M ; T 0M \ ∂−TM) satisfying (8.2.4)–(8.2.6) and possess-
ing the next two properties:

(1) The corresponding curvature tensor satisfies the relation

a

Rijklξ
iξk = 0. (8.4.2)

(2) Let us fix a point y0 ∈ ∂M and define the unit vector field η on M \{y0} by putting
η(x) = γ̇x(0)/|γ̇x(0)|, where γx : [−1, 0] → M is the geodesic satisfying the boundary
conditions γx(−1) = y0, γx(0) = x. Then the equality

∇[f(x, η(x))] = (
a

∇f)(x, η(x)). (8.4.3)

holds for every function f ∈ C∞(TM).

P r o o f. It suffices to define aij(x, ξ) in the case |ξ| = 1; for the other values of ξ,
the field a(x, ξ) is extendible by homogeneity (compare with the arguments after formula
(8.2.35)). Let (x0, ξ0) ∈ ΩM \ ∂−ΩM and γ = γx0,ξ0 : [τ−(x0, ξ0), 0] → M be the geodesic
satisfying the initial conditions γ(0) = x0, γ̇(0) = ξ0. Then y0 = γ(τ−(x0, ξ0)) ∈ ∂M . We
construct the unit vector field η(x) on M \ {y0} as described in the formulation of the
lemma and define

ai
j(x0, ξ0) = ηi

; j(x0). (8.4.4)

As usual, we put aij = gjkai
k. Let us show the field a = (aij) to satisfy all claims of the

lemma.
First of all a ∈ C∞(ΩM \ ∂−ΩM), by definition. Since the vector field η(x) is of unit

length,
ηi

; j(x)ηi(x) = 0. (8.4.5)

Noting that
η(x0) = ξ0 (8.4.6)
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and putting x = x0 in (8.4.5), we obtain

ai
jξi = 0. (8.4.7)

To prove symmetry of the field aij, we fix (x0, ξ0), introduce the function ρ̃(x) =
ρ(x, y0), where ρ is the distance function in the metric g, and note that η(x) = ∇ρ̃(x).
Consequently,

gikη
k

; j = ηi ; j = ρ̃ ; ij

Thus, the tensor a(x0, ξ0) coincides with the value of the Hessian of the function ρ̃ at the
point x0 and, consequently, is symmetric.

To prove property (8.4.3), we differentiate f(x, η(x)) as a composite function:

∇i[f(x, η(x))] = gij ∂

∂xj
[f(x, η(x))] = gij

[
∂f

∂xj
(x, η(x)) +

∂f

∂ξk
(x, η(x))

∂ηk

∂xj
(x)

]
. (8.4.8)

On the other hand, by the definition of covariant derivatives,

ηk
; j(x) =

∂ηk

∂xj
(x) + Γk

jl(x)ηl(x),

(
a

∇if)(x, η(x)) = gij

[
∂f

∂xj
(x, η(x)) − Γk

jl(x)ηl(x)
∂f

∂ξk
(x, η(x))

]
+ aik(x, η(x))

∂f

∂ξk
(x, η(x)).

Expressing the partial derivatives ∂ηk/∂xj and gij∂f/∂xj from the last two equalities and
inserting these values into (8.4.8), we obtain

∇i [f(x, η(x))] = (
a

∇if)(x, η(x)) +
[
gijηk

; j(x) − aik(x, η(x))
] ∂f

∂ξk
(x, η(x)).

For x = x0, the expression in the brackets is equal to zero, and we thus arrive at (8.4.3).
Finally, we prove (8.4.2). As has been noted, the field ηi ; j = gikη

k
; j is symmetric

and, consequently, equality (8.4.5) can be rewritten as follows:

ηi
; jη

j = 0.

Differentiating this equality, we obtain

ηi
; jkη

j + ηi
; jη

j
; k = 0.

Changing the limits of differentiation in the first factor with the help of (3.2.11), we
transform this equation as follows

ηi
; kjη

j + ηi
; jη

j
; k + Ri

lkjη
lηj = 0. (8.4.9)

Formulas (8.4.4) and (8.4.6) imply the similar equality at any point of the geodesic γ, i.e.,

ηi
; j(γ(t)) = ai

j(γ(t), γ̇(t)), (8.4.10)

ηi(γ(t)) = γ̇i(t), (8.4.11)
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Putting x = γ(t) in (8.4.9) and substituting values (8.4.10)–(8.4.11) for ηi and ηi
; j, we

see that the tensor field a = a(γ(t), γ̇(t)) along the geodesic γ satisfies the equation

(
Da

dt

)i

k
+ ai

ja
j
k + Ri

lkj γ̇
lγ̇j = 0.

Validity of this equation for every geodesic γ is equivalent to condition (8.4.2), as has
been established in the proof of Theorem 8.2.2. The lemma is proved.

Note that the field a has a singularity of the type τ−1
− near ∂−TM .

Let us apply formula (8.4.3) in the case f = τ−. Given (x0, ξ0) ∈ ΩM \ ∂−ΩM ,
let y0 = γx0,ξ0(τ−(x0, ξ0)) stands for the point y0 participating in the formulation of the
lemma. Then τ−(x, η(x)) = −ρ(x, y0) and η(x0) = ξ0 = (∇xρ)(x0, y0). Putting f = τ−
and x = x0 in (8.4.3), we obtain

−ξ0 = −(∇xρ)(x0, y0) = (
a

∇τ−)(x0, ξ0).

From this, taking the homogeneity of τ− into account, we arrive at the relation

a

∇τ− = − ξ

|ξ| (8.4.12)

which holds on T 0M \ ∂−TM .
P r o o f of Theorem 8.4.1. Let a be the tensor field constructed in Lemma 8.4.2. By

(8.4.2), for a real function u ∈ C∞(T 0M \ ∂−TM), the Pestov identity (8.2.28) has the
form

2〈 a

∇u,
v

∇(Hu)〉 = | a

∇u|2 +
a

∇ivi +
v

∇iw
i, (8.4.13)

where

vi = ξi

a

∇ju · v

∇ju − ξj

v

∇iu · a

∇ju, (8.4.14)

wi = ξj

a

∇iu · a

∇ju. (8.4.15)

By (8.4.12), for u = τ− these formulas look like

1

|ξ|2 = − a

∇ivi −
v

∇iw
i, (8.4.16)

vi = − 1

|ξ|2 ξiξ
j

v

∇j
τ− +

v

∇iτ− = (Pξ

v

∇τ−)i, (8.4.17)

wi =
ξi

|ξ|2 . (8.4.18)

Let ε be a small positive number and Mε = {x ∈ M | ρ(x, ∂M) ≥ ε}. We integrate
equality (8.4.16) over ΩMε and transform the divergent terms according to the Gauss-
Ostrogradskĭı formulas (4.6.35) and (8.2.49). As a result we arrive at the equality

∫

ΩMε

dΣ = −
∫

∂ΩMε

〈v, ν〉 dΣ2n−2 − (n − 2)
∫

ΩMε

〈w, ξ〉 dΣ. (8.4.19)
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By (8.4.18), 〈w, ξ〉 = 1 for |ξ| = 1. So (8.4.19) is rewritten as:

(n − 1)
∫

ΩMε

dΣ = −
∫

∂ΩMε

〈Pξ

v

∇τ−, ν〉 dΣ2n−2. (8.4.20)

The integrand on the right-hand side of this equality has no singularity near ∂−ΩM
and, moreover, it vanishes on ∂−ΩM . So we can pass to the limit in (8.4.20) as ε → ∞.
Passing to the limit and using representations (3.6.34) for dΣ = dΣ2n−1 and dΣ2n−2, we
obtain

(n − 1)
∫

M

∫

ΩxM

dωx(ξ) dV n(x) = (−1)n+1
∫

∂M

∫

Ω+
x M

〈Pξ

v

∇τ−, ν〉 dωx(ξ) dV n−1(x). (8.4.21)

The left-hand side of (8.4.21) is equal to (n−1)ωnV n(M), where ωn = 2πn/2/Γ(n/2) is the
volume of the unit sphere in Rn. We change the integration variable on the right-hand
side of (8.4.21) by the formula ξ = −η. Under this change the form dωx(ξ) transfers into

(−1)ndωx(η) and the field Pξ

v

∇τ−, into the field Pη

v

∇τ+. As a result we arrive at (8.4.1).
The theorem is proved.

8.5 Determining a Riemannian metric in

a prescribed conformal class

Let M be a compact manifold. We introduce a Riemannian metric on M and denote
the distance between points x, y ∈ M in this metric by ρ(x, y). Given a function f :
M × M → C, we introduce the notation

‖f‖W 1
1 (M×M, k) =

=
∫

M

∫

M

[
ρ1−k(x, y) (|∇xf(x, y)| + |∇yf(x, y)|) + ρ−k(x, y)|f(x, y)|

]
dV (x) dV (y), (8.5.1)

where dV is the Riemannian volume form. Under any change of the metric, norm (8.5.1)
is replaced with an equivalent one.

Recall that, given a Riemannian manifold (M, g) and a point x ∈ M , the exponential
mapping expx : TxM ⊃ U → M is defined by the equality expx(ξ) = γx,ξ(1), where γx,ξ(t)
is the geodesic satisfying the initial conditions γx,ξ(0) = x, γ̇x,ξ(0) = ξ. The exponential
mapping is defined for ξ ∈ TxM such that the geodesic γx,ξ(t) is defined for t ∈ [0, 1].
Given ξ ∈ U , by dξ expx : TxM → Texpx(ξ)M we denote the differential of the exponential
mapping.

Theorem 8.5.1 Let (M, g0) be an n-dimensional compact Riemannian manifold with
boundary. Given positive numbers λ0 and k0, by Λ(λ0, k0) we denote the set of real func-
tions λ ∈ C∞(M) satisfying the inequalities

λ0 ≤ λ ≤ λ−1
0 (8.5.2)

and the next two conditions:
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(1) the Riemannian metric
g = λ2g0 (8.5.3)

is such that (M, g) is a simple Riemannian manifold;
(2) if (x, ξ) ∈ TM is such that the exponential mapping expx of metric (8.5.3) is

defined at the point ξ, then its differential satisfy the inequalities

k0|η| ≤ |(dξ expx)η| ≤ k−1
0 |η| (η ∈ TxM). (8.5.4)

Then, for every two functions λ, λ̃ ∈ Λ(λ0, k0) and the corresponding metrics g = λ2g0

and g̃ = λ̃2g0, the estimate

‖λ − λ̃‖2
L2(M) ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M, n−1) (8.5.5)

holds with a constant C depending only on (M, g0), λ0 and k0. Here Γg and Γg̃ are the
hodographs of the metrics g and g̃.

Note that the norm

‖Γg‖W 1
1 (∂M×∂M, n−1) =

∫

∂M

∫

∂M

[
ρ2−n

0 (|∇xΓg| + |∇yΓg|) + ρ1−n
0 |Γg|

]
dV n−1

0 (x) dV n−1
0 (y)

is finite for every metric g, since its hodograph satisfies the estimate Γg(x, y) ≤ Cg ρ0(x, y)
with some constant Cg, where ρ0 is the distance function of the metric g0.

P r o o f. Let us fix a function λ ∈ Λ(λ0, k0) and denote g = λ2g0. Let a be the
semibasic tensor field constructed in Lemma 8.4.2 for the metric g. By Lemma 8.2.1, for
every real function u ∈ C∞(T 0M), the Pestov identity (8.4.13) holds. Both parts of this
identity are quadratic forms in the function u. Equating the correspondent symmetric
bilinear forms, we obtain the identity

〈 a

∇u,
v

∇(Hũ)〉 + 〈 a

∇ũ,
v

∇(Hu)〉 = 〈 a

∇ũ,
a

∇u〉 +
a

∇ivi +
v

∇iw
i (8.5.6)

which holds for every real functions u, ũ ∈ C∞(T 0M); here

vi =
1

2

(
ξi

a

∇ju · v

∇jũ + ξi

a

∇jũ · v

∇ju − ξj

v

∇iu · a

∇jũ − ξj

v

∇iũ · a

∇ju
)

, (8.5.7)

wi =
1

2

(
ξj

a

∇iu · a

∇jũ + ξj

a

∇iũ · a

∇ju
)

. (8.5.8)

Let τ−(x, ξ) be the function corresponding to the metric g. We put u = τ− in (8.5.6)–
(8.5.8), and assume the function ũ to be positively homogeneous of degree −1 in its second
argument:

ũ(x, tξ) = t−1ũ(x, ξ) (t > 0). (8.5.9)

The left-hand side of (8.5.6) is equal to zero. Indeed, by (8.4.12),

〈 a

∇τ−,
v

∇(Hũ)〉 + 〈 a

∇ũ,
v

∇(Hτ−)〉 = − 1

|ξ|2 ξi
v

∇i(Hũ) − 〈 a

∇ũ,
v

∇(1)〉 = 0,

since the function Hũ is homogeneous of degree zero. In view of (8.4.12) into account,
formulas (8.5.6)–(8.5.8) take the form

1

|ξ|2Hũ +
v

∇iw
i =

a

∇ivi, (8.5.10)
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vi =
1

2

(
ξi

v

∇jτ− · a

∇jũ − ξj

v

∇iτ− · a

∇jũ +
ξi

|ξ|2 ũ +
v

∇iũ

)
, (8.5.11)

wi =
1

2

(
a

∇iũ +
ξi

|ξ|2Hũ

)
. (8.5.12)

We choose a small ε > 0 and denote Mε = {x ∈ M | ρ(x, ∂M) ≥ ε}, where ρ is the
distance function in the metric g. Integrating equality (8.5.10) over ΩMε and transforming
the divergent terms by the Gauss-Ostrogradskĭı formulas, we obtain

∫

ΩMε

(Hũ + (n − 2)〈w, ξ〉) dΣ =
∫

∂ΩMε

〈v, ν〉 dΣ2n−2, (8.5.13)

where ν is the unit vector of the outer normal to ∂ΩMε. By (8.5.11) and (8.5.12),

〈w, ξ〉 = Hũ,

〈v, ν〉 =
1

2

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jũ +
〈ξ, ν〉
|ξ|2 ũ + 〈ν, v

∇ũ〉
]
.

Inserting these expressions into (8.5.13), we obtain

∫

ΩMε

Hũ dΣ =
1

2(n − 1)

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jũ + 〈ν, v

∇ũ〉 + 〈ξ, ν〉ũ
]
dΣ2n−2.

(8.5.14)
Formula (8.5.14) holds for every function ũ satisfying the homogeneity condition

(8.5.9). In particular, putting ũ = τ− and taking (8.4.12) into account, we conclude

−
∫

ΩMε

dΣ =
1

2(n − 1)

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jτ− + 〈ν, v

∇τ−〉 + 〈ξ, ν〉τ−
]
dΣ2n−2.

(8.5.15)
Taking the difference of (8.5.14) and (8.5.15) and introducing the notation

w = ũ − τ−, (8.5.16)

we obtain ∫

ΩMε

(1 + Hũ) dΣ =

=
1

2(n − 1)

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jw + 〈ν, v

∇w〉 + 〈ξ, ν〉w
]
dΣ2n−2. (8.5.17)

We specialize now the choice of the function ũ in (8.5.16). Let λ̃ be a function belonging
to the class Λ(λ0, k0) and g̃ = λ̃2g0 be the corresponding metric. Given (x, ξ) ∈ T 0M , by
γx,ξ : [τ−(x, ξ), 0] → M we denote the geodesic of the metric g which satisfies the initial
conditions γx,ξ(0) = x, γ̇x,ξ(0) = ξ and put

ũ(x, ξ) = − ρ̃(x, γx,ξ(τ−(x, ξ)))

|ξ| , (8.5.18)
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where ρ̃ is the distance in the metric g̃ and |ξ| = (gijξ
iξj)1/2 is the modulus of the vector

ξ in the metric g. Let us show that under such choice the integrand on the right-hand
side of (8.5.17) can be estimated as follows:

1 + Hũ ≥ 1 − λ̃

λ
. (8.5.19)

Indeed, let us fix (x, ξ) ∈ T 0M and denote y = γx,ξ(τ−(x, ξ)). We join the points y and x
by a geodesic γ̃ of the metric g̃ and denote by η the tangent vector, at the point x to this
geodesic, which has the unit length in the metric g̃, i.e., |η|∼ = 1. By the formula for the
first variation for the length of a geodesic [41],

d

dt

∣∣∣∣∣
t=0

[ρ̃(γx,ξ(t), y)] = 〈ξ, η〉∼, (8.5.20)

where 〈 , 〉∼ is the scalar product in the metric g̃.
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Introducing the notation

µ̃(x, ξ) = ρ̃(x, γx,ξ(τ−(x, ξ))), (8.5.21)

we can write

Hµ̃ = ξi
h

∇iµ̃ = ξi

(
∂µ̃

∂xi
− Γk

ijξ
j ∂µ̃

∂ξk

)
. (8.5.22)

On the other hand, differentiating the equality

ρ̃(γx,ξ(t), y) = µ̃(γx,ξ(t), γ̇x,ξ(t)) (y = γx,ξ(τ−(x, ξ)))

with respect to t, we obtain

d

dt
[ρ̃(γx,ξ(t), y)] =

∂µ̃

∂xi
(γx,ξ(t), γ̇x,ξ(t))γ̇

i
x,ξ(t) +

∂µ̃

∂ξi
(γx,ξ(t), γ̇x,ξ(t))γ̈

i
x,ξ(t).

Putting t = 0 here and using equation (1.2.5) for geodesics, we conclude

d

dt

∣∣∣∣∣
t=0

[ρ̃(γx,ξ(t), y)] =
∂µ̃

∂xi
(x, ξ)ξi − ∂µ̃

∂ξi
(x, ξ)Γi

jk(x)ξjξk.
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Comparing the last equality with (8.5.22), we see that

Hµ̃(x, ξ) =
d

dt

∣∣∣∣∣
t=0

[ρ̃(γx,ξ(t), y)] .

Together with (8.5.20), the last formula gives

Hµ̃(x, ξ) = 〈ξ, η〉∼.

Combining this equality with (8.5.18) and (8.5.21), we obtain

Hũ(x, ξ) = − 1

|ξ|Hµ̃(x, ξ) = −〈ξ, η〉∼
|ξ| (8.5.23)

We now recall that g̃ = λ̃2

λ2 g and |η|∼ = 1. So (8.5.23) implies the inequality

|Hũ(x, ξ)| ≤ |ξ|∼|η|∼
|ξ| =

λ̃

λ
|η|∼ =

λ̃

λ
.

Thus (8.5.19) is proved.
With the help of (8.5.19), formula (8.5.17) gives the inequality

∫

Mε

(
1 − λ̃

λ

)
dV n ≤

≤ 1

2ωn(n − 1)

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jw + 〈ν, v

∇w〉 + 〈ξ, ν〉w
]
dΣ2n−2. (8.5.24)

Here dV n is the Riemannian volume form of the metric g and ωn is the volume of the unit
sphere in Rn.

Let us now make use of the next claim.

Lemma 8.5.2 For the function w given by formulas (8.5.16) and (8.5.18), the right-hand
side of (8.5.24) can be estimated as follows:

lim
ε→0

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jw + 〈ν, v

∇w〉 + 〈ξ, ν〉w
]
dΣ2n−2 ≤

≤ C‖Γg − Γg̃‖W 1
1 (∂M×∂M, n−1), (8.5.25)

where a constant C depends only on (M, g0), λ0 and k0.

The proof of the lemma will be given at the end of the section, and now we finish
proving the theorem with its help. From now on we agree to denote various constants
depending only on (M, g0), λ0 and k0 by the same letter C.

Estimating the right-hand side of (8.5.24) with the help of (8.5.25) and passing to the
limit as ε → 0, we obtain

∫

M

(
1 − λ̃

λ

)
dV n ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M, n−1). (8.5.26)
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The volume forms dV n and dV n
0 of the metrics g and g0 are connected by the equality

dV n = λndV n
0 ; so (8.5.26) can be rewritten in the form

∫

M

(λ − λ̃)λn−1dV n
0 ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M, n−1).

The metrics g and g̃ are equal in rights, so we can write the second inequality

∫

Mε

(λ̃ − λ)λ̃n−1dV n
0 ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M,n−1).

Summing the last two inequalities, we obtain

∫

M

(λ − λ̃)(λn−1 − λ̃n−1) dV n
0 ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M, n−1). (8.5.27)

Condition (8.5.2) implies the relation

(λ − λ̃)(λn−1 − λ̃n−1) = (λ − λ̃)2(λn−2 + λn−3λ̃ + . . . + λ̃n−2) ≥ (n − 1)λn−2
0 (λ − λ̃)2.

Therefore (8.5.27) implies the estimate

∫

M

(λ − λ̃)2 dV n
0 ≤ C‖Γg − Γg̃‖W 1

1 (∂M×∂M, n−1)

which coincides with (8.5.5). The theorem is proved.
P r o o f of Lemma 8.5.2 is based on the next two observations. First, it follows from

definition (8.5.16), (8.5.18) of the function w that the equality

w(x, ξ) = Γg(x, y) − Γg̃(x, y) (8.5.28)

holds for (x, ξ) ∈ ∂ΩM , where y = γx,ξ(τ−(x, ξ)). Second, the integrand in (8.5.25) de-

pends only on values of the function w on ∂ΩMε, since the vector βj = νi(ξi

v

∇jτ−−ξj

v

∇iτ−)
is tangent to ∂Mε. To make use of these observations, we will change the integration vari-
ables of integral (8.5.25) in two steps.

First of all, we represent integral (8.5.25) as

∫

∂ΩMε

[
νi

(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jw + 〈ν, v

∇w〉 + 〈ξ, ν〉w
]
dΣ2n−2 =

=
∫

∂Mε

(I1(x) + I2(x)) dV n−1(x), (8.5.29)

where

I1(x) =
∫

ΩxM

νi
(
ξi

v

∇jτ− − ξj

v

∇iτ−

)
a

∇jw dωx(ξ), (8.5.30)

I2(x) =
∫

ΩxM

(
〈ν, v

∇w〉 + 〈 ξ

|ξ|2 , ν〉w
)

dωx(ξ). (8.5.31)
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We change the integration variable in (8.5.30) and (8.5.31) by the formula

η =
−τ−(x, ξ)

|ξ| ξ. (8.5.32)

Since the function τ− is homogeneous of degree −1, it follows from (8.5.32) that

−τ−(x, η) = |ξ|, −τ−(x, ξ) = |η| (8.5.33)

and the inverse of mapping (8.5.32) coincides with (8.5.32):

ξ =
−τ−(x, η)

|η| η. (8.5.34)

Mapping (8.5.32) transfers the sphere ΩxM into the hypersurface ΥxM = {η ∈ TxM |
−τ−(x, η) = 1} of TxM . Let dSn−1

x be the volume form on ΥxM induced by the Euclidean
structure of the space TxM (which, in turn, is induced by the Riemannian metric g). The
Jacobian of the mapping ΩxM → ΥxM, ξ 7→ η is easily seen to be equal to

dωx(ξ)

dSn−1
x (η)

=
| cos α|
|η|n−1

(8.5.35)

where α is the angle between the vectors
v

∇τ−(x, ξ) and ξ. Using homogeneity of τ− and
equalities (8.5.33), we obtain for ξ ∈ ΩxM

cos α =
〈 v

∇τ−(x, ξ), ξ〉
| v

∇τ−(x, ξ)|
=

−τ−(x, ξ)

| v

∇τ−(x, ξ)|
=

|η|
|η|2| v

∇τ−(x, η)|
=

1

|η|| v

∇τ−(x, η)|
.

Inserting this expression into (8.5.35), we find

dωx(ξ)

dSn−1
x (η)

=
1

|η|n| v

∇τ−(x, η)|
.

Since the integrands in (8.5.30) and (8.5.31) are homogeneous of degree −2, they are
multiplied by |η|2 under the change (8.5.32). Thus, after the change, integrals (8.5.30)
and (8.5.31) take the form

I1(x) =
∫

ΥxM

|η|2−n| v

∇τ−(x, η)|−1νj
(
ηj

v

∇iτ− − ηi

v

∇jτ−

)
a

∇iw dSn−1
x (η), (8.5.36)

I2(x) =
∫

ΥxM

|η|2−n| v

∇τ−(x, η)|−1

(
〈ν, v

∇w〉 + 〈ν, η

|η|2 〉w
)

dSn−1
x (η). (8.5.37)

For x sufficiently close to ∂M and not belonging to ∂M , the semibasic covector field

αi(x, η) = |η|−1| v

∇τ−|−1νj
(
ηj

v

∇iτ− − ηi

v

∇jτ−

)
(8.5.38)

is smooth and bounded: |α| ≤ 2. Consequently, formula (8.5.36) assumes the form (we
return to denoting the integration variable by ξ)

I1(x) =
∫

ΥxM

|ξ|3−nαi

a

∇iw dSn−1
x (ξ). (8.5.39)
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Let us restrict the function w(x, η) to the hypersurface ΥxM ⊂ TxM considered as a
Riemannian manifold with the metric induced by the Euclidean structure of TxM , and let
gradηw denotes the gradient of the restriction. We will estimate the integrand in (8.5.37)
through |w| + |gradηw|. To this end we introduce the notation

ζ = ν − 〈ν, v

∇τ−〉η. (8.5.40)

Using homogeneity of τ−, one can easily see that the vector ζ is orthogonal to
v

∇τ− and,
consequently, is tangent to the hypersurface ΥxM = {η | − τ−(x, η) = 1}. Therefore the
inequality

〈ζ,
v

∇w〉 ≤ |ζ| · |gradηw| (8.5.41)

holds. Using (8.5.40) and (8.5.41), we estimate the integrand of (8.5.37):

|η|2−n| v

∇τ−|−1

(
〈ν, v

∇w〉 + 〈ν, η

|η|2 〉w
)

=

= |η|2−n| v

∇τ−|−1

(
〈ζ,

v

∇w〉 + 〈ν, v

∇τ−〉w + 〈ν, η

|η|2 〉w
)
≤

≤ |η|2−n| v

∇τ−|−1

(
|ζ| · |gradηw| + | v

∇τ−| · |w| + 1

|η| |w|
)

=

= |ζ| · |η|2−n| v

∇τ−|−1|gradηw| + |η|2−n
(
1 + |η|−1| v

∇τ−|−1
)
|w|. (8.5.42)

By the relation 〈η,
v

∇τ−〉 = −τ−, the inequality

1 ≤ |η| · | v

∇τ−(x, η)| (8.5.43)

holds for η ∈ ΥxM . Besides, (8.5.40) implies the estimate

|ζ| ≤ 1 + |η| · | v

∇τ−(x, η)|.

which together with (8.5.43) gives

|ζ| ≤ 2|η| · | v

∇τ−|, |η|−1| v

∇τ−1
− | ≤ 1. (8.5.44)

With the help of (8.5.44), from (8.5.42) we obtain

|η|2−n| v

∇τ−|−1

(
〈ν, v

∇w〉 + 〈ν, η

|η|2 〉w
)
≤ 2|η|3−n|gradηw| + 2|η|2−n|w|.

On using this inequality, (8.5.37) implies the estimate (we return to denoting the integra-
tion variable by ξ)

I2(x) ≤ 2
∫

ΥxM

(
|ξ|3−n|gradξw| + |ξ|2−n|w|

)
dSn−1

x (ξ). (8.5.45)
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We now implement the second change of the integration variable ξ 7→ y in (8.5.39)
and (8.5.45) by the formula

y = expx(−ξ) = ex(ξ) (8.5.46)

(the second equality is the definition of the right-hand side). Since the hypersurface ΥxM
is defined by the equation τ−(x, ξ) = −1, it is transferred just into ∂M under mapping
(8.5.46). By the same reason,

|ξ| = ρ(x, y) (8.5.47)

where ρ is the distance in the metric g. Thus, after the change (8.5.46), relations (8.5.39)
and (8.5.45) transform to the next:

I2(x) ≤ 2
∫

∂M

(
ρ3−n|(gradξw) ◦ e−1

x | + |ρ|2−n|w ◦ e−1
x |

) dSn−1
x (ξ)

dV n−1(y)
dV n−1(y),

I1(x) =
∫

∂M

ρ3−n
(
αi

a

∇iw
)
◦ e−1

x

dSn−1
x (ξ)

dV n−1(y)
dV n−1(y).

where dV n−1 is the Riemannian volume form corresponding to the metric g. By condition
(8.5.4), the Jacobian dSn−1

x (ξ)/dV n−1(y) is bounded by some constant depending only on
λ0 and k0, and the estimate

|(gradξw) ◦ e−1
x | ≤ C|grady(w ◦ e−1

x )|

holds where grady stands for the gradient on the Riemannian manifold ∂M . Therefore
the previous relations give

I2(x) ≤ C
∫

∂M

(
ρ3−n|grady(w ◦ e−1

x )| + |ρ|2−n|w ◦ e−1
x |

)
dV n−1(y), (8.5.48)

I1(x) ≤ C
∫

∂M

ρ3−n

∣∣∣∣
(
αi

a

∇iw
)
◦ e−1

x

∣∣∣∣ dV n−1(y). (8.5.49)

Equality (8.5.47) and definition (8.5.16), (8.5.18) of the function w imply the relation

(w ◦ e−1
x )(y) = 1 − ρ̃(x, y)

ρ(x, y)
, (8.5.50)

where ρ̃ is the distance in the metric g̃. Consequently,

grady(w ◦ e−1
x ) = ρ−1grady(ρ − ρ̃) − ρ−2(ρ − ρ̃)gradyρ. (8.5.51)

The gradient gradyρ of the function ρ(x, y) on the manifold ∂M is the orthogonal pro-
jection of the gradient ∇yρ to the hyperplane Ty(∂M). Since |∇yρ| = 1, the inequality
|gradyρ| ≤ 1 holds. Consequently, (8.5.51) implies the estimate

|grady(w ◦ e−1
x )| ≤ ρ−1|grady(ρ − ρ̃)| + ρ−2|ρ − ρ̃|. (8.5.52)

With the help of (8.5.52), inequality (8.5.48) gives

I2(x) ≤ C
∫

∂M

(
ρ2−n|grady(ρ − ρ̃)| + ρ1−n|ρ − ρ̃|

)
dV n−1(y).
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Integrating this inequality over x ∈ ∂Mε, we obtain
∫

∂Mε

I2(x) dV n−1(x) ≤ C
∫

∂Mε

∫

∂M

(
ρ2−n|grady(ρ − ρ̃)| + ρ1−n|ρ − ρ̃|

)
dV n−1(y) dV n−1(x).

Passing to the limit here as ε → 0, we conclude

lim
ε→0

∫

∂Mε

I2(x) dV n−1(x) ≤

≤ C
∫

∂M

∫

∂M

(
ρ2−n

∣∣∣grady(Γg − Γg̃)
∣∣∣ + ρ1−n |Γg − Γg̃|

)
dV n−1(y) dV n−1(x).

It remains to note that, by condition (8.5.2), ρ and dV n−1 can be replaced with ρ0 and
dV n−1

0 corresponding to the metric g0 as well as grady can be understood in the sense of
g0. We thus obtain

lim
ε→0

∫

∂Mε

I2(x) dV n−1(x) ≤ C ‖Γg − Γg̃‖W 1
1 (∂M×∂M, n) . (8.5.53)

We now address integral (8.5.49). Let us fix a point y0 ∈ ∂M and construct the unit
vector field η(x) on M \ {y0} as is described in claim (2) of Lemma 8.4.2. The field is
connected with mapping (8.5.46) by the equality

η(x) =
e−1

x (y0)

|e−1
x (y0)|

=
e−1

x (y0)

ρ(x, y0)
. (8.5.54)

By Lemma 8.4.2, the relation

(
a

∇w)(x, η(x)) = ∇[w(x, η(x))]

holds for every function w ∈ C∞(TM). Assuming w(x, ξ) to be homogeneous of degree
−1 in its second argument, the last relation together with (8.5.54) implies that

(
a

∇w) ◦ e−1
x = ρ−1∇x[ρ · (w ◦ e−1

x )].

Recalling that (8.5.50) is satisfied by the function w participating in (8.5.49), we write
the last equality in the form

(
a

∇w) ◦ e−1
x = ρ−1∇x(ρ − ρ̃).

Therefore the integrand of (8.5.49) can be represented as:

ρ3−n

∣∣∣∣
(
αi

a

∇iw
)
◦ e−1

x

∣∣∣∣ = ρ2−n
∣∣∣
(
αi ◦ e−1

x

)
∇i

x(ρ − ρ̃)
∣∣∣ .

By (8.5.38), the vector field αi ◦ e−1
x is tangent to ∂Mε and bounded. So the previous

equality implies the estimate

ρ3−n

∣∣∣∣
(
αi

a

∇iw
)
◦ e−1

x

∣∣∣∣ ≤ 2ρ2−n |gradx(ρ − ρ̃)| ,
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where gradx stands for the gradient on the Riemannian manifold ∂Mε. With the help of
the last inequality, integral (8.5.49) is estimated as follows:

I1(x) ≤ C
∫

∂M

ρ2−n |gradx(ρ − ρ̃)| dV n−1(y).

As above, from this we obtain the inequality

lim
ε→0

∫

∂Mε

I1(x) dV n−1(x) ≤ C ‖Γg − Γg̃‖W 1
1 (∂M×∂M, n−1) . (8.5.55)

Relations (8.5.53), (8.5.55) and (8.5.29) imply (8.5.25). The lemma is proved.

8.6 Bibliographical remarks

The crucial point of this chapter is the Pestov identity (8.4.13) that does not explicitly
contain the curvature tensor in contrast to its initial version (4.4.9). The first identity
of such kind was obtained by R. G. Mukhometov [86]. The reader familiar with this
paper would probably agree that our proof of the identity is simpler. Using his identity,
R. G. Mukhometov proved the uniqueness in the linear problem of integral geometry for
scalar functions, obtained a formula for the volume of a simple Riemannian manifold and
the fact that a metric is uniquely determined by its hodograph in a prescribed conformal
class. In Sections 8.4–8.5 we followed some ideas of [86].

Corollary 8.1.2 is almost coincident with one of the results of [86]. The only distinction
is that our definition of CDRM includes the assumption of strict convexity of the boundary,
while the Mukhometov theorem assumes the boundary to be convex (without the modifier
“strict”).

Our formula (8.4.1) for the volume is linear in the hodograph in contrast to Mukhome-
tov’s formula which, moreover, is painfully noninvariant. In two-dimensional case this
formula was known earlier [110].

It is interesting to note a difference between Theorem 8.4.1 and the corresponding
Mukhometov’s result. Instead of (8.5.5), he obtained the estimate

‖λ − λ̃‖L2(M) ≤ C‖Γg − Γg̃‖L1
2(∂M×∂M),

where
‖f‖2

L1
2(∂M×∂M) =

=
∫

∂M

∫

∂M

[
ρ2−n(x, y)

(
|∇xf |2 + |∇yf |2

)
+ ρ4−n(x, y)|∇x∇yf)|2

]
dV n−1(x) dV n−1(y).

The problem of emission tomography is thoroughly investigated in the case when the
metric is Euclidean and the absorption ε is constant [95, 125, 133]. In the case of the
Euclidean metric and nonconstant absorption (Corollaries 8.1.3 and 8.1.4 relate to this
case), as far as the author knows, all results are obtained under some assumptions on
smallness of the absorption ε or the domain M [106, 73, 52]. Of particular interest is the
paper [27] by D. Finch, where Corollary 8.1.4 is proved in which the right-hand side of
inequality (8.1.9) is replaced with 5.37.
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Lopatinskĭı’s condition, 89

magnetic permeability, 140
manifold, 81
material equations, 140
maximal geodesic, 16, 87, 112
Maxwell system, 140
mixed ray transform, 208
modified horizontal derivative, 223

natural coordinate system, 93
normal neighbourhood, 100

operator of symmetric multiplication, 88
optical anisotropy, 71

parallel displacement, 87
Pestov’s differential identity, 122
photoelasticity, 71
Plancherel’s formula for ray transform, 68
Poincaré’s inequality, 124
polarization, 71
polarization ellipse, 174
potential part, 41
potential part of a tensor field, 89
potential tensor field, 39
problem of determining metric, 14
problem of inverting the ray transform,

118
problem of polarization tomography, 178

quasi-isotropic medium, 140, 141, 200

radial component, 40
ray coordinates, 143
ray transform, 16, 25, 115
ray transform of tensor field-distribution,

37
real covector field, 82
real vector field, 82
refraction coefficient, 141
Riemannian connection, 87
Riemannian manifold, 86
Riemannian metric, 86
Riemannian volume, 88
Rytov law, 175
Rytov law for quasi-isotropic elastic medium,

206
Rytov’s law, 150
Rytov’s law for quasi-isotropic media, 148

Saint Venant operator, 25
scalar product, 24, 86
scalar product of tensors, 23
second quadratic form, 112
sectional curvature, 87
semibasic covector field, 94
semibasic tensor, 93



260 INDEX

semibasic tensor field, 94
semibasic vector field, 94
semigeodesic coordinate system, 106, 113
simple Riemannian metric, 13, 133, 234
slight optical anisotropy, 72
slightly anisotropic medium, 140, 200
smooth function, 81
smooth real function, 81
smooth section, 82
solenoidal part, 41
solenoidal part of a tensor field, 89
solenoidal tensor field, 39
space of tensor fields along curve, 87
strain tensor, 199
stress tensor, 71, 200
strictly convex boundary, 112
symbol of differential operator, 38, 89
symmetric connection, 85
symmetric product, 88
symmetric tensor, 22
symmetric tensor field, 87
symmetric tensor product, 23
symmetrization, 22, 87
symmetrization with respect to a part of

indices, 23
symplectic volume form, 101
system without conjugate points, 220

tangent bundle, 82
tangent space, 82
tangent tensor field on sphere, 47
tangent vector field of a curve, 87
tangential component, 40
tensor field, 24, 82
tensor field parallel along a curve, 87
tensor field-distribution, 24
tensor on Euclidean space, 22
tensor product, 23, 83, 94
torsion tensor, 85
total differentiation, 87
trace operator, 88, 118
transposition of indices, 83, 94
transverse ray transform, 152, 153
truncated transverse ray transform, 178

vector bundle, 81
velocity of compression waves, 201

velocity of shear waves, 201
vertical covariant derivative, 95
volume form, 105, 108
volume of Riemannian manifold, 234

wave number, 140


