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Preface

I am not sure that this book will gain a wide readership. A pure mathematician would
most likely consider it rather old-fashioned that the book is abundant in cumbersome
calculations performed in coordinate form with use made of multilevel indices. Or such a
person would probably find the discussion of details of optical polarization measurements
to be dull. On the other hand, an applied mathematician will likely be confused by
vector bundles, Riemannian connections and Sobolev’s spaces. In any case both of them
will not admire my Russian English. Nevertheless, I hope that a young mathematician
(physicist, engineer or computer scientist), skipping through this book, would wish to
get acquaintance with some relevant field of physics (mathematics). In such a case the
aim of the book will be achieved. As for me, I like my subject just for its diversity and
unpredictability. Dealing with integral geometry, one never knows what it will require
next time; today it may be perusing a textbook on commutative algebra and tomorrow,
technical description of an electronic microscope.

What is integral geometry? Since the famous paper by I. Radon in 1917, it has
been agreed that integral geometry problems consist in determining some function or
a more general quantity (cohomology class, tensor field, etc.), which is defined on a
manifold, given its integrals over submanifolds of a prescribed class. In this book we only
consider integral geometry problems for which the above-mentioned submanifolds are
one-dimensional. Strictly speaking, the latter are always geodesics of a given Riemannian
metric and, in particular, straight lines in Euclidean space.

Stimulated by internal demands of mathematics, in recent years integral geometry has
gain a powerful impetus from computer tomography. Now integral geometry serves as the
mathematical background for tomography which in turn provides most of the problems
for the former.

The book deals with integral geometry of symmetric tensor fields. This section of
integral geometry can be viewed as mathematical basis for tomography of anisotropic
media whose interaction with sounding radiation depends essentially on the direction in
which the latter propagates.

As is seen from the table of contents, the main mathematical objects tackled in the
book are termed “ray transform” with various adjectives. I feel it obligatory to explain
the origin of the term, since I am afraid some of readers will not recognize their old crony.
But first I would like to tell a funny story that is popular among scientific translators.

A French poet tried to render Pushkin’s verses. Later another poet, having not recog-
nized Pushkin, find the verses to be worthy of translation into Russian. As result of such
double translation, the famous string from Tatyana’s letter “I am writing to you, what
can surpass it?” becomes: “I am here, and wholly yours!”

Of course, the reader understands that it is only a colorless English copy of the Russian



original, since I am neither A. S. Pushkin nor even one of the heroes of the story.

Something of the kind has happened with our crucial term. It is the term “X-ray
transform” that is widely spread in western literature on mathematical tomography. In
particular, this term is employed in the book [48] by S. Helgason. Rendering the last
book in Russian, the translators encountered the following problem. By the Russian
physical tradition, the term “X-rays” is translated as “” (“the Rontgen rays” in reverse
translation word by word). So the translators had to choose between the two versions:
7 (the Rontgen transform) or “” (the ray transform). The second was preferred and so
the term “” (the ray transform) had gain wide acceptance in the Russian literature on
tomography. But the friendship of this term with X-rays was lost as a result of the choice.
I have found this circumstance very fortunate for the purposes of my book. Indeed, as
the reader will see below, the ray transforms, which are considered in the book, relates
to the optical and seismic rays rather than to X-rays. Therefore, I also prefer to use the
term “the ray transform” without the prefix X- in the English version of the book.

In the course of the first four chapters one and the same operator I is investigated which
is simply called the ray transform without any adjective. In the subsequent chapters, after
introducing other kinds of the ray transform, we refer to the operator I as the longitudinal
ray transform.

I will not retell the contents of the book here. Every chapter is provided with a little
introductory section presenting the posed problems and the results of the chapter. Now
I will only give a remark on the interdependency of chapters.

The first chapter is included with the purpose to motivate formulations of the problems
considered in the remainder of the book. This chapter is oriented to a well-qualified
reader. Therein we use some notions of tensor analysis and Riemannian geometry without
providing definitions in detail. If the reader is not so skilled, then it is possible to start
reading with Chapter 2 and return to Chapter 1 after gaining acquaintance with the
main definitions of Chapter 3. It is also note-worthy that Chapters 4-8 can be read
independently of Chapter 2 to which they are related only in a few episodes.

Some words now are in order about the applied problems treated in the book. Chap-
ters 5—7 deal with some aspects of the theory of propagation of electromagnetic and elastic
waves in slightly anisotropic media. The respective considerations first pursue of the goal
motivating the mathematical objects to be further introduced; no concrete applied prob-
lem is considered here. Section 2.16 is of a quite different character where an application
of the ray transform to some inverse problem of photoelasticity is considered. Photoe-
lasticity is an interesting branch of experimental physics at the interface between optics
and elasticity theory. In Section 2.16 we consider one of the methods of the branch, the
method of integral photoelasticity, which seems to become a new prospective field of opti-
cal tomography in the nearest future. In this section our investigation is carried out up to
some concrete algorithm which, in the author’s opinion, is suitable for use in real optical
measurements.

Perhaps, the applications of integral geometry, which are considered in the book, are
not those most successful or important. I believe that tensor integral geometry will find its
true applications in such fields as lightconductor technology, plasma physics, tomography
of liquid crystals or, probably, in the problem of earthquake prediction. My modest
physical knowledge does not allow me to treat such problems by myself. I would be glad
if one of my readers will address them.



Finally, I wish to express my sincere gratitude to Professor S. S. Kutateladze, the
editor of the book, who took pains to make my Russian English comprehensible if not
readable. I hope that he succeeded.

February, 1994, Novosibirsk.
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Chapter 1

Introduction

In the first section we formulate the problem of determining a Riemannian metric on
a compact manifold with boundary from known distances in this metric between the
boundary points. This geometrical problem is interesting from the theoretical and applied
points of view. Here it is considered as an example of a question leading to an integral
geometry problem for a tensor field. In fact, by linearization of the problem we arrive
at the question of finding a symmetric tensor field of degree 2 from its integrals over
all geodesics of a given Riemannian metric. The operator sending a tensor field into the
family of its integrals over all geodesics is called the ray transform. The principal difference
between scalar and tensor integral geometry is that in the last case the operators under
consideration have, as a rule, nontrivial kernels. It is essential that in the process of
linearization there arises a conjecture on the kernel of the ray transform.

Integral geometry is well known to be closely related to inverse problems for kinetic and
transport equations. In Section 1.2 we introduce the kinetic equation on a Riemannian
manifold and show that the integral geometry problem for a tensor field is equivalent
to an inverse problem of determining the source, in the kinetic equation, which depends
polynomially on a direction.

Section 1.3 contains a survey of some results that are related to the questions under
consideration but are not mentioned in the main part of the book.

1.1 The problem of determining a metric by its
hodograph and a linearization of the problem

A Riemannian metric g on a compact manifold M with boundary dM is called simple
if every pair of points p,q € M can be joint by the unique geodesic 7,, of this metric
whose all points, with the possible exception of its endpoints, belong to M \ 0M and such
that 7,, depends smoothly on p and ¢. For p,q € OM we denote by I'y(p, ¢q) the length
of ¢ in the metric g. The function I'y : OM x OM — R is called the hodograph of the
metric g (the term is taken from geophysics). The problem of determining a metric by its
hodograph is formulated as follows: for a given function I' : OM x OM — R, one has to
determine whether it is the hodograph of a simple metric and find all such metrics. The
next question of stability in this problem seems to be important as well: are two metrics
close (in some sense) to each other in the case when their hodographs are close?

13



14 CHAPTER 1. INTRODUCTION

We shall discuss only questions that are related to uniqueness of a solution to the
posed problem. The following nonuniqueness of a solution is evident. Let ¢ be a dif-
feomorphism of M onto itself which is identical on M. It transforms a simple metric
¢° to a simple metric g = ¢*¢° (the last equality means that for a point + € M and
every pair of vectors £, n of the space T, M tangent to M at the point x the equality
(€&,n)k = {(d.p)¢, (dxgo)n)i(x) is valid where d,p : T,M — Ty M is the differential of ¢
and (, )% is the scalar product on T, M in the metric g®). These two metrics have different
families of geodesics and the same hodograph. The question arises: is the nonuniqueness
of the posed problem settled by the above mentioned construction? In other words: is it
true that a simple metric is determined by its hodograph up to an isometry identical on
the boundary? Let us formulate the precise statement.

Problem 1.1.1 (the problem of determining a metric by its hodograph) Let ¢°,

g' be two simple metrics on a compact manifold M with boundary. Does the equality

g = Ly imply existence of a diffeomorphism ¢ : M — M, such that ¢|on = 1d and
*,0 _ 10

g =g:

Until now a positive answer to this question is obtained for rather narrow classes of
metrics (there is a survey of such results in Section 1.3; some new results in this direction
are obtained in Chapters 4 and 8). On the other hand, the author is not aware of any
pair of metrics for which the answer is negative.

Let us linearize Problem 1.1.1. For this we suppose ¢” to be a family, of simple
metrics on M, smoothly depending on 7 € (—¢,¢). Let us fix p,q € OM, p # ¢, and
put a = I'ypo(p,q). Let 7 : [0,a] — M be a geodesic of the metric g7, for which y7(0) =
p, 7" (a) = q. Let v7 = (v}(t,7),...,7"(t,7)) be the coordinate representation of 4" in a
local coordinate system, g" = (g[]) Simplicity of 4™ implies smoothness for the functions
7i(t, 7). The equality

0 = [ (03 1) e (111)

is valid in which the dot denotes differentiation with respect to ¢. In (1.1.1) and through
what following the next rule is used: on repeating sub- and super-indices in a monomial
the summation from 1 to n is assumed. Differentiating (1.1.1) with respect to 7 and
putting 7 = 0, we get

Ty (p ) = [ £ (0" (0)7/ (.03 (2, 0)dt +

a or =0
i 8910 . i 8 k i a]
+f [axi O (4 0771, 0) T 1,0 + 265003 (1, 0T (1, 0) [ b (112)
where
fi= 2 g (1.1.3)
Y7o, Yij- 1.
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The second integral on the right-hand side of (1.1.2) is equal to zero since %%Z(O, 0) =

%(a, 0) = 0 and the geodesic 7° is an extremal of the functional

a

Eo(y) = [ gl ()3 (07 (1)

(One can also verify the vanishing of this integral by transforming the second term in
brackets with the help of differentiation by parts and use made of the equation of geodes-
ics). Thus we come to the equality

a OT

Ty (0:0)) = 1/ () = [ Figla)iidat (1.1.4)

7=0

in which 7,, is a geodesic of the metric ¢g° and ¢ is the length of this geodesic in the metric

q°.

If the hodograph I'j~ does not depend on 7 then the left-hand side of (1.1.4) is equal
to zero. On the other hand, if Problem 1.1.1 has a positive answer for the family ¢g” then
there exists a one-parameter group of diffeomorphisms ¢ : M — M such that ¢7|gp = Id
and g" = (p7)*¢g°. Written in coordinate form, the last equality gives

0" (x,7) 0! (z, 7)
T _ 0 T ) )
gij - (gkl o ) ort ori

where ¢ (z) = (¢*(z,7), ..., p"(z,7)). Differentiating this relation with respect to 7 and
putting 7 = 0, we get the equation

—_

1
(dv)ij = (Uz';j +Uj;z‘) = §fij7 (1.1.5)

2
for the vector field v generating the group ¢” where v;,; are covariant derivatives of the
field v in the metric ¢°. The condition ¢ |5y = Id implies that v|sy = 0. Thus we come
to the following question which is a linearization of Problem 1.1.1: to what extent is a
symmetric tensor field f = (f;;) on a simple Riemannian manifold (M, ¢°) determined by
the family of integrals (1.1.4) which are known for all p,q € OM? In particular, is it true
that the equality I f(7,,) = 0 for all p,q € OM implies existence of a vector field v such
that v|gy = 0 and dv = f?

Let us generalize this linear problem to tensor fields of arbitrary degree. Given a
Riemannian manifold (M, g), let 7oy = (T'M,p, M) and 7}, = (T'"M,p’, M) denote the
tangent and cotangent bundles respectively. Let S™7}, be the m-th symmetric power of
the bundle 7}, and C*°(S™7},) be the space of smooth sections of this bundle. Elements of
this space are smooth symmetric covariant tensor fields of degree m on M. The operator
d: C®(S™ry,) — C>®(S™7],), determined by the equality d = oV will be called the
operator of inner differentiation with V standing for the covariant differentiation and o,
for the symmetrization. Thus for v € C*°(S™7y,) dv is the symmetric part of the covariant
derivative of the field v (compare with (1.1.5)).
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Problem 1.1.2 (the integral geometry problem for tensor fields) Let (M, g) be a
simple Riemannian manifold. To what extent is a symmetric tensor field f € C(S™1y,)
determined by the set of the integrals

[f(7p) = /fil__im(x)m'“...m'im dt (1.1.6)

that are known for all p,q € OM? Here v, is the geodesic with endpoints p,q and t is the
arc length on this geodesic. In particular, does the equality I f(7y,,) =0 for all p,q € OM
imply existence of a field v € C®(S™17],), such that v|gpr = 0 and dv = f?

By the ray transform of the field f we will mean the function I f that is determined
by formula (1.1.6) on the set of geodesics joining boundary points. In Chapter 4 this
problem will be generalized to a wider class of metrics.

Let us formulate one more version of the problem under consideration which does
not include boundary conditions. An open (i.., without boundary and noncompact) Rie-
mannian manifold (M, g) is called dissipative provided every geodesic leaves any compact
set if continued in each of the two directions. The geodesic v : (a,b) - M (—oc0 < a <
b < 00) is called mazimal, if it does not extrapolate onto an interval (a —ey,b+e3), where
g1 >0, g9 >0, e + &5 > 0. For a compactly-supported field f € C*(S™r},) the ray
transform I f is defined by formula (1.1.6) on the set of all maximal geodesics.

Problem 1.1.3 Let (M, g) be an open dissipative Riemannian manifold. To what extent
is a compactly-supported field f € C*°(S™1y,) determined by its ray transform I f which is
known on the set of all maximal geodesics? In particular, does the equality If = 0 imply
existence of a compactly-supported field v € C®(S™ 1 r},), such that f = dv?

1.2 The kinetic equation on a Riemannian manifold

We denote the points of the space T'M of the tangent bundle to a manifold M by the
pairs (z, &) where x € M, £ € T,M. Let T°M = {(z,&) € TM | £ # 0} be the manifold of
nonzero tangent vectors. We recall that by the (contra-variant) coordinates of the vector
¢ € T, M with respect to a local coordinate system (z',...,z") in a neighborhood U C M

of a point z are meant the coefficients of the decomposition & = 5’%(1‘) The family

of functions (x!,... 2" &Y. .. €") constitutes a local coordinate system on the domain
p~Y(U) C TM, where p is the projection of the tangent bundle. We will call it associated
with the system (z!,...,2"). From now on we will consider only such coordinate systems
on T'M.

Let (M, g) be a simple compact Riemannian manifold, f € C*°(S™r},). For (z,§) €
TOM, let vp¢ : [T-(2,&), 74 (x,€)] — M denotes the maximal geodesic determined by the
initial conditions v, ¢(0) = z, 3,¢(0) = £&. We define a function u on T°M by the equality

0

w@, ) = [ Foin e )0 A2 db (12.1)
—(z,8)

This function is easily seen to be positively homogeneous in its second argument:

u(z, &) = A" tu(z, &) (A >0) (1.2.2)
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and, consequently, is uniquely determined by its restriction to the manifold QM =
{(2,8) € TM | [£]* = g4j(2)£'¢? = 1} of unit vectors. For compactness it is more conve-
nient then T°M. We divide the boundary 9(Q2M) of this manifold into two submanifolds

0LOM = {(x,&) € QM | x € OM, +(&, v(z)) > 0},

where v(z) is the unit vector of the outer normal to the boundary M. Comparing (1.1.6)
and (1.2.1), we see that u satisfies the boundary conditions

0, if (z,£) € 0_QM,

w(z, §)|veon = { [fwe), i (2.6) € D.0M. (1.2.3)

The equation

ou
g
is valid on T°M where T are the Christoffel symbols of the metric g. Indeed, let us

fix (z,£) € T°M and put v = 7,¢. By the evident equality v,,)4c10)(t) = V(t + to) the
relation (1.2.1) implies

9 . 4 , ,
Hu = 5187; — T () — = fiy (). (1.2.4)

to

u(y(t0) 3t = [ fivin ()T O 5 ()
7 (%,8)
Differentiating this equality with respect to ¢y and putting ¢y = 0, we have
ou ., Ou., . ,
yt N = ; ; n [N tm .

By using the equation of geodesics

4 TAAE =0 (1.2.5)

and the relation 4(0) = &, we arrive at (1.2.4).
The differential operator

9

ox’

0
ot

H=¢— T3¢ (1.2.6)
participating in (1.2.4) is the vector field on the manifold T'M. H is called the geodesic
vector field and the one-parameter group of diffeomorphisms G* of the manifold TM
generated by H is called the geodesic flow or geodesic pulverization. These notions are
widely used in differential geometry (see, for instance, [13]). The geodesic flow has a
simple geometric meaning: G' is the translation along geodesics in time ¢, i.., G*(z,£) =
(Vae(t),2£(t)) in our notation. In particular, this implies that the field H is tangent
to QM at all points of the manifold QM and, consequently, equation (1.2.4) can be
considered on QM.

The operator H is related to the inner differentiation operator d by the following
equality:

H (viy iy (2)E7 . €771) = (dv)i, s, (2)E . € (1.2.7)

which can be proved by an easy calculation in coordinates. Thus we arrive at the following
question which is equivalent to Problem 1.1.2.
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Problem 1.2.1 Let (M, g) be a simple compact Riemannian manifold. To what extent
is the right-hand side of equation (1.2.4), considered on QM , determined by the boundary
values u|oan of the solution? In particular, does the equality u|aon = 0 imply that u(x,§)
s a homogeneous polynomial of degree m — 1 in &7

Similarly, the second question of Problem 1.1.3 can be formulated in the following
equivalent form.

Problem 1.2.2 Let (M, g) be an open dissipative Riemannian manifold. Is it true that
any compactly-supported solution to equation (1.2.4) on QM is a homogeneous polynomial
of degree m — 1 in &7

The equation
Hu = F(z,§) (1.2.8)

on QM with the right-hand side depending arbitrarily on ¢ is called (stationary, unit-
velocity) kinetic equation of the metric g. It has a simple physical sense. Let us imagine a
stationary distribution of particles moving in M. Every particle moves along a geodesic of
the metric g with unit speed, the particles do not influence one another and the medium.
Assume that there are also sources of particles in M. By u(z,£) and F(z,§) we mean the
densities of particles and sources with respect to the volume form dV?" = det(g;;)d¢" A
o ANdET Ndat AL A da™ (which corresponds to the standard symplectic volume form
under isomorphism between the tangent and cotangent bundles induced by the metric g).
Then equation (1.2.8) is valid. We omit its proof which can be done in exact analogy
with the proof of the Liouville theorem well-known in statistical physics [135].

If the source F(z,€) is known then, to get a unique solution u of equation (1.2.8),
one has to set the incoming flow u|g_qp. In particular, the first of the boundary con-
ditions (1.2.3) means the absence of the incoming flow. The second of the boundary
conditions (1.2.3), i.e., the outcoming flow u|s, oar, must be used for the inverse prob-
lem of determining the source. This inverse problem has the very essential (and not
although quite physical) requirement on the source to depend polynomially on the direc-
tion £. The operator d gives us the next means of constructing sources which are invisible
from outside and polynomial in &: if v € C*(S™'7},) and v|sys = 0, then the source
F(x,€) = (dv);,.., " ... & is invisible from outside. Does this construction exhaust all
sources that are invisible from outside and polynomial in £7 It is the physical interpreta-
tion of the problem 1.2.1.

1.3 Some remarks

In geophysics the so-called inverse kinematic problem of seismics is well known which is
formulated as follows. In a domain D C R” there is a simple Riemannian metric of the
type g = n(x)g., where g. is the Euclidean metric. One has to determine the function
n(z) by the hodograph I'y. In geophysics the metrics of such type are called isotropic.
Linearization of this problem in the class of isotropic metrics leads to Problem 1.1.2 in
the case m = 0. Due to their significance for practice, these problems attract attention of
geophysicists and mathematicians for a long time. We refer the reader to the book [109]
that contains a discussion of these problems as well as an extensive bibliography.
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Questions of the following type seems to be of interest. Is it possible to determine
by the hodograph of a metric whether the latter has various geometrical properties? For
instance, is it flat, conformally flat, of constant-sign curvature, does it decompose into
a product of two metrics and so on? Clearly, each of these questions is correct only if
Problem 1.1.1 has a positive answer for the corresponding class of metrics. For example,
if we are interested in how to determine by the hodograph whether a metric is flat, the
first question we have to answer is: may the hodographs of two metrics coincide provided
that one of these metrics is flat and another is not flat? In other words, we have to solve
Problem 1.1.1 under the complementary condition of flatness of ¢°. The author has thus
arrived at Problem 1.1.1. Independently this problem has been formulated by R. Michel
[80]. We will now list the known results on Problem 1.1.1. In [8] Yu. E. Anikonov
has proved an assertion that amounts to the following: a simple Riemannian metric
on a compact two-dimensional manifold M is flat if and only if any geodesic triangle
with vertices on dM has the sum of angles equal to m. As is easily seen these angles
can be expressed by the hodograph. Thus, this result answers the question: how to
determine whether a metric is flat given the hodograph? A similar result was obtained
by M. L. Gerver and N. S. Nadirashvili [37]. R. Michel obtained a positive answer to
Problem 1.1.1 in the two-dimensional case when ¢° has the constant Gauss curvature [80].
A positive answer to Problem 1.1.1 for a rather wide class of two-dimensional metrics
has been obtained in [38]. We see that all above mentioned results are dealing with
the two-dimensional case. The first and, as the author knows, the only result in the
multidimensional case has been obtained by M. Gromov [42]. He has found a positive
answer to Problem 1.1.1 under the assumption of flatness of one of the two metrics.

In the case m = 0 a solution to the linear problem 1.1.2 for simple metrics was found
by R. G. Mukhometov [83, 86, I. N. Bernstein and M. L. Gerver [12], and in the case
m = 1, by Yu. E. Anikonov and V. G. Romanov [7, 10]. In [87] R. G. Mukhometov
generalized these results to metrics whose geodesics form a typical caustics. For m > 2
no result like these has been obtained until now.

The kinetic equation on Riemannian manifolds and related questions of theoretical
photometry are discussed in the articles by V. R. Kireytov [58, 59]. The inverse problems
for the kinetic equation were investigated by A. Kh. Amirov [3, 4].

The first idea arising in any attempt at constructing a counter-example to Problem
1.2.2 is as follows. Is it possible that the equation (1.2.4) has a finite solution wu(z, &)
which is polynomial in ¢ of degree strictly greater than m — 1. It turns out that such
counter-example does not exist. This statement was proved by the author [114] for any
connected Riemannian manifold (M, g), in which the requirement of compactness of the
support can be replaced by the assumption that in the case n = dim M > 3 a few first
derivatives of the solution u(x,§) are equal to zero at a point xy € M and in the case
n = 2 that all derivatives vanish at the point.
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Chapter 2

The ray transform of symmetric
tensor fields on Euclidean space

The chapter is devoted to the theory of the ray transform I in the case when the manifold
M under consideration coincides with R™ and the metric of R" is Euclidean. In other
words, in this chapter [ is the integration of a symmetric tensor field along straight lines.
The theory of the ray transform on R", developed below, has much in common with the
classical theory of the Radon transform [35, 48]. However, there is an essential difference
between these theories stipulated by the next fact: if considered on the space of symmetric
tensor fields of degree m, the operator I has a nontrivial kernel in the case m > 0 . This
circumstance plays an important role through the whole theory.

Section 2.1 contains the definitions of the ray transform and some differential opera-
tors that are needed for treating it. Then some relationship between I and the Fourier
transform is established.

Sections 2.2-2.5 are devoted to investigation of the kernel of I on the space of compact-
ly-supported tensor fields. In this investigation a differential operator W arises which plays
an essential role in the theory of the ray transform as well as in its applications. We call
W the Saint Venant operator for the reason explained at the end of Section 2.2.

It is well known that a vector field can be represented as a sum of a potential and
solenoidal fields. A similar assertion is valid for a symmetric tensor field of arbitrary
degree. This fact plays an important role in the theory of the ray transform. Two
versions of such representation are given in Section 2.6.

Sections 2.7-2.10 are devoted to the description of the range of the ray transform
on the space of the smooth rapidly decreasing fields. Here the main role is played by
the differential equations obtained at first by F. John [56] in the case m = 0,n = 3. In
the articles by I. . Gelfand, S. G. Gindikin, . I. Graev and Z. Ja. Shapiro [31, 34] these
equations were generalized to the operator of integration of a function on p-dimensional
planes (p < n — 2), their geometrical as well as topological meaning was explicated. Our
proof of sufficiency of the John conditions begins by the same scheme as in [34]; however,
in this way we have soon arrived at new aspects of the problem which are stipulated by
nontriviality of the kernel of /. We have grouped these aspects in two theorems: a theorem
on the tangent component and a theorem on conjugate tensor fields on a sphere, which
are also of some interest by themselves. Proving the last theorem, the author ran into an
algebraic problem which was kindly solved by I. V. L’vov at the author’s request. This
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algebraic theorem is presented in Section 2.9.

Sections 2.11-2.14 are devoted to the inversion formulas for the ray transform. We
present two formulas; the first recovers the solenoidal part of a field f from [ f and the
second, the value W f of the Saint Venant operator. The components of W f form a full
family of local linear functionals that can be determined by the integrals I f.

The classic Plancherel formula asserts that the Fourier transform is an isometry of the
space Lo(R"). Yu. G. Reshetnyak obtained a formula that expresses || f||z,®») through
the norm ||Rf| g of the Radon transform of the function f, where || - ||z is some special
norm on the space of functions defined on the set of all hyperplanes. Later this formula
was called the Plancherel formula for the Radon transform by the authors of the books
[35, 48]. It allows one to extend R to Lo(R™). In Section 2.15 a similar result is obtained
for the ray transform.

In Section 2.16 an application of the ray transform to an inverse problem of photoe-
lasticity is presented.

Section 2.17 contains bibliographical references as well as the formulations of some
results that are not included into the main exposition.

2.1 The ray transform and its relationship
to the Fourier transform

First of all we will agree upon the terminology and notations related to the tensor algebra.
Then we will introduce various spaces of tensor fields and define the differential operators
that are needed for investigating the ray transform: the operator of inner differentiation,
the divergence and the Saint Venant operator. After this we define the ray transform and
establish its relationship to the Fourier transform.

We consider R™ as a Euclidean vector space with scalar product (z,y) and norm |z|.
From now on we always assume that n > 2. We put R = R"\{0}. If ey, ..., e, is a basis
for R", then we assign ¢;; = (e;,e;). Let (¢¥) be the inverse matrix to (g;;). We restrict
ourselves to using only affine coordinate systems on R".

Given an integer m > 0, by 7™ = T™(R"™) we mean the complex vector space of all
functions R"™ x ... x R"™ — C (there are m factors to the left of the arrow, C is the field
of complex numbers) that are R-linear in each of its argument, and by S™ = S™(R") the
subspace of T™ that consists of the functions symmetric in all arguments. The elements
of T™ (S™) are called tensors (symmetric tensors) of degree m on R™. Let o : T™ — S™
be the canonical projection (symmetrization) defined by the equality

1
O’U(xl,...,$m) = ol u(xﬂ(l),...,xﬂ.(m)) (2.1.1)
m. ﬂ'EH'm
where the summation is taken over the group II,, of all permutations of the set {1,...,m}.

We identify the space T' = S' with C™ by the equality (z + iy)(z) = (x,2) + i(y, 2) for
x,y,z € R". We also assume that 7™ = S™ = 0 for m < 0.

If e1,...,e, is a basis for R", then the numbers u;, ; = u(e;,...,e;, ) are called
the covariant coordinates or components of the tensor u € T™ relative to the given basis.
Assuming the choice of the basis to be clear from the context, we shall denote this fact by
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the record u = (u;,._;,, ). Alongside the covariant coordinates the contravariant coordinates

uil...im — giljl o gimjmujl‘..jm (212)

are useful too. We recall the summation rule: on repeating sub- and super-indices in a
monomial the summation from 1 to n is understood. It is evident that the scalar product
on T™ defined by the formula

(u,v) = w0y, i, (2.1.3)

(the bar denotes complex conjugation) does not depend on the choice of the basis.

Together with operator (2.1.1) of full symmetrization, we will make use of the sym-
metrization with respect to a part of indices that is in coordinate form defined by the
equality .

0‘(7/1 .. zp)uil,,,im = - Z in(l)..,i,,(p)ip_;_l...im
T mwelly

We shall also need the alternation with respect to two indices

a(1112) Uiy ingy..j, = §(Ui1izj1...jp — Uigiyjy...5,)-

Symmetrization with respect to all indices will be denoted without indicating arguments,
i. e., by 0. A record of the next type

SYIM Uiy .. igj1...5; - (’Ll Ce Zk:—l)zk(jl c. .jl_l)jl (214)

is convenient for notation of the partial symmetry of the tensor u. Namely, (2.1.4) denotes
the fact that the tensor u is symmetric with respect to each group of indices in parentheses.
We recall that the tensor product u ® v € TF+™ is defined for u € T*, v € T™ by the
equality
U V(T Thopm) = WXy, oo TE)V(Thi1y - oy Thoem)-

The symmetric tensor product defined by the equality uv = o(u ® v) turns S* = @ S™
=0

to the commutative graded algebra. By i, : §* — S* we mean the operator of symrr_letric
multiplication by u and by j,, the operator dual to ,. In coordinate form they are written
as follows:

(iuv)il...ik-Fm = U(uil"'ikvik"'l"'ik"'m), (215)

: _ ko1 ensd
(Ju0)iyi = Uiy, Wm— ket Letm

for u € Sk, v € S™. The tensor j,v will also be denoted by v/u. A particular role will be
played by the operators i, and j,, where g = (g;;) is the metric tensor. We will therefore
distinguish them by putting i = i4, j = j,. Let us extend the scalar product (2.1.3) to
S*, by declaring S* and S! orthogonal to each other in the case of k # .

For f € S™, ¢ € R" C C" = S!, the equality

(fL€™) = fiy & ... &m

is valid which we will make use of abbreviating various formulas.
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For an open U C R™, let D'(U) be the space of all distributions (generalized functions)
on U. For any space A C D'(U) of distributions on U, we put A(S™;U) = A®cS™. If A
is considered with a topology, then we endow A(S™; U) with the topology of the tensor
product (there is no problem with its definition because S™ has a finite dimension).
The notation A(S™;R"™) will usually be abbreviated to A(S™). For T € A(S™;U), the
components 7;, ; € A are defined; we will denote this fact by the same record T =
(T3s..in,) as before. If A consists of ordinary functions, i.e., A C Ly1,.(U) (Ly)6c(U)
is the space of functions locally summable on U ), then a field u € A(S™;U) can be
considered as a function on U with values in S™. In accord with this scheme the next
spaces are introduced in particular:

C!(S™;U) — the space of [ times continuously differentiable symmetric tensor fields
on U;

E(S™; U) — the space of smooth (infinitely differentiable) fields;

D(S™; U) — the space of compactly-supported smooth fields;

Ll,loc(sm5 U) — the space of locally summable or ordinary fields;

D'(S™; U) — the space of symmetric tensor field-distributions (or the space of gener-
alized symmetric tensor fields);

E'(S™; U) — the space of compactly-supported tensor field-distributions;

S(S™) — the space of smooth fields rapidly decreasing with all derivatives on R™;

Ly(S™) — the space of square integrable fields.

Each of these spaces is furnished with the corresponding topology. Considered without
any topology, the space £(S™; U) will also be denoted by C*°(S™; U). The scalar product
on Ly(S™) is defined by the formula

(U, 0) 1y 5y = / (u(z), v(z)) AV (z) (2.1.6)
s

in which dV"(z) = [det(g;;)]*/?dx* A ... A dz™ is the Lebesgue measure. The lower index
will sometimes be omitted in (2.1.6) if such abbreviation is not misleading.

If L is a linear topological space and L’ is its dual space, then by (T, ) we mean
the value of the functional T € L’ at the element ¢ € L. The space L' will usually
be considered with the strong topology. We identify the space D'(S™) with the dual of
D(S™), and the space £'(S™) with the space dual of £(5™), by the formula

<T> SO> = <7—;1---im7 @lem>

For an ordinary field u € L, ,.(S™; U), this equality takes the next form
(u, ) = /<U(x),so(x)>dvn(x) (¢ € D(S™U)). (2.1.7)
U

Note that on the left-hand side of this equality the angle brackets mean the value of a
distribution while on the right-hand side they denote the scalar product. The author
hopes that the coincidence of these notations will not confuse.

Given an affine coordinate system (x!,... z"), we define the operator of (covariant)

differentiation ¥V : C=(T™) — C>=(T™*1) by the equalities Vu = (i, i, i), Wiy i, :j =
Ouy, ;. /0x?. Evidently, it does not depend on the choice of a coordinate system. The
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following circumstance is rather essential: the iterated derivative VFu = (Wi i s 1)
is symmetric in ji, ..., jx. The operator d = oV : C®(S™) — C>(S™*!) is called the
inner differentiation, the divergence operator § : C*(S™) — C*=(S™™1) in coordinate
form is defined by the equality (0u);, ;. _, = uilmim;imﬂgimim“. The operators d and —d
are formally dual to each other with respect to the scalar product (2.1.6). Moreover, for a
compact domain G C R"™ bounded by a piece-smooth hypersurface G, the next Green’s
formula is valid:

Jldu, o) + (w00} av = [ (i, vy ave! (2.1.8)
G oG

where dV"™! is the (n — 1)-dimensional area on G and v is the unit vector of the outer
normal to dG. To prove (2.1.8), it suffices to write down the identity

<d’LL, U) = ui1---im;ifrz-~-1@i1mim-~_1 = (uh---im@ilmim“) Jimtl <uv (51)>,

to introduce the vector field ¢ by the equality &/ = w;,. 4, v"'mJ and to apply the Gauss-
Ostrogradskii formula to &.
The Saint Venant operator W : C°(S™) — C*(S™ @ S™) is defined by the equality

. . . P m
(Wu)il...imjl...jm =01 im)o(j1-- - Jm) Z(—l)p <p> Wiy im—pd1.-p 5 Jp+1-Jmim—pt1..im
p=0
(2.1.9)

where (") = 'L are the binomial coefficients.
p)  pim—p)

By the ray transform of a field f € C°°(S™) we shall mean the function [ f defined on
R" x Ry by the equality

o0

If(0,€) = [ (fl+1€),€m) b (2.1.10)

—00

under the condition that the integral converges. From this definition, we immediately de-
rive that the function i (z,§) = I f has the following homogeneity in its second argument:

Ol 16) = Tzzp(x,g) (0#tER) (2.1.11)
and satisfies the identity
V(e +18,8) =v(,¢) (teR) (2.1.12)

which shows that ¢(z, ) = I f is constant with respect to its first argument on the straight
line passing through the point x in the direction &.

Let TQ = {(x,&) e R* x R" | (z,£) =0, |£] = 1} be the space of the tangent bundle
of the unit sphere Q = Q" ! = {¢ € R" | [¢| = 1}. Equalities (2.1.11) and (2.1.12) imply
that the function ¢ can be recovered from its trace ¢ = ¥|rq on T2 by the formula

_ m—1 {L'—<x7£> £
b 6) = I¢] s@( moe |§|>' (2.1.13)
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In various sections of this chapter the ray transform I f of a field f will be understood as
follows: either as a function on R™ x R{ or as a function on T2. It will be clear from the
context which of these ways is taken. By (2.1.13), the two ways are equivalent.

Let us observe that the operator I has a nontrivial kernel. Indeed, if the field v €
C>(S™1) satisfies the condition v(z) — 0 as |z| — oo, then

(Idv)(z,€) = hm/ oz + 1), ™YY dt = 0.

Under some conditions on the behavior of the field f(x) at infinity, the converse assertion is

valid: the equality I f = 0 implies existence of a field v such that f = dv. In Section 2.4 this

statement will be proved for compactly-supported f and in Section 2.6, for f € Ly(S™).
We shall use the Fourier transform on R" in the following form:

FIf) = fy) = @x) 2 [ fla)e ) av ().

We define the Fourier transform F': S(S™) — S(S™) by components, i.e., (F[f])i. i, =
F[fi,..i..]. By the Fourier-Plancherel theorem it is extendible to an isometry of the space
Ly(S™).

Let S(T?) be the space of smooth functions ¢(z,£) on T2 such that all their deriva-
tives decrease rapidly in the first argument. The Fourier transform F : S(TQ)) — S(T?)
is defined by the formula

B(y,€) = (2m) 1= / P, ) ™0 AV ) (2.1.14)

where ¢+ = {z € R" | (z,£) = 0}, and dV""!(z) is the (n — 1)-dimensional Lebesgue
measure on &1, Thus, it is the ordinary Fourier transform in the (n — 1)-dimensional
variable x, where £ stands as a parameter.

It is easily seen that [ f € S(T€?) for f € S(S™), and the operator I : S(S™) — S(TQ)
is bounded. For f € S§(5™), the relationship between the ray transform and the Fourier
transform is expressed by the equality

If(y.€) = 2m) "2 (f(y).€™)  ((y,&) € TQ). (2.1.15)
Indeed, let [£] = 1. Substituting x = 2’ + t£, 2’ € £+ into the integral

()€ = m) 2 (@), em) e o ava(a),

R”

we obtain

()€ = @ | [ [+ 1), gm) e dt] ) gLy,

gt koo

If (y, &) =0, i.e., (y,&) € TQ, then the previous equality gives
(Fy).€™) = (QW)_n/Q/If(x,f) e~Hw qynl(z)
SL

which coincides with (2.1.15).



2.2. THE KERNEL OF THE RAY TRANSFORM 27

2.2 Description of the kernel of the ray transform
in the smooth case

Theorem 2.2.1 Let n > 2 and m > 0 be integers, | = max{m,2}. For a compactly-
supported field f € CY(S™;R™) the following statements are equivalent:

(1) If=0;

(2) there exists a compactly-supported field v € C'T1(S™ 1 R") such that its support
15 contained in the convex hull of the support of f and

dv = f; (2.2.1)

(3) the equality
Wf=0 (2.2.2)

1s valid in R™.

This theorem answers to the question: to what extent is a compactly-supported field
h € C'(S™) determined by its ray transform Ih? According to the claims (2) and (3) of
the theorem, the answer is given in two forms. First, Ih determines h up to a summand of
the type f = dv where v is an arbitrary compactly-supported field of degree m—1. Second,
there is a system of local linear functionals of the field h which is uniquely determined
by the integral information Ih. Namely, the family of the components of the field Wh is
such a system. Moreover, this family is a full system of the local linear functionals which
can be restored by Ih.

The scheme of the proof of theorem 2.2.1 is as follows. We start with proving equiv-
alence of claims (1) and (2) in the case n = 2. Then we prove the equivalence of (2) and
(3) for an arbitrary n. After this equivalence of (1) and (2) for an arbitrary n follows from
the next two observations :

(a) I and W commute with the operator that restricts tensor fields onto affine sub-
spaces of R";

b) for f € C'(S™; R"), if the restriction of the field W f on each two-dimensional plane
is equal to zero, then W f = 0.

The last claim follows from the fact that the field W f has the next symmetry

sYm (W f )iy ivjt.ogon (81 i) (G0 - - - Jim)

as one can see from definition (2.1.9).

Equation (2.2.1) can be considered not only on the whole R"™ but also on a domain
U C R If U is a simply-connected domain, then condition (2.2.2) remains sufficient for
solvability of equation (2.2.1) as the next theorem shows.

Theorem 2.2.2 Let U be a domain in R", o € U, m > 1 be an integer, f € C™(S™;U),
and vP € T™P~1 (0 < p < m — 1). Equation (2.2.1) has at most one solution v €
C™mHY(S™1U) that satisfies the initial conditions

VPu(xg) = vP (p=0,1,...,m—1). (2.2.3)
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For existence of a solution v € C™1(S™1,U) to problem (2.2.1), (2.2.3), it is necessary
that the right-hand side of equation (2.2.1) satisfies condition (2.2.2), and the tensors vP
have the symmetries

sym (v o) (e ime 1) (G i) (p=0,1,...,m—1) (2.2.4)

and satisfy the relations

O'(’il e im)vfl---im+p—1 = fi1---irrL S imeb 1o fmtp—1 (Io) (p = 1, oo, — 1) (225)

If U is a simply-connected domain, then conditions (2.2.2), (2.2.4), (2.2.5) are sufficient
for existence a solution v € C™T(S™ 1, U) to problem (2.2.1), (2.2.3).

Let us note that v is a function in the case m = 1 and equation (2.2.1) looks like:
dv = fidz'. In this case equality (2.2.2) is the well-known condition of integrability for
a Pfaff form: 0f;/027 = 0f;/0x". In the case m = 2 Theorem 2.2.2 is well known in
deformation theory [91]. In this case equation (2.2.1) looks like: v;.; +v;.; = 2f;;; and,
by Lemma 2.4.2 below, equation (2.2.2) takes the form fi;. 1 + fr;ij — fu,jk — fik;a =0
and is called the deformations compatibility condition. It was obtained by Saint Venant
and therefore the operator W is named after him.

2.3 Equivalence of the first two statements of
Theorem 2.2.1 in the case n = 2

If claim (2) of Theorem 2.2.1 holds, then

o0

1) = [ S+ en.etyd =0

— o0

Thus (2) — (1) for arbitrary n.
In the proof of the implication (1) — (2) in the case n = 2 we will use Fourier series
in the form that differs slightly from the ordinary one and is described as follows.

Lemma 2.3.1 For an integer p > 0, the system of 2p+ 1 functions
cos 1O sin"f (0<i<p-—1), cosP " sin’ 0 (0 < i< p)

is linearly independent over (—m, ). If V,, is the linear span of this system and U, is the
closure of the linear span of the system

cos kB, sin k6 (k=p+1,p+2,...)
in Lo(—m,m), then Ly(—m,m) =V, DU, and the summands are orthogonal to each other.

To verify this, it is enough to notice the coincidence of V), with the linear span of the
system
cos k), sin k6 (0 <k <p).



2.3. THE PROOF OF THEOREM 2.2.1 FOR N = 2 29

Let us begin proving the implication (1) — (2) for n = 2. Let (z,y) = (2!, 2?) be
a Cartesian coordinate system in R?. In R? a symmetric tensor of degree m has only
m + 1 different components. Therefore it is convenient to introduce another notation for
components by putting ﬁ = f1.12.2 (0 < i < m); index 1 is repeated i times, and 2 is
repeated m — ¢ times. We also assume that ﬁ = 0 when either ¢ < 0 or @« > m. Equality
(2.2.1) can be rewritten in this notation as follows:

1 b 5
fi:E l@ag;l +(m—¢)g:’ (i=0,...,m), (2.3.1)
and claim (1) of theorem 2.2.1 looks like:
/Z( )f,a:—l—tcosé’ y + tsinf) cos’  sin™ " § dt = 0. (2.3.2)
oo =0

This equality holds identically on z,y, 0. For x,y,0 € R, we put

0 m

w(zx,y,0 / Z( >fZ (v +tcosf,y+tsind)cos'§ sin™ " 0 dt. (2.3.3)

=0

—0o0

The function w(x,y,0) is of class C? with respect to the set of all its arguments and, by
(2.3.2), satisfies the identity

w(x,y, 0 +7) = (=1)""w(z,y,0). (2.3.4)

It follows from (2.3.3) that w satisfies the equation

m

cosfw, +sinfw, = (TL) filx,y) cos' 0 sin™ " 0 (2.3.5)

1=0

which is the simplest form of the kinetic equation (compare with (1.2.4)). Here the
notations w, = dw/dzx and w, = Ow/0dy are used. By Lemma 2.3.1, w can be uniquely
represented by the series

m—2 m—1
w(r,y,0) = Z B cos™ 20 sin' § + Z a'cos™ 10 sin’ 0 +
=0 i=0
+ Y (aF cos kb + b* sin k) (2.3.6)

k=m
whose coefficients o, 3, a@* b’“ are compactly-supported functions of the variables x, y with
continuous derivatives of the first and second order. The series

> [(@)2 + hy? + 0+ Y]

converges uniformly in (z,y) € R? (we assume here that the components of the field f
are real; it is sufficient to prove theorem 2.2.1 in this case). From (2.3.4), we see that
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fl=.. . =p"=a"=0p"=a™?2 =2 = =0, and (2.3.6) can be rewritten as

follows:

m—1 00
w= > a'cos™ " hsin 6+ [ak cos(m + 2k + 1) + b* sin(m + 2k + 1)0} . (23.7)
=0 k=0

Series (2.3.7) is differentiable termwise with respect to z,y because w € C?%. We
substitute the so-find values of w, and w, into (2.3.5) and then transform the left-hand
sides of this equation to a series of type (2.3.6) (increasing m by 1). Comparing the
coefficients of the series on the left- and right-hand sides of the so-obtained equality, we
arrive at the next infinite system:

o+ i () + 80) + 5,8 — o) = <m> Foe li=0...m). (238
al; k= —(af;ﬂ + bk+1)7
! ! (k=0,1,...) (2.3.9)
ab +0F = —(—aft +05t1)

1

where it is assumed that o™ = o™ = 0, and the numbers ~;, J; are the coefficients of the

expansions

m m
cosmf = Z ~; cos™ " 0 sin' 6, sinmf = Z 0; cos™ " 0 sin" 6.
i=0 i=0

Let us show that (2.3.9) implies
d=v=0 (k=0,1,..)) (2.3.10)
Indeed, squaring each of the equalities (2.3.9) and summing them, we obtain

2 2 2 2 a 8 _
(@4 (4 060+ O+ 2| (alp) = (et =

0 0
k+1)2 k4142 k4142 k4142 k417 k+1 k417 k+1
= (a + (a + (b + (b + 2 a, b — a. b .
(@7 (7 O O 4 2 | a0 - (e
The expressions in brackets have a divergence form and, consequently, vanish after inte-
gration over R2. We thus obtain

o = / / [(a5)? 4 (ab)2 + (5 + (W) dady = ers (K =10,1,...).

The series > 72, ¢ converges as we have seen before. Therefore all ¢, = 0, (2.3.10) is
valid.
Equalities (2.3.8) now look like:

m\ z _ i i—1 _
(Z.)fm_i—ozz—i—ozy (i=0,...,m).

Defining ©; by the equality (m — ) (T ;= ma™ "t (0 < i < m— 1), we arrive at
(2.3.1) which is equivalent to the relation f = dv.

By (2.3.3), supp, ,w is contained in the convex hull of the support of f. Consequently,
the same is true for supp v. Examining the above proof, one can see that smoothness of
the field v is not less than that of f, i.e., v € CY(S™ 1) if f € C'(S™). Nevertheless, (2.2.1)
implies v € C'1(S™~1) as will be shown later in the proof of Theorem 2.2.2.
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2.4 Proof of Theorem 2.2.2

First of all, the part of Theorem 2.2.1 which remains unproved, namely, the equivalence
of claims (2) and (3) in this theorem, is a consequence of Theorem 2.2.2. The proof of
Theorem 2.2.2 given below is based on the following observation: being differentiated
(m — 1) times, equation (2.2.1) can be resolved with respect to V"v.

At first we give a few purely algebraic propositions.

Lemma 2.4.1 For1 <1 <m, let a tensor y € T™ have the symmetry
SYIN Yy iy, * (’ll .. .Z’l)(ilJ’,l . Zm) (241)

Then the next equality holds:

. . 1 . ‘
o1 )iy i = EU(“ clme1) [(m — DYy, + lyimil...im_l] ) (2.4.2)

P r o o f. By definition,

‘ . 1
0'(21 . Zm)yil,..im - % ; y’iﬂ(l)...iﬂ.(my

We combine the summands of this sum according to the position of the index 7,,. We then
get

. . 1 . .
(i1 im)VYiy iy = %0(21 celet) [yimil...im_l + Yirimio.imor T -+ T+ yil...im] .

By (2.4.1), the first | summands in the brackets coincide; in the other summands the
index i,, can be moved to the final position. The lemma is proved.

We call (2.4.2) the formula of decomposition of the symmetrization o(i; . ..1,,) with
respect to the index i,,. Of course, similar formulas are valid for other indices of the tensor
y possessing a symmetry of the type (2.4.1).

We define the operator V' : C*(S™) — C°°(T?™) by the equality

(Vv iimiroim = (imim) 001 - im—1) 0(j1 - - n—1) X

m—1

m—1

X Z(_l)p< P )fil...im_p_limjl...jp;jp+1...jmimp,,,im_l- (2.4.3)
p=0

Lemma 2.4.2 For f € C*(S™), the next relations are valid:

. . . . 1
o(irim) o(J1 - Jm) (V)i imioim = §(Wf)z‘1...imj1...jm (2.4.4)

. m+1
@imm) W )iy s oogm = R (V ir v (2.4.5)
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P roof From the definition of V' and the evident equality
O'(’il e Zm) U(jl . ]m) Oé(’Lmjm) U(il . im—l) U(jl . ‘jm—l) =

=0(i1.tm) 01+ Jm) @(imim),

(i1 im) (- ) (Virinissin = ;a(z‘l i) o(gy .jm)wi)(—l)p (mp— 1) %

X {fil...im,pjl...jp;jp+1...jmim,p+1...im - fz‘l...im,p,ljl...jpﬂ ;jp+2...jmim,p.‘.im} .
Combining the second summand in the brackets of the p-th term of the sum with the first
summand of the (p + 1)-st term, we arrive at (2.4.4).

Decomposing the symmetrizations o(i; . . . i) and o(j; . . . jm) in the definition (2.1.9)
of the operator W with respect to indices i,, and j,,, we obtain

m
. . 1
(W )i imirimn = (i1 -+ ime1) 0(J1 - Jme1) (= ( ) W[hﬂL
p=0
2 2
+ p fil---imfpjl---jp—ljm ;jp---jm—lim—p+1---im + (m - p) fil---im—p—limjl---jp ?jp+1---jm7;m7p---im—1:|

where h denotes some tensor symmetric in i,,, j,,. Applying the operator a(i,,j) to this
equality and taking it into account that the last operator commutes with o (i .. .4, 1)
and o(J1 ... Jm-1), we have

i) W P i i = i) 001 - i002) 0t - Gina) Do(~1 ( >1x
p=0

2
X |:(m - p) fil---im—p—limjl---jp ;jp-ﬂ—l---jmimfp---im—l -

- p fil---imfpi'mjl---jp—l?jp---jmim—p+l---im—1:| .

Combining the first summand in the brackets of the p-th term of the sum with the second
summand of the (p + 1)-st term, we get (2.4.5). The lemma is proved.
For f € C*(5™), we define Rf € C>(T?") by the equality

(R )ivjs.cimim = i1J1) - - @(imm) fircim s jrovion -

This tensor is skew-symmetric with respect to each pair of indices (i1, j1), . - ., (im, Jm) and
symmetric with respect to these pairs. Consequently, R : C®(S™) — C>(S™(A?)), where
A% = A’R" is the exterior square of the space R". The next equalities can be proved in
the same way as Lemma 2.4.2:

W Hisimrogm = (i1 im) (1 Gm) (B )iy o (2.4.6)

(B )isgrwimim = (m+ 1) aling) - @limm) W iy .. jm- (2.4.7)

Relations (2.4.4)—(2.4.7) show that the equalities Wf = 0, Vf = 0 and Rf = 0 are
equivalent. Thus V' and R can be considered as instances of the Sent Venant operator.
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Each of these three operators has its own advantages. For instance, the operator V is
more directly related to the integrability conditions for equation (2.2.1), as we shall see
later. The operator R has the most of symmetries (which are similar to the symmetries
of the curvature tensor [25]) and, consequently, is more appropriate for answering the
question about a number of linearly independent equations in the system W f = 0. We
have preferred W because it can be generalized more directly to the case of the equation
dPv = f (see Section 2.17).

Lemma 2.4.3 For every tensor f € T?™! (m > 1) possessing the symmetry

SYM fiy ivnivedme1 - (01« ) (J1 -+ 1), (2.4.8)

there exists a unique solution to the equation

O (i1 -+ ) Uiy s gim1 = Sir it 1 (2.4.9)

possessing the symmetry

SYM Uiy i fm—1 - (21 N im—l)(imjl .. 'jm—l)- (2410)

This solution is given by the formula

. . o . U i [m
Uiy il me1 — 0(21 - -mel) U(’lmjl .. 'jmfl) Z(—l)p ! ( ) X

p=1 p

X fil--~iM—piMj1~~~jm71im7p+1-~~'L'm71 : (2411>

P r o o f. The dimension of the space formed by tensors possessing the symmetry
(2.4.8) is equal to the dimension of the space formed by tensors possessing the symmetry
(2.4.10). Consequently, the lemma will be proved if we verify that the tensor u defined
by formula (2.4.11) is a solution to equation (2.4.9).

Decomposing the symmetrization o (4,71 - - . Jm—1) in (2.4.11) with respect to the index
im and using the equality o (i1 ...%,) 0(i1 ... %m_1) = 0(i1...%,), we obtain

O'(Zl e Zm)uilmimjl,,.jm_l = EU(“ Ce Zm) ]m 1 Z ( ) X

p

X |:pfi1---imfpimjl---jmflimprﬁl---imfl + (m - p)fil---imfpjl---jmflimimfp+1---imfli| *
Combining the second summand of the brackets of the p-th term of the sum with the first
summand of the (p+ 1)-st term and taking (2.4.8) into account, we arrive at the equality

. . I . . - _
(i1« ) Wiy imjroint = Sirimgt i1 + %0(31 e Tme1) 0 (i i) Z(—l)l) Ly

p

Tensor in the brackets is skew-symmetric with respect to the indices 4,,—pi1, %, and,
consequently, is nullified by the operator o(i;...4,). Deleting it, we get (2.4.9). The
lemma is proved.

To prove theorem 2.2.2 we need the next easy

m
X p fil---imfpimjl---jmflimprfl---imfl - fil---imfpﬁ»ljl---jmflinlimfp+2---im71 *
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Lemma 2.4.4 Assume that U is a domain in R™; xqg € U; p > 0 and ¢ > 0 are integers;
y € CY TP U) has the symmetry

sSym yilmipjl.-.jq . il .. Zp(jl . .]q)

k _ (k +k (1 ~
For every tensors 2% = (2, _,; . ) € TP (k=0,...,q— 1) the equation

Viz=y (2.4.12)
has at most one solution z € CT(TP;U) satisfying the initial conditions
VFiz(rg) =28 (k=0,1,...,q—1). (2.4.13)

For existence of a solution z € CTTY(TP;U) to problem (2.4.12)-(2.4.13) it is necessary
that the right-hand side derivative Vy has the symmetry

sSym yil---ipjl---jq $Jgt1 . il e ip(jl .. 'jq-l-l)a (2414)

and the tensors z* have the symmetries

k

symzi oo e ieip(de gk) (B=0,1,...,¢—1). (2.4.15)

If U is simply-connected, then conditions (2.4.14)—(2.4.15) are sufficient for existence of
a solution to problem (2.4.12)—(2.4.13). If the right-hand side and initial data have the
symmetries

sym yilmipjl...jq . (7,1 e 'lp)(,]l .. -jq)7
sym ZZ...iij..jk c(iy i) (1 k) (k=0,1,...,q—1),
then a solution to problem (2.4.12)—(2.4.13) belongs to CIT1(S™; U).

For p =0, ¢ = 1 the lemma is equivalent to the claim of necessity and (in the case of
a simply-connected U) sufficiency of the conditions dy;/dz7 = dy;/0x" for integrability of
the Pfaff form y;dz’. See the proof of this case in [128]. In the same way the claim can be
verified for p > 0, ¢ = 1. Now the general case can be easily settled by induction on q.

Now we start proving Theorem 2.2.2.

P r o o f of necessity of conditions (2.2.2), (2.2.4), (2.2.5) for existence a solution to
problem (2.2.1), (2.2.3). Let v € C™*(S™~ 1, U) be a solution to problem (2.2.1), (2.2.3).
The validity of (2.2.4) follows immediately from (2.2.3). Differentiating (2.2.1) p—1 times,
we obtain (2.2.5). It remains to prove (2.2.2). To this end, we differentiate (2.2.1) m — 1
times :

081 ) Vi i1 s imdodmet = Jiroim s f1odm1-

By Lemma 2.4.3, it implies that

. . o . U i (m
Vi im—1 5 imd1eJm—1 — 0(21 - -Zm—l)U(lmh .- 'Jm—l) Z(—l)p ! < ) X

p=1

X fil---im—pimjl---jpfl 3 Jpe--dm—1tm—p+1--tm—1°
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Decomposing the operator o (i,,J1 - - . jm—1) on the right-hand side of the last equality with
respect to i, and differentiating the so-obtained relation, we have

. . . . Ui 1 (m\ 1
Vigoim—1 5 imj1Jm — 0(21 . -Zm—l)U(]l .. ~jm—1) Z(—l)p ! ( ) —X

p=1 pjm

X [pfil...z‘m_pimjl...jp,l : pee-dimim—piedim—1 T (m - p)fz‘l...im_pjl...jp ;jp+1...jmim,p+1...im} .
(2.4.16)
The tensor vi, i,. 1 :imjr..jm 1S Symmetric with respect to %,,, j,, that can be written as
follows:

O‘(Zm]m)vh...imA Vimgtogm = 0-

Inserting expression (2.4.16) into the last formula, we arrive at the equality
()é(lmjm)O'(’ll Ce im—l)o-(jl .. -jm—l).g =0

where ¢g denotes the sum on the right-hand side of (2.4.16). Note that all three operators
on the left-hand side of the last equality commute; the second summand of the brackets in
(2.4.16) is symmetric with respect to i,,, j, and, consequently, is nullified by the operator
(i jm). Discarding this summand, we arrive at the relation V f = 0 which is equivalent
to (2.2.2) by Lemma 2.4.2.

P r o o f of sufficiency of conditions (2.2.2), (2.2.4), (2.2.5) for solvability of problem
(2.2.1), (2.2.3). Let U be simply connected and conditions (2.2.2), (2.2.4), (2.2.5) be
satisfied. By Lemma 2.4.3, the equation

O (i1 im)Yiy it g1 = it 1 (2.4.17)

has a solution given by the formula

. . L . m . ({m
Yo = 0l i )0 (it ) SO(=1)] ( ) .

p=1 p

X fi1~--im—pimj1-~~jp—1 3 JpeeJm—1tm—pt1---tm—1" (2418)

Consequently, y € C*(T?™ 1, U). Let us show that the field Vy has the symmetry

Sym yi1-~-imj1~~-jm—1 $ Jm . (21 .. Zm—l)(zmjl .. jm) (2419)

Indeed, on differentiating (2.4.18) we obtain

. . L . m o (m
Yot = (it i) (it Gt S (=1 ( ) .

p=1 p
xfilu-imfpimjl-njp—l ;jp---jmim—p+1~-~im—1 . (2420>
The derivative Vy is thus seen to be symmetric with respect to iy, ..., %,,_1 and also with
respect t0 i, j1, - - -, Jm—1. For this reason, to prove (2.4.19) it suffices to show that

i Jm)Yis - imjs g1 3 g = 0 (2.4.21)
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Inserting the expression (2.4.20) into (2.4.21) and decomposing the operator o(imj1 - . . jm)
in the so-obtained equality with respect to i,,, we see that (2.4.21) is equivalent to the
relation V f = 0 and, by Lemma 2.4.2, to relation (2.2.2).

Lemma 2.4.4 and (2.4.19) imply that the problem

VT =y, (2.4.22)

VPu(zy) = vP (p=0,1,...,m—1) (2.4.23)
has a solution v € C™ ™ (S™1: U). Inserting (2.4.22) into (2.4.17), we obtain

O -G )Viy i1 ity = Sivim s 1 - (2.4.24)

Let us denote
z = dv, (2.4.25)

and rewrite (2.4.24) as follows:
VTl = vl (2.4.26)

It follows from (2.4.23) and (2.2.5) that
VPz(xo) = VP f(x0) (p=0,1,...,m—2). (2.4.27)

Applying lemma 2.4.4, from (2.4.26)—(2.4.27) we obtain z = f. By (2.4.25), this is equiv-
alent to (2.2.1). Finally, initial conditions (2.2.3) are satisfied by (2.4.23).

P r o o f of uniqueness of a solution to problem (2.2.1), (2.2.3). Let v € C™*(S™~1; U)
be a solution of the corresponding homogeneous problem

dv = 0, (2.4.28)
VPu(xo) =0 (p=0,1,...,m—1). (2.4.29)
Differentiating (2.4.28) m — 1 times , we have
U(’il .- -im)Uil...im,l Cimleedmo1 — 0.

By Lemma 2.4.3, it implies that Vv = 0. Using the last equality, (2.4.29) and Lemma
2.4.4, we obtain v = 0.

2.5 The ray transform of a field-distribution

Let D(R™ x ) be the space of smooth compactly-supported functions on R™ x €2 and
D'(R" x ) be the space of distributions on R" x 2. We assume that L, ,.(R" x €2) is
included in D'(R"™ x ), identifying a locally integrable function h(z, §) with the functional
on D(R™ x Q) defined by the formula

(ho) = [ [ (e p(w. ) dw(€) dV"(z) (¢ € DR x Q)), (2:5.1)

R" Q

where dw is the angle measure on ().
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To construct an extension [ : £'(S™) — D'(R" x ) of operator (2.1.10) we note that,
for a compactly-supported field f € L, ,.(S™), the field h = I f belongs to L (R"x€).

Consequently, according to (2.5.1) for ¢ € D(R™ x ),

1,loc

(If.¢ / / / (x+16).6™) . €) dt dw(&) dV"(x).

After a simple transformation this expression takes the form:

o

(If.¢ / Firin [ Jeren [ ol -t dtdu(e)

—00

AV (). (2.5.2)

Defining the field Jy € £(S™) by the formula

o0

(TPrnin = [ &r & [ | etz —t.9) dt] A (§), (2:5.3)

— 00

we can rewrite equality (2.5.2) as follows:

(1f.0) = [ (f@). Tola)) av" (@)

Rn

Comparing this with (2.1.7), we have (If,») = (f, Jp). The last equality proved for a
compactly-supported f € L1,loc(5m)7 will be taken as grounds for the following definition.
The operator [ : £'(S™) — D'(R™ x Q) is given by the formula (IF,¢) = (F, Jy)
where F' € £'(S™), ¢ € D(R" x Q), and J : D(R" x Q) — £(S™) is the continuous
operator defined by (2.5.3).
We can now formulate an analog of Theorem 2.2.1 for tensor field-distributions.

Theorem 2.5.1 For a field F € E'(S™) the next three claims are equivalent:
(1) IF = 0;
(2) there exists a field V € E'(S™Y) such that its support is contained in the convex
hull of the support of F' and dV = F,
(3) WF = 0.

For s € R we denote by H*(S™) = H*®cS™ the Hilbert space obtained by completing
S(5™) with respect to the norm || f(z)|ls = [|(1 + [y])*f (y)||Lo(sm) Where f(z) — f(y) is
the Fourier transform. Given a compact set K C R", by K5 (S™) we mean the subspace of
H?(S™) formed by fields whose supports are contained in K. As a differential operator, d :
HE(S™) — HEH(S™T1) is continuous and so is the Saint Venant operator W : H*(S™) —
Hs—m(sm ® Sm)

We fix a function § € C§°(R™) such that 8 > 0, [g. fdx =1, and suppf C {z | |z| <
1}. For ¢ > 0, we put f.(x) = f(x/e)/e". For a field-distribution 7' € D'(S™) the
convolution T x 3. € £(S™) is defined. We need its properties that are listed in the next

Lemma 2.5.2 The following are valid:
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(1) if T has compact support, then so is T'* (B; and if K = suppT, then supp (T*[3.) C
{z | p(z,K) < e} where p is the Euclidean distance in R,

(2) if T € E(S™), then T % 3. converges to T in the space E'(S™) as e — 0;

(3) if T € H*(S™), then T % 3. converges to T' in the space H*(S™) as e — 0, for every
s € R;

(4) the operator T — T x 3. commutes with d and W

(5) the operator T +— T x 5. commutes with I in the following sense: for T € E'(S™)

(T« B.) = (IT) % f5-

where % denotes the partial convolution in R™ x Q in the space variable © € R™ and that

does not use the angle variable & € §2;
(6) if T € D'(R" x Q), then T % 3. converges to T in the space D'(R" x Q) as e — 0.

P r o o f. The first three claims and the last one are well-known properties of convolu-
tion (compare with Proposition 2.10 in [111]). The fourth is a special case of permutability
of convolution with any constant coefficient differential operator. To prove the fifth claim,
we note that definition (2.5.3) implies the equality 3. * Jo = J(B. % @) that is valid for
¢ € D(R" x Q). From the equality, by putting 3.(z) = f.(—z), for T € £(S™), we obtain

(I(T % B.),0) = (T * B, J) = (T, B % Jp) =

= <T= J(ﬁz—: * 90)> = <IT7 fe X 90> = <<IT> X ﬂ6790>'

Let us begin proving Theorem 2.5.1.

P r o o f of the implication (1) — (2). Let claim (1) be valid for F € £'(S™), and
K' = supp F. For every v = 1,2,..., we denote the convex hull of {z | p(z, K') < 1/v}
by K, and put K = K;.

Having a compact support, the field F' has finite order (see [36], Chapter II), and,
consequently, F' € K5 (S™) for some s € R. By Lemma 2.5.2, the fields f, = F x (3,
have the next properties:

suppf, C K, (2.5.4)

fo—F in K3 (S™) as v — oo, (2.5.5)

If, =0. (2.5.6)

For any v = 1,2,..., applying Theorem 2.2.1 to f,, we construct a compactly-
supported field v, € C™*(S™~1) such that

dU,, = fw (257)

suppv, C K, C K. (2.5.8)

The operator d is elliptic in the sense of the definition given in [111]. Indeed, its symbol
o1(d) is easily seen to be given by the formula oy(d)(§,u) = icu for £ € R™, u € S™.
By the direct calculation in coordinates, the equality (m + 1)jeie = | °E + Migje can
be proved (E is the identity operator). Later we shall prove more general formula; see
Lemma 3.3.3. Since the operators 7¢ and je are dual to each other, the last equality implies
that jeieu # 0 for € # 0, u # 0. Consequently, by Theorem 3.1 of [111], the estimate
vy — vullss1 < C|ld(v, —v,)]|s is valid with a constant C' independent of v, 1. From this



2.6. DECOMPOSITION OF A TENSOR FIELD 39

estimate with help of (2.5.5) and (2.5.7), we see that the sequence v, is a Cauchy sequence
in K3 (S™~1). Thus it converges in this space and, consequently, in £'(S™ 1) as well.
Let V € £(S™ 1) be the limit of the sequence v,. It follows from (2.5.8) that supp V is
contained in (), K, i.e., in the convex hull of the support of F. Taking the limit in (2.5.7)
as v — 00, we obtain dV = F.

P r o o f of the implication (2) — (3). Let the equality dV = F' be valid for V' €
E(S™ ), F e &'(S™). We find a sequence v, € D(S™ ') (v =1,2,...) converging to V
in £(S™1). Then the sequence f, = dv, converges to F' in £'(S™). Applying Theorem
2.2.1 to f,, we obtain W f,, = 0. Taking the limit in the last equality as v — oo, we get
the one desired: WF' = 0.

P roofof the implication (3) — (1). Let the equality W F = 0 is valid for F' € £'(S™).
As above, we construct a sequence f, = F * (3;/,. By Lemma 2.5.2, f, converges to I’
in £'(S™) as v — oo, and W f,, = 0. Applying Theorem 2.2.1 to f,, we verify validity of
(2.5.6). Transforming this equality in accordance with the fifth claim of Lemma 2.5.2, we
get [F % By /v = 0. Taking the limit in the last equality as v — oo and using the sixth
claim of Lemma 2.5.2, we arrive at I F = 0.

2.6 Decomposition of a tensor field into
potential and solenoidal parts

A field f € C*(S™) is called potential if it can be represented in the form f = dv for
v € C°°(S™!) such that v(z) — 0 as |z| — oo. If f is potential, then If = 0 as we have
seen above. Thus if we can find a subspace £ C C*°(S™) which does not intersect the
space of potential fields and whose sum with the latter equals C*°(S™), then the operator
I is uniquely determined by its restriction to E. Since the dual operator of d is —9, we
may naturally take as E the space of solenoidal tensor fields , i.e., the space of fields
satisfying the equation 6 f = 0.

It is well known that a vector field can be decomposed into the sum of solenoidal and
potential fields. If the fields are considered in a bounded domain, then for uniqueness of
such decomposition we have to require that the potential vanishes on the boundary of
the domain. If the fields are defined on the whole R™, then we have to require that both
summands tend to zero at infinity. It turns out that the last fact is valid for symmetric
tensor fields of arbitrary degree. In this section we shall establish it for fields considered on
the whole R"™. To prove it we shall use the method that is based on the next observation:
after application of the Fourier transform, the relations f = *f + dv, 0°f = 0 give the
equations f(y) = *f (y) + V=1i,0(y), Jy sf(y) = 0 which can be easily solved with respect
to *f(y) and o(y).

We recall that S! is identified with C" and, consequently, R* C S'. For x € R", let
ip 0 S™ — S™ 1 and j, : S™ — S™~! denote the operator of symmetric multiplication by
x and that of convolution with z.

Lemma 2.6.1 For every f € S™ and 0 # = € R", there exist uniquely determined
tf € S™ and v € S™ ! such that

f="+iw,  4.'f=0. (2.6.1)
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The tensor 'f is expressed through f and x according to the formula

mn which 4 4
L myat ; Z;,, o™
Nudm(py = [ g0 — 24 N I g 2.6.
1. 'Lm( ) < i1 |(L’|2 > ( im |(L’|2 > ) ( 63)
and 8] is the Kronecker symbol. If ¢ € R" and (z,€) = 0, then
(f.€m) = (f,&m (2.6 =0). (2.6.4)

P r oo f. The operators i, and j, are dual to one other. Consequently, the orthogonal
decomposition S™ = Ker j, ® Im, is valid. This implies existence and uniqueness of ‘f
and v satisfying (2.6.1). The validity of (2.6.2) will be clear after opening the parentheses
on the right-hand side of (2.6.3) and inserting the so-obtained expression into (2.6.2).
Relation (2.6.4) follows from (2.6.2) and (2.6.3). The lemma is proved.

For a field f € C*>(S™; Ry}), if decomposition (2.6.1) takes place for all z € R, i.e.,

fl@) ="f(z) +iv(x),  j.'f(x) =0, (2.6.5)

then 'f € C*°(S™;Ry) and v € C*°(S™ 1 RY), as one can see from (2.6.2). We shall call
the fields ‘f(z) and i,v(x) the tangential and radial components of the field f(z). The
terms are given because, in the case m = 1, the vector 'f(z) is tangent to the sphere
|z| = const, and a vector i,v(x) is parallel to x.

Theorem 2.6.2 Letn > 2. For every field f € S(S™; R") there exist uniquely-determined
fields 5f € C>°(S™) and v € C°°(S™ 1) such that

f="f +dv, 0°f =0, (2.6.6)

flx) =0, v(z)—0 as |z|]— occ. (2.6.7)
These fields satisfy the estimates

fl@) < CA+ 1)), ()] < CA+]a)*™,  Jdu(2)] < C1+ (2" (26.8)

The fields *f and dv belong to Ly(S™). The Fourier transform *f(y) of the field *f (z)
belongs to C>°(S™; Ry), is bounded on R™ and decreases rapidly as |y| — oo.

P r oo f of existence. Let f(y) be the Fourier transform of the field f(z). By Lemma
2.6.1, for every y # 0, there exist uniquely-determined f(y) € S™ and 4(y) € S™ ! such
that X

f) =" +idw), 4" fy)=0. (2.6.9)

Starting with (2.6.2) and (2.6.3), by induction on |a|, we verify validity of the represen-
tations

Dat“ Zm( ) |y|_2|a‘ e Z nglel zjm D le ]m( )

18I<|al

Da@iln-imfl(y) = |y|—2|a\—2m Z Qgﬁ z]: 1( )Dﬁfjl-njm(y)
181< ]
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in which P/gflll{:‘ (Qgﬁfzﬁ .) are homogeneous polynomials of degree 2m +|a|+|3| (2m+
| 4+ |B] — 1). We use the ordinary notation: D; = —id/dx? and D* = D' ... D% for
a multi-index a = (g ... a,). These representations imply that the fields 'f(y), o(y) are

smooth on R{, decrease rapidly as |y| — oo, and satisfy the estimates
D) <y, [DY(y)| < Jy| T (2.6.10)

for |y| < 1. Consequently, *f, i,& € Ly(S™). It follows from (2.6.10) that the field D*‘f is
summable on R” for |a] <n — 1, and D*0 is summable on R"™ for |a| <n — 2.

Let *f (z) = F[if (y)] and v(z) = —/—1 F[6(y)], where F is the inverse Fourier trans-
form. Now f € C®(S™), v € C=(S™ ') since 'f(y) and 0(y) are rapidly decreasing.
Applying F to (2.6.9), we obtain (2.6.6). Relations (2.6.7) are satisfied since 'f and @ are
summable on R". Estimates (2.6.8) follow from the above established summability of D* tf
and D“9. Finally, by the Fourier-Plancherel theorem, the containment f, i,0 € Lo(S™)
implies that *f, dv € Ly(S™).

P r o o f of uniqueness. Let 5f € C°(S™) and v € C°°(S™™1) satisfy (2.6.7) and
relations *f + dv = 0, 6%f = 0. In particular, *f € S'(S™), v € §'(S™ ') where &
is the space of tempered distributions on R". Thus the Fourier images ‘“? € §'(S™) and
0 € 8'(S™1) are defined. Applying the Fourier transform to the equalities *f +dv = 0 and
0%f = 0, we obtain S}”(y)+\/—_17,yﬁ(y) =0, j, S}”(y) = 0. From this, by Lemma 2.6.1, we see
that 5}|R3 = 0|gp = 0, i.e., the supports of these distributions are concentrated at zero.
Consequently, each of their components is a finite linear combination of the derivatives
of the d-function. With the help of (2.6.7), we conclude from this that *f = v = 0. The
theorem is proved.

The fields °f and dv satisfying (2.6.6) and (2.6.7) will be called the solenoidal and
potential parts of the field f.

We shall need one more version of the decomposition theorem. To formulate it we
first give two definitions.

Let K (S™) be the closure, in Ly(S™; R"), of the set of the fields f € C(S™)N Ly (S™)
that satisfy the equation §f = 0 and the estimate |f(z)| < C(1 + |z])*™™. Let D(S™) be
the closure, in Ly(S™), of the set of the fields f € Ly(S™) that can be represented in the
form f = dv for some v € C*°(S™!) satisfying the condition: v(z) — 0 as |z| — oo.

Theorem 2.6.3 We have the orthogonal decomposition
Ly(S™) = K(S™) @ D(S™). (2.6.11)

P r oo f. First of all we show that the summands of decomposition (2.6.11) are
orthogonal to one other. Let f € K(S™), g € D(S™). There are fields f;, € C*(S™) N
Ly(S™) and vy € C®(S™ 1) (k=1,2,...) such that §f, =0, dvy € Ly(S™),

1fe(@)] < Cp(1+ |2, v(x) =0 as |o| — o0 (2.6.12)

and fr, — f, dvy — g in Lyo(S™) as k — oo. Inserting u = vy, v = fr and G = {z | |z| <
A} into the Green’s formula (2.1.8), we obtain

/(fk,dvk>d$= /(fk>iuvk>d0-

|lz[<A |z[=A
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The right-hand side of this equality tends to zero as A — oo, which is easy from (2.6.12).
Consequently, (fi,dvy) = 0. Passing to the limit in k£ in the last equality, we obtain
(f,9) =0.

For f € Ly(S™), choose a sequence fr € S(S™) that converges to f in Lo(S™). By
Theorem 2.6.2, there is a representation fr = °fx + dvg, such that °f, € C®(S™) N
Ly(S™), 6°fr, = 0, v, € C°(S™), duy, € Ly(S™) and (2.6.12) is satisfied. For every k
and I, fr—fi = (°fk—>fi) +d(vi,—v;). The summands on the right-hand side of this equality
are orthogonal to each other and, consequently, || fr — fill* = ||°fx — *fil]* + ||dvx — dv||*.
Since the sequence fj is Cauchy, the last equality implies that °f; and dvj are also Cauchy.
Consequently, they converge to some °f, h € Ly(S™). The above listed properties of *f;, and
v imply that *f € K(S™), h € D(S™). Passing to the limit in the equality fr = *fy + dvy
with respect to k, we obtain f = °f 4+ h. The theorem is proved.

2.7 A theorem on the tangent component

From (2.6.2), one can see that the tangent component of a smooth field has, as a rule, a
singularity at the point z = 0. In this respect the question arises: assume that a tensor
field h is smooth on Ry and satisfies the condition j,h(x) = 0; under which supplementary
conditions on h does there exist a field f smooth on the whole R" and such that its tangent
component is h? The question is answered by

Theorem 2.7.1 For a field h € C*(S™;R{) (n > 3) to be the tangent component of
some f € C®(S™; R"), it is necessary and sufficient that h satisfies the relation

Jzh(x) =0 (2.7.1)
and there ezists a function ¢ € C*(TQ) connected with h by the equality
(h(a), €") = p(2,6)  ((2.6) € T © £0). (2.72)

Necessity follows from (2.6.4). Beginning the proof of sufficiency, we extend ¢ to
R" x Ry by the equality

pla,§) = €[ o(Per, &/IE]) ((2,€) € R" X Ry) (2.7.3)

where Pex = x — (z,€)E/[€|? is the orthogonal projection of R™ onto £+. Then ¢ is in
C*(R"™ x R{) and satisfies the relations

o(z,t6) = t"p(x,€)  ((z,€) € R" x RE; ¢ > 0), (2.7.4)
ple+16,8) =p(r,§)  ((x,§) e R" xRg; t € R), (2.7.5)
gig;i =0 ((z,¢) € R" x Ry), (2.7.6)

(h(x), &™) =p(z,6)  ((z,€) € Rf x Rg; (z,8) =0). (2.7.7)

Equality (2.7.6) follows from (2.7.5) by differentiation with respect to ¢.
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Let z,& € Ry, x # t€ (t € R); then the representation £ = P,£ + tx is possible with
P, #0. By (2.7.1) and (2.7.7),

(h(x),&™) = (h(x), (Pf)™) = plx, Pe€) (2,6 € Rg; x # t8). (2.7.8)

Differentiating this equality m times with respect to ¢ and putting then (z,£) = 0, we
obtain

h: ( )_)\Jl Jm amw
1. bm

L) g e @8 (@O Ry xR =0. (279

Note that (2.6.3) implies the relations

e\ () = wp N () = 0, (2.7.10)
gy (@) =gty ((wy) = 0). (2.7.11)
Lemma 2.7.2 Under the assumptions of Theorem 2.7.1, there exists a sequence of tensors
=, i) €S @S (1=0,1,...), such that the relations
Riy i (2) = NET (2 Z Cor s Ol (2 —0), (2712
=0
1 Oy I i i
ﬁm(oaf) = A ST (£ €, (2.7.13)
P1---Pm 1 am+l90

_ J Ji—
w i )\ g grmann . aen 8 T i |11 =0
(&n € (€ n) =0) (2.7.14)
are valid for any 1 > 0.

P r o o f. We shall construct tensors ¢! by induction on /. To avoid considering the case
[ = 0, we note that the claim of the lemma makes sense for [ = —1 as well. In the last
case the lemma asserts only that h(z) = O(1). From (2.7.2), one can easily see that h(z)
is bounded for || < 1. Assuming the validity of the lemma for [ = —1,0,...,k—1 > —1,
we expand ¢(z,§) into the Taylor series in x :

ko 9% . |
T g 0O Al + O (€€ Q).
s=0 °° PN

o(r,8) =

Using the inductive hypothesis (2.7.13) on the derivatives of order less than k, we trans-
form the last equality to the form

o(x, &) = L Em Z )\?; ;1:' Chroimdt e o bfl ]k(g):cjl a4 O(|x!k“)

(€€Q), (2.7.15)

where o
k _ 1 ¥
08 = i ami g 08 (E€Q). (2.7.16)
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By (2.7.11), if (z,£) = 0, then equality (2.7.15) looks like

k—1

P2, 8) =€ 3G g by (O 4 O(|e M)
- ((z,€) € TQ). (2.7.17)
For (x,&) € TN, we replace the right-hand side of (2.7.8) with (2.7.17) and obtain
k-1
i (0) = 3 ] €0 <O Ol

((z,€) € TQ; z #0). (2.7.18)

Using (2.7.11), the last formula can be rewritten as follows:
[hil...im< ) — /\ff zz::f ) Z C;)l...pmjl...jsle e xjsl .= bgl Jk (). al +
s=0

+O0(lz") (2,8 € TQ; = #0). (2.7.19)

For n € Q, we will establish existence of the limit

1 - .
@, i, (1) = lim EE Piy i () = A0 Z o (2.7.20)
x/lal—n

To this end, we expand the function 0™ p(z,&)/0&Pr ... 0&P™ into the Taylor series in z:

Imp(z,§) &1 O™t

e AL — —_— jl .js k+1
oErr ... Ogpm ;}S!(f)gm‘_,agpmalemaxjs(o,ﬁ)m ool 4+ O(|z ).

Inserting the last expression into (2.7.9) and using the inductive hypothesis (2.7.14), we
obtain

Riy iy () = NP (@) D el =

I @) e B (0,62 a9+ Ol
El7tetm 2000 QEPm Ot . Qadk o
((x,€) € T x #0). (2.7.21)
It follows from (2.6.3) that lim A"~ P™(z) = A' /™ (n) as © — 0 and z/|z| — n. Dividing

equality (2.7.21) by |z|* and passing to the limit, we obtain existence of the limit in
(2.7.20) as well as validity of the relation

il 1) = ) 0. () =0
i1...%m L 01 im 851’1 - agpmale - al‘jk ; ... , N .
(2.7.22)
Dividing (2.7.19) by |z|* and passing to the limit as x — 0, z/|z| — 71, we obtain
(@ (n), &™) = B*(€),n")  (&ne®; &n) =0). (2.7.23)

Let us prove that
gna®(m) =0 (n€ Q). (2.7.24)
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To this end, we note that, by (2.7.10), condition (2.7.1) can be rewritten as

q . . pl pm Z Js | —
2 hgiy.. (%) = ql2 lm Cm pngrge T =0,

Dividing this equality by |z|**! and passing to the limit, from (2.7.20) we obtain (2.7.24).
Now we check that
Jeb*(€) =0 (£€q). (2.7.25)

Indeed, if we differentiate equality (2.7.6) & — 1 times with respect to = and put = = 0,
then the so-obtained relation coincides with (2.7.25), by (2.7.16).

Equalities (2.7.23)-(2.7.25), together with smoothness of b*(¢) which follows from
(2.7.16), imply that the maps a* : Q — S™ and b* : Q — S* satisfy the conditions of The-
orem 2.8.1 formulated below. By this theorem, there exists a tensor ¢* = (¢} , . )€
S™ @ S* such that

k 1--Pm k j1 ]

Replacing the left-hand side of (2.7.22) with (2.7.26), we obtain (2.7.14) for | = k.
Relations (2.7.16) and (2.7.27) imply (2.7.13) for [ = k. Writing (2.7.14) in the form

1 . pm< ) 8"”‘”%0
Fl e im N gen  ggpmdgit .. Ok

(07 g)le Ijk - )\Zpll pr’;“ (I)cf;lpm_]l_]kle te 'rjk

((z,§) € TQ; = #0)

and inserting this expression into the right-hand side of (2.7.21), we arrive at (2.7.12) for
[ = k. Thus the inductive step is finished and the lemma is proved.

P ro o fof Theorem 2.7.1. Let w;, ;, € C*°(R™) be a function such that its Taylor
series is

Wiy (T) ~ Z Cfl...z'mjl...jkle L (2.7.28)
k=0

where ¢* are tensors constructed in Lemma 2.7.2. Then u = (u;,. ;,,) € C*(S™) and, by
(2.7.12),
Ry () = N ET (@) () + 0(2]°), (2.7.29)

11.--tm

for every k > 0. Defining the field @ € C*°(S™; Ry) by the equality
Uiy () = A0 (@) Upy oy (T), (2.7.30)
we can rewrite (2.7.29) as follows:
h(z) =a(z) +o(|z|) (x€RE, o —0; k=0,1,...). (2.7.31)

From the structure of AY! ™ (x) defined by (2.6.3), we see that (2.7.30) can be written in
the form
(z) = u(zr) —izv(x) (2.7.32)
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with some v € C®(S™1;R?). Using (2.7.10) and (2.7.11), from (2.7.30) we obtain the
relations

jei(z) =0 (z €RD), (2.7.33)
(a(x),€") = (u(x),&™)  ((z,§) € TQ; = #0). (2.7.34)
For x € R"™, we define f(x) € S™ by

h(z) + izv(x), if x#0,
f(x) :{ ) @) (2.7.35)

&, if z=0.

This definition implies that A is the tangent component of the field f. Thus the theorem
will be proved if the containment f € C°°(S™;R") will be established. To this end, it
is sufficient to prove that h = f —u € C®(S™ R"). By (2.7.28), u(0) = ¢’ = f(0) and,
consequently, ~(0) = 0. It follows from (2.7.31), (2.7.32) and (2.7.35) that

h(z) =

(
By (2.7.32) and (2.7.35), h(z) = h(z) — () for = € R2. With the help of (2.7.33), (2.7.34)
and conditions (2.7.1), (2.7.2) of the theorem; from thls we conclude that

|z|*) (xeR", 2 —0; k=1,2,...). (2.7.36)

Jzh(x) =0 (x € RY), (2.7.37)
(h(2),€") = @(x.€)  ((x,§) € TY; 2 #£0), (2.7.38)
where the function @ € C*°(TQ) is defined by the equality

Relations (2.7.37) and (2.7.38) show that the field & satisfies the assumptions of the
theorem as well as h. As compared with h, the field i has the advantage of satisfying
(2.7.36).

By definition, & € C°°(S™; R%). Thus, to prove the containment h € C*(S™; R") it
is sufficient to verify that the asymptotic estimate

Dh(z) = o(|z|*) as z — 0 (2.7.40)

is valid for every multi-index o and every k > 0.

Replacing h by h, we repeat the discussion which is placed just after the formulation
of Theorem 2.7.1. We extend ¢ to R” x R{ by a formula similar to (2.7.3) and verify
that

(h(z), &™) = @z, Pe)  (x,6 € RY: x # t€). (2.7.41)
From (2.7.39) and (2.7.3), one can see that the functions ¢ and ¢ are connected by the
relation @(x,&) = p(z, &) — (u(Pex), &™) for (x,€) € R™ x R{. Differentiating this equality
with respect to x and then putting x = 0, we obtain
¢ 0 s
Ozt ... QxIk (0.6) = Ozt ... OxIk (0.6) = 25,758
Inserting the value (2.7.13) of =02 (0,€) and the value (2.7.28) of - o Yitin
nserting the value ( )o W( ,€) and the value ( )o W()
into the last equality, we see that D2p(0,£) = 0 for £ € Q and for every multi-index

k
0 Uiy .. i

Oz ... Jx%

(0)&n ... &m (Ee€).
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«. This implies that D2@(0,&) = 0 for & € Rf, by homogeneity of ¢(z,&) in its second
argument. Differentiating the last relation with respect to &, we obtain Dg‘D? 2(0,£) =0
for every a, 3. From this, one can easily prove existence of a constant C,g; such that

ID2D{G(x,8)| < Caprlz]* (z€R", 2| <1, £€9Q) (2.7.42)

for every «, 5 and k > 0.
Differentiating (2.7.41) with respect to £, we obtain

I
oEr .. Ogrm

0,
Riv. i = |22 Q35 ™ (2, €)

(, P:&)  (2,§ € Rg; x £ 1),

where

QT (x,€) = (|20} — woa) .. (J2 PO — g, 2P™).

i1 bm

From this, by induction on |«|, we infer the representation

D%hi,.q,, = || 72 5™ Q87 (2,6)DEDIG(x, P€)  (2,€ € Ry x £ L€)

B+v<a

with some polynomials Q%" (x,£). This representation taken at (z,£) € TS, together

11.-.m

with inequalities (2.7.42), implies estimate (2.7.40). The theorem is proved.

2.8 A theorem on conjugate tensor fields
on the sphere

By Lemma 2.6.1, the decomposition S™ = Ker j, ¢ Im i, is valid for every =z € Q. Let P,
be the orthogonal projection of S™ onto the first summand of this decomposition. The
relation ‘f = P, f is expressed in coordinate form by equality (2.6.2). A mapping a : Q —
S* is called the tangent tensor field on the sphere if jya(x) = 0 for x € Q. Two fields
a:Q— SFand b:Q — S™ are called conjugate if the equality (a(x),y*) = (b(y),z™) is
valid for every z,y € Q satisfying the condition (z,y) = 0.

Theorem 2.8.1 Letn >3, k>0 and m > 0 be integers; Q= Q" 1. Ifa: Q) — S* and
b:Q — S™ are conjugate tangent tensor fields on the sphere and one of them is smooth,
then there exists a linear operator A : S™ — S* such that

a(x) = P,Az™, b(z) = P,A*xF (x € Q),

where A* : S¥ — S™ s the dual of A. In coordinate form this claim is formulated as
follows: there exists a tensor A = (A, i ir. i) € S¥ ® S™ such that

iy (T) = ATV f;k(x)Apl...pkjl...jmle O ks (x € Q),

bjl--~jm (x) XJ]i ?Z (x)Ai1-~2'k111~-qm$i1 otk (l‘ S Q)
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Starting with the proof, first of all we extend a and b to the mappings a : R} — S¥
and b : Rj — S™ in such a way that a becomes positively homogeneous of degree m nd
b of degree k. Then the relations

jza(z) =0, j.b(x) =0 (x € RY), (2.8.1)
(a(@), ") = (b(y),2™)  (z,y € Rg; (z,y) =0), (2.82)
are valid. They imply the equalities
(a(z), y*) = (b(Poy), 2™)
(b(y),2™) = (a(Pyx), y*)

By assumption, one of the two mappings is smooth; let it be a. We can now prove
smoothness of the other mapping. Indeed, the right-hand side of the second equality in
(2.8.3) is smooth on R™ x Rf}. Consequently, the left-hand side of this equality is smooth
on {(x,y) € Ry x R |  # ty}. This implies smoothness of b on Ry.

Lemma 2.8.2 Let U be a domain in R™ and f € C®(U). Given an integer k, if D*f =0
in U for |a| > k, then f is a polynomial of degree at most k.

} (x,y € R; = # ty). (2.8.3)

We omit the proof of this lemma because it is evident.

Lemma 2.8.3 Let f € C*°(R{). If f, restricted to every two-dimensional plane passing
through the origin of the coordinates, is a polynomial of degree at most k, then f is a
polynomial of degree at most k.

P roof. Every straight line can be included into some two-dimensional plane passing
through the origin. Consequently, f restricted to every straight line is a polynomial of
degree at most k. From this, 9**' f/0zF™ = 0 for z € RP. Thus D*f = 0 for |a| > kn.
Applying Lemma 2.8.2, we see that f is a polynomial. Let us show that its degree N
is at most k. To this end we represent f as f = P + @ where P # 0 is a homogeneous
polynomial of degree N, and the degree of () is less then N. There exists a € Ry} such that
P(a) # 0. Then the restriction of f to the straight line x = at has degree N. Consequently,
N < k.

Lemma 2.8.4 Theorem 2.8.1 is valid for m = 0.

P roof In this case (2.8.2) looks like: (a(x),y*) = b(y) (z,y € RY; {(x,y) = 0).
This implies that the restriction of b to every hyperplane passing through the origin is a
polynomial of degree k. By Lemma 2.8.3, we conclude that b is a homogeneous polynomial
of degree k

b(y) = Aiy i y™ ..y (2.8.4)
The first of equalities (2.8.3) looks now like: (a(z),y*) = b(P,y) (z,y € RY; = # ty).
Differentiating this relation, we obtain
1 OF(b(Py)) 1 kb
i (U = I oy KOy oy
By (2.8.4), it can be written in the form

iy ...y, (SL’) = Aj1~~~jk/\]"lmjk (l’) (285>

110

(Pey) Nl ().

i1...0k

Relations (2.8.4) and (2.8.5) give the claim of the theorem. The lemma is proved.
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Lemma 2.8.5 Let the assumptions of Theorem 2.8.1 be satisfied. Extend a and b to Ry
in such a way that a (b) be positively homogeneous of degree m (k) and put

a(z,y) = [z (a(x),y");  blz,y) = [y (bly), 2™ (x,y € RY). (2.8.6)

Then a(x,y) (b(z,y)) is a homogeneous polynomial of degree 2k + m (m) in x and a
homogeneous polynomial of degree k (k + 2m) in y.

P r o o f. Differentiating the second equality in (2.8.3) m times with respect to = and
putting (x,y) = 0, we obtain

2m Aam
m yl*™ 0aj, . 5. (x) oo . . .
b () = P el i (0 € R (o) = 0,
(2.8.7)
We fix indices 41, . . ., i, and put
b(y) = 1y biy i (y)- (2.8.8)

The right-hand side of equality (2.8.7) is a homogeneous polynomial of degree k + 2m in
y, i.e., this equality can be written in the form

b(y) = al, ;0 @y oy (zy €RE; (z,y) =0) (2.8.9)

with some a’ € C*(S*2™: RY). Let a(z) be the tangent component of the field a'(z). It
follows from Lemma 2.6.1 and (2.8.9) that (a(z), y*t2™) = b(y) for z,y € RZ, (x,y) = 0.
We thus see that the mappings @ : Q — S*2m and b : Q — S° = C satisfy the conditions
of Theorem 2.8.1. By Lemma 2.8.4, the assertion of Theorem 2.8.1 is valid for these fields.
In particular, b(y) is a homogeneous polynomial of degree k& + 2m. Now (2.8.8) implies
the desired statement about b(z,y). The statement on a(x,y) can be proved in the same
way. The lemma is proved.

Lemma 2.8.6 Let f(x,y) be a real polynomial in variables x = (x1,...,x,) and y =
(Y1, -, Yn). For x,y € R, if the equality (x,y) = 0 implies f(x,y) = 0, then f(z,y) is
divisible by (z,y) = 3 z:y;.

We omit the proof which can be implemented by elementary algebraic methods.

Lemma 2.8.7 Letn >3, k>0 and m > 0 be integers, f(z,y) be a complex polynomial
inx = (x1,...,2,) and y = (y1,...,Yn). If there exist polynomials g(z,y) and h(zx,y)
such that

" f(z,y) = 2P g(x,y) + (z,y)h(z,y), (2.8.10)

where |z|> = 3 a7, then there exist polynomials a(z,y) and B(x,y) such that

flzy) = 2P alz,y) + (z,9)B(x,y). (2.8.11)

If f(z,y) has real coefficients, then a(x,y) and [(z,y) in (2.8.11) can be selected with
real coefficients. If f(x,y) is bthomogeneous in x,y, then a(x,y) and B(z,y) can also be
selected to be bthomogeneous.
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The proof of this lemma will be given in the next section.

P r o o f of Theorem 2.8.1. Multiplying equality (2.8.2) by |x|2k|y|2m, we obtain
|2 a(z, y) = |z|*b(x,y) for (z,y) = 0. By Lemma 2.8.5, a(z,y) and b(x,y) are bihomo-
geneous polynomials of degree (2k+m, k) and (m, k+2m) respectively. Applying Lemma
2.8.6, we obtain |y|*™a(x,y) — |=|2*b(z,y) = (z,y)h(z,y), where h(x,y) is a polynomial.
With the help of Lemma 2.8.7 we conclude that

a(z,y) = |z[* oz, y) + (z,y)B(z,y) (2.8.12)

with bihomogeneous real polynomials «, 3. As one can see from (2.8.12) the degree of «
is equal to (m, k), i.e

oz, y) = Aiyigjrjmy’ -y (2.8.13)
with some A € S* @ S™. Relation (2.8.12) together with (2.8.6) gives
(a(x),y™) = alz,y) + |z| 2 (z,y)(x, y) (x € Ry, y € R"). (2.8.14)

Relations (2.8.3) imply that (a(x),y*) = (a(z), (Py)*). Comparing the last equality with
(2.8.14), we obtain

(a(2),y") = a(z, Pry) (¢ € R}, y € RY). (2.8.15)
It follows from (2.8.14) and the second equality in (2.8.3) that
(b(y),z™) = a(Pyx,y) (x e R", y € R{). (2.8.16)

Equalities (2.8.13), (2.8.15) and (2.8.16) obtained above are equivalent to the claim of
Theorem 2.8.1. The theorem is proved.

We will demonstrate an interesting example related to the question: to what extent is
the assumption of smoothness essential for validity of Theorem 2.8.17 For k =m =1, i.e.,
in the case of conjugate tangent vector fields on the sphere, the assumption of smoothness
can be replaced by the assumption of continuity of a,b. Without this assumption, the
theorem becomes wrong. To exhibit a corresponding example, we will recall a definition.

A derivative of the field R is a function D : R — R, satisfying two conditions: 1)
D(z+y) = D(z)+D(y); 2) D(zy) = yD(z)+xD(y). Each derivative vanishes on the field
of rational numbers. A nonzero derivative, from the standpoint of elementary analysis, is
rather exotic function: it is discontinuous at any point and unbounded in a neighborhood
of any point. Derivatives of the field R form an infinite-dimensional vector space.

Let D : R — R be a derivative and eq,...,e, be an orthonomalized basis for R".
Define ap :  — R”, by putting ap (X zie;) = > D(z;)e;. Then

1 =S aDir) = ;D (Z x§> _ ;D(l) 0,

i.e., the field ap is tangent to 2. A similar calculation shows that (ap(z),y)+(x,ap(y)) =0
for (z,y) = 0, i.e., that the fields ap and —ap are conjugate.

It can be proved that all pairs, of conjugate vector fields, are reduced to the cases
described in Theorem 2.8.1 and the last example. To be more exact, for every pair of
conjugate tangent vector fields a and b on Q"' (for n > 3), there exist a linear operator
A:R"™ — R" and a derivative D such that a(x) = P, Az +ap(z), b(z) = P,A*x —ap(x).
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2.9 Primality of the ideal (|z|* (z,y))

Let Clx,y] = Clxy,...,Zn,Y1,- - -, Yn| be the algebra of complex polynomials in variables
T1y.o s Toy Y1y -5 Yn and (|z|% (z,y)) be its ideal generated by the polynomials |z|* =
Yo} and (z,y) = X 2y

Theorem 2.9.1 For n > 3, the algebra Clz,y] / (|x|?, (x,y)) has no zero divisor.

We do not give the proof of this theorem here since the methods of the proof are
beyond the scope of the book. The reader interested in the proof is referred to [70].

We show that Lemma 2.8.7 is a consequence of Theorem 2.9.1. First of all we note
that the last two claims of Lemma 2.8.7 follow from the first. Indeed, assume that
f has real coefficients and equality (2.8.11) is valid for some a and [ having complex
coefficients. Taking the real parts of this equality, we obtain (2.8.11) with real «,f.
Similarly, given a bihomogeneous f, assume (2.8.11) valid for some «, (. Taking the
bihomogeneous components of both sides of (2.8.11), we arrive at a similar relation with
bihomogeneous «, 3. We shall prove the first claim by induction on k. First of all note
that for k = 0 or m = 0 this claim is trivial. For m = 1 equality (2.8.10) means that
the comparison |y|?* f = 0 (mod (|z|?, (z, y))) is valid in the algebra Clxz,y]. By Theorem
2.9.1, this implies that f = 0(mod (|z|?, (x,y))) because |y|** # 0 (mod (|z|?, (z,y))).
Thus (2.8.11) is valid in this case. Let now k > 0, m > 1. Rewriting (2.8.10) in the form
lz*g = |y|®f1 — (z,y)h where f; = |y|**"2f and using the already-proved part of Lemma
2.8.7, we can find a polynomials g; and h; such that g = |y|?g; + (z, y)h;. Inserting this
expression into (2.8.10), we obtain |y|2(|y|*~2f — |2|*"g1) = (x,y)(|z|*"hy + h). Since the
polynomial (x,y) is irreducible and is not a factor of |y|?, the polynomial {x,y) is a factor
of ly|*72f — |z|*"g1. Thus we have |y|*72f = |z|*"g1 + (z,y)ho. It remains to use the
inductive hypothesis. The lemma is proved.

2.10 Description of the range of the ray transform

In Section 2.1 we have shown that I : S(S™) — S(TQ?). The next theorem describes the
range of this operator.

Theorem 2.10.1 Let n > 3. A function ¢ € S(T2) can be represented as ¢ = If for
some field f € S(S™;R") if and only if the next two conditions are satisfied:

(1) 90(‘7;7 _§> - (—l)mgp(l‘,g)’

(2) the function ¥(x,&) defined on R™ x Ry by equality (2.1.13) satisfies the equations
(1 <1, 015 s fmt1s Jmr < 1)

2 2 2 2
o __ 9 ) (9T T N, (2.10.1)
aleafjl axhafll axlm+lafjnb+l 8x]m+18£lm+1

Equations (2.10.1) are called the John conditions for the reason mentioned in the
introduction to the current chapter.
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P r o o f of necessity. Necessity of the first condition follows from (2.1.11). Let us
prove necessity of the second condition. The function v defined from ¢ by formula (2.1.13)
satisfies relation (2.1.10). Differentiating this relation, we obtain

P8 [ ] P f of; «
> = [ ¢ — t€), &™) dt otmo1] tE)En .t
duiger = |\ Gyig 7 1" e+ m* il (34 E)EH €
The first summand on the right-hand side of this equality is symmetric with respect to
i,j. If we define the field h;; € S(S™!) by putting

_ afilm’imfl]’ afh...im,li
ity = (Pistecss _ Oloctocst),

then the next relation is satisfied:

[e.o]

0? 0? .
(556~ i) Ve = [ (e 16,7 (210

—00

Now the validity of (2.10.1) can be easily proved by induction on m. Indeed, for m =
0, h;; =0 and (2.10.1) follows from (2.10.2). By the induction hypothesis,

0? 0? 0? 0?
. — — — | ... . — — ; ; i 1d = 2.10.
<8x“ oEn QangEn ) <8a:2m8§?m 8xﬁn8£2m> Vinsamia =0 (2.10.3)

where ¥y;(z,&) = [%0 (hij(x +t£),£™ 1) dt. Comparing the last equality with (2.10.2), we
see that

0? 0?
(a - - - - - > ’QD = ¢im+1jm+1' (2104)

rim+1 afjmﬂ Oxim+1 851m+1

(2.10.3) and (2.10.4) imply (2.10.1).

Lemma 2.10.2 Let a function ¢ € S(TY) satisfy conditions (1) and (2) of Theorem
2.10.1, ¢ € S(TQ) be the Fourier transform of p. There exists a field h e C>®(S™ RY)
such that

(1) dyh(y) = 0 for y € Ry

(2) The functions hi,..i. () and all their derivatives decrease rapidly as |y| — oo

(3) (h(y), &™) = ¢(y, &) for (y,€) € TQ, y # 0.

The proof of this lemma will be given later. Using the lemma, let us now complete
the proof of Theorem 2.10.1.

P r o o f of sufficiency in Theorem 2.10.1. Let h € C(S™; Rg) be a field existing by
Lemma 2.10.2. Using Theorem 2.7.1, we find a field fe S(S™) such that h is the tangent
component of f. ie.,

fly) =h(y) +iy0(y) (v €RY)
where © € C®(S™1;RY) and o(y) = 0 for |y| > 1. By Lemma 2.6.1,

(f),&™ =0y,&)  ((y.€) € TQ). (2.10.5)
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Let f € S(S™) be a field such that its Fourier transform is f . We shall show that I f =
(2m)'/2¢ and thus complete the proof of Theorem 2.10.1. To this end, we recall that, by
(2.1.15), (2m)/2 x (f(y), &™) = If(y,€) for (y,€) € TQ. Comparing this with (2.10.5),
we see that If = (27)Y2p. Since the Fourier transform is bijective on S(T2), the last
equality implies that I f = (27)"/2¢, and Theorem 2.10.1 is proved.

Proofof Lemma 2.10.2. Let a function ¢ € S(TQ) satisfy the conditions (1), (2) of
Theorem 2.10.1 and ¢ € S(T?) be the Fourier transform of ¢. It follows from condition
(1) that

Define the function ) € C>*(R"™ x R{}) by putting

Py, &) = €@ <y — <‘|y§ §> é) . (2.10.7)

The next properties of this function follow from (2.10.6) and (2.10.7):
O(y, 1) =t"d(y.€)  (0#teR), (2.10.8)
by +16,6) =0y, €)  (t€R). (2.10.9)

Let ¢ € C*(R"™ x R{}) be a function defined from ¢ by equality (2.1.13); it has the
properties (2.1.11) and (2.1.12). We now find the relation of ¥ to 4 and, in particular,
express the John conditions (2.10.1) by means of ¢. From (2.10.7), (2.1.11) and the
definition of the Fourier transform on S(7°2), we obtain

~

Dy, €) = (2m) 2] / D(x, €) e ) d.
gL

Inverting the Fourier transform on &+, we have

V(&) = )2 [y, &) ey,
gL

Using the d-function, we write the right-hand side of the last equality in the form of the
n-dimensional integral:

V(&) = )2 [ i(y,€) 8((y,€) ey,

R

Differentiating this equality, we obtain

a2w ,6 . —n 817; 75 Y,z
V) —itam)i [, S0 gy, ey +

R’!’L

in) 2 [y iy, )8 (9, ©) 0 dy,
Rn
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The second integral is symmetric in j, k and, consequently, vanishes after alternation with
respect to these indices. Accomplishing the alternation and returning to integration over
&+, we have

0 0’ o ()21 0 a2\ - o
(axjagk " 0uh0g ) ¥l €)= iCm e J <yj ak yk@ﬁﬂ’) Vi ) ldy.

Repeating this procedure and using bijectivity of the Fourier transform on £+, we make
sure that the John equations (2.10.1) are equivalent to the following:

0 0 0 0 A
(?/n&@-l —Yj w) e (yz'mﬂagjw = Yjmtr 85“”“) w(%f) =0
((y:6) € R" x Rg, (y,£) =0). (2.10.10)

0,0
og7 ~ Vg
space y=+ and span it. Consequently, equation (2.10.10) means that the restriction of the
function v, (€) = ¥(y, &) to the space y* is such that all its derivatives of order m + 1

are equal to zero. Together with (2.10.8), this means that the restriction of ﬂy to yt is

Let us fix y € Ry. If considered as vectors, the operators y; belong to the

a homogeneous polynomial of degree m. Recalling relation (2.10.7) between @/A) and ¢, we
obtain the representation

Y, €) = firin(W)ET . 6™ ((y,6) €TQ; y £ 0).

Thus, given an arbitrary y € R{j, we have established existence of a tensor f (y) € S™
such that

(f©), ") = (y:€)  ((4:€) € T y #0).
Applying Lemma 2.6.1, for every y € Rg, we can find a tensor h(y) € S™ such that
Jjyh(y) =0 and

(h(y),€™) = &, &) ((1,§) € TQ; y #0).

To complete the proof of Lemma 2.10.2 it remains to apply the next

Lemma 2.10.3 Let p € S(TQY) and, for every x € Ry, there exists a tensor h(x) € S™
such that

joh(z) =0  (z€RY), (2.10.11)

(h(2),€") = ¢(x.6)  ((2.€) €TY 2 £0) 2.10.12)

Then h € C*(S™; R{y) and functions h;, ;, (x) decrease rapidly, together with all their
derivatives, as |x| — oo. In other words, for every k > 0 and every multi-indez «,

sup {|z|*|D"hs, s, (z)|} < oo. (2.10.13)
lz[>1
Proof If (z,€) € Ry x R, « # t£, then P.£ # 0 and, consequently, the function
U(x, &) = |Ppl|™p(x, P&/ P:|) belongs to C*°(U) where U = {(z,§) € R{ xRy | x # t&}.
One can easily see that the condition ¢ € S(T2) implies that

sup {|93|"’|D$D?¢(x7£)|} < o0, (2.10.14)
(z,£)€TQ, |z|>1
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for every k > 0 and for all multi-indices «, (.
Given (z,€) € U, (2.10.11) and (2.10.12) imply that

(h(x),&™) = (h(x), (Pad)™) = [Pal|™p(, Pot /| Pag]) = (. ).

Since the right-hand side of these equalities is smooth on U, the same is true for the
left-hand side. This implies that h € C*°(S™; R{}) and the next equalities are valid:

1 9m(x,€)
ml O ... oim

From (2.10.14) and (2.10.15), we obtain (2.10.13). The lemma is proved.

2.11 Integral moments of the function [ f

We now turn to the problem of inverting the ray transform. We pose this problem as
follows: given the function I f, determine the solenoidal part of the field f or (and) the
value W f of the Saint Venant operator.

From now to the end of the current chapter, we will use only Cartesian coordinate
systems on R”™. In this case there is no difference between covariant and contravariant
coordinates, and we shall use only lower indices in the notation of coordinates. The
summation rule looks now like: on repeating indices (not necessarily standing at different
heights) i a monomial the summation from 1 to n is assumed.

We define the operator p™ : C*°(R" x Rj}) — C*(S™) sending a function ¢(z,§) to
the set of its integral moments with respect to its second argument:

()i an(x) = — [ Euipl, ) (). (2111)

Recall that €2 is the unit sphere in R", w, = 27"2/T"(n/2) is the volume of Q and dw is
the angle measure on ).
If a function ¢ € C°(R" x R{) satisfies the equation

dp
&a—xi =0, (2.11.2)

then the field p™¢p is solenoidal: §(u™¢) = 0. Indeed,

m oW )iy i1 L i _
O™ i = g et = Q/ b |G, ) det€) =0

For f € §(S™), the function ¢ = I f satisfies (2.11.2), which insures from (2.1.12). Thus
the field ™I f is solenoidal for every f € S(S™).

Let us calculate the composition ™I where I : S(S™) — C*(R" x R{}) is the ray
transform. Given f € S(S™), it follows from (2.1.10) and (2.11.1) that

" Iiin(0) = — [ &, [ [t +1e),6m) dt] ().
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Changing variables in the integral according to the equality = + t£ = 2/, we have

g T Tin Ty - - T

(WL iy, = fﬁ m ¥ |x’2m+n s (2.11.3)

We like now to apply the Fourier transform to the last equality. This application needs
some justification. By condition, the first factor on the right-hand side of (2.11.3) belongs
to S. The second factor is a function locally summable over R" and bounded for |z| > 1.
Consequently, the second factor can be considered as an element of the space &’. It is
well known [138] that, for u € S and v € §’, the convolution u * v is defined and belongs
to the space 6y, consisting of smooth functions, on R", whose every derivative increases
at most as a polynomial. In this case the usual rule is valid: (u * v)" = (27)"209. Thus
(2.11.3) implies

m o 2 2 Tiy oo Tip Ty oo T,
Fl(u™ 1 f)i.in) = (2) ﬂ;fjl.._ij |x|2m+]nfl Im | (2.11.4)

n

The product on the right-hand side is now understood to be a product of a function in S
and a distribution in &’. Soon we shall see that the second factor is a locally summable
function and, consequently, this product can be understood in the conventional sense.
Calculating the second factor in accordance with the usual rules of treating the Fourier
transform [48], we obtain

22m—1

FIG T i) = pf 1)2) Fivein®) OusciicangP7 - (2115)

where 8“% = 8’“/(‘3%1 . é)yzk

Define the functions e; € C*°(Ry), putting e;(y) = v:/|y|, and the tensor field € €
C>=(S%Ry), by the equality £;;(y) = d;; — ei(y)e;j(y). The next lemma can be easily
proved by induction on m with the help of the Leibniz formula; we omit the proof

Lemma 2.11.1 For an integer m > 0,
Oyt = ((2m = 1|y~ (y)
or, in a more detailed coordinate form,
8i1...igm‘y’2m71 = ((2m — 1)”)2‘9171‘7(51'112 o iy tigm)-

Here the notation k!! = k(k — 2)(k —4) ... is used and it is supposed that (—1)!! = 1.
By Lemma 2.11.1, equality (2.11.5) can be rewritten as

(" 11)" ) = blm,mlyl <" (9)/ £ ). (2.1L6)
where ( ) ( )
(@m—1)2T(5) T (=m+ 3
b(m,n) = (-1) g2m—1 T (m e %) , (2.11.7)
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Since the field |y|~'e™(y) is locally summable, the product on the right-hand side of
(2.11.6) can be understood in the ordinary sense. Consequently, the same is true for the
initial equality (2.11.4).

Let us estimate the behavior of the field ™I f(x) as |x| — oo. To this end, we note
that (2.11.6) implies the representation

(D (W™ L) )iy i (y) = |y 222t S el (W)D? fi i (),
161<lod

where P, v 18 @ homogeneous polynomial of degree 2m+|a|+f]. It follows from the

representation that D*(u™1 f)" decreases rapidly as |y| — oo and satisfies the estimate
| D (™I )M (y)| < Cly|~1*=! for |y| < 1. Consequently, the field D*(u™1 fY is summable
over R" for |a| < n — 2. Thus we have proved

Theorem 2.11.2 Let n > 2 and m > 0 be integers. For f € S(S™), the field y™If
belongs to C(S™), tends to zero as |x| — oo, satisfies the estimate |u™If(x)] < C(1 +
|z|)2~™ and has zero divergence: Su™If = 0.

2.12 Inversion formulas for the ray transform

Since we have agreed to use only Cartesian coordinates, the metric tensor g coincides
with the Kronecker tensor § = (4;;) (the author hopes that the reader is not confused
by coincidence of the notations of this tensor and the divergence). Recall that by i, ;7 we
mean the operators of symmetric multiplication by ¢ and the operator of convolution with
. Let f € S(S™). By Theorem 2.6.2, we have the decomposition

f=f+dv, 6% =0 (2.12.1)

of the field f to the solenoidal and potential parts. Applying the Fourier transform to
these equalities, we have

f) =4 @) +V-Tioy). 5, ) =0. (2.12.2)
Inserting (2.12.2) into (2.11.6), we obtain

(W™ L)) = b(m,n)ly|~'e™(y) /5F(y) + V=Tb(m. )yl ™ (y) /i,0(y).  (2.12.3)

By Theorem 2.6.2, the fields *f(y) and i,9(y) are bounded on R”. Consequently, both
summands on the right-hand side of (2.12.3) are locally summable and this equality can
be understood in the ordinary sense. Let us show that the second summand is equal to
zero. Indeed, the expression

(€™ /iy0)is.i = {0 {00y — €i€51) - - Bt = €0 €)1} {0 (Y5 0join) }
is a sum whose every summand has a factor of the type (d;; — e;e;)y; = 0. Consequently,
(2.12.3) can be rewritten as follows:

b(m,n)e™(y) [ 5f (y) = Iyl (W™ 1) (y)- (2.12.4)

By Theorem 2.11.2, ™I f = 0. Applying the Fourier transform to the last equality,
we obtain j,(u™If)"(y) = 0. Thus (2.12.4), considered as a system of linear algebraic
equations relative to the components of the field S} (y), has a unique solution, as the next
theorem shows.
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Theorem 2.12.1 Let y € Rj, ¢ =¢(y), h € S™ (m > 0). The equation

em/f=h (2.12.5)
has a solution f € S™ if and only if, when its right-hand side satisfies the condition

Jyh = 0. (2.12.6)
In this case equation (2.12.5) has a unique solution satisfying the condition

Jyf =0. (2.12.7)
The solution is expressed from the right-hand side according to the formula

;o (2m)! [%/:2] (—1)* n+42m—1 ()
= 2mml & P (m - 2k) (n+2m— L)(n+2m—3)...(n+2m—2k—1) 7
(2.12.8)

where [m /2] is the integral part of m/2.

The proof of this theorem will be given in the next section. On using this theorem,
we shall now obtain the inversion formulas for the ray transform.
Applying Theorem 2.12.1 to equation (2.12.4), we arrive at the equality

R m/2) A
Fly) =yl X elic) 5*h, (2.12.9)
k=0
where
(%5 2m — 2k — 3)!!
= (—1)F () (n o ) (2.12.10)
2y/7(n =3I (5) 25k (m — 2k)!
(recall that (—1)!! = 1) and the notation h = p™If is used for brevity. Since the

operator j is purely algebraic (independent of y), it commutes with the Fourier transform
F. Consequently, (2.12.9) can be rewritten as follows:

m/2]

[
FIf) =yl 30 exlic) FIi"h]. (2.12.11)
k=0
Let us find the operator whose Fourier-image is .. From the equalities i. = i — (4,)?/|y/|*,
1F' = Fi and i, F' = \/—1Fd, we obtain
i.F = Fi+ |y|?Fd*. (2.12.12)

It is well known that
ly|°F = —FA™, (2.12.13)

where A~! is the operator of convolution with the fundamental solution to the Laplace
equation: A™'u = ux* E,

r (g - 1)
2—n
E@)={ g || for n >3,

(2m) "' n |2| for n=2.
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Inserting (2.12.12) and (2.12.13) into (2.12.11), we obtain
[m/2]
FPfl = ylF Y e(i — A™'d?) %N, (2.12.14)
k=0

It is well known that |y|F = F(—A)Y2 where (—A)Y2y = —7~(+D/21 (’%l) ux ||
Thus (2.12.14) implies the final formula:

= (A

k=0

[m/2]
> (i — AR5 .

Let us formulate the result we have obtained.

Theorem 2.12.2 Let n > 2 and m > 0 be integers. For every field f € S(S™;R"), the
solenoidal part °f can be recovered from the ray transform I f according to the formula

[m/2]
> enli— A‘1d2)’“j’“] pmIf, (2.12.15)

k=0

= (=)

where A is the Laplacian (acting componentwise); d is the operator of inner differentia-

tion; i and j are the operators defined by the equalities iu = ud, ju = u/0 where § = (0;;)
is the Kronecker tensor; the coefficients ¢ are given by formula (2.12.10); [m/2] is the
integral part of m/2.

Let us consider the question about the domain of definition of the operator A =
(—=A)2 3 ¢ (i — A™'d?)*5* on the right-hand side of (2.12.15). By A we mean the space
of the distributions f € &' whose Fourier transform f (y) is summable in a neighborhood
of the point y = 0. Let A(S™) be the space of tensor fields whose components are in \A.
The operator A is defined on A(S™) and maps this space into itself, as one can see from
(2.12.9). It follows from (2.11.6) that, for f € S(S™), the field u™I f belongs to A(S™).

Let W : C®(S™) — C®°(S™ ® S™) be the Saint Venant operator. We know that
Wdv = 0 for every v € C®(S™~1). Consequently, (2.12.1) implies that

Wf=W-*. (2.12.16)

The operators i,d, A commute with one other, as one can verify by an easy calculation
in coordinates. Thus (2.12.15) can be rewritten in the form:

o = (=4)2 (Z cké’“j’“) p"If + du, (2.12.17)
k
where
/2] [m/2]
u=(AT2d) | Y (AT ST agdt R wmI f (2.12.18)
s=1 k=s

with some coefficients ags. Applying the Fourier transform to (2.12.18) and using (2.11.6),
we see that the field 4(y) is summable over R™ and decreases rapidly as |y| — 0. Conse-
quently, u € C*°(S™ 1) and therefore Wdu = 0. Applying W to equality (2.12.17) and
taking (2.12.16) into account, we arrive at the next
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Theorem 2.12.3 Letn > 2 and m > 0 be integers. For f € S(S™; R"), the next equality
15 valid

[m/2]
Wf=W(=A)? (Z ckikjk) p"If. (2.12.19)
k=0

Here W is the Saint Venant operator, the rest of the notations are explained in Theorem
2.12.2.

Theorems 2.12.2 and 2.12.3 answer to the two versions of the question about inversion
of the ray transform which are formulated in the beginning of the previous section.

It is pertinent to compare (2.12.15) with the inversion formula for the Radon transform
R (Theorem 3.1 from [48]):

f=ca(=2) " VERERS.

Here R#, the dual of the Radon transform, is an analog of our operator x°. Thus, passing
from scalar integral geometry to tensor integral geometry, the inversion formula acquires
not only the algebraic operators i and j but also the operator A='d? which can be con-
sidered as a pseudodifferential operator of zero degree.

2.13 Proof of Theorem 2.12.1

We fix 0 # y € R" and recall that e; = y;/|y|, €;j = 0;; — e;e;. Now we prove necessity
of condition (2.12.6) for solvability of equation (2.12.5). Indeed, assume that equation
(2.12.5) has a solution f € S™. Then

(JyP)isviimr = Yim (€™ [iriim = Yim [(Girjy — €i1€51) -+ (Oirjm = Cim € ) Firijm] -

The right-hand side is a sum each of whose summands has a factor of the type v, (9;,.;, —
(7 ejk) = 0.

Similar arguments show that (2.12.6) implies the equalities j,(c"(j*h)) = 0. Conse-
quently, (2.12.7) follows from (2.12.8).

Thus operators A : f +— h and B : h — f defined by equalities (2.12.5) and (2.12.8)
map the space S)" = {f € ™ | j,f = 0} into itself. Consequently, to prove the theorem
it is sufficient to show that BA is the identical mapping of the space S, i.e., to verify
validity, on S}, of the identity obtained from (2.12.8) by replacing h by ¢™/f. We shall
divide the proof into the several lemmas.

Lemma 2.13.1 For f € S, the next equality is valid:

== am) g 22k (k1)2(m — 2k)

!sk(jkf). (2.13.1)

P r oo f. We choose an orthonormalized basis for R" such that y = (0,...,0,,). In
this basis e; = 0;,; €55 = 0;; for 1 < 4,5 <n —1;and g;; = 0 if ¢ = n or j = n. Condition
(2.12.7) now looks like: f;, ;. = 0. Thus, for all tensors involved in equality (2.13.1),
the following is true: if a component of the tensor contains n among the indices, then this
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component is equal to zero. Consequently, proving equality (2.13.1), we can do in such
a way as if the n-th coordinate is absent. According to the last observation, we agree to
use Greek letters for designation of indices that vary from 1 to n — 1. On repeating Greek
indices, the summation from 1 to n — 1 is understood.
Let us prove the equality
m 13
(8m)a1_“amglmgm = 2(2(777;3!)(7(041 R Oém)O'(ﬁl .. ﬁm)x

[m/2] 2—2k(k!)—2

(m — Qk)' Oaras - - '5042k71042k5ﬁ152 e 552k71ﬁ2k5a2k+152k+1 s 5amﬂm' (2'13'2>
k=0 :
Indeed, denoting (V1. .-, Y, Ymsts - - - Yom) = (Q1, -« oy &y B, -« o, Bm), We have
m 1
(5 )01--.amﬁ1~-ﬁm = (2m)| Z 5%(1)%(2) T (5’Yw(2m71)'77r(2M> (2'13'3>
: WEHQm

where I, is the group of all permutations of the set

{alw"vamaﬁla"'?ﬁm}:{717"'772m}

which consists of 2m different symbols ay, ..., §,, (rather than of their numerical values).
We shall write such a permutation as an ordered sequence of pairs:

= ((f}/ﬁ(l)a 7#(2))7 SRR (7#(2771—)7 7W(2m)>>

We introduce some equivalence relation on the set Il,,, by declaring the permutations my
and my equivalent if the first of them can be transformed to the second by transpositions
of elements in the set aq, ..., a,,, transpositions of elements in the set 3i,..., 3, trans-
positions of pairs and transpositions of elements in pairs. This definition implies the next
more simple criterion: two permutations are equivalent if and only if they contain the
same number of pairs of the type (o, a;). Let Iy, = U, By be the decomposition into
classes where By, is the equivalence class of the permutation

((0417 a2)7 ey (a2k—17 Oégk), (ﬁl) ﬁ2)7 ey (52]4:—1) 62/6)7 (a2k+17 ﬁ?k-ﬁ-l)a ey (am7 ﬁm))

In (2.13.3), we group together the summands that correspond to equivalent permutations.
Then we have

. m/2)
(™). amprofm = olar...am)o(Pr...0m) Z Clom X
! ! (2m)! =

Xéoqocz cee 5azk—1a2k55152 .- '552k—152k50¢2k+152k+1 s 5am,8m7 (2'13'4>

where ¢y, is the number of elements in the set Bi. We calculate this number as follows.
From m elements oy, . . ., ayy,, we have to choose 2k elements that enter in the pairs (a;, o));
it can be done in (;7{) ways. Similarly, from Gy,... ... , Bm, the elements entering in the

pairs (f;, 5;) can be chosen in (;1) ways. k pairs (a;, oj) can occupy m positions in (Z?)
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m —k
k
ways. The chosen 2k elements «; can be arranged in the chosen pairs in (2k)! ways.
Similarly, the chosen 2k elements (3; can be arranged in the chosen pairs in (2k)! ways.
The remaining m — 2k elements o; and m — 2k elements (3; can be grouped into pairs of

the type (i, 3;) in 2™72%((m — 2k)!)? ways. As a result, we have

e (5) ) () e

Inserting this expression into (2.13.4), we arrive at (2.13.2).
With the help of (2.13.2), we can easily complete the proof of the lemma:

ways. The remaining m — k positions can be occupied by k pairs (f;, 3;) in

(€m/f)a1...am = (gm)al...amﬁl..ﬂmf,@lu.ﬁm =

- J<a1 s am) Z Ckm(soqaz - 6a2k7102k(5ﬁ1ﬁ2 .- '5ﬁ2k71ﬁ2k5a2k+1ﬂ2k+1 R 5am5mf51~ﬂm =
k

= J(al S am) Z ckméaw& s 50¢2k—10t2kfﬁ1ﬁl--ﬂkﬁka2k+1---am = [Z Ckmek(jkf)]
k k

Qj...0m

n+2k—3€k—1'

ko
Lemma 2.13.2 je* = =525

P r o o f. We choose a coordinate system as in the proof of Lemma 2.13.1. Then

1
(5k)a1...a2k_zﬁv = @U(al cee azk—z) X

X (Cl(salaz s 50{2k—3a2k—25/37 + 62501ﬁ604275030t4 .- '504216730421%2)' (2135>

Here ¢; denotes the number of permutations, of the set {ay, ..., o2, 3,7}, in which
and 7 enter in the same pair; and ¢y denotes the number of the other permutations. These
numbers are easily computable from the arguments similar to those used in the proof of
Lemma 2.13.1: ¢; = (2k)!/(2k — 1); ¢ = (2k — 2)(2k)!/(2k — 1). Insert the last values into
(2.13.5). Putting then v = [ in (2.13.5) and summing over (3, we arrive at the claim of
the lemma.

Lemma 2.13.3 For u € S™ and v € S' the equality

1
m+0(m+1-1)

Jj(uv) = ( [m(m — 1)(ju)v + 2mlu A v + (I — 1)u(jv)]

is valid where uw A v denotes the tensor in S™ =2 that is defined by the formula

(u A U)il---im+z_2 = U(uil---im—ljvim---im+l—2j)‘
We omit the proof that is obtained from straightforward calculation in coordinates.

Lemma 2.13.4 For u € 5", the next relation is valid: P Au = e lu.
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The proof is omitted.
Lemma 2.13.5 For f € S;" and 0 <1 < [m/2] the equality
[m/2]—-1
Wem/f) = Z et (51F f), (2.13.6)

18 valid where

n 2m(m)?  27*t(m =20 (n+2m—1)(n+2m—3)...(n+2m -2 — 1)
Bem)! kKD (m — 2k — 21)! n+2m — 1 ‘

(2.13.7)

P r o o f proceeds by induction on [. For [ = 0 the claim coincides with Lemma 2.13.1.
Let (2.13.6) and (2.13.7) be valid for [ = p < [m/2]. Applying the operator j to equality
(2.13.6), we obtain

[m/2]-p

FHE) = Y i (). (2.13.8)

k=0
By Lemmas 2.13.3, 2.13.2 and 2.13.4,

1

2y —2p 1) 2RO+ 2m = dp = 2k = 3)t (P o+

G GPTEr)) =

+ (m — 2p — 2k)(m — 2p — 2k — 1) (57TF+L £)].
Inserting this expression into (2.13.8), we arrive at equality (2.13.6), for [ = p+1 in which

- 1
PR (= 2p)(m — 2p — 1)

2(k +1)(n+2m —4p — 2k = 5)c)hyy +

+ (m —2p — 2k)(m — 2p — 2k — 1)cp; .

In the last equality, replacing ¢’ and ¢ by their expressions from the inductive hy-
pothesis (2.13.7), we obtain validity of (2.13.7) for [ = p 4+ 1. The lemma is proved.

Lemma 2.13.6 For f € S;" and 0 <1 < [m/2] the equality

jm/2-y Z Jepme k( [m/2)=tk (o m/f)) (2.13.9)

18 valid where

(2m)! 202 ([m /2] — D121 + Kyp)!

bip =
B om(ml)2 2HREN(20 — 2k + Ky,
n+2m-—1
2.13.10
X(n+2m—1)(n+2m—3)...(n+m+nm+2l—2k—1) ( )
and

0, if m 1is even,

/im:m_Z[m/ﬂ:{l, if m is odd.
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P r o o f proceeds by induction on [. By putting [ = [m/2] in Lemma 2.13.5, we obtain
the claim being proved for [ = 0. Assume that the claim is valid for all [ satisfying the
inequalities 0 < < p < [m/2]. Putting [ = [m/2] — p in (2.13.6), we have

P

sl . e m /21—
JATE = (et 0) <J[ PP £) = 37 oy pie (G2 p+kf)>- (2.13.11)

k=1

By the inductive hypothesis, for 1 < k < p,

p—k
j[m/2}—p+kf _ Z(_l)sbzik,s‘gs (j[m/Q]—p—l-k—i-s(gm/f)) )
s=0

Inserting this expression into (2.13.11), after the easy transformations we arrive at equality
(2.13.9), for | = p, with the coefficients

k
~1
pr = (C[m/Q]fp,0> ) bpk = _bp(] Z<_1)tbp7t,k7tc[m/2]fp,t (1 S k S p) (21312>

t=1

Replacing the coefficients cf, 5, , and 0", in (2.13.12) by their values given by (2.13.7)
and the inductive hypothesis (2.13.10), we obtain (2.13.10) for [ = p. The lemma is proved.

P r oo f of Theorem 2.12.1. Putting [ = [m/2] in (2.13.9) and (2.13.10), we obtain
relation (2.12.8) in which A is replaced by ™/ f. As was noted in the beginning of the

current section, this equality proves the theorem.

2.14 Inversion of the ray transform
on the space of field-distributions

The inversion formulas (2.12.15) and (2.12.19) for the ray transform, having been proved
for f € S(5™), can be easily transferred to broader classes of tensor fields. Here we
will briefly describe how the main definitions and results concerning this formulas can be
extended to the space £'(S™). We omit the proofs that are based on the fact of density
of the space D(S™) in S(S™) as well as in £'(S™).

As we have shown in Section 2.5, the ray transform I : D(S™) — C*°(R" x R{}) can be
uniquely extended to the continuous operator I : £'(S™) — D'(R" x Ry). Similarly, the
operator pu™ : C*(R" x Rfj) — C*°(S™) defined in Section 2.11 has a unique continuous
extension u™ : D'(R™ x Ry) — D'(S™).

We say that a field u € §'(S™) tends to zero at infinity if u(x) is continuous outside
some compact set and u(z) — 0 as |z| — oco. For £'(S™), the theorem on decomposition of
a tensor field into potential and solenoidal parts remains valid in the following formulation:

Theorem 2.14.1 Let n > 2. For f € &'(S™), there exist uniquely determined fields
sf € §'(S™) and v € §'(S™Y) tending to zero at infinity and satisfying (2.6.6). The fields
5f and v are smooth outside supp f and satisfy estimates (2.6.8) outside some compact
set.

For f € £(5™), equality (2.11.6) remains valid which implies that the field ™1 f be-
longs to the space A(S™) defined after the formulation of Theorem 2.12.2. Consequently,
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for f € £'(S™), the right-hand sides of equalities (2.12.15) and (2.12.19) are defined and
belong to A(S™) C §'(S™). Now Theorems 2.12.2 and 2.12.3 translate word by word to
the case when f € £'(S™).

We will finish the current section by a more detailed discussion of formula (2.12.19)
in the case of tensor fields of degree 1 and 2 on a plane. We shall need the results of the
discussion in Section 2.16 that is devoted to a physical application of the ray transform.
According to the physical tradition, in Section 2.16 and in the remainder of the current
section we will use slightly-modified notations: indices of tensors will be marked with the
same letters x,y, z as coordinates.

First we consider the case of a vector field on a plane (n = 2,m = 1). Let D be a
domain, on the (z,y)-plane, bounded by a closed C'-smooth curve ~; and v = (ug, uy)
be some vector field that is defined and continuous in the closed domain D J~y and has
continuous first-order derivatives in D. It is convenient to consider u as the field defined
on the whole plane, putting u = 0 outside D [J~. Thus the field u has discontinuity on the
curve . Consequently, the derivatives in the Saint Venant operator must be understood
in the distribution sense. According to the observation, let us agree about notations: by
0z, 0y we denote the derivatives in the distribution sense and by 0/dz,d/0y we denote
the classical derivatives.

We introduce coordinates (z,y,a) on R? x Q. putting £ = (cosa, sina) for £ € Q.
The ray transform of a vector field on a plane is given by the formula

Tu(x,y,a) = / [, (z +tcosa,y + tsina) cosa + uy(r + tcosa, y + tsina) sin o dt.
(2.14.1)
In the case under consideration (n = 2, m = 1) the Saint Venant operator has one
nonzero component. Consequently, Wu can be considered as the scalar function: Wu =
gty — Oyuy. It is clear that

Wu = Wpu+ W,u (2.14.2)
where 5 5
Uy Uy :
—_— — f D
Wpu={ azx @y T @weD (2.14.3)
0, if (z,y) ¢ D,

and W,u is a distribution whose support is a subset of v. Now we find the distribution.
According to the definition of the derivative of a distribution, for ¢ € D(Rz), we have

(W, ) = (Dt — Oyta, 0) = <u 29;> - < > // uya ) dady.

Transforming the last integral with the help of the Green’s formula, we obtain
0 Ouy
(W, ) // (“y _ ) o drdy + j{(uxuy — uyvy ) ds (2.14.4)
gl

where v = (v,,1,) is the unit outer normal vector of v and s is the arc length of ~.
Recall that the d-function concentrated on + is the distribution 4, defined by the equality
(61, ) = ¢, ¢ds. Comparing (2.14.2)—(2.14.4), we see that

Wou = (ugly — uyly)ds. (2.14.5)
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The algorithm for determination of Wpu from the ray transform lu(z, y, a) afforded by
the formula (2.12.19) is described as follows. First we define the vector field p = (11, fty)
according to the formulas

po(z,y) = /]uxy, a) cos ada;
0 (2.14.6)
py(z,y) = —/quy, a) sin ada.

Then we find the field A = (\;, \,), putting

Ao = (=A) Py, Ay = (=1)py,. (2.14.7)
At last we find oA, o
=Wpr= 24— =, 2.14.
Wpu = Wp O 3y ( 8)

We can determine the second summand on the right-hand side of (2.14.2) from [u,
starting with the same formula (2.12.19); but it is can easier to proceed as follows. We
assume that the domain D is strictly convex. By 7v(s) = (7.(s),7,(s)) we mean the
parametrization, of the curve v by the arc length s, which is chosen in a way such that the
increase of s corresponds to counterclockwise going along the curve. By «a(s, As) we mean
the angle from the Oz-axis to the vector £(s, As) = (y(s+As)—7(s))/[(v(s+As) —~(s)|.
Then

Tu(a(s), 1(s), als, As)) =

/

= / uz(Y(s) +t&(s, As)) cos a(s, As) + u,(y(s) + t&(s, As)) sina(s, As)| dt
where A’s = |y(s + As) — y(s)|. The last equality implies that

(ke + i) (5) = Jim T (3a(5), 7 (s), (s, As))

where the dot denotes differentiation with respect to s. Since 4, = —v, and 7, = v, the
previous relation can be rewritten in the form

(UgpVy — uyly)(s) = — Al}srllo Allu('yw(s), Y(8), (s, As)). (2.14.9)

Equalities (2.14.5) and (2.14.9) express W, u through [u.

Now we consider the case of a tensor field of degree 2 on a plane (n = m = 2). Let
D be the same domain as above; v = (Uyy, Uy, Uyy) be a symmetric tensor field which
is defined and continuous, together with its first-order derivatives, in D|J~, and has
continuous second-order derivatives in D. We put v = 0 outside D |J~. In the case under
consideration the ray transform is defined by the formula

Iv(z,y,a) = / {vm(r) cos® a + 20, (1) cos asin o + v, (r) sin? a}

—00

r=(z+tcos a,y+tsina)

(2.14.10)
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The Saint Venant operator has one nonzero component:
Wv = 20,yVsy — OyyVzz — OpgVyy.

With the help of the arguments similar to those used in obtaining (2.13.5), one can easily
show that
Wov = Wpv + W, (2.14.11)

where

dxdy  Oy? ox? "’

: if (2,y) ¢ D,
and W,v is a distribution whose support is a subset of . The distribution is defined by
the equality

B % B OV OVsy B OUgy B
(W, ¢) —?{K e By >Vm+ ( o 5 | % pds

¢ I
_ f [(Uyyyx — vxyyy)% + (Vg ly — vxyl/x)ay] ds. (2.14.13)

The algorithm, for determination of Wp from the ray transform [v, afforded by the
formula (2.12.19) is described as follows. Fist we define the tensor field p = (ftze, fay, Hyy)
by formulas

Pvgy vy vy, ,
W — { 250y - it (wy)eD, (2.14.12)
0

1
foo(T,y) = — /Iv(x,y,a) cos® adar,

Py (T, Y) /Iv x,y, ) cos asin a day, (2.14.14)
Ly (2, 9) /IU z,y, ) sin® a dav.
Then we define the field A = (A4, Azy, /\yy) by the equalities
1 3 1
Aze = (_A)1/2(Hxa; - §Nyy)v Azy = 5(_A)1/2U:cyv Ayy = (_A)1/2(Nyy - iﬂm)
(2.14.15)

At last we put
0?\ 0?\ 0?\
Wpv =WpA =2 Y LA . 2.14.16
DY b 0xy Oy? 0x? ( )
The second summand on the right-hand side of equality (2.14.11) is expressible, in
terms /v, which possibility is neglected here.

2.15 The Plancherel formula for the ray transform

Let H(TS2) be the Hilbert space obtained by completing the space S(7°Q2) with respect
to the norm corresponding to the scalar product

(o )irey = @0) ™ [ [ Iyle(e, (5. ) dydw(©), (2.15.1)

Q ¢l
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where ¢ — ¢ is the Fourier transform on S(7T?) defined in Section 2.1.

Theorem 2.15.1 The ray transform I : S(S™) — S(TQ) can be extended in a unique
way to a continuous operator I : Lo(S™) — H(TY). The kernel of the resulting operator
coincides with the second summand of decomposition (2.6.11). For f', f% € Ly(S™), the
next Plancherel formula is valid:

[m/2]
I I away = Y a(GPPfY 5P f?) py(sman), (2.15.2)

k=0

where [m /2] is the integral part of m/2, P : Ly(S™) — K(S™) is the orthogonal projection
onto the second summand of decomposition (2.6.11), j : S™ — S™=2 s the operator of
convolution with the metric tensor and the coefficients a; are given by the equalities

2m+17r(n—2)/21“ (m + %) 1
(2m)IT (m 4 252) - 2% (K1)? (m — 2k)

ar = ax(m,n) = (2.15.3)

The proof of the theorem will be divided into several lemmas.

Lemma 2.15.2 Let f* € S(S™) (o = 1,2), *f* be the solenoidal part of the field f*

(i.e., 5f* = Pf*) and ;f\a be the Fourier transform of the field *f*. The next relation is
valid:

UF TP maey = [ [ 19 (), €7 (P(),€) dydel©). (2154

Q ¢l

P roof First of all we note that the integral on the right-hand side of this equality
converges, by the properties, of the field $f®, mentioned in Theorem 2.6.2. By (2.15.1)
and (2.1.15),

UF 1P e = [ [l (Fw) €7 (P, € dydw().  (2155)

Q ¢l

According to the last claim of Lemma 2.6.1, the fields J/"Z“ and 57‘"3 are connected by the
relation (f*(y),&™) = (¢f*(y),&™) for (y,&) € TNQ. Inserting this expression into the
right-hand side of (2.15.5), we arrive at (2.15.4). The lemma is proved.

Lemma 2.15.3 Let o(z,§) be a continuous function on TS that decreases sufficiently
rapidly in x. Then the next equality is valid:

[ [ewoirane = [ [ ola)at2 e, (2.15.6)

Q ¢t R™ |$‘QﬁxJ-

where dw™=2 (&) denotes the (n — 2)-dimensional angle measure on QN .

P roof Let ¢(x,&) be a continuous extension of ¢(x,&) to R™ x . With the help
of the d-function, we replace the inner integral on the left-hand side of (2.15.6) by the
integral over R™ and then change the limits of integration. As a result we obtain

| [ote @ dvdn) = [ [w(@.6)a((r,€)) dute) da.

Q ¢l R" Q
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By Theorem 6.1.5 of [53], §((z, £))dw(§) = dw ™2 (€)/]z|. Consequently,

| [ etwdedute) = | |x1| | (@8 du2(6) du =

Q ¢t R™ QNzt

- R/ ,; | elw.&)d2€) dr.

Qnzt

The lemma is proved.
We define the field e € C>(S? RY) by putting &;; = d;; — x;x;/|x]*.

Lemma 2.15.4 For 0 # x € R,

0 (m 4 1) 22

| G G de ()

Qnz-t

T (m + an1) €t iigm (L) (2.15.7)

P r oo f Both the left- and right-hand sides of equality (2.15.7) do not depend on
|z|]. Consequently, it is sufficient to consider the case of |z| = 1. Note that, for coinci-
dence f = g of two symmetric tensors of degree m, it is necessary and sufficient that
fivinMiy - M. = Giyoi My - - - My, fOr every n € R™. Applying this rule, we see that to
prove (2.15.7) it suffices to show that

(™ (@), *™). (2.15.8)

2T (m + l) r(n=2/2
[ tem ™ dwt (e = ;
QNzt ! : b (m + %>

for every n € R"”
From the definition of the tensor ¢, one can easily obtain that, for |z| = 1,

(€™ (@), ") = In — (n, z)x|*™. (2.15.9)
On the other hand,
/ (& m)*" dw™ (&) = |n — (n, z)am / (&) dw™2)(€) (2.15.10)
Qnzt QNz+

where the notation n' = n'(x,n) = (n— (z,n)x)/|n — (x,n)z| is used. Note that n' €
QN at. One can easily see that the integral on the right-hand side of (2.15.10) does not
depend of the choice of the vector 7/ € 2 Nzt and is equal to [112]

(m + %) m(n=2)/2

r (m + "T_l>

r
[ tenyrant g = [ grduie) =2
Qn—2

QnzL

Inserting this expression into (2.15.10) and substituting then (2.15.9), (2.15.10) into
(2.15.8), we obtain the claim of the lemma.

Lemma 2.15.5 The Plancherel formula (2.15.2) is valid for f* € S(S™) (o =1,2).
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Proof. Let?**= Pf* Using Lemma 2.15.3, we change the limits of integration in
claim (2.15.4) of Lemma 2.15.2:

(LY 1) ) = /s?\ln...z-m(y)sﬁjl...jm(y) / i Ciny - - & dw"2(E) | dy.

R" QNy-+
Replacing the inner integral by its value indicated in Lemma 2.15.4, we have
D (m + 1) no-2)72
r (m + ”Tfl)

(If17 [fQ)H(TQ) =2 / sflil..lim (y) szjl...jm (y)g?f...z’mjl...jm (y) dy.

Rn

(2.15.11)
By the condition 0 *f* = 0, the relations yj;fammim (y) = 0 are valid. Consequently, the
tensor €™ on (2.15.11) can be replaced by 6™ where 6 = (9;;) is the Kronecker tensor.
Repeating the arguments that were used in obtaining relation (2.13.2), we obtain

2m(m!)3 [m/2] 1
( ) 1.--tmJ1.--Jm (Zm)' U<Zl t )O-(Jl j ) kgo 22k<k|>2<m _ Zk,)l X
X5i1i2 e '51%71%‘21@5]'1]'2 o '5j2k71j2k5i2k+1j2k+1 ce 6imjm'

Substituting this expression for €]"  into (2.15.11), we have

(I 1) e =

Jm

[m/2] - -
- Z a’k/sflil...im (y)Sfle.--jm (y)6i1i2 s 6i2k71i2k5j1j2 S 5j2k71j2k6i2k+1j2k+1 st 6imjmdy =
k=0  n

[m/2] - .
= Z ag (jk(sf1>7jk<sf2))L2(5m72k)
k=0

with the coefficients a; defined by formula (2.15.3). Since the operator j is purely al-
gebraic, it commutes with the Fourier transform. Using the Plancherel formula for the
Fourier transform (@, 9)r,(s») = (4, V), sk, we finally obtain

[m/2]
(LI ey = 2 a (5°CF), 55 CF)

Lo(S§m—2k) *
k=0 2( )

The lemma is proved.

P r o o f of Theorem 2.15.1. Uniqueness of a continuous extension, of the operator
I:8(5™) — H(TQ), to Ly(S™) follows from density of S(S™) in Lo(S™). Let us prove
existence of such an extension. For f € L,y(S™), we choose a sequence f, € S(S™)
(k=1,2,...) that converges to f in Ly(S™). By Lemma 2.15.5, I f; is a Cauchy sequence
in H(T$). Consequently, there exists ¢ € H(TQ) such that If, — ¢. We put o = I f. It
can easily be verified that ¢ is independent of the choice of the sequence f; converging
to f and that the Plancherel formula (2.15.2) is valid, for the so-defined operator I :
Ly(S™) — H(TRQ),. From this formula the continuity of I follows together with the fact
that the kernel of I coincides with the second summand of decomposition (2.6.11). The
theorem is proved.
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2.16 Application of the ray transform to
an inverse problem of photoelasticity

A certain methods of polarization optics for investigation of stresses (more briefly: meth-
ods of photoelasticity) are based on the Brewster effect. It asserts that most transparent
materials obtain optical anisotropy in the presence of mechanical stresses. If a plane-
polarized electromagnetic wave falls onto such a body, then the wave acquires elliptic
polarization after passing the body. The extent of polarization is determined by the val-
ues of the stress tensor along a light ray. In photoelasticity there are known a few methods
of using this effect for determining stresses. One of these methods is the so-called method
of integrated photoelasticity [1]. It can be briefly described as follows: we illuminate the
investigated body by the plane-polarized light from various directions and with various
planes of polarization of the incoming light, measuring the polarization of the outcoming
light. As compared with the others, this method has the advantage of simplicity and
preciseness of optical measurements. On the other hand, this method leads to difficult
mathematical problems, most of which are still not solved. One of these problems is
considered in the current section.

We start with the main differential equations of photoelasticity. The relationship
between the stress tensor ¢ and the dielectric permeability tensor € is described by the
Maxwell-Neumann law:

Ejk = 605jk + C(Tjk + Clappéjk

where C' and C; are the so-called photoelasticity constants. In this section we shall
assume that the medium under consideration is homogeneous, i.e., that C, C and ¢, are
independent of a point. We fix a straight line 7 in R?® and choose a Cartesian coordinate
system tn( such that 7w coincides with the t-axis. The evolution of the polarization ellipse
of electromagnetic wave along the light ray 7 is described by the next equations (see [1];
later, in Chapters 5 and 6, we shall derive these equations in a more general situation)

dF, 1C .
7; = _7(‘77777 —o¢e) By +iCoy B,
iE, - (2.16.1)
“dt = iCoyc By + 7(‘77777 —o¢) B,
where E is the normalized electric vector.
We write down (2.16.1) in matrix form
dF
— =CUF 2.16.2
7 ( )
where .
_ Y[ O¢c— O 200¢
U= ( Yo" oo ) . (2.16.3)

The solution to equation (2.16.2) can be represented by the Neumann series

E(t) = A(t)E(to),

At) =T + C/U(T)dT o2 / U(T)dT/U(ﬁ)dﬁ . (2.16.4)

to
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where [ is the identity matrix. If the constant C'is small, then we can neglect the nonlinear
terms in (2.16.4) and write

Ay —I=C / U(7)dr. (2.16.5)

We speak about slight optical anisotropy, if equality (2.16.5) is valid.
From (2.16.3) and (2.16.5), we see that the degree of polarization along the light ray
7 is defined by two integrals

L(o,m) = /angdt, S(o,m) = /(er — o¢e)dt. (2.16.6)

™ ™

Physically measured quantities are the isocline parameter ¢ and optical retardation A
connected with integrals (2.16.6) by the equalities

Acos2¢p = CS(o,m), Asin2p =2CL(o,7). (2.16.7)

In [65] and [2] formulas (2.16.6)—(2.16.7) are obtained from physical arguments. Our
derivation of these relations from differential equations (2.16.1) is more simple and straight-
forward.

The technical conditions of measurement impose some restrictions on the family of
straight lines 7 over which integrals (2.16.6) can be measured. From the standpoint of
technical realization, the most appropriate situation is that in which the measurements are
done for horizontal straight lines, i.e., for those straight lines that are parallel to the plane
z = 0 in some (laboratory) coordinate system xyz. According to this remark, in the current
section we investigate the mathematical formulation of the question: to what extent is the
stress tensor field determined by integrals (2.16.6) measured over all horizontal straight
lines in the layer a < z < b. In studying we shall assume that the stress tensor satisfies
the equilibrium equations only, while not considering strains. Consequently, our results
are valid for any model (elastic, thermo-elastic etc.) of solid stressed media. The only
essential assumptions are as follows: 1) the dielectric permeability tensor depends linearly
on the stress tensor, and 2) the approximation of slight optical anisotropy is valid.

We assume that the stressed medium is contained in a cylindrical domain G = D X
(a,b) = {(z,y,2) € R?®| (x,y) € D, a < z < b}, where D is a two-dimensional domain on
the (x,y)-plane and the boundary v of D is a closed strictly convex C''-smooth curve. Let
B =~ x(a,b) ={(z,y,2) | (z,y) €7y, a < z < b} be the lateral surface of the cylinder
(. The stress tensor o is supposed to have continuous second-order derivatives in G and
continuous first-order derivatives up to B :

o€ C*(G)NnCY(GUB). (2.16.8)

The equilibrium equations are assumed to be satisfied in G' (we suppose that the volume

forces are absent):
004,  00yy 004,
+ =24

=0
o oy 0z ’
aO'yx aO'yy aayz
= 2.16.
o + By + 3, 0, (2.16.9)
do,, 0o, 0o,
+ 22+ 2,

or dy 0z
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and the boundary conditions corresponding to the absence of the external forces are
assumed to be satisfied on B :

OpaVy + Ogyly = 0,
Oyalp + Oyyly = 0, (2.16.10)

OsqVy + Ooyty = 0,

where v = (v,,1,) is the unit vector normal to 7. Some of our results do not depend on
the boundary conditions (2.16.10). It is convenient to suppose that the tensor field o is
defined in the whole layer {(z,y, 2) € R® | a < z < b} by putting o = 0 outside G B.

The family of horizontal straight lines in R?® depends on three parameters, but it will
be convenient for us to use four parameters. We denote by 7(xg, o, @, 29) the horizontal
straight line defined by the parametric equations = xzg+tcosa, y = yp+tsina, z = zj.
Note that 7(x,y, «, z) depends actually on three parameters (zsina — ycosa, a, z). One
gets two functions

La(xayaa; Z) - L(U,W(x,y,a, Z))7 So-(l‘,y,Oé;Z) = S(U,ﬂ'(l,y,@,z»

by performing optical measurements along all horizontal straights lines in the layer a <
z < b. Our problem is: to what extent is the tensor field o, satisfying (2.16.8)—(2.16.10),
determined by the functions L, and S, that are known for a < z < b and for all z,y, a?

In the current section we will obtain the next three main results on this problem.

1. The functions L, and S, are related. More exactly, if we know L,(x,y,q;2)
and S,(x,y, q; zp), then we can find S,(z,y, «; z); here zy is any number satisfying the
condition a < zy < b.

2. The component o,, is uniquely determined by the functions L,(z,y,a;z) and
Sy (x,y,; z). An algorithm for determination is given.

3. No information about the tensor field o, except for o.., can be extracted from
the functions L, and S,. More exactly: if two tensor fields o' and o? satisfy conditions
(2.16.8)—(2.16.10) and 0!, = 02, then L,1 = L,> and Sy1 = S,o.

The straight line m(xg, yo, o, 29) coincides with the ¢-axis of the coordinate system ¢
that is related to zyz by the formulas

r=tcosa—nsina+xy, y=tsina+ncosa+yy, 2=z,
The components of the tensor ¢ in these coordinates are related as follows:

Oy (t,0,0) = (1o + &) Sin® o — 20, (1o + t€) cos asin a+
+0y,(ro + t€) cos® a,

0nc(t,0,0) = =04, (1o + &) sina + 0, (19 + t€) cos a,
0¢c(t,0,0) = 0..(ro + £§),

where we put for brevity:

ro = (20, Yo, 20), ¢ = (cosa,sina, 0).
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Inserting these expressions into (2.16.6), we obtain (r = (z,y, 2))

L,(x,y,a;2) = / (=03 (r + t&) sina + oy, (r + t€) cos o] dt, (2.16.11)
Se(z,y,a;2) = / [(am — 0,.)(r +t€) sin® a — 20, (r + t€) cosa sina +

+ (0yy — 022) (1 + £6) cos® a] dt. (2.16.12)

We fix 2y € (a,b) and define on the plane z = 2, the vector field v = (u,,u,) and
symmetric tensor field v = (Vyq, gy, Uyy) by putting

Uy = Oy, Uy = —0g2, (2.16.13)

Upgp = Oyy — Oszy  Upy = —Ogy, Uyy = Oz — Ozp. (2.16.14)

Inserting these expressions into (2.16.11), (2.16.12) and comparing the so-obtained equal-
ities with (2.14.1) and (2.14.10), we see that

L, (x,y,; z0) = Tu(z,y, a; o), Se(z,y, a;20) = Tv(z,y, a; 20), (2.16.15)

where I is the ray transform and (z,y, a) are considered as the coordinates on RZ x Q' =
{(z,y, z0; cos ai, sin &) }.

We know that the ray transform I f of a tensor field f of degree m on R"™ and the
value W f of the Saint Venant operator are uniquely determined from each other. Let us
denote:

lo(z,y;2) = Wpu(x,y; 2), sq(x,y; 2) = Wpu(x,y; 2), (2.16.16)

where W is the regular part of the Saint Venant operator introduced in Section 2.14. By
(2.16.15), we can assert that the functions [/, and s, are uniquely determined from the
functions L, and S, respectively. The explicit algorithms for determination of I, and s,
from L, and S, are given by formulas (2.14.6)(2.14.8) and (2.14.14)—(2.14.16).

Inserting the values (2.16.13) and (2.16.14) of the components of u and v into equalities
(2.14.3) and (2.14.12), we have

B 0oy, 0oy,

Ox oy’

lo(x,y;2) = (2.16.17)

0%(0.. — 04z) N (0., — Tyy) B 2820@
Ox? oy? Oxdy

Assuming [, and s, to be known, let us now consider (2.16.17) and (2.16.18) as a
system of equations for o; and add the equilibrium equations (2.16.9) and the boundary
conditions (2.16.10) to this system. It turns out that the so-obtained boundary problem
can be easily investigated.

By the third of the equilibrium equations (2.16.9), relation (2.16.17) is equivalent to
the next one:

(2.16.18)

So(x,y;2) =

00,

0z

— 1. (2.16.19)
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We differentiate the first of the equations (2.16.9) with respect to z, the second, with
respect to y and add the so-obtained equalities to (2.16.18). We thus come to the equation

820.. 0%, O (80m aayz>
+ + = So

0x? Oy? +@ ox dy

which is, by (2.16.17), equivalent to the next one:

P o al,
(W N 3y2> L. (2.16.20)

Comparing (2.16.19) and (2.16.20), we see that [, and s, are connected by the relation

0? 0? 0? 0S4
<8x2 i M) =7 (2.16.21)

which implies the first of the above-mentioned results.

Note that equations (2.16.19)—(2.16.21) were obtained without using boundary condi-
tions (2.16.10).

Let us show that the value of 0., on the lateral surface B of the cylinder G is de-
termined by the function S,. To this end, we consider two close points r = (z,y, z) and
r" = (2/,y, z) belonging to B and denote the horizontal straight line that passes through
r and 1’ by w(r,r’). By (2.16.12),

S(o,m(r,r")) =

=71

_ / (0 — 022) (1 + 1) €2 — 200, (1 +1€) Ea6y + (0 — 022) (r + 16) €2] dt.
’ (2.16.22)

where & = (§;,€,,0) = (' —r)/|r" — r|. If the point 7" tends to 7, then the vector £ tends
to (7, 7,,0) where 7 = (7,,7,) is the unit tangent vector, of the curve v, at the point
(x,y). Applying the mean value theorem to integral (2.16.22), we obtain

lim S(o,m(r,r"))

R R = am(r)Tyg — 20,y (1) 7Ty + Jyy(r)Tgf —0,,(r). (2.16.23)

The tangent vector 7 = (7, 7,) is expressed through the normal vector v = (v, v,) by the
formulas 7, = —v,, 7, = v,. Inserting these expressions into (2.16.23) and using (2.16.10),
we arrive at the equality

(r,r' € B; z=2'). (2.16.24)

Relations (2.16.19), (2.16.20) and (2.16.24) permit us to assert that the component o,
is uniquely determined by the functions L, and S,. Many versions of numerical methods
for determination of ., are possible because of overdeterminedness of system (2.16.19),
(2.16.20). We will briefly discuss two of them.

1. We fix zp (a < 29 < b) and find o..(r) for r = (z,y, 29) € B by (2.16.24) from the
measured values of S,(z,y, a; z9). Then we find functions I,(z,y, z) and s,(x,y, z9) from
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Ly(z,y,«; z) and S,(z,y, a; z9) by procedures, of inversion of the ray transform, given by
formulas (2.14.6)—(2.14.8) and (2.14.14)—(2.14.16). Then we solve the Dirichlet problem
for equation (2.16.20) at the level z = 2z, by using known values o..(2, ¥, 20)|(z)cy, and
find 0,.(x,y, z0). The last step is integration of equation (2.16.19), using known [, (z, y, 2)
and o, (z,y, 20)-

2. First we find o,.|p from S,(z,y,a;z) by (2.16.24). Then we determine [, (z,y, 2)
and s,(z,y, z) by inverting the ray transform. At last we find o,,(z,y, z) by solving the
Dirichlet problem for equation (2.16.20) at all levels.

The first method, in contrast to the other one, needs fewer calculations since it requires
inverting the ray transform of a tensor field of degree two only once (for z = zy). Thus, in
the first method, most calculations are spent for inverting the ray transform of a vector
field (determination of [, from L,), which must be executed for all z. In the author’s
opinion, the only deficiency of the first method is that the error of determination of
0..(x,y,z) can increase with |z — zy|, while all levels are equal in rights in the second
method. Relation (2.16.21) can be used for the control of calculations in the second
method. Various combinations of these methods are possible.

The first method has been realized numerically. It has given good results on test
data. In the author’s opinion, the algorithm is ready for application to processing real
measurement.

We will now prove that no information about a tensor field o, except for o,,, can
be determined from L, and S,. Let o' and % be two tensor fields satisfying (2.16.8)—
(2.16.10), and o! = o2.. Then the difference 0 = o' — o2 satisfies (2.16.8)—(2.16.10),
and

0., =0. (2.16.25)

We have to prove that
L,=0, S,=0. (2.16.26)

Let us fix zy and define the tensor fields u and v on the plane z = z; by formulas (2.16.13),
(2.16.14). Then equalities (2.16.15) are valid. Thus, to prove (2.16.26) it is sufficient to
show that Tu =0, Iv = 0. By Theorem 2.5.1, the last equalities are equivalent to

Wu =0, (2.16.27)

Wo = 0. (2.16.28)
Inserting expressions (2.16.13) into (2.14.2), (2.14.3) and (2.14.5), we obtain

00,, 00,
Wu=— < 5 + 0; ) + (Opaly + 0y2y) 0.

Using the third of the equilibrium equations (2.16.9), the last equality can be rewritten

as
00,
Wu = P + (0ol + Ty1y)0,.

Comparing this relation with (2.16.25) and (2.16.10), we arrive at (2.16.27).
Inserting expression (2.16.14) into equalities (2.14.11)-(2.14.13), we have

2 2 2
WDU _ (3 U;vx a Uyy _|_ 28 0xy> ’ (21629)

0x? 0y? 0xdy
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B 004 004y 0oy Ooy, B
<W«,v,g0>—f[< e + By )V$+<8x + By vy | pds

Oy dp
_% l(amuz + axyl/y)% + (OuylVu + Uyyl/y)ay] pds. (2.16.30)

Differentiating the first of the equations (2.16.9) with respect to x, the second, with
respect to y and summing the so-obtained equalities, we get

D*0pp %0y, N 2820@ _ 0 (0o, N oy, .
ox dy

0x? * Oy? oxdy 0z
According to the third of the equations (2.16.9), the last relation can be rewritten as
follows:

0%0 1 n 820yy n 232ny _ 32022‘
0x? oy? 0xdy 022

Comparing this equality with (2.16.25) and (2.16.29), we see that
Wpv = 0. (2.16.31)

By (2.16.10), the integrand of the second integral on the right-hand side of (2.16.30)
is identical zero. By (2.16.9), the integrand of the first integral can be transformed to as
follows:

(WL, ¢) f@ Op2Ve + 0y21y) pds.

Comparing the last equality with the third of the boundary conditions (2.16.10), we see
that W,v = 0. Together with (2.16.31), the last equality gives Wv = 0 which completes
the proof.

2.17 Further results

The presentation of the current chapter mainly follows the papers [113, 115, 117, 119].
Here we will deliver a survey of some results close to the main content of the chapter.

In Section 2.10, describing the range of the operator I, we left aside the ray transform
on a plane (n = 2). It was not accidental. Indeed, let us observe that, for n > 2, the John
conditions (2.10.1), that are necessary and sufficient for a function to be in the range of
the operator I, are of differential nature. In the case n = 2,m = 0 the ray transform
coincides with the Radon transform, for which the corresponding conditions are of integral
nature [35]. It turns out that the situation is similar in the case of arbitrary m. Thus the
two-dimensional case radically differs from the case n > 2. The precise formulation of the
result, due to E. Yu. Pantjukhina [100], is as follows:

Theorem 2.17.1 If a function ¢ € S(TQ") can be represented as o = If for some
field f € S(S™; R"), then (1) the identity p(xz,—&) = (—=1)"p(x,£) is valid and (2) for
every integral k > 0, on R™ there exists a homogeneous polynomial Pl’j i () of degree k
such that the equality

/cp o' = PF . (a)eh . g (2.17.1)
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is valid for all (z,€) € T Here dx’ is the (n — 1)-dimensional Lebesque measure on &*.
In the case n = 2 conditions (1) and (2) are sufficient for existence a field f € S(S™)
such that ¢ = 1f.

In the case m = 0 conditions (2.17.1) are formulated in [48].
In [115] the author considered the next generalization of the ray transform

1f — / 190 f (z + 1€), €™ dt.

The subsequent claim is proved in full analogy with Theorem 2.5.1.

Theorem 2.17.2 Let 0 < p < m and n > 2 be integers. For a field F € E'(S™;R") the
next three assertions are equivalent:

(1) I"F =0 forq=0,1,...,p;

(2) there exists a field V € E'(S™P~Y) such that its support is contained in the convex
hull of the support of F' and dPT'V = F;

(3) WPF = 0 where WP : C®(S™) — C®(S™PQ S™) is the differential operator of
order p defined by the formula

(WP Fivciom i = (i1 imp)o(f1 - - fim) mz_:p(_l)l (m l—p> "

=0
X fil-“imfpfljlnjpﬁ»l  JpHld1e-dmim—p—i4+1--tm—p"

In particular, a compactly-supported tensor field F' of degree m is uniquely determined
by the first m-+1 integral moments I°F, ..., I"™F along all straight lines. It is possible that
explicit inversion formulas similar to (2.12.15) exist in this case; encountered algebraic
difficulties in the way of deriving such formulas are not overcome yet.

In conclusion, we present results, due to L. B. Vertgeim [136], on the complex analog
of the ray transform.

We fix the Hermitian form (z,w) = z'@w" on C". Given integers p, ¢ > 0, by T we mean
the space of tensors of bidegree (p, ¢) on C", i.e., the space of functions C" x...xC" — C
(there are p + ¢ factors to the left of the arrow) which are C-linear in each of the first p
arguments and are C-antilinear in each of the last ¢ arguments. Let S7 = S7(C") be the
subspace of T} that consists of tensors symmetric in the first p and last ¢ arguments; let
o : T} — SI be the operator of symmetrization with respect to these groups of arguments.
Any tensor u € T} is uniquely represented as

u= u’l“'j; dZ"®...Qdz*dF' ® ... ® dz’.

i
The scalar product on T} is defined by the equality

J1+Jq 7591---Jq

(u,v) = Wiy iy Uiy

For u € S¢ and v € S}, the symmetric product uv = o(u ® v) € Sgifn is defined. As
above, by i, we mean the operator of symmetric multiplication by u, and by j, we mean
the dual of i,,.
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Two operators of inner differentiation and two divergences are defined on C*°(S}) :
o o .. o o .
Jiedg J1--Jq J1-Jg+1 J1--Jq
(df)il...z'p+1 =0 <8zip+1 i1.ip | 0 (df)il...ip =0 Jzdat1 ) itwip |0
o no9 L o L B
(Of) e =" fde (6f) ittt =3 et
11...0p—1 79 21...0p—107 11...1p j /1. p ?
= 0z = 0z

where the usual notation is used:

0 1o 0\ o _1(o o
ozk 2\ ozk  Toyk)’ ozF  2\oxk  oyk )’

Decomposition into potential and solenoidal parts is realizable as follows:

Theorem 2.17.3 Given a field f € S(S]), there exists a unique field °f € C>(S]) such
that, for some v € C*(S;_,) and w € C®(SI") the neat relations are valid:

f=°f+dv+dw, §°%f=0, 6% =0,

f(2) =0, v(z) =0, wiz)—0 as |z| = <.

The field *f satisfies the estimate |*f(2)] < C(1+|z|)'72"; the fields v and w can be chosen
such that
()] S CA+ [P, |w(z)] < O+ [2))*7"

Let C§ = C™\ {0}. By the ray transform of a field f € C*°(S7) we mean the function
defined on C" x Cf by the formula

If(z,8) = / Dedzpte) e evg” L€ ds(t)

C

under the condition that the integral converges. Here ds(t) is the area form on C.
To give the inversion formula for the ray transform we have, at first, to introduce an
analog of operator (2.11.1). For f € C*(S%), we define the tensor field ul f € C*(S?) by

the equality

. gh Zip J1 Ja
WP = [ S O (). (217.2)

CP"71

where dVp (€) is the volume form, on the complex projective space CP™ !, generated by
the Fubini-Study metric

gs? = (& 8dE, d€) — (€, dE)(dE, &)
(€, €)? '

In the last two formulas £ is considered as the vector of homogeneous coordinates on
CP"!. Note that the ray transform has the next homogeneity:

|mI?

If(z,78) =

If(z,6).

Consequently, the integrand in (2.17.2) has complex homogeneity of zero degree in &, i.e.,
it is defined on CP" .
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Theorem 2.17.4 The solenoidal part °f of a field f € S(S{) can be recovered from the
ray transform I f by the formula

o LA Dt ptg—1-2)
A Np—Dlqg—1D!

=0

(i — A7Ndd)'5' (I f),

where i =i, j = js, 0 = (0}) € S| is the Kronecker tensor.

Note that in the case p = 0 or ¢ = 0 this formula has the local character, i.e., a value
*f(2) is determined by integrals over complex straight lines that intersect any neibourhood
of the point z. In other cases the formula is nonlocal.

To describe the range of the ray transform we define the manifold M = {(z,€) | (z,&) =
0,¢ # 0}. By S(M) we mean the space of functions that are smooth on M and decrease,
together with all derivatives, rapidly in z and uniformly in £ belonging to any compact
subset of Cj.

Theorem 2.17.5 Let n > 3. A function ¢ € C*°(C™ x C}) is the ray transform of some
field f € S(Sg) if and only if the next four conditions are satisfied:
(1) ¥l € S(M);
(2) ¥(z +7€,§) = ¢(2,¢) for T € C;
233 U(z,78) = (777 |7|*)ib(2, )

4) For all indices,

o 0 o &
<8zi15§j1 - 8Zj18§i1> T <8Zip+18§jp+1 B 8sz+10§%+1> v=0

0> 0? 0? 0>
(aznagﬂ 9z 9" ) (azwag““ OFlat1 9! )



Chapter 3

Some questions of tensor analysis

Here we will expose some notions and facts of tensor analysis that are used in the next
chapters for investigating integral geometry of tensor fields on Riemannian manifolds.

The first two sections contain a survey of tensor algebra and the theory of connections
on manifolds including the definition of a Riemannian connection. This survey is not
a systematic introduction to the subject; here the author’s only purpose is to represent
main notions and formulas in the form convenient for use in the book. Our presentation
of the connection theory is nearest to that of the book [61]; although there are many other
excellent textbooks on the subject [41, 81, 25].

In Section 3.3 the operators of inner differentiation and divergence are introduced on
the bundle of symmetric tensors of a Riemannian manifold; their duality is established.
Then we prove the theorem on decomposition of a tensor field, on a compact manifold,
into the sum of solenoidal and potential fields.

Sections 3.4-3.6 are devoted to exposing the main tools that are applied in the next
chapters to studying the kinetic equation on Riemannian manifolds. The so-called semi-
basic tensors are defined on the space of the tangent bundle; two differential operators,
vertical and horizontal covariant derivatives, are introduced on the bundle of semibasic
tensors. For these operators, formulas of Gauss-Ostrogradskii type are established. The
term “semibasic tensor field” is adopted from the book [39] in which a corresponding
notion is considered for exterior differential forms.

In Sections 3.3-3.6 our presentation mainly follows the paper [102].

3.1 Tensor fields

We shall use the terminology and notation of vector bundle theory. The reader is however
assumed to be acquainted only with the first notions of the theory. They can be found at
the first pages of the book [54].

By a manifold we mean a smooth Hausdorff paracompact manifold, possibly with a
boundary. The term “smooth” is used as a synonym of “infinitely differentiable.”

Let F be either the field C of complex numbers or the field R of real numbers. For a
manifold M, by C*°(M,F) we denote the ring of smooth F-valued functions on M. We
will write more briefly C*°(M) instead of C*°(M, C). Elements of the ring C*°(M) are
called smooth functions while elements of C*°(M,R) are called smooth real functions.

Given a smooth vector F-bundle o = (F, p, M) over a manifold M and open U C M,

81
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we mean by C*°(a; U) the C*°(U, F)-module of smooth sections of the bundle o over U,
and by C°(«; U), the submodule of C*°(a; U) that consists of sections whose supports
are compact and contained in U. The notation C*°(«; M) will usually be abbreviated to
C*®(a). For a = (E,p, M), let o be the dual bundle, £, be the fiber of « over a point z.
If N is a manifold and f : N — M is a smooth map, then by f*a we mean the induced
bundle over N. Given two F-bundles « = (E,p, M) and = (F,q, M), let L(a, 3) be
the F-bundle whose fiber over x is the space of all F-linear mappings F, — F,. The
elements of C*°(M, F)-module C*(L(«, 3)) are called homomorphisms (over M) of the
bundle « into the bundle §. Thus a homomorphism of the bundle « into the bundle ( is
a smooth mapping £ — F' linear on fibers and identical on the base. We shall use only
finite-dimensional vector bundles except the case in which we encounter graded vector
bundles of the type a* = @,,_,a"™, where each a™ is of finite dimension; such an object
can be viewed as a sequence of finite-dimensional bundles.

Given a manifold M, by 7,y = (T'M,p, M) we denote the tangent bundle of M. Its
dual 73, = (T"M, p', M) is called the cotangent bundle of the manifold M. Note that these
bundles are real. Their fibers T, M and T,M are the spaces tangent and cotangent to
M at the point x. Their sections are called real vector and covector fields on M. A real
vector field v € C'°°(7y,) can be considered as a derivative of the ring C*°(M,R), i.e., as
an R-linear mapping C*°(M,R) — C*°(M,R) such that

v Y) =1 v+ - v (3.1.1)
The number vyp(x) is called the derivative of the function ¢ at the point = in the direction
v(x). For two such derivatives v and w, their commutator [v,w| = vw — wv is also a

derivative, i.e., a real vector field. It is called the Lie commutator of the fields v and w.
For nonnegative integers r and s, let 7/ M = (717 M, p’, M) be the real vector bundle
defined by the equality

RTM =Ty Q.. T QT Q... Q Ty, (3.1.2)

where the factor 7, is repeated r times and 1), is repeated s times; the tensor products
are taken over R. It is convenient to assume that g7/ M = 0 for r < 0 or s < 0. Let
I M = (T7 M, p%, M) be the complexification of the bundle g7 M, i.e.,

TIM = C Qg (r7. M) (3.1.3)

where C is the trivial one-dimensional complex bundle. 7.M is called the bundle of
tensors of degree (r,s) on M, and its sections are called tensor fields of degree (r,s). A
tensor u € T7 M is said to be r times contravariant and s times covariant. The fiber of
7e M over x € M is denoted by Ty M.

By definition (3.1.3), in the complex vector bundle 77 M the R-subbundle g7/ M of real
tensors is distinguished. Consequently, any tensor v € 77 M can uniquely be represented
as u = v + 1w with real v and w.

Tensor fields of degrees (0,0),(1,0) and (0,1) are just smooth (complex) functions,
vector and covector fields respectively. A vector field v € C*°(7d M) can be considered
as a derivative of the ring C*°(M), i.e., as a C-linear mapping v : C*(M) — C>(M)
satisfying (3.1.1).

The bundles 77 M and 77M are dual to one other and, consequently, C*°(7] M) and
C*®(1iM) are the mutually dual C°°(M)-modules. This implies, in particular, that a



3.1. TENSOR FIELDS 83

covariant tensor field u € C*(7YM) can be considered as C°°(M )-multilinear mapping
w: C®(rg M) x...x C®(1g M) — C*(M). The last observation allows us to define the C-
linear map d : C*®°(M) — C*®(7) M) that sends a function ¢ € C*(M) to its differential
de € C(r)M) by the formula dp(v) = vp. Similarly, a field u € C®(r1M) can be
considered as a C*°(M)-multilinear mapping u : C®(1a M) x...xC®(td M) — C=(1g M).

We will now list some algebraic operations which are defined on tensors and tensor
fields.

Since C* (7] M) is a C*°(M)-module, tensor fields of the same degree can be summed
and multiplied by smooth functions.

Every permutation 7 of the set {1,...,7} (of the set {1,...,s}) determines the auto-
morphism p™ (automorphism p,) of the bundle 77M by the corresponding permutation
of first r (of last s) factors on the right-hand side of equality (3.1.2) and, consequently, it
determines the automorphism p™ (automorphism p,) of the C*°(M)-module C*(7]M).
The automorphism p™(p,) is called the operator of transposition of upper (lower) indices.

For 1 <k <r and 1 <[ < s the canonical pairing of the k-th factor in the first group
of (3.1.2) and the I-th factor in the second group defines the homomorphism Cf : 77 M —
77~IM which is called the convolution with respect to k-th upper and I-th lower indices.

By the permutation of the factors T,,M and T/ M, the isomorphism

T MecTy M=CT,M®.. 9 TMRT,M®.. ®T.M)ec

r s

Rc(CROT M. TMRITM® ... T,M)=

r! s/

~CRITM®.. QT,MRTM® ... T'M =Tt M

/
s+s',x

r+r! s+s’
is defined. The composition of the last isomorphism with the canonical projection Ty , M x
T;}:xM - T{,.M® TS’}'JM allows us, given tensors u € Ty M and v € T, ;}:xM , to define
the tensor product u @ v € T'+% M. We thus turn 7*M = @D, —o7: M into a bundle of

s+s’',x
bigraded C-algebras, and C>(7; M) = @7,_,C*>(7] M) into a bigraded C*>(M)-algebra.
We shall often use coordinate representation of tensor fields. If (z!,..., ™) is a local

coordinate system defined in a domain U C M, then the coordinate vector fields 0; =
0/0x" € C*(7pr; U) and the coordinate covector fields dx* € C°°(7},; U) are defined. Any
tensor field u € C*°(77M;U) can be uniquely represented as

u =yl 0 R...R0

— Yiieds O Opir KA Q... ® dxjs, (3.1.4)

where u = ul!7 € C>(U) are called the coordinates (or the components) of the field u
in the given coordinate system. Assuming that the choice of coordinates is clear from the
context, we will usually abbreviate equality (3.1.4) as follows:

w=(uj7y). (3.1.5)
For a point # € U and a tensor u € T, M equalities (3.1.4) and (3.1.5) also make
sense, but in this case the coordinates are complex numbers. If (2/',..., /") is a second
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coordinate system defined in a domain U’, then in U NU’ the components of a tensor field
with respect to two coordinate systems are connected by the transformation formulas:

i1 2 l l
yivodp O oz’ 0x" ox's ke
Jds T 9kt T ke oxlit T Pyt li..ls -

The above-listed operations on tensor fields are expressed in coordinate form by the
formulas

(3.1.6)

(pu + o)l = pultr 4ol (g, € C™(M)),

T NGLede  fm(1)-ba(r) e d1eir
(p u)jl.,.js = Uy, g ) (pﬂu)jynjs = Uy 1ydin(s)? (3.1.7)
ko NU1edp—1 1.k 1Plgeedr—1
(Cl u)jl---jsq = gy g apgiefs—1 (3'1'8>
eyl gy gl
(u® U)j1~~-js+sl = ujy v (3.1.9)

Note that the tensor fields 9/0x" and dz’ commute with respect to tensor product,
ie., 0/0r' @ di? = dx’ ® 0/0x', while dz' and dz’ (and also 9/0x" and 9/0x’) do not
commute. Moreover, if U is diffeomorphic to R", then the C*°(U)-algebra C°°(1M;U)
is obtained from the free C>°(U)-algebra with generators 9/9z° and dx* by the defining
relations 9/0z' ® da? = dx? ® §/0x".

3.2 Covariant differentiation

A connection on a manifold M is a mapping V : C(1y,) X C®(15) — C°°(7pr) sending
a pair of real vector fields w,v into the third real vector field V,v that is R-linear in
the second argument, and C*°(M, R)-linear in the first argument, while satisfying the
relation:

Vu(pv) = o Vo + (up)v, (3.2.1)

for p € C>*°(M,R).

By one of remarks in the previous section, C*° (g7} M) is canonically identified with the
set of C°°(M, R)-linear mappings C*°(1y;) — C*°(75r). Consequently, a given connection
defines the R-linear mapping (which is denoted by the same letter)

V : C®(1p) — O (g7 M) (3.2.2)
by the formula (Vv)(u) = V,v. Relation (3.2.1) is rewritten as:
Vipv) =¢-Vuo+ov®dp. (3.2.3)
Passing to complexifications in (3.2.2), we obtain the C-linear mapping
V: C®(rqgM) — C (11 M), (3.2.4)

that satisfies (3.2.3) for ¢ € C°°(M). Conversely, any C-linear mapping (3.2.4), satisfying
condition (3.2.3) and sending real vector fields into real tensor fields, defines a connection.
The tensor field Vv is called the covariant derivative of the vector field v (with respect
to the given connection).

The covariant differentiation, having been defined on vector fields, can be transferred
to tensor fields of arbitrary degree, as the next theorem shows.
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Theorem 3.2.1 Given a connection, there exist uniquely determined C-linear mappings
V:CO¥(y M) — C™ (1, M), (3.2.5)

for all integers r and s, such that

(1) Vo = dp for p € C(M) = C=(rg M);

(2) Forr =1 and s = 0, mapping (3.2.5) coincides with the above-defined mapping
(3.2.4);

(3) For 1 <k <r and 1 <1 < s, operator (3.2.5) commutes with the convolution
operator CF;

(4) the operator V is a derivative of the algebra C*°(1M) in the following sense: for
u € C®(rTM) and v € C(71, M),

V(u®v) =psp1(Vu®@v) +u® Vo, (3.2.6)

where psy1 1s the transposition operator for lower indices corresponding to the permutation
{1,...,8,s+2,...,s+5 +1,s+1}.

We omit the proof of the theorem which can be accomplished in a rather elementary
way based on the local representation (3.1.4).

For a connection V, the mappings R : C®(1y;) x C*®(1pr) X C®(7p1) — C*®(7pr) and
T : C*®(7pr) X C®°(1pr) — C°(7pr) defined by the formulas

R(u,v)w = V,Vyw — V,Vyw — Vi, yw,

T(u,v) =V, — Vyu — [u, vl

are C*°(M,R)-linear in all arguments and, consequently, they are real tensor fields of
degrees (1, 3) and (1, 2) respectively. They are called the curvature tensor and the
torsion tensor of the connection V. A connection with the vanishing torsion tensor is
called symmetric.

Let us present the coordinate form of the covariant derivative. If (z!,... z") is a
local coordinate system defined in a domain U C M, then the Christoffel symbols of the
connection V are defined by the equalities

Vo,0; = Tlok, (3.2.7)

where 0; = 0/0z" are the coordinate vector fields. We emphasize that the functions
Ffj € C*(U,R) are not components of any tensor field; under a change of the coordinates,
they are transformed by the formulas

ok oz’ 0xP 0z, ox'" OPx”
I A A Vs )

(3.2.8)

The torsion tensor and curvature tensor are expressed through the Christoffel symbols
by the equalities
k_ pk k
Ty =15 -1

Ji
o ., 0

Pl @FZ SED N A N (3.2.9)

ip~ jl gp~ il

k
R =
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For a field P
u:u;'-ll'_;ggamil 2. 05 Qde" @ ... ® dr’s,
the components of the field Vu are denoted by “;11 Z]’“ , or by Vkuzll 3’“, ie.,
v [ S O 8 ® a d jl d js d k
u-ujl__js;k—axi1 ...®%® Q... Qdr” & dr”.

We emphasize that the factor dz*, corresponding to the number of the coordinate with
respect to which “the differentiation is taken”, is situated in the final position. Of course,
this rule is not obligatory, but some choice must be done. Our choice stipulates the
appearance the operator psy1 in equality (3.2.6). According to our choice, the notation

uéll'.‘.‘é* is preferable to Vkuﬁ ZJ’”, since it has the index k in the final position. Neverthe-

less, we will also use the second notation because it is convenient to interpret Vi as “the
covariant partial derivative”. The components of the field Vu are expressed through the
components of u by the formulas

1.0 b U1 .n b . 11 Ay
Vkuﬂ ds = Wigeik = ok Uy gt
s
11 Am—1Ptm41.--lr . Z D i1y
+ Z ka J1---Js ijmujl-~-jm—1pjm+1-~-j5' (3210)
m=1

The second-order covariant derivatives satisfy the commutation relations:

(ViV =V, Vp)u't - =

jl Js

'
. 11— 1p1m+1 A i1.. lr
- Z pkluﬂ Js Z ijklujl Jm—1DJm+1---Js " (3'2'11>

We recall that a Riemannian metric on a manifold M is a real tensor field g = (g;5) €
C>(19 M) such that the matrix (g;;()) is symmetric and positive-definite for every point
x € M. A manifold M together with a fixed Riemannian metric is called Riemannian
manifold. We denote a Riemannian manifold by (M, g) or simply by M if it is clear what
metric is assumed. Given &,n € T, M, by (£,1) = g:j(x)&'n’ we mean the scalar product.
A Riemannian metric defines the canonical isomorphism of the bundles 7, and 7}, by the
equality £(n) = (£,n) and, consequently, defines isomorphism of 77M and 7M. By this
reason we will not distinguish co- and contravariant tensors on a Riemannian manifold
and will speak about co- and contravariant coordinates of the same tensor. In coordinate
form this fact is expressed by the well-known rules of raising and lowering indices of a
tensor:

Uiy i, = Giry - - -gimjmujlijQ uil...im — gimjm . gluluh s
where (¢7) is the matrix inverse to (g;;).

The scalar product is extendible to 70M by equality (2.1.3). Declaring M and 79 M
orthogonal to one other in the case r # s, we turn .M = @2 ,7°M into a Hermitian
vector bundle. Consequently, we can define the scalar product in C§°(m.M) by formula
(2.1.6) in which

dV"(z) = [det(gy)]"2dat A ... A da” (3.2.12)

is the Riemannian volume and integration is performed over M.
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A connection V on a Riemannian manifold is called compatible with the metric, if
v(&,n) = (V,&,n) + (£, V,n) for every vector fields v,&,n € C*(71yr). It is known that
on a Riemannian manifold there is a unique symmetric connection compatible with the
metric; it is called the Riemannian connection. Its Christoffel symbols are expressed
through the components of the metric tensor by the formulas

kL e (990 | 09 gy
Df = 397 (S + 0 - 222 ). (3.2.13)

From now on we will use only this connection on a Riemannian manifold, unless we state
otherwise.

A smooth mapping v : (a,b) — M is called a (parametrized) curve in the manifold
M, and C®°(~y*1I M) is called the space of tensor fields along the curve . In particular,
the vector field ¥ € C*(y*1yr) along 7 defined by the equality 4 = dy(d/dt) is called the
tangent vector field of the curve . A connection V on M induces the operator of total
differentiation D/dt : C®(~y*1I M) — C*°(y*1/ M) along v which is defined in coordinate
form by the equality D/dt = 4'V;. A field u is called parallel along v if Du/dt = 0. If
u is parallel along v, we say that the tensor u(~y(t)) is obtained from wu(vy(0)) by parallel
displacement along ~.

A curve v in a Riemannian manifold is called a geodesic if its tangent field  is parallel
along 7. In coordinate form the equations of geodesics coincide with (1.2.5). Given a
Riemannian manifold M without boundary, a geodesic 7y : (a,b) — M (—o0 < a < b < o0)
is called mazimal if it is not extendible to a geodesic 7' : (a—e1,b+¢e2) — M where g, > 0,
g9 > 0 and g1 + €9 > 0. It is known that there is a unique geodesic issuing from any point
in any direction. More exactly, for every x € M and & € T, M, there exists a unique
maximal geodesic v,¢ : (a,b) — M (—oo < a < 0 < b < o00) such that the initial
conditions v,¢(0) = x and 4, ¢(0) = £ are satisfied. In geometry the notation exp, (&) is
widely used instead of v, ¢(¢), but the notation 7, ¢(¢) is more convenient for our purposes
and it will be always used in the book.

Let R;ji be the curvature tensor of the Riemannian manifold M. For a point x € M
and a two-dimensional subspaces o C T, M, the number

K(z,0) = Ryw&'€ nn®/ (€I = (& m)*) (3.2.14)

is independent of the choice of the basis &, 7 for 0. It is called the sectional curvature of
the manifold M at the point z and in the two-dimensional direction . This notion is very
popular in differential geometry [41].

3.3 Symmetric tensor fields

By S™7}; = (S™T"M,p™, M) we denote the subbundle of 72 M which consists of tensors
that are invariant with respect to all transpositions of the indices. Another equivalent
definition explaining the notation is possible: S™7}, is the complexification of the m-th
symmetric degree of the bundle 73,. We call S*1;, = @oo_,S™7,, the bundle of (co-
variant) symmetric tensors, and its sections are called the symmetric tensor fields. Let

o: 12 M — S™1), be the canonical projection (symmetrization) defined by the equality

o= ml[ > pr where II,, is the group of all purmutations of degree m. The symmetric

*welly,
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product uv = o(u ® v) turns S*7}, into the bundle of the commutative graded algebras.
For a Riemannian manifold, S*7;, is a Hermitian vector bundle.

From now on we assume in this section that M is a Riemannian manifold. Let S™7 M
be the fiber of the bundle S™7;, over the point z, and S*T/M = @;._,S™T, M. Given
u e S*IIM, by i, : S*T.M — S*T. M we denote the operator of symmetric multiplication
by u, and by j, we denote the dual of 7,,. In coordinate form these operators are expressed
by formulas (2.1.5). For u € C*°(S*7},), the homomorphisms i,, j, : S*1}, — S*7}, are
introduced by the relations i, () = iy), Jju(T) = Ju)-

The operator of inner differentiation d : C*®(S™7},) — C°°(S™*17,) is defined by the
equality d = oV. The divergence operator § : C°°(S™7],) — C°°(S™r),) is defined in
coordinate form by the formula (§u);, i, = wi, inj.£g'"

Theorem 3.3.1 The operators d and —0 are formally dual to one other. Moreover, for
a compact domain D C M bounded by piecewise smooth hypersurface 0D and for every
fields u,v € C(S*1},), the next Green’s formula is valid:

[ltdu,v) + (s av = [ fiu,v)avet, (33.1)

D oD

where dV™ and dV"™ 1 are the Riemannian volumes on M and 0D respectively, v is the
exterior unit normal vector to 0D.

P roof It is known [55] that, for a vector field £ € C*(1y), the next Gauss-
Ostrogradskii formula is valid:

/ (66) dV" = / g dvn = / (€, ) dvt, (3.3.2)

D D
Given u € C*(S™7},) and v € C*(S™*'7|,), we write
iy iy iy
<du? U> + <u7 &U> = Wiy iy 5 im41 U tetmAt 4 Uiy ... U fotm Jimtl (uil--.imv ! m+1) 3 imalt

Introducing the vector field ¢ by the equality & = w;, ; v+"mJ and applying (3.3.2) to
€, we arrive at (3.3.1).

We recall [97] that, for a smooth complex vector bundle « over a compact manifold
M and an integer k > 0, the topological Hilbert space H*(«) is defined of sections whose
components are locally square-integrable together with all derivatives up to the order £ in
every local coordinate system. Let M be a compact Riemannian manifold with boundary;,
S™T1irlan be the restriction of the bundle S™7;, to M. By fixing a finite atlas on M and
a partition of unity subordinate to the atlas, we provide H*(S™7},) and H*(S™7}|arr)
with the structures of Hilbert spaces. The norms of these spaces will be denoted by || - ||
We recall that, for k > 1, the trace operator H*(S™7;,) — H*1(S™7),|on), u — ulon
is bounded.

The next theorem generalizes the well-known fact about decomposition of a vector
field (m = 1) into potential and solenoidal parts to symmetric tensor fields of arbitrary
degree.
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Theorem 3.3.2 Let M be a compact Riemannian manifold with boundary; let k > 1
and m > 0 be integers. For every field f € H*(S™7},), there exist uniquely determined
sf € H*(S™7},) and v € H*Y(S™17),) such that

f=°f+dv, 6°%f =0, vlon = 0. (3.3.3)

The estimates
15flle < Cllflles ollesr < CUSfllr-1 (3.3.4)

are valid where a constant C' s independent of f. In particular, °f and v are smooth if f
s smooth.

We call the fields °f and dv the solenoidal and potential parts of the field f.

P r o o f. Assuming existence of *f and v which satisfy (3.3.3) and applying the
operator 0 to the first of these equalities, we see that v is a solution to the boundary
problem ddv = 6 f, v|sar = 0. Conversely, if we establish that, for any u € H*=1(S™7},),
the boundary problem

ddv =u, v|gpy =0 (3.3.5)

has a unique solution v € H**1(S™7},) satisfying the estimate
[vllk+1 < Cllullr-1, (3.3.6)

then we shall arrive at the claim of the theorem by putting u = 0 f and °f = f — dv.

We will show that problem (3.3.5) is elliptic with zero kernel and zero cokernel. After
this, applying the theorem on normal solvability [139], we shall obtain existence and
uniqueness of the solution to problem (3.3.5) as well as estimate (3.3.6).

To check ellipticity of problem (3.3.5) we have to show that the symbol o9(dd) of the
operator dd is elliptic and to verify the Lopatinskii condition for the problem.

We use the definition and notation, for symbols of differential operators on vector
bundles, that are given in [97]. It is straightforward from the definition that the symbols
of operators d and § are expressed by the formulas

o1d(z,§) =i, 016(x,€) =je (£ € T, M),

where i¢ and j¢ are the operators defined in the previous section. Thus, 09(dd)(&,u) =
Jeteu. Now we use the next

Lemma 3.3.3 Let M be a Riemannian manifold, x € M and 0 # & € T, M. For an
integer m > 0, the equality

IEPE + >¢5j5 (3.3.7)

- 1 m
le = ——— —
K= 1) (m+1

holds on S™T! M, where E is the identity operator.

The lemma will be proved at the end of the section, and now we continue the proof
of the theorem. The operator i¢je is nonnegative, as a product of two mutually dual
operators. Consequently, formula (3.3.7) implies positiveness of jeie for & # 0. Thus
ellipticity of the symbol 09(dd) is proved.
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It will be convenient for us to verify the Lopatinskii condition in the form presented
n [139] (condition IIT of this paper; we note simultaneously that condition II of regular
ellipticity is satisfied since equation (3.3.5) has real coefficients). We choose a local coor-
dinates z!,...,2" %, 2" = ¢t > 0 in a neighbourhood of a point zq € OM in such a way
that the boundary 0M is determined by the equation ¢ = 0 g;;(x¢) = J;;. For brevity
we denote dy(D) = o1d(zg, D) and do(D) = 016(xo, D) where D = (D;), D; = —id/da’.
Then

(dO(D)U)jl--~jm+1 = Z.CT(jl 3 -jM-i-l)(DJlU]z Jm+1) (338)
(60(D)V) gy jy =i Z DiVkjy .. jo_s- (3.3.9)
k=1

To verify the Lopatinskii condition for problem (3.3.5) we have to consider the next
boundary problem for a system of ordinary differential equations:

60(&', D) do(&', Dy)v(t) = 0, (3.3.10)
v(0) = vy, (3.3.11)
where D; = —id/dt; and to prove that this problem has a unique solution in N for every

0 # ¢ € R" ! and every tensor vy € S™(R"). Here NV, is the space of solutions, to system
(3.3.10), which tend to zero as t — oo.

Since the equation det (d(&’, A)do(&', A)) = 0 has real coefficients and has not a real
root for & # 0 as we have seen above, the space N of all solutions to system (3.3.10)
can be represented as the direct sum: N = N, @ N_ where N_ is the space of solutions
tending to zero as t — —oo. Moreover, dim N, = dim N_ = dim S™(R"). Consequently,
to verify the Lopatinskii condition it is sufficient to show that the homogeneous problem

So(€', Dy) do(€', Dy) v(t) = 0, (0) =0 (3.3.12)

has only zero solution in the space N.. Before proving this, we will establish a Green’s
formula.

Let u(t) and v(t) be symmetric tensors, on R™ of degree m+1 and m respectively, which
depend smoothly on ¢ € [0, 00) and decrease rapidly together with all their derivatives as
t — 0. If v(0) = 0 then

/ (G0(€', Dy)u,v) dt = /(u, do(€', D)) dt. (3.3.13)
0 0
The scalar product is understood here according to definition (2.1.3) for g;; = d;;. Indeed,
o0 o0 n—1
[(00(¢', Diyu, vy at =i [ (Dtum-l,,,jm + Zg,gukjl,,‘jm) it =
0 0 k=1
o0 n—1
Z/[ ndn( Dtvh gm) T ngukh G ]m] dt.
2 k=1
Putting £ = (&1,...,&,_1, D;), we can rewrite this equality as:
/ (Go(€', DoJu,v) dt =i [ wh= gt (3.3.14)

0 0
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By (3.3.8), we have (do(§', Dt)v)ji.jmir = 001 Jm+1)(§iV)s.. jmss ). Consequently,
(u,do(&, Dy)v)y = —iw? I 1&; v, .. Comparing the last relation with (3.3.14), we
arrive at (3.3.13).
Let v(t) € N, be a solution to problem (3.3.12). Putting u(t) = do(&’, Dy)v(t) in
(3.3.13), we obtain
do(€', Dy)u(t) = 0. (3.3.15)

Let us now prove that (3.3.15) and the initial condition v(0) = 0 imply that v(¢) = 0.
Definition (3.3.8) for the operator dy(§) can be rewritten as

7; m—+1

(do(g)v)jl---jmﬂ = T_H ’;1 fjkvjl..jl\g..-jm-&-l’

where the symbol A posed over ji designates that this index is omitted. Putting & =
(&', Dy), jms1 = n in the last equality and taking (3.3.15) into account, we obtain

l
(do(&', De)0)njy..jm = il (I + 1) Dywjy . + 27; Eik Vg i | = O (3.3.16)
Jr#n
Here | = I(j1,...,Jm) is the number of occurrences of the index n in (ji,...,Jm). Thus

the field v(t) satisfies the homogeneous system (3.3.16) which is resolved with respect to
derivatives. The last claim, together with the initial condition v(0) = 0, implies that
v(t) = 0. Ellipticity of problem (3.3.5) is proved.

For a field u € C*(S™7},) and a geodesic 7 : (a,b) — M, the next equality is valid:

& i OOV 57(0)] = ()it GO0 0. (337)

It can be easily proved with the help of the operator D/dt = 4"V, of total differentiation
along ~. Indeed, using the equality D7/dt = 0, we obtain

d .il .im _D .il .im o Du .il .im_
= Ujy.. i ;j".)/]"}/“ .. "}/zm = (du)il."im+1’.)/ll .. "}/Zm+1.

Let us prove that problem (3.3.5) has the trivial kernel; i.e., that the homogeneous
problem ddu = 0, u|gps = 0 has only zero solution. By ellipticity, we can assume the field
u to be smooth. Putting v = du and D = M in the Green’s formula (3.3.1), we obtain
du = 0. Let zg € M \ OM, and x; be a point in the boundary dM which is nearest to .
There exists a geodesic 7 : [—1,0] — M such that y(—1) = z; and 7(0) = z. For a vector
¢ € T,y M, let v¢ be the geodesic defined by the initial conditions v¢(0) = xg, J¢(0) = &.
If £ is sufficiently close to ¥(0), then -, intersects M for some ty = t((§) < 0. Using
(3.3.17), we obtain

Wiy i (£0)E™ €™ = iy i, (e (t0)) A (Fo) - - 3™ (fo) +
0
[ @i ()3 (1) A (1) dE =0,

to
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Since the last equality is valid for all £ in a neighbourhood of the vector 4(0) in T,, M, it
implies that u(zg) = 0. This means that u = 0 because z; is arbitrary.

Let us prove that problem (3.3.5) has the trivial cokernel. Let a field f € C*(S™7},)
be orthogonal to the image of the operator of the boundary problem:

/<f, odu) dV" =0 (3.3.18)

for every field u € C*°(S™t},) satisfying the boundary condition
ulap = 0. (3.3.19)

We have to show that f = 0. We first take u such that suppu C M \ OM. From (3.3.18)
with the help of the Green’s formula, we obtain

0= / (f,6du) V" = — / (df, du) dV" = / (6d f,u) V™.

M M M

Since u € C§°(S™y,) is arbitrary, the last equality implies that
dd f=0. (3.3.20)

Now let v € C®(S™7},|lan) be arbitrary. One can easily see that there exists u €
C>°(S™Ty,) such that
ulonr = 0, Judulon = v. (3.3.21)

From (3.3.18), (3.3.20) and (3.3.21) with the help of the Green’s formula, we obtain

0= [(f,0du)dV" = — [{d f,du)dV" + [ (f,j,du)dV""" =
fisssrar = fusanas |

M M

= [dfuyavr [(oyavt = [ (g avet
M oM

oM

Thus [y,,(f,v) dV"! = 0 for every v € C*°(S™7},|on) and, consequently, f|ans = 0. As
we know, the last equality and (3.3.20) imply that f = 0. The theorem is proved.
P roofof Lemma 3.3.3. For a symmetric tensor u of degree m, we obtain

(JeteW)iy i = E™ 10 (i -+ i) Wiy i Eist)

where (i ...0y,s1) is the symmetrization in the indices i .. .4m11. Using the decompo-
sition of the symmetrization given by Lemma 2.4.1, we transform the right-hand side of
the last equality as follows:

1

(Jeicw)iy..ir, = mfim“a(il--im)(Uil...iméz‘mﬂ + MUy i1 Eiy) =
1 y y im+1 74"m+1
- m + 1U(Zl"'Zm)(uil--~im£i7n+1£ + M&iy Wiy 1§ ) =
1 9 .
B <m +1 €]+ m + 125]5“)@...%

The lemma is proved.
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3.4 Semibasic tensor fields

The modern mathematical style presumes that invariant (independent of the choice of
coordinates) notions are introduced by invariant definitions. Risking to look old-fashioned,
in the current and next sections the author consciously chooses the opposite approach.
The notions under consideration will first be introduced with the help of local coordinates.
We will pay particular attention to the rule of transformation of the quantities under
definition with respect to a change of coordinates. Only at the end of the sections we will
briefly discuss the possibility of an invariant definition.

Let M be a manifold of dimension n and 7y = (T'M,p, M) be its tangent bundle.
Points of the manifold T'M are designated by the pairs (x, ) where x € M, £ € T, M. If
(x!,...,2")is alocal coordinate system defined in a domain U C M, then by 9; = 9/9z" €
C°(7pr; U) we mean the coordinate vector fields and by dz' € C*(7},;U) we mean the
coordinate covector fields. We recall that the coordinates of a vector & € T, M are the
coefficients of the expansion & = £9/0x". On the domain p~!(U) C T'M, the family of the
functions (z!,..., 2" & ... &) is a local coordinate system (strictly speaking, we have
to write zfop; nevertheless we will use a more brief notation x?, hoping that it will not
lead to misunderstanding) which is called associated with the system (z',... z"). A local
coordinate system on T'M will be called a natural coordinate system if it is associated with
some local coordinate system on M. From now on we will use only such coordinate systems
on TM. If («/*,. .., 2’™) is another coordinate system defined in a domain U’ C M, then
in p~ (U NU’) the associated coordinates are related by the transformation formulas

1"

. . .
ot =2 (2t 2", & = B2

¢, (3.4.1)
Unlike the case of general coordinates, these formulas have the next peculiarity: the first n
transformation functions are independent of ¢ while the last n functions depend linearly
on these variables. This peculiarity is the base of all further constructions in the current
section.

The algebra of tensor fields of the manifold T'M is generated locally by the coordi-
nate fields 0/0z%, 9/0¢!, dx', d¢'. Differentiating (3.4.1), we obtain the next rules for
transforming the fields with respect to change of natural coordinates:

J oz o i ox' ;
0 oz 9 921" p O , 922" ot
= : 4t = Fda? _déd A.
ort Ozt Ox" + 8$Zal’k£ &M’ : 8x@xk§ T 0z’ £ (3.4.3)

We note that formulas (3.4.2) contain only the first-order derivatives of the transformation
functions and take the observation as the basis for the next definition.

A tensor u € T;(m)(TM) of degree (r,s) at a point (z,£) of the manifold T'M is
called semibasic if in some (and, consequently, in any) natural coordinate system it can
be represented as:

i1y 0 ® ®
J1.-Js afll e afzr

uUu=1u

®d" ® ... ® dz’ (3.4.4)
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with complex coefficients “311;2 that are called the coordinates (or components) of the
tensor u. Assuming the choice of the natural coordinate system to be clear from the
context (or arbitrary), we will abbreviate equality (3.4.4) to the next one:

1.0

j1...js)'

u=(u (3.4.5)

It follows from (3.4.2) that, under change of a natural coordinate system, the components
of a semibasic tensor are transformed by the formulas

ii 0x'" Q' Oxh ozl

b S B D DT wE (3.4.6)
which are identical in form with formulas (3.1.6) for transforming components of an
ordinary tensor on M. The set of all semibasic tensors of degree (r,s) constitutes the
subbundle in 77 (7T'M'). We shall denote the subbundle by 87 M = (BLM, p%, T'M). Sections
of this bundle are called semibasic tensor fields of degree (r,s). For such a field u €
C> (BT M), equalities (3.4.4) and (3.4.5) are valid in the domain p~!(U) in which a natural
coordinate system acts; here uﬁ’f € C=(p~!(U)). Note that C*(BYM) = C>(TM), i.e.,
semibasic tensor fields of degree (0,0) are just smooth functions on T'M. The elements of
C>=(B3 M) are called the semibasic vector fields, and the elements of C>°(8YM) are called
semibasic covector fields.

Formula (3.4.6) establishes a formal analogy between ordinary tensors and semibasic
tensors. Using the analogy, we introduce some algebraic and differential operations on
semibasic tensor fields.

The set C*(BIM) is a C*°(T'M )-module, i.e., the semibasic tensor fields of the same
degree can be summed and multiplied by functions ¢(z, ) depending smoothly on (z,&) €
TM.

For u € C®(3:M) and v € C®(B7 M) the tensor product u ® v € C®(B11 M)
is defined in coordinate form by formula (3.1.9). With the help of (3.4.6) by standard
arguments, one proves correctness of this definition, i.e., that the field u®uv is independent
of the choice of a natural coordinate system participating in the definition. The so-
obtained operation turns C*(3; M) = @;5,_,C>(5; M) into a bigraded C*(T'M)-algebra.
This algebra is generated locally by the coordinate semibasic fields 9/0¢° and dx’.

The operations of transposition of upper and lower indices are defined by formulas
(3.1.7), and the convolution operators CF : 37 M — 3.~ M are defined by (3.1.8). With
the help of (3.4.6), one verifies correctness of these definitions.

Tensor fields on M can be identified with the semibasic tensor fields on 7'M whose
components are independent of the second argument £. Let us call such the fields basic
fields. Formula (3.4.6) implies that this property is independent of choice of natural
coordinates. Thus we obtain the canonical imbedding

K C®(r" M) C C(B87 M) (3.4.7)

which is compatible with all algebraic operations introduced above. Note that x(0/dz") =
9/0¢" and k(dz") = dx'.
Given u € C*(BLM), it follows from (3.4.6) that the set of the functions

v

1.y a 1.y
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is the set of components of a semibasic field of degree (7, s + 1). The equality

v Y1
— eeelr

®...0 ®dr" ® ... ®dr" @ di* (3.4.9)

agil aé‘lr

defines correctly the differential operator v C*(BIM) — C>=(B7,, M) which will be

called the vertical covariant derivative. One can verify directly that % commutes with
the convolution operators and is related to the tensor product by the equality

v

Viu®wv) = ps+1(%u RU)+u® Vv (3.4.10)

for u € C>®(BI M) where ps;; is the same as in (3.2.6).

In conclusion of the section we will formulate the invariant definitions of the above-
introduced notions.

Let p*r] M be the bundle, over 7'M, induced by projection p of the tangent bundle
from the bundle 77 M. By the definition of induced bundle, the fiber of p*7 M over a point
(z,§) € TM can be identified with T M. With the help of this identification, the opera-
tion on 77 M introduced above (tensor product, convolution operators and transpositions
of indices) are transferred to p*7; M = @,_o p*7i M.

We could formulate the simplest invariant definition of the bundle of semibasic tensors
by declaring 57 M coincident with p*7) M. However a semibasic tensor field defined in this
manner would not be a tensor field on T'M. Therefore we will proceed otherwise by
constructing a monomorphism 0 — p*7) M 2 77(T'M) and defining 37 M as the image of
the monomorphism.

For x € M we consider the next sequence of manifolds and smooth mappings:

.M ETM 2 M, (3.4.11)

where ¢ is the imbedding and p is the projection of the tangent bundle. The leftmost
manifold in the sequence is provided by the structure of vector space and, consequently,
its tangent space can be identified with T, M itself. The differentials of mappings (3.4.11)
form the exact sequence

0 — TuM — Tpp e (TM) 25 T, M — 0 (3.4.12)

of vector spaces and linear mappings (recall that a sequence of vector spaces and linear
mappings is called exact if the image of every mapping coincides with the kernel of the
subsequent mapping). Passing to the dual spaces and mappings, we obtain the second
exact sequence

0 TIM < T}, (TM) <~ T'M 0. (3.4.13)
We define the monomorphism

T A@.&)
0—T7,M =5 T, o(TM) (3.4.14)

as the complexification of the mapping i, ® ... ® 1, @ p* ® ... ® p*. Then A, ¢) depends
smoothly on (z,&) € TM and defines the monomorphism of the bundles

0 — p*rTM =25 77(TM). (3.4.15)
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We define the bundle 37 M of semibasic tensors as the image of this monomorphism. By

definition,
BiM C I (TM) (3.4.16)

and there is the isomorphism (denoted by the same letter)
0— p*rTM =25 BTM — 0, (3.4.17)

The tensor product, convolutions and transpositions of indices defined above on p*7. M
are transferred to 7 M with the help of isomorphism (3.4.17).

For a natural coordinate system, the monomorphisms i, and p* in (3.4.12) and (3.4.13)
satisfy the relations 7,(9/0z") = 9/9¢" and p*(dx') = dx'. Consequently, C®(3:M) is a
C>=(TM)-subalgebra, of the algebra C™(7}(TM)), generated by the fields /9", dx'.
Therefore the given invariant definition of semibasic tensor field is equivalent to the local
definition (3.4.4).

Note that the operators of tensor multiplication and transposition of indices defined
on the bundles G M and 7}(T'M) are compatible with imbedding (3.4.16), whereas the
convolution operators are not. Indeed, in the sense of 7(T'M) each convolution of every
semibasic tensor is equal to zero. Therefore, speaking about semibasic tensors, we will
always use the convolution in the sense of 3} M.

The invariant definition of imbedding (3.4.7) is given by the equality (ku)(z,&) =
Az eyu(x), for u e C®(1] M), where A(;¢) is monomorphism (3.4.14).

To formulate the invariant definition of the vertical covariant derivative we note pre-
liminary that, for a smooth mapping f : A — B of finite-dimensional vector spaces, the
differential of f can be considered as the smooth mapping df: A — B® A'.

Let u € C*(B;M). Given x € M, we define the mapping wu, : T,M — T M by the
equality u,(¢) = A 'u(z, £) where A is isomorphism (3.4.17) and the fiber of p*77 M over
(z,€) is identified with T] M as above. Let

duy : T,M — TT,M @ TAM = T0, M

be the differential of the mapping u,. We define %u(m,é‘) = Azo)duz(§), where Ay is
monomorphism (3.4.14).

3.5 The horizontal covariant derivative

In this section M is a Riemannian manifold with metric tensor g.

First of all we will give some heuristic argument which is to be considered as hint
leading to the formal definition introduced in the next paragraph. The reader not ac-
quainted with Chapter 1 can miss this paragraph. In Section 1.2 we saw that, for a
function u € C°(T'M), there exists a function Hu € C*(TM) such that in a natural
coordinate system it is given by the formula

0 0 [ Ou ou
TG =6 —ThET ). 5.1
ot ]k‘f 5 a£z> u 6 (81‘1 iq a£p> (3 i) )

Hu = <§i

The first factor on the right-hand side of this equality is the component of the semibasic
vector field £ = (£'). Invariance of the function Hu suggests that the second factor on the
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right-hand side of (3.5.1) is also the component of some semibasic covector field. This
observation we use as a basis for the next definition.
The horizontal covariant derivative of a function u € C®(TM) = C(BIM) is the

h
semibasic covector field Vu € C®(B{M) given in a natural coordinate system by the
equalities
ou ou
p
To show correctness of the definition we have to prove that, under a change of the
natural coordinate system, the functions (3.5.2) are transformed by formulas (3.4.6) for

r =0 and s = 1. Using (3.2.8), (3.4.2) and (3.4.3), we obtain

h/ a / ! a
Vku = <aa';/k — Finga€/p> u =

9, (8:}0"” oxP 9z7 ., 02" §a” >§,q dxf 81
— u.

h h h
Vu = (Vku)da:k, Vit =

02 0 N 0z
ok oz QxR

¢"

S Oz 9z'F 0’1" P T xe Park P ox'? O¢e
Changing the notation of summation indices, we rewrite this equality as follows:
h dz* | 0 0x'® 0z° \ 0x" 4.5 O
1o — . ! Fﬁ
V= G l&ca (axﬁ aw) 90 e ags] “r
Pz | 0 9z'" 92\ 0O
+ =€ - — | u.
ox'"0x'? o0& Ox® 0x'? | O¢e

Using (3.4.1) and taking it into account that the matrices 0z’ /0x and Ox/0x’ are inverse
to one other, we finally obtain

h, Jz® [ Ou
Vit = ox'* <8x°‘

-8 u.

Ou) _ 0x" %
0B ) axt T

h
Thus correctness of the definition of the operator V: C°°(80M) — C>(B3YM) is proved.
By analogy with Theorem 3.2.1 we formulate the next

Theorem 3.5.1 Let M be a Riemannian manifold. For all integers r and s there exist
uniquely determined C-linear operators

h
V: CR(GM) — C=(3,, M) (35.3)
such that X
(1) on the basis tensor fields, ¥V coincides with the operator NV of covariant differentia-

h
tion with respect to the Riemannian connection, i.e., V(ku) = k(Vu), for u € C®(1I M),
where K is imbedding (3.4.7);

h
(2) on C=(BIM), V coincides with operator (3.5.2);
h
(3) V commutes with the convolution operators Clk for1 <k<r 1<I[<s;
h
(4) V is related to the tensor product by the equality

h h h
V(u®v) = ps1(Vu®v) +u® Vv (3.5.4)
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foruw € C®(BEM), where psiq is the same as in (3.2.6).
In a natural coordinate system, for u € C*(BLM), the next local representation is

valid:
h

ho g O j . k
where 9 5
h . . . . . .
VKU = i~ That g it
Z L R S NP e (3.5.6)
m=1

Pay attention to a formal analogy between the formulas (3.2.10) and (3.5.6): compar-
ing with (3.2.10), the right-hand side of (3.5.6) contains one additional summand related
to dependence of components of the field u on the coordinates ¢°.

P roof Let operators (3.5.3) satisfy conditions (1)—(4) of the theorem; let us prove
the validity of the local representation (3.5.5)—(3.5.6).

The tensor fields

0 d...8
gen 2 ® gen

b2

Js
5 & ® s .. ®dx ) (3.5.7)

Rdr' @ ... dx :/<¢<

are basic. By the first condition of the theorem,

% 0 R...® 0 Rdr" @ ... @dal | =
565 © 5 —
9 ) , 0 0

dgin ®852m*1® klmaﬁp@)@fzmﬂ ®8§lr® ! ® ® dr’s ® dx

m=1
s 9 A A . A _
> ogh S Eir ®dr" @...@de’" @Iy da? @d’ " @ .. @ dr’ ®dz". (3.5.8)
m=1

Given u € C*(BL M), we apply the fourth condition of the theorem and obtain

%u=% ultt 0 .® 0 R’ @ ... @dr? | =
J1---Js 85’1 85% T

iy 9 9 1 s
=1 [(vujl~~-j5) ®@®"’®a§ir ® dx? ®...®dx3] +

PP
56 ® % 5

. . h . .
A ( Rd"®...® daz“) , (3.5.9)

h
where the expression VU;II Zf denotes the result of applying V to the scalar function

?1 ;T € C*(BYM). By the second condition of the theorem, this expression can be found
by formula (3.5.2). Along the same lines by using (3.5.8), we transform equality (3.5.9)

as follows:

h 0 . O ;..\ 0 0 ; 2
Vu = (aku]ll = Fﬁngagp ]11 fs> oen R...® dein Rdr" @ ... ®dr’* @ dz* +
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r 0 0 0 0
+ 30 T e @ s g © g O

J1 Js kE__
J1---Js aé-zl agim*1 851’ 6§’im+1 aé_ZT ®d£€ ® . ®d:C ® dx

m, 410 a 8 j 'm— ‘m is k
—ZF{CP uit §“® ®a§ir®dazﬂ®...®dz] '@ dr? @ d’m N @ ... @ da?* @ da”.

Changlng the limits of summation over the indices 7,, and p in the first sum of the right-
hand side and changing the limits of summation over j,, and p in the second sum, we
arrive at (3.5.5) and (3.5.6).

Conversely, let us define the operators % by formulas (3.5.5)—(3.5.6) in a natural
coordinate system, With the help of arguments similar to those we have used just after
definition (3.5.2), one can prove correctness of this definition. Thereafter validity of claims
(1)—(4) of the theorem can easily be proved by a straightforward calculation in coordinate
form. The theorem is proved.

Theorem 3.5.2 The vertical and horizontal derivatives satisfy the next commutation re-
lations:

(%k%l — %z%k)uéllzfs =0, (3.5.10)
v h h v L
(VeVi — ViV )uj % =0, (3.5.11)

h h h by i Pl g i
e T
(VeVi = ViVi)us o = =R PSRV AL

+ Z Rzpklu’ll Am—1Dlm41.0r Z Rp 7“1 Ar (3512)

Ji---Js ikl Y1 G 1 D1 s

We again pay attention to a formal analogy between the formulas (3.2.11) and (3.5.12).

P r o o f Equality (3.5.10) is evident, since Vi = d/9¢Ek. To prove (3.5.11) we
differentiate equality (3.5.6) with respect to &' :

v h . . v

VIV = Vi T Vg — Thvu

Dk er

s
v . .
im 11t —1PbmA4 10 yY 1.0
+ Z F Vlu]l -Js Z ijmvlujl--~jm—1pjm+1~-~js‘
m= m=1

Including the third sumrnand on the right-hand side into the last sum, we arrive at
(3.5.11).

We will prove (3.5.12) only for » = s = 0. In other cases this formula is proved by
similar but more cumbersome calculations. For u € C*(8YM), we obtain

0 h h
aEv ) Viu — Fileu =

— i_ kgqa au pi 8u Zl @_pj qiq ]
oxk = 0gp 057 OxP Pa= o¢i

After opening the parenthesis and Changmg notation in summation indices, this equality
takes the form

h h 0
ViViu = ek kng

0%u 0%u 0%u 0%u

7 _TPeq_ T 7 TP eq_ T T p J ¢cqer
Oxkox! Ly oxkogr Fiat 8:17’851’ A OEPOEI

hoh
ViViu =
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T~ (5o~ T~ T, ) €% (3:513)

Alternating (3.5.13) with respect to k and [, we come to
ory,  ory,

oxk ozl

By (3.2.9), the last equality coincides with (3.5.12) for r = s = 0. The theorem is proved.
Note that the next relations are valid:

o bk j P i | coe
(VieVi = ViVik)u = — + Y Uk — DLy | €7Vpue

v h v . h . h . v . .
Vigij = Vigi; =0, Vid; = Vio; =0, Vi€ =0, Vil = 0.

In what follows we will also use the notation: %1 = g¥ %j, %’ = g %j.

In conclusion of the section we will formulate an invariant definition of horizontal
covariant derivative. To this end we recall that every point xg of a Riemannian manifold
M has some so-called normal neighbourhood U C M that is characterized by the following
property: for every x € U there exists a unique geodesic v,,, such that it is in U and its
endpoints are o and x. For (x9,&) € TM and x € U we denote by 1., (x) € T M the
vector obtained from &, by parallel displacement to the point = along v,,,. Thus we have
constructed the vector field 7z, ¢,) € C°(Tar; U).

Let u € C®(GIM), (x0,&) € TM and U be a normal neighbourhood of the point
xo. We define the section @ € C®(77M;U) by the equality a(z) = A&l’no(x))u(x,no(x))
where 79 = 14, 1s the vector field constructed in the previous paragraph and A ¢) is
isomorphism (3.4.14). We give an invariant definition of horizontal covariant derivative
by putting

h
VU(.T[),&)) = )\(xojgo)Vﬂ(xg). (3514)

To show that definitions (3.5.5)—(3.5.6) and (3.5.14) are equivalent it is sufficient to
prove this fact for u € C*(3)M), since it is evident that the operator defined by formula
(3.5.14) satisfies conditions (1), (3) and (4) of Theorem 5.1.

Let u € C®(BM) and (z9,&) € TM. We choose a local coordinate system in a
neighbourhood of the point xy. The above-constructed vector field 7y = 7, ¢,) satisfies

the relations o
no(x0) = o, 872,2(960) = —Féq(xo)gg- (3.5.15)

The function @ € C*(U) participating in the definition (3.5.14) is expressed through w :
u(x) = u(z,mo(x)).
Differentiating this equality, we obtain

Vi(zx) = wdq;k = [&;(x, no(z)) + gg)(m‘, no(x))gﬁ(x)] dzF.

Putting « = x, here and using (3.5.15), we arrive at

ou
oxk

Vi(xg) = l (z0,%0) — ng(%)fgg;,(%,foﬂ da*.

Inserting the last expression into the right-hand side of equality (3.5.14), we obtain (3.5.2).
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3.6 Formulas of Gauss-Ostrogradskii type
for vertical and horizontal derivatives

We recall that, on the space T"M of the cotangent bundle of a manifold M, there is the
symplectic structure defined by the 2-form w = d(§;dx") = d&; A dz* (from now on in this
section d is the operator of exterior differentiation). The symplectic volume form is the
2n-form dV2" = (—1)"=D/2m,

Let now (M, g) be a Riemannian manifold. As mentioned in Section 3.2, in this case
we have the canonical isomorphism between the tangent and cotangent bundles of M.
The isomorphism transfers dV?" to some 2n-form on T'M which will again be called
the symplectic volume form and be designated by the same symbol dV?". In a natural
coordinate system this form is given by the equality

dV?" = det(gi;) dé A dx = det(gi)dE€" A ... ANdE® Ndxt AL A da™ (3.6.1)

In the domain of the natural coordinate system on the space T'M of the tangent bundle
of a Riemannian manifold we introduce (2n — 1)-forms:

@ = (=1 gde AL ANdE A LA dE A d, (3.6.2)
by = g[(—l)"+i_1d§ Adz' AL AT A LA dat+

+ D (—1)TLEPdE A NdET AL A dE A da]. (3.6.3)
j=1
We recall that the symbol A over a factor designates that the factor is omitted. From
now on in this section g = det(g;x).

Lemma 3.6.1 The forms w; and u}sz have the following properties:

. . h
(1) under a change of a natural coordinate system, each of the families (w;) and (&;)
transforms according to the same rule as components of a semibasic covector field; conse-

quently, for every semibasic vector field u = (u'), the forms u'w; and u%}bl are independent
of the choice of a natural coordinate system and are defined globally on T M,
(2) For a semibasic vector field u = (u') the next equalities are valid:

- v . h
d(u'w;) = V' dV*", d(u’&-) = v dV*, (3.6.4)

P r oo f. First of all we note that for coincidence of two (d — 1)-forms « and
defined on a d-dimensional manifold X it is sufficient that the equality a A dz* = 3 A da*
(i=1,...,d) is valid for any local coordinate system (z!,...,z%) on X.

The first claim of the lemma say that, in the intersection of domains of two natural
coordinate systems, the next relations are valid:

v 00 h o Qxd p
Wi = o W, Wi=o g wj.

By the above observation, to prove these equalities it is sufficient to show that, for every
k=1,...,n,

al’.j v
ot i da'*, o Ader =
xr

0z
0, A, (3.6.5)

v k
Wi Nda' =
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oz J

h O
Wi A = 2y nda, S ndg™ = ol g™ (3.6.6)

Validity of the first of equalities (3.6.5) is evident, since its sides are both equal to
zero, as follows from (3.6.2) and (3.4.2). By (3.6.1) and (3.6.2), the left-hand side of the
second of the equalities (3.6.5) is equal to —dFdV?". We calculate the right-hand side of
the second of equalities (3.6.5) with the help of (3.4.3):

axj Jk V- , 077 — ' ax't
J n Pdx? + =
i ANdE™ = (—1) 5 /ngg A CNAEIN. . NdE /\d:c/\(axpa qg dx e —
- 895? ax/k dv2n _ _5kdv2n
dx!* dxt I S '

The last equality of this chain is written because the matrices (é?:vj /ox’ 1) and ((%’ ' JOx )
are inverse to one other. Thus relations (3.6.5) are proved.

By (3.6.3) and (3.6.1), the left-hand side of the first of the equalities (3.6.6) is equal
0 —0FdV?". The right-hand side of this equality we find with the help of (3.4.2):

oz o 02 92" — N .
P Wi Ada'™ = (=1)"H- aﬂalgdfg/\d:z:A ANdTI NN dat Ndxt =
oz’ o'
= — o 0 AV = 5V
dz'* Oxt v iV
By (3.6.3), the left-hand side of the second of the formulas (3.6.6) is equal to
h/ 1k 1k g1 2 %3 1k 2
Wi NdET =T £qu":a—F grdaven. (3.6.7)

We calculate the right-hand side of this equality with the help of (3.4.3):

ox?
g ox't

oxd n
ox't

Ade™ = (-1 tdg Adat AL N dad AL A de" +

. 92 1k or 1k
+ > (-1 Fg.pgpdgl/\.../\dgl/\.../\dgn/\da:} A (axqg ~£%da" + o qd§q> =

0’ ntj—1 0%’ q — . .
— Iy [(_D 92900 a6 dENdz Ao o Ndxd AL AN det A da” +
= 0% /\
+;(—1) L, &P de A AdEEA LN dEN A da A dET| =
8$j 82 1k n a$/k
=a7i | 107 EPST| AV,
8x”l mqﬁaﬂ"g +Z Tt l] v

After summing over r and [, we obtain

aiL‘J A de ko

ox? 022'* ox'*
890’ i - ox't

_ l D 2n
9170z | O Fﬂp>§ v
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Comparing the last relation with (3.6.7), we see that to prove the second of the equalities
(3.6.6) it is sufficient to show that

9 j 2, .1k 1k
oz ,k_0x< 0%z Ox l>' (3.6.8)

O 7 I
oxr " Oz Oxi Oxp + oxt P

These relations are equivalent to formulas (3.2.8) of transformation of the Christoffel
symbols, as one can verify by multiplying (3.6.8) by dz'*/0z" and summing over i. Thus
the first claim of the lemma is proved.

The form w; is closed, as one can see directly from (3.6.2). We find the differential of

the form &;. From (3.6.3), we obtain

di; = (—1)m+i- 1akdx ANdEANdZ A AdT A LA da

ox
+gil(—1)jl“{pd{fp/\d§1 A ANdETA L NET N da = (gfi —grgj> dé A da.
From this, using the relation
Il = ; aii (Ing), (3.6.9)
which follows from (3.2.13), we conclude that
dio; = T3, dv™. (3.6.10)

Let us now prove the second claim of the lemma. Let u = (u’) be a semibasic vector
field. Taking it into account that the form W; is close, we obtain

ou’

(%kdgkAdgl LAAEN L NAEM A dr =

d(u'w;) = du’ Aw; = (—1)"

o
g
Similarly, with the help of (3.6.10), we derive

V= Vlu v,

d(uc}b) dul A W; + uidi; =

- (9ul o - )
gZ( T agkd§> [(—1)+ YdENdst Ao NdEE N N d +
+ (1T, P AdE AL NG AL AdE" A da] 4 u'T dV =

j=1

zng( 1) lakd ANdENdT' A NN LA da +

=1

+ 30116 agkdg ANAEYA L NETN L NET A da| + T VP =

Jj=1
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ek

o’ o A

| ) AV — ol dV2n
ox'

The lemma is proved.
Applying the Stokes theorem, from (3.6.4), we obtain the next two Gauss-Ostrogradskii
formulas for the vertical and horizontal divergences:

v v h . .

/ Vil AV = / i, / Vi AV = / wid;, (3.6.11)
D oD D oD

which are valid for a semibasic vector field « = (u?) and a compact domain D C T'M with

piecewise smooth boundary 9D.
We will need the next simple assertion whose proof is omitted due to its clarity.

Lemma 3.6.2 Let a be a (d — 1)-form on a d-dimensional manifold X, and Y C X be
a submanifold of codimension one which is determined by an equation f(x) = 0 such that
df(x) # 0 for x € Y. The restriction of the form « to the submanifold Y equals zero if
and only if (a Ad f)(x) =0 for all z €Y.

Formulas (3.6.11) can be simplified essentially for some particular type of a domain
D which is of import for us. Let G be a compact domain in M with piecewise smooth
boundary dG. For 0 < py < p1, by T}, G we denote the domain in 7'M that is defined
by the equality

ThomG ={(2,€) e TM | w € G, pj < [€]° = gis€'€’ < pi}.
The boundary of the domain is the union of three piecewise smooth manifolds:
0Ty 0 G) = Q,, G — QG + T, (0G), (3.6.12)
where
0,6 = {(2.6) € TM | 2 € G, |¢| = o},
Ty 0 (0G) = {(x,§) € TM | x € 0G, po < [¢] < pr}-

We have the canonical diffeomorphism
p
w: QG — Q, G, oz, &) = (, ;;g). (3.6.13)

The second summand on the right-hand side of (3.6.12) is furnished with the minus sign
to emphasize that it enters into 9(7,, ,, G) with the orientation opposite to that induced
by the diffeomorphism .

If the boundary OG is smooth near a point zy € 0G, then a coordinate system can
be chosen in a neighbourhood of z( in such a way that dz” = 0 on T}, ,, (0G). Therefore

(3.6.2) implies that the restriction to T, ,, (9G) of each of the forms w; is equal to zero.
C h .
Let us show that the restriction to Q,G of each of the forms w; is equal to zero. By

Lemma 3.6.2, to this end it is sufficient to verify the equality c}bz A d[E]? = 0, since Q,G is
determined by the equation ||*> = p? = const. From (3.6.3), we obtain

G N dIE[? = & A d(gu€®e!) = g [(=1)"™ N Ndat AL A dE AL N da" +
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+§nj(— TS EPdEY A NET A L. A dET Adz] A (59‘“5 glda” + 29 d§>
st
=g [(—1)"”—1%(;’?5’“55(15 Adz' AL ANdTEA L Ada™ A dsT +
+2 f:(—njgklrgp EPERAEY N L NdET A N dE A da A dg’} =

= ( 89’“5 ¢+ 2gI"! s%’“) v,

After an evident transformation, the obtained result can be rewritten as:
h Ik
wi A d|€|2 = (giprgl + gl — f)y) 5ka’ldv%”.

The expression in parentheses on the right-hand side of this equality is equal to zero, as
follows from (3.2.13).
Thus, for D =T, ,, G, formulas (3.6.11) assume the form

P0,P1
/ Vil dV = / wid; — / W, (3.6.14)

Tpp,0 G QG

hoo .
/ Viu' dV = / u'w;. (3.6.15)
Thg.m G Tpg,p1 (0G)

We will do some further transformation of the obtained formulas. To this end, we
consider the (2n — 1)-form

1
Ayt = — ¢ (3.6.16)

Il
which is defined on T'M for £ # 0. It is natural to call its restriction to ,G the volume
form of the manifold Q,G, since d|{|AdE?*"1 = dV*". For a semibasic vector field u = (u?),
the equality

v

. 1 .
Wi, = —uiE; X! (3.6.17)
p

is valid on €2,G. Indeed, by Lemma 3.6.2, to prove (3.6.17) it is sufficient to show that

Wi Ad)E)? = —uig; dSN A dJE)>

|€ |
Validity of the last equality can be obtained from definitions (3.6.2) and (3.6.16) by

calculations similar to those we have already done several times in this section. With the
help of (3.6.17), formula (3.6.14) obtains the form

v 1
/ Vil dV = — / (u,€) ds2~1 — = / (u, €) ds2n 1, (3.6.18)
e plQ,,lG pOQpOG
Let OG is smooth near a point zy € dG. We can choose a coordinate system (z!,. .., z")

in a neighbourhood of the point zy in such a way that g;, = ;,, 0G is determined by the
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equation 2" = 0 and 2™ > 0 outside G (it is one of the so-called semigeodesic coordinate

systems of the hypersurface 0G). In these coordinates u@a =0(l1<a<n-1)on
Tpo.p1 (0G), as follows from (3.6.3). One can easily see that the form

AVt =&, = —gde Ada A ... Ada" Y, (3.6.19)

is independent of the arbitrariness in the choice of the indicated coordinate system and,
consequently, is defined globally on T}, ,, (0G). It is natural to call this form the volume
form of the manifold T,, ,, (0G), since dz™ A dV*~! = dV?". Written in the above co-

ordinate system, the integrand of the right-hand side of equality (3.6.15) takes the form

h h : :
vw; = u"w, = {(u,r)dV?* ! where v is the unit vector of the outer normal to the

boundary. Thus formula (3.6.15) can be written as:

h .
/ Vil AV = / (u, v) V21, (3.6.20)
Thg.m G Thg.p1 (0G)

We will carry out further simplification of formulas (3.6.18) and (3.6.20) under the
assumption that the semibasic vector field u = u(x,§) is positively homogeneous in its

second argument,
u(z,t€) = tru(z, €) (t > 0). (3.6.21)

In this case the integrands of all integrals in (3.6.18) and (3.6.20) are homogeneous in &,
and we will make use of this fact.

First we transform the right-hand side of equality (3.6.18), putting 1 = py < p; = p
and denoting QG = 1G. The integrand of the first integral on the right-hand side of
formula (3.6.18) is a positively homogeneous function of degree A+n in p, as follows from
(3.6.21), (3.6.16) and (3.6.2). In other words, diffeomorphism (3.6.13) (for py = 1, p1 = p)
satisfies the equality

(1, €) d527Y) = pM(u, €) d52

Henceforth in this section, given a smooth mapping f : X — Y and a differential form «
on Y, by f*a we mean the pushback of . With the help of the last equality, we obtain

/ (u, &) d2) = / 1 ((u, €) d521) = pn / (u, &) ds2"1, (3.6.22)

Q,G QG

Let us now transform the left-hand side of formula (3.6.18). To this end we define the
diffeomorphism
X [1,p x QG — T3 ,G, X(t;x, &) = (x,t€). (3.6.23)

It satisfies the equality
[X*(%iui dV2”)} (t;2,€) = P2 () (x, €) dE A dE2 (2, €). (3.6.24)
Indeed, (3.6.23) implies that x*(dz’) = dz*, x*(d¢") =t d&" + £'dt. Thus,
X (Vi dVP) = x*[gViu! d€ A da] =

= g(Viu') () (LdE" + £ dt) A ... A (EdE™ + €7dt) A da.
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By (3.6.21), (%zu’)(x, t&) = tA_l(%iui)(x, €), and the previous formula takes the form
X (Vi dV) = £ g(Vu') (x, €) x

n—1
X [thdE+ VT AEA D (1) TIEdE AL ANdE N N dET | A da.
i=1
By the equality |£|*> = 1, the relation &d¢* = 0 is valid on QG, and, consequently, d¢ = 0.
Taking to account the last equality and (3.6.2), we rewrite the previous formula as:

(Vi dV?) = M2 () (z, €) di A €10,

By (3.6.16), the last equality coincides with (3.6.24).
With the help of (3.6.24), the left-hand side of formula (3.6.18) is transformed as

follows:

p
[ Vatavr— [y (%iui dVQ”) = [Pt [ Gt aznt =
T1,,G [1,p]xQG 1 ote

B p)\—l—n—l -1

= / Vol dx2L, (3.6.25)
QG

Putting po = 1, p1 = pin (3.6.18) and inserting expressions (3.6.22) and (3.6.25) into this
formula, we obtain the final version of the Gauss-Ostrogradskii formula for the vertical
divergence:

/ Vit d5 N = (A0 — 1) / (u, €) ds2". (3.6.26)
QG G

Repeating word by word the arguments that were used in the proof of (3.6.25), we
transform the left-hand side of equality (3.6.20):

A+n

ho -1 h .
/ Vil AV = ’)Aﬁ / Vil dx2, (3.6.27)
Tl,pG QG

The distinction between the coefficients on the right-hand sides of equalities (3.6.25) and

ho
(3.6.27) is due to the fact that the homogeneity degree of the function V;u' is greater than
that of %ﬂf by one.
To fulfil a similar transformation of the right-hand side of equality (3.6.20) we introduce
the manifold 000G = {(x,&) € TM | z € 0G, || = 1} and consider the diffeomorphism

XL p] X 00G — Ty ,(0G);  x(t;x,§) = (a,t8),

which is the restriction of the diffeomorphism (3.6.23) to [1, p] x IQG. Let (z!,..., 2") be
the semigeodesic coordinate system used in definition (3.6.19) of the form dV?"~!. In full
analogy with the proof of equality (3.6.24), the next relation is verified:

I ((u, v)dV* D]t 2, €) = M Hu, v)(z, €) dt A dX*2(x, €), (3.6.28)
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where the form d¥?"~2 is defined in the indicated coordinate system by the equality

d¥? 2 = —g S (1) TNEdE N L NdE N NdET Ndat AL A da (3.6.29)

i=1

One can easily see that this form is independent of the arbitrariness in the choice of our
coordinate system and, consequently, is defined globally on 0Q0G. It is natural to call this
form the volume form of the manifold O0G, since d|&| A d¥X?""2 = dV?* 1 as follows from
(3.6.19) and (3.6.29). With the help of (3.6.28), the right-hand side of (3.6.20) takes the

form:
An

2n—1 _ P -1 / 2271_2
(u,v)dV p— (u,vyd : (3.6.30)
Ti,,(G) 200G

Inserting (3.6.27) and (3.6.30) into (3.6.20), we arrive at the final version of the Gauss-
Ostrogradskii formula for the horizontal divergence:

h .
/ Vil ds2t = / (u, v) d5202, (3.6.31)
QG o00NG

The above-presented proof of formula (3.6.26) was fulfilled under the assumption that
A+n—1# 0, and the proof of formula (3.6.31) was fulfilled under the assumption
that A +n # 0. Nevertheless, these formulas are valid for an arbitrary \. Indeed, for
A+n—1=0, the factor (p*" 1 —1)/(A+n — 1) in formula (3.6.25) is replaced by
In p — 1; the remainder of the proof does not change. Similarly, for A + n = 0, the factor
(P —1)/(A+n) in equalities (3.6.27) and (3.6.30) is replaced by In p — 1; the remainder
of the proof goes through without change.

The forms d¥?"~! and dX?"~? participating in relations (3.6.26) and (3.6.31) have a
simple geometrical sense. To clarify it we note that, for every point x € M, the tangent
space T, M is provided by the structure of a Euclidean vector space which is induced by
the Riemannian metric. By dV)"(£) we denote the Euclidean volume form on T, M. In a
local coordinate system it is expressed by the formula

dV(E) = g 2der AL A dET = gt (3.6.32)

By dw,(§) we denote the angle measure, on the unit sphere Q,M = {¢ € T, M | [£]* =
gij (7)€" = 1} of the space T, M, induced by the Euclidean structure of the space. In
coordinates this form is expressed as follows:

dw, (€) = ¢'/? an(—ni*lgidé ALANdEA LN dE™ (3.6.33)

i=1

This equality can be verified with the help of Lemma 3.6.2. Indeed, it follows from (3.6.32)
and (3.6.33) that, for || = 1, the relation d|{|Adw, (&) = dV*(§) is valid. The last equality
is just the definition of the angle measure on 2, M.

Comparing definitions (3.6.16) and (3.6.29) of the forms d¥?"~! and d¥?"~? with
equality (3.6.33), we see that

A5 = d(§) AV (2), dS? = (1) dw,(€) A V™ (@) (3.6.34)
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where dV"(z) = g'/%dz is the Riemannian volume form on M and dV"~!(x) is the Rie-

mannian volume form on 9G. In the semigeodesic coordinate system have been used in

definition (3.6.29), the last form is given by the formula dV"~'(z) = ¢'/2dz' A. .. Adz™ 1.
Let us formulate the obtained results.

Theorem 3.6.3 Let M be a Riemannian manifold of dimension n and uw = u(x,§) be a
semibasic vector field on T M positively homogeneous of degree X in &. For every compact
domain G C M with piecewise smooth boundary OG the next Gauss-Ostrogradskii formulas
are valid:

/ / Vit dw,(€) AV (x) = (A + 71 — 1) / / (u, &) duwy(€) dV"(2), (3.6.35)

G Q.M G Q.M

[ ] Vi don@avii@) = (1" [ [ () denle) v ), (3.6.36)

G QM 0G Qz M

Here dV"(z) and dV"~(z) are the Riemannian volumes on M and OG respectively; dw,
is the angle measure, on the unit sphere Q.M = {¢ € T, M | |¢| = 1}, induced by the
Riemannian metric; v is the unit vector of the outer normal to 0G.
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Chapter 4

The ray transform on a Riemannian
manifold

In Section 1.1, linearizing the problem of determining a metric from its hodograph, we
stated the definition of the ray transform of a symmetric tensor field on a simple Rie-
mannian manifold.

Unlike the Fuclidean version considered in Chapter 2, the ray transform theory for
general Riemannian metrics is not abundant in results. Even an answer to the next main
question is not found yet: in what cases is the solenoidal part of a tensor field f of degree
m uniquely determined by the ray transform [f? A positive answer to this question is
obtained only for m = 0 and m = 1 in the case of a simple metric.

In Section 4.1 we introduce a class of so-called dissipative Riemannian metrics. The
ray transform can be defined in a natural way for dissipative metrics. This class essentially
extends the class of simple metrics.

In Section 4.2 we introduce the ray transform on a compact dissipative Riemannian
manifold and prove that it is bounded with respect to the Sobolev norms.

In Section 4.3 we formulate a main result of the current chapter, Theorem 4.3.3, which
gives a positive answer to the above-mentioned question and a stability estimate under
some restrictions on the sectional curvature. The restrictions are of integral nature and
mean, roughly speaking, that positive values of the sectional curvature must not accu-
mulate along geodesics. We emphasize that no restrictions are imposed on the negative
values of the sectional curvature.

Sections 4.4-4.5 contain three auxiliary claims which are used in the proof of Theorem
4.3.3. Two of them, the Pestov identity and the Poincaré inequality for semibasic tensor
fields have certain significance besides the proof of Theorem 4.3.3; use of them will be
made in the next chapters.

In Sections 4.6-4.7 we expose the proof of Theorem 4.3.3. In Section 4.6 the theorem is
reduced to an inverse problem for the kinetic equation with the right-hand side depending
polynomially on the direction; some quadratic integral identity is proved for the equation.
In Section 4.7, for the summands of the last identity, some estimates are obtained which
lead to the claim of Theorem 4.3.3.

In Section 4.8 we prove two corollaries, Theorems 4.8.1 and 4.8.2, which relate to the
nonlinear problem of determining a metric from its hodograph. Together with these the-
orems, a reduction of the problem to an inverse problem for a system of kinetic equations

111
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is presented here which is of some interest by itself.

4.1 Compact dissipative Riemannian manifolds

Let M be a Riemannian manifold with boundary dM. For a point x € M, the second
quadratic form of the boundary

(8 = (Ver,§) (& € T(OM))

is defined on the space T, (OM) where v = v(z) is the unit outer normal vector to the
boundary and V is the Riemannian connection. We say that the boundary is strictly
convex if the form is positive-definite for all x € OM.

A compact Riemannian manifold M with boundary is called a compact dissipative
Riemannian manifold (CDRM briefly), if it satisfies two conditions: 1) the boundary oM
is strictly convex; 2) for every point € M and every vector 0 # ¢ € T, M, the maximal
geodesic v, ¢(t) satisfying the initial conditions v, ¢(0) = = and ,¢(0) = ¢ is defined on a
finite segment [7_(z, &), 74 (x, §)]. We recall simultaneously that a geodesic 7 : [a, b] — M
is called maximal if it cannot be extended to a segment [a — €1, b + &3], where ; > 0 and
€1 +¢e9 > 0.

The second of the conditions participating in the definition of CDRM is equivalent to
the absence of a geodesic of infinite length in M.

Recall that by TM = {(z,§) | z € M, £ € T, M} we denote the space of the tangent
bundle of the manifold M, and by QM = {(z,§) € TM | |{* = gi;(x)£¢? = 1} we denote
its submanifold that consists of unit vectors. We introduce the next submanifolds of 7'M :

T°M ={(2,§) e TM | £ # 0},

0+OM = {(z,€) € QM | x € OM; £(§, v(x)) > 0}.
Note that 0, QM and 0_Q2M are compact manifolds with the common boundary 9yQM =
QMNOT(OM), and 0QM = 9, QM JI_QM.
While defining a CDRM, we have determined two functions 7 : T°M — R. It is
evident that they have the next properties:

Vog(Tx(2,€)) € OM; (4.1.1)
7’+(ZE,€) >0, T—(‘Taf) <0, 7'+(I’,f)) = _T—(J:? _g)Q
(2, 16) =t 7 (2,€)  (t>0); (4.1.2)

Tlocom = 7-|o_am = 0.

We now consider the smoothness properties of the functions 7... With the help of
the implicit function theorem, one can easily see that 7.(x,{) is smooth near a point
(x,&) such that the geodesic v, ¢(t) intersects OM transversely for ¢ = 74 (x,§). By strict
convexity of M, the last claim is valid for all (x,£) € T°M except for the points of the
set OgT°M = T°M NT(OM). Thus we conclude that 7. are smooth on TOM \ 9,T°M.
All points of the set 9yT°M are singular points for 74, since one can easily see that
some derivatives of these functions are unbounded in a neighbourhood of such a point.
Nevertheless, the next claim is valid:
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Lemma 4.1.1 Let (M, g) be a CDRM. The function T : 0QM — R defined by the equality

7 (x,8), if (2,6 € 9_QM,
T(‘r7§> - {

4.1.3
T (z,8), if (x,&) €0,.QM ( )

is smooth. In particular, 7_ : 0,QM — R is a smooth function.

P roof. Insome neighbourhood U of a point xq € OM, a semigeodesic coordinate sys-
tem (x',...,2") = (y',...,y" ! r) can be introduced such that the function r coincides
with the distance (in the metric g) from the point (y,r) to OM and g, = 6;,,. In this coor-
dinate system, the Christoffel symbols satisfy the relations I'y, =T, =0, I'j,, = —¢g* T},
(in this and subsequent formulas, Greek indices vary from 1 to n — 1; on repeating Greek
indices, the summation from 1 to n — 1 is assumed), the unit vector of the outer normal
has the coordinates (0,...,0,—1). Putting j = n in (3.2.7), we see that the Christoffel
symbols I'f 5 coincide with the coefficients of the second quadratic form. Consequently,

the condition of strict convexity of the boundary means that

n—1

Los(y. 0n°n” = alnl* =ad_(n")*  (a>0). (4.1.4)

a=1

Let (y,...,v" Y r.n....,n" 1 p) be the coordinate system on T'M associated with
(y,...,y" 4, r). As we have seen before the formulation of the lemma, the function
7(y,0,m, p) is smooth for p # 0. Consequently, to prove the lemma it is sufficient to
verify that this function is smooth for || > 1/2 and |p| < € with some ¢ > 0.

Let Yymp) (1) = (Vyyp) ()5 -+ 57( ) (1) be the geodesic defined by the initial condi-
tions Y(y,1,0)(0) = (¥, 0); Yy (0) = (1, p). Expanding the function r(¢, y,n, p) = 1, » (t)
into the Taylor series in ¢ and using equations (1.2.5) for geodesics, we obtain the repre-
sentation

r(t,y,m, p) = pt — Tog(y, 0)n*n’t* + o(t,y,n, p)t* (4.1.5)

with some smooth function ¢(t,y,7, p). For small p the equation r(¢,y,n, p) = 0 has the
solutions ¢t = 0 and ¢t = 7(y, 0,7, p). Consequently, (4.1.5) implies that 7 = 7(y, 0,7, p) is
a solution to the equation

F(1,y,1,0) = p = Ty, 0)n*n’1 + o(7,y,m, p)7° = 0.

It follows from (4.1.4) that %|T:0F(T, y,m, p) # 0. Applying the implicit function theo-
rem, we see that 7(y, 0,7, p) is a smooth function. The lemma is proved.

Lemma 4.1.2 Let M be a CDRM. The function 7, (z,§)/(— (&, v(x))) is bounded on the
set O_QM \ 0yQQM .

P r o o f. It suffices to prove that the function is bounded on the subset W, =
{(z,8) | 0 < =(&v(x)) <e, 1/2 < |€] < 3/2} of the manifold O(T'M) for some € > 0.
Decreasing ¢, one can easily see that it suffices to verify boundedness of the function for
(x,&) € W, such that the geodesic v, ¢ : [0,74(z,§)] — M is wholly in the domain U
of the semigeodesic coordinate system introduced in the proof of Lemma 4.1.1. In these
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coordinates, (z,&) = (y,0,n,p), 0 < —(&,v(z)) = p < e, 1/2 < |n| < 3/2. The left-hand
side of equality (4.1.5) vanishes for t= 7'+(x, €) :

T+<£IZ',£)
P

By decreasing ¢, we can achieve that 7, (z,&) < ¢ for (x,&) € W, with any 6 > 0. Thus
the second summand in the brackets of (4.1.6) can be made arbitrarily small. Together
with (4.1.4), this implies that the expression in the brackets is bounded from below by
some positive constant. Consequently, 0 < —7y(z,8)/(&, v(x)) = m(x,€)/p < C. The
lemma is proved.

We need the next claim in Section 4.6.

T2y, 0 n® — @(re(,), y.m, p) 74 (2, 6)] — 1. (4.1.6)

Lemma 4.1.3 Let (M, g) be a CDRM and xy € OM. Let a semigeodesic coordinate system
(x!,...,2") be chosen in a neighbourhood U of the point xq in such a way that z™ coincides
with the distance in the metric g from x to OM, and let (x',... 2™ &Y ... &) be the
associated coordinate system on TM. There exists a neighbourhood U C U of the point

zo such that the derivatives

or_(z,€) Ir_(,§)
gra @ o€

are bounded on the set QM N\p~(U'\ OM), where p : TM — M is the projection of the
tangent bundle.

=1,....n—1); (i=1,...,n) (4.1.7)

P r o o f. It suffices to prove boundedness of derivatives (4.1.7) only for (z,§) €
QM Np Y (U’ \ OM) such that the geodesic v,¢ : [7-(z,£),0] — M is wholly in U. By
v (t, z, &) we denote the coordinates of the point 7, ¢(t). The point v, ¢(7_(x, £)) is in M.
This means that 4" (7_(z,§), x, ) = 0. Differentiating the last equality, we obtain

or_(x,§) 0"

(72, 8) /4" (7, 2, §),

oz’ ot
or_(xz,&)  o" . (4.1.8)
861 - agl (T—7$7£)/7 (T—,$,f).

a < n — 1. Consequently, a representa-

Note that (07"/02%)(0,2,€) = 0 for 1 <
€) is possible with some functions ¢, (¢, z, &)

tion (947 /02%)(7_, 2,€) = palr_, 2,€)7_(z,
smooth on the set

W={{t,r,) e RxT°M | 7_(2,€) <t' <0, ye(t) €U for 7_(z,£) <t <0}

By the equality (97"/9¢)(0,z,&) =0 (1 < i < n), a representation (97" /9¢%)(1_,z,&) =
it 2,&§)7_(x, &) is possible with some functions ¥;(¢', z, £) smooth on W. Consequently,
(4.1.8) is rewritten as

or-(@.8) _ o —(@g)  0r(w.) —7-(2,§)
o el );yn(T_,x,s)’ ¢! YT, 2,8)

Since the functions ¢, and 1); are smooth on W, they are bounded on any compact subset
of W. Consequently, (4.1.9) implies that the proof will be finished if we verify boundedness
of the ratio —7_(z, &) /4" (7_(x,£),z,&) on QM Np~ (U \ OM).

= (7, 2, €)- (4.1.9)
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Fig. 1

We denote y = y(x,§) = vz,g(T_(x,f)), n =g =
O_QM \ 9QM, 0 < —7_(2,€) < 74(y,n) and A*(7_(x
quently,

(z,€)); then (y,n) €

(T
z,§), T 5) —(n,v(y)). Conse-

—7_(x,§) < 7+ (y,n)
N "')/"(7'_@375),33,5) N —<777y(y)>'

The last ratio is bounded on 0_QM \ 9yQ2M, by Lemma 4.1.2. The lemma is proved.

4.2 The ray transform on a CDRM

Let C*°(0,QM) be the space of smooth functions on the manifold 0, QM.
The ray transform on a CDRM M is the linear operator

I:C®(S™1y,) — C®(0.0OM) (4.2.1)
defined by the equality
0 0
@0 = [ (Fael) AR dt = [ Fo i me®)3e0) A0 dt, (422)
T (2.,8) T—(2,8)

where v, @ [7-(2,€),0] — M is a maximal geodesic satisfying the initial conditions
Y2e(0) = x and 4, ¢(0) = £. By Lemma 4.1.1, the right-hand side of equality (4.2.2) is a
smooth function on 9, QM.

Recall that in Section 3.3 the Hilbert space H*(S™7},) was introduced. In a similar
way the Hilbert space H*(9, QM) of functions on 9, QM is defined.

Theorem 4.2.1 The ray transform on a CDRM is extendible to the bounded operator
I: H*(S™7,) — H*(0,.QM) (4.2.3)

for every integer k > 0.

To prove the theorem we need the next
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Lemma 4.2.2 Let (M,g) be a CDRM, d¥ and do be smooth volume forms (differential
forms of the most degree that do not vanish at every point) on QM and 04 QM respectively.
Let D be the closed domain in 0, QM x R defined by the equality

D= {(z,&0)[7-(2,§) <t <0},

and the mapping G : D — QM be defined by G(x,&;t) = G (x,§), where G is the
geodesic flow. Then the equality

(G*dX)(z,&t) = a(z, &) (&, v(x))do(x, &) ANdt (4.2.4)
holds on D with some function a € C*(D) not vanishing at every point.

P r oo f Only the coefficient a changes in (4.2.4) under the change of the volume
form dX or do. Therefore it suffices to prove the claim for some forms d¥ and do.

We define the function » : M — R by putting r(z) = —p(x,0M), where p is the
distance in the metric g. The function r is smooth in some neighbourhood of OM, and
Vr(x) = v(z) for x € M. We extend the form do to some neighbourhood of 0, QM in
the manifold QM. According to the remark in the preceding paragraph, we can assume
that d¥X = do A dr near OQQM.

We first prove validity of representation (4.2.4) for ¢ = 0. The differential of the
mapping G at a point (z,&;0) is identical on T{, ¢)(01Q2M) and maps the vector 0/0t into
H. Consequently,

(G*d%)(x,&;0) = G*(do Ndr)(x,&;0) = Hrdo(x,&) Adt. (4.2.5)

By (3.5.1), Hr = ¢ aa; = (&,v(zx)). Inserting this expression into (4.2.5), we obtain

(%) (2,£;0) = (&, 1)) do(z,€) A di. (4.2.6)
The mapping G satisfies the relation G(x,&;t + s) = G*(G(x,&; s)). This implies the

equality
(G*dX) (z,&;t) = a(z,&;t)(GFdX)(x, &;0) (4.2.7)

with some positive function a € C*(D). Formulas (4.2.6) and (4.2.7) imply (4.2.4). The
lemma is proved.

P r oo fof Theorem 4.2.1. Let us agree to denote various constants independent of f
by the same letter C.

First we will prove the estimate

£l < CllFlk (4.2.8)

for f € C*°(S™1},). To this end, we define a function F' € C*(Q2M) by putting F(z,§) =
firoin (2)ED .. €. The inequality
1F |k < Cll flx (4.2.9)

is evident. With the help of F', equality (4.2.2) is rewritten as:

1@, = TF@& = [ Fluet)dne(t) dt (4.2.10)
7—(,€)
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By (4.2.10), to prove (4.2.8) it suffices to establish the estimate
|IF||x < C|Fl- (4.2.11)

Since operator (4.2.10) is linear, it suffices to prove (4.2.11) for a function F' € C*(QM)
such that its support is contained in a domain V' C QM of some local coordinate system
(2%,...,2%"1) on the manifold QM.

Let (y!,...,5°"2) be a local coordinate system on 9, QM defined in a domain U C
0. QM , and ¢ be a smooth function whose support is contained in U. To prove (4.2.11)
it suffices to establish the estimate

e - TF || grry < ClE| arevy. (4.2.12)

Differentiating (4.2.10), we obtain

Dylp(@, OIF (@, &) = Y (Djo)w,€) [ DIIF(aelt), due(t))]dt +

Ptr=a T (2.6)
+ Y Chs(Do)(x,&) - (DYT-)(x,€) - DY[F (Yae(T—(2,€)), e (T-(2,€)))].  (4.2.13)
F 55

We will prove that, for |a| < k, the Lo-norm of each of the summands on the right-hand
side of (4.2.13) can be estimated by C||F|| gy
By Lemma 4.1.1, the functions D] 7_ are locally bounded, and the mapping

8+QM — O_QM, ($,f) — (733,5(7_—(1"5))7’%6,5(7—(1’75)))

is a diffeomorphism. Therefore the Lo-norm of the second sum on the right-hand side of
(4.2.13) is not more than C||F|s_anl||k—1. Using the boundedness of the trace operator
H*(QM) — H*Y0_QM), F — F|s_aqn, we conclude that the Ly-norm of the second
sum on the right-hand side of (4.2.13) is majorized by C||F|| gx (v

We now estimate the Ly-norm of the integral on the right-hand side of (4.2.13). With
the help of the Cauchy-Bunyakovskii inequality, we obtain

[ DUFCue®) AueD] dt] < —7-(@,6) [ [DIIF(re(t), 3 (1)

2 2
| -
T (2,8) T (2,8)
0
= —7-(,8) / > Ol (@, &) (DIF) (g (t), Fue ()]
(@) 7=F
where ij(x, &) are smooth functions. Integrating the last inequality, we obtain
" 2
ﬁ .
| [ DiFOwe®) meenat], . <
7 (2.€)
0
<[ @ ONDIF) ne(t), eI dt dy. (4.2.14)

VB U 1 (zg)
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We change the integration variable in the integral on the right-hand side of (4.2.14) by the
formula z = G(z,&;t), where G is the mapping constructed in Lemma 4.2.2. By (4.2.4),
after the change inequality (4.2.14) takes the form

By Lemma 4.1.1, the ratio 7_(z,&)/(¢,v(x)) is bounded. Therefore (4.2.15) implies the
desired estimate

0

. 2
[ DUFCaet) Aec e <> [
T— (x’g) ’ygﬂ 14

(2,6
(&, v(x))

‘ (DIF)(2)|* dz.  (4.2.15)

0

| DI Cue®). e at], < CllF Iy,
T— (x7E)

Thus, the estimate (4.2.8) is proved for f € C>®(S™71y,).

Let now f € H*(S™7},). We define I as above, estimate (4.2.9) remaining valid. From
the Fubini theorem we see that the integral on the right-hand side of equality (4.2.10)
is finite for almost all (z,£) € 0,QM and the function If, which is defined by this
equality, belongs to H°(9,QM). We choose a sequence f, € C®(S™r;,) (v = 1,2,...)
that converges to f in H¥(S™r},). The sequence If, converges to [f in H°(0,QM).
Applying estimate (4.2.8) for f, — f,,, we see that I f, is a Cauchy sequence in H*(9,QM).
Consequently, I f € H*(0,QM) and estimate (4.2.8) is valid. The theorem is proved.

4.3 The problem of inverting the ray transform

Let M be a CDRM. Given a field v € C*(S™'7},) satisfying the boundary condition
v|ap = 0, equality (3.3.17) and definition (4.2.2) of the ray transform imply immediately
that I(dv) = 0. From this, using Theorem 4.2.1 and boundedness of the trace operator
HML(S™7],) — H*(S™7hlon), v+ v|oar, we obtain the next

Lemma 4.3.1 Let M be a CDRM, k > 0 and m > 0 be integers. If a field v €
HML(S™7,) satisfies the boundary condition v|ga = 0, then Idv = 0.

By Theorem 3.3.2, a field f € H*(S™r},) (k > 1) can be uniquely decomposed into
solenoidal and potential parts:

f=5f+dv, 6°f=0, vlon =0, (4.3.1)

where *f € H*(S™7},) and v € H*1(S™"17,,). By Lemma 4.3.1, the ray transform pays
no heed to the potential part of (4.3.1): Idv = 0. Consequently, given the ray transform
1f, we can hope to recover only the solenoidal part of the field f. Thus we come to the
next

Problem 4.3.2 (problem of inverting the ray transform) For which CDRM can
the solenoidal part of any field f € H*(S™7},) be recovered from the ray transform I f?
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The main result of the current chapter, Theorem 4.3.3 stated below, gives an answer
for £ = 1 under some assumption on the curvature of the manifold in question. Let us
now formulate the assumption.

Let M be a Riemannian manifold. Recall that, for a point x € M and a two-
dimensional subspace o C T, M, by K(x,0) we denote the sectional curvature at the point
x and in the two-dimensional direction o, which is defined by (3.2.14). For (z,£) € T°M
we put

K(z,8) =sup K(z,0), K™ (z,€) = max{0, K (x,¢)}. (4.3.2)
43
For a CDRM (M, g), we introduce the next characteristic:

T+ (I,&)

kT (M,g) = sup KT (Vg (t), Ve (t)) dt. (4.3.3)
(2,€)€0_ QM

We recall that here v, ¢ : [0, 74 (z,§)] — M is a maximal geodesic satisfying the initial
conditions 7, ¢(0) = = and 4, ¢(0) = £. Note that k™ (M, g) is a dimensionless quantity,
i.e., it does not vary under multiplication of the metric g by a positive number.

Recall finally that, for z € M, we denote by v(z) the unit vector of the outer normal
to the boundary and by j, : S"T.M — S™ T/ M, the operator of convolution with the
vector v.

We can now formulate the main result of the current chapter.

Theorem 4.3.3 Let m > 0 be an integer. For every compact dissipative Riemannian
manifold (M, g) satisfying the condition

kt(M,g) <1/(m+1) (4.3.4)

and every tensor field f € H'(S™7},), the solenoidal part °f is uniquely determined by the
ray transform I f and the next conditional stability estimate is valid:

154115 < € (mlls *Floallo - 11fllo + 1 A1) < Co (mll Il - 1S llo + ILFIE)  (43.5)
where constants C' and C are independent of f.

We will make a few remarks on the theorem.

The first summand on the right-hand side of estimate (4.3.5) shows that the problem
of recovering °f from I f is perhaps of conditionally-correct nature: for stably determining
°f, we are to have an a priori estimate for ||f]|;. Note that this summand has appeared
due to the method applied in our proof; the author knows nothing about any example
demonstrating that the problem is conditionally-correct as a matter of fact. The factor
m before the first summand is distinguished so as to emphasize that in the case m = 0
the problem is correct.

In order to avoid complicated formulations and proofs, in the current and previous
chapters we use the spaces H* only for integral k > 0. If the reader is familiar with the
definition of these spaces for fractional k, he or she can verify, by examining the proof
below, that it is possible to replace the factor || f|j; in (4.3.5) by || f|l1/2-

We emphasize that (4.3.4) is a restriction only on the positive values of the sectional
curvature, which is of an integral nature, moreover.
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The right-hand side of equality (4.3.4) takes its maximal value for m = 0. If a CDRM
(M, g) satisfies the condition
kKt (M, g) <1, (4.3.6)

then the next claims are valid: 1) M is diffeomorphic to the ball, and 2) the metric g is
simple in the sense of the definition given in Chapter 1. We will not give here the proof,
of the claims, which is beyond the scope of our book (and will not use these claims). We
will only discuss briefly a possible way of the proof. First of all, condition (4.3.6) implies
absence of conjugate points. This fact can be proved as follows: first, by arguments
similar to those used in the proof of the theorem on comparing indices [41], we reduce
the question to the two-dimensional case; then applying the Hartman-Wintner theorem
(Theorem 5.1 of [46]). With the absence of conjugate points available, our claims can
be established by arguments similar to those used in the proof of the Hadamard-Cartan
theorem [41].
Let us show that Theorem 4.3.3 follows from the next special case of it.

Lemma 4.3.4 Let « CDRM (M, g) satisfies (4.3.4). For a real field f € C®(S™71},)
satisfying the condition
df =0, (4.3.7)

the estimate
112 < € (mllgo flaarllo - 12 £llo+ 12£113) (4.3.8)

holds with a constant C' independent of f.

Indeed, we first note that it suffices to consider a real field f, since the general case can
be reduced to this one by writing down estimates (4.3.5) for both the real and imaginary
parts of f.

Given a real field f € H'(S™7},), let

f - Sf + dU, (sz = Oa /U‘(‘)M =0 (439)

be the decomposition into the solenoidal and potential parts, where *f € H'(S™7},) and
v € H*(S™17},). By Theorem 3.3.2, the estimate

1°f[l1 < Ch | f]x (4.3.10)

holds. We choose a sequence, of real fields f, € C*(S™7},) (k= 1,2,...), which converges
to f in H'(S™7},). Applying Theorem 3.3.2 to fi, we obtain the decomposition

fre ="fr +dvg, 6°fx =0, vilonr =0 (4.3.11)

with real 5y, € C>®(S™1},), v € C®(S™ '7},). Since *f in (4.3.9) depends continuously
on f, as have been shown in Theorem 3.3.2,

fp = °f in H'(S™7y,) as k— oo. (4.3.12)

In the view of boundedness of the trace operator H'(S™7},) — H°(S™7|on), (4.3.12)
implies that
felosr — *floar i H°(S™7)lon) as k — oo. (4.3.13)
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By Lemma 4.3.1, the equalities vg|sons = 0 and v|gps = 0 imply that I(dvg) = I(dv) = 0.
Therefore, from (4.3.10) and (4.3.12), we obtain

If =I%, If,=1I°%. (4.3.14)
Applying Lemma 4.3.4 to *f;, we have
1513 < € (mllg*Filonello - 11T *Fillo + 1T “fell?) -

By (4.3.14), the last inequality can be rewritten as:

1lls < € (mllguFilonello - 1T fillo + N1 £el?) -

We pass to the limit in this inequality as k — oo; and make use of (4.3.12), (4.3.13) and
continuity of I proved in Theorem 4.2.1. In such a way we arrive at the estimate

15113 < € (mllgFlosello - 11£1lo + [11FI2) - (4.3.15)

Using (4.3.10) and continuity of the trace operator H'(S™7;,) — H°(S™7}/|on), we
obtain

17" floaello < Call*f lonllo < CslI°flly < Call f]1- (4.3.16)
Inequalities (4.3.15) and (4.3.16) give the claim of Theorem 4.3.3.

4.4 Pestov’s differential identity

Recall that in Chapter 3 we introduced the bundle 3IM = (B M, p, T M) of semibasic
tensors of degree (r, s) over the space T'M of the tangent bundle of a Riemannian manifold

(M, g) and defined the operators %,%: C=(BIM) — C=(B;,,M) of vertical and hori-
zontal differentiation. The metric g establishes the canonical isomorphism of the bundles
BrM = By M = 32, M; in coordinate form this fact is expressed by the known oper-
ations of raising and lowering indices of a tensor; we will use them everywhere. Similar
notation will be used for the derivative operators: %’ = g% %j, %’ = g% %j.

From now on in the current chapter we restrict ourselves to considering only real
tensors and tensor fields. The metric g allows us to introduce the scalar product on the
bundle 57 M. Consequently, for u,v € C*(8% M) the scalar product (u,v) is a function
on T'M expressible in coordinate form as

(u(z,€),v(@, ) = uiy..,, (2, V""" (2, ). (4.4.1)
We also denote |u(z,&)|? = (u(z, £), u(x, £)). The notations (u(z, &), v(x,€)) and |u(z, &) |*

can be considered as convenient abbreviations of the functions on the right-hand side of
(4.4.1), and we will make wide use of them.

h
The operator H : C*°(3° M) — C>(3° M) defined by the equality H = £'V; is called
the differentiation along geodesics and the equation

Hu(z,€) = f(2,6). (4.4.2)
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where f € C°(B8% M) is a given tensor field and u € C°°(8% M) is an unknown one, is
called the kinetic equation of the metric g. This operator has a simple interpretation for
m = 0, since C*(BIM) = C®(TM). In the last case the operator H is expressed in
coordinate form as

0

‘ o0
Hu(z,§) = (ﬁax - Ipeet

o
Like any homogeneous first-order differential operator, H can be considered as a vec-
tor field on T'M, which is called the geodesic vector field. The one-parameter group of
diffeomorphisms G* of the manifold TM generated by H is called the geodesic flow (or
geodesic pulverization) of the metric g. It has a clear geometrical meaning: G*(x,§) =
(Voe(t), Yue(t)), for (z,€) € TM, where v, is the geodesic defined by the initial con-
ditions 7, ¢(0) = = and 4,¢(0) = £ This means, in particular, that the geodesic flow
preserves length of tangent vectors. In other words, at a point of the submanifold QM
the vector field H is tangent to QM. Thus H can be considered as differential operator
H : C*(QM) — C*(QM). Besides, the geodesic flow preserves the symplectic volume
(3.6.1), by the well-known Liouville theorem [13].

Recall also that a physical interpretation of the kinetic equation (4.4.2), for m = 0,
was discussed in Section 1.2.

) u(z, €). (4.4.3)

Lemma 4.4.1 Let M be a Riemannian manifold. For a real semibasic tensor field u €
C>(3° M), the next identity is valid on TM :

h v h 9 h i v
2(Vu,V(Hu)) = |Vul” + Viv' + Viw'—
_ Rijkllfié»k%juil.,.z’m ) %luil...im . Z R’igququil...ik,lpikJrl...im%juilmim’ (4.4.4)
k=1

where the semibasic vector fields v and w are defined by the equalities

. . h .. . v v . h
ot = €I G, — SV (4.45)
. . h. . . h
TN SAVA U VT /AR (4.4.6)

P r o o f. From the definition of the operator H, we have
ho W he o o w [ .h
2(Vu, V(Hu)) = 2V'u" " - v, (§]Vjuil...z’m) :
Using the relation %iﬁj = 07, we obtain

h v h. . . h . h. .. v h
2(Vu, V(Hu)) = 2V'u" " - Wiy, 4, + 28NV W - iViliy i - (4.4.7)

We transform the second summand on the right-hand side of the last relation. To this
end we define a function ¢ by the equality

'hiii v h v 'hiii h h 'hiii v
2£JV U 1--m | ViVjuil...im — Vz (§Jv U 1.%m | Vjuil...im) + Vj <£Jv U 1.tm Vzuzlzm) _
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h . ) . . h
-V <§]Viuu'"lm : Vjuil...im> — . (4.4.8)

Let us show that ¢ is independent of second-order derivatives of the field w. Indeed,
expressing the derivatives of the products on the right-hand side of (4.4.8) through the
derivatives of the factors, we obtain

h
= _2£Jvl feetm VZV]uzl zm+vl feetm Viuil...im +

v h
+ 8V v’u“ o vju“ dim T éjvl R VAV I
jhhiili Y jhiili h v
+v,Vurt - Vi, VU N Vil —
J J
j h .v i1 h j v i1 h .h
S A Y/ A VT TR N S VA T VA VATV

After evident transformations, this equality takes the form

hi i h 'hz‘ i h v v h
o = V'utm Vi, g, + VU (VjVi - VNj) Uiy iy +

.h . . v h . h.v LU h h h h
4 gjvjuu...zm . <VZV’ _ vz z) uil...im + f]vzuu-..Zm . (VJVZ — VzV]) ui1...im~

v h
Using commutation formulas for the operators ¥V and V which are presented in Theorem
3.5.2, we obtain

h . v m
Z 'L 7/ Z 'L 7,
p=Y\u'tm Vzull im T f]V Loetm (-qujifqvpuil...im - E Rpikjiuil...ik1pik+1...im> .

k=1

Inserting this expression for the function ¢ into (4.4.8), we have

v h h .
2§sz el ViVjuil...im - —VZ el Vlull im +VZU +Vzw -

Rijklﬁigk%juil“'im : %luil...im -y Rikqufquil'“i'“_lpik“'“im%juil...im-
k=1
Finally, replacing the second summand on the right-hand side of (4.4.7) by the last value,
we arrive at (4.4.4). The lemma is proved.

Let us separately write down the claim of Lemma 4.4.1 for m = 0, i.e., for u €
C>°(TM). In this case equalities (4.4.4)—(4.4.6) take the form

h v h h . v . . v . v
2(Vu, V(Hu)) = |Vul> + Viv' + Vaw' — Rl-jklflé’kvju -V, (4.4.9)
. . h . v LV h
v' =&V - Viu— &V - Vu, (4.4.10)

. h. h
w' = &¢V'u - Vju. (4.4.11)
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4.5 Poincaré’s inequality for semibasic tensor fields

Lemma 4.5.1 Let M be a CDRM and X be a continuous nonnegative function on QM.
For a semibasic tensor field f € C°°(8° M) satisfying the boundary condition

flo_am =0, (4.5.1)

the next inequality is valid:
[ M@l @O S <2 [ Hf (0 dx. (452)

oM oM
where
T (z.8)
Ao = sSup t/\(%v,ﬁ(t)a %&,E(t)) dt, (453)
(z,£)e0_ QM

Yot 0,74 (2,€)] — M is a mazimal geodesic defined by the initial conditions v, ¢(0) = x
and 4 £(0) = &, dX = dX* 1 is the volume form on QM defined by formula (3.6.16).

By the Liouville theorem [13], the geodesic flow preserves the volume form d¥. There-
fore, in the scalar case f = ¢ € C*°(3M), the lemma coincides, in fact, with the well-
known Poincaré inequality [82]. The case of an arbitrary semibasic field f € C>(3° M) is
reduced to the scalar one by introducing the function ¢(z, &) = |f(z,€)|. Unfortunately,
in such a way an additional obstacle arises that relates to the singularities of the function
@ at zeros of the field f. For this reason we should reproduce the proof of the Poincaré
inequality, while taking the nature of the mentioned singularities into account. First of
all we will reduce Lemma 4.5.1 to the next claim:

Lemma 4.5.2 Let M, \ and Ny be the same as in Lemma 4.5.1; a function p € C(QM)
be smooth on Q, = {(x,§) € QM | p(x,§) # 0}. Suppose that

sup |Hep(z,8)| < oo. (4.5.4)
(2,£)€Qp

If ¢ satisfies the boundary condition

¢lo_am =0, (4.5.5)
then the next estimate is valid:
[ M@0 lp@ P as < [ [Ho(, O 5. (4.5.6)
QM Qo

Proofof Lemma 4.5.1. Let a semibasic field f satisfy the conditions of Lemma 4.5.1.
We verify that the function ¢ = |f]| satisfies the conditions of Lemma 4.5.2. The only
nontrivial condition is (4.5.4). The equality Hp = (f, Hf)/|f| holds on €. It implies
that |[Hp| < |H f| and, consequently, (4.5.4) holds.

Assuming validity of Lemma 4.5.2, we have inequality (4.5.6). From this inequality
we obtain

/)\|f]2d2 - /)\\go\2d2 < )\0/|H<p]2d2 —
oM oM O,
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[(f, HI)[? > >
/ / |

The lemma is proved.

P r oo fof Lemma 4.5.2. We consider the domain D = {(z,&;t) | 0 <t < 7, (z,&)}
in the manifold 0_QM x R and define a smooth mapping pu : D — QM by putting
p(z,&5t) = (Yae(t), Yue(t)). It maps the interior of D diffeomorphically onto QM \T'(OM).
Consequently,

[ Aeltas = [(vowlg o P (@), (45.7)

QM

Differentiating the relation (h o p)(x,&;t) = h(Vae(t), Y2e(t)) with respect to t, we
obtain d(h o p)/0t = (Hh) o p. Valid for every h € C*°(Q2M), the last equality means
that the vector fields 0/0t and H are pi-connected (we recall that, given a diffeomorphism
f X — Y of two manifolds, vector fields u € C*(7x) and v € C*(7y) are called f-
connected if the differential of f transforms u into v; compare [41]). Since the form dX
is preserved by the geodesic flow, p*(dX) is preserved by the flow of the field 9/0t. This
implies, as is easily seen, that u*(dX) = do x dt for some volume form do on 0_QM. Thus
(4.5.7) can be rewritten as:

T+(CE7£)
[ Nelds = [ do(we) [ ool g0l (45.5)
QM 0_QM 0

where p = Ao p and ¢ = ¢ o p. In a similar way the integral on the right-hand side of
inequality (4.5.6) is transformed as follows

[1HgRas = [ (0w, &) /0Pt do(a,€), (45.9)
O, Dy
where Dy, = {(z,&;t) | ¢(z,§;t) # 0}. The function ¢ is continuous on D, smooth on D,
and, by (4.5.4) and (4.5.5), satisfies the conditions
sup |0 (x, &;t)/0t| < oo, (4.5.10)
Dy
Wz, € 0) = 0. (4.5.11)
The constant Ao of Lemma 4.5.1 is expressed through p:
T+(ZE,£)
A= sup / tp(z,&;t)dt. (4.5.12)

(z€)ed-QM 4

We define the function ¢ : D — R by putting

) { oY(x,&;t)/0t, for (z,&;t) € Dy,

vl &) = 0, for (x,&;t) ¢ Dy. (45.13)
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By (4.5.8) and (4.5.9), inequality (4.5.6) under proof is equivalent to the next one

T+(2,8) 7+ (2,€)
dof@,§) [ pla&Olb@&old<x [ do(g) [ | &o)fr
0_QM 0 0_QM 0

(4.5.14)

Let us consider the function v,(t) = ¥(z,&;t), for a fixed y = (z,€), as a function

in the variable ¢t € I, = (0,71 (y)). We shall prove that it is absolutely continuous on I,.

Indeed, let J, = {t € I, | ¥,(t) # 0}. As an open subset of I, the set J, is a union of

pairwise disjoint intervals J, = 2, (a;, b;). The function ¢, is smooth on each of these
intervals and, by (4.5.10), its derivative is bounded:

diy(t)/dt] < C (€ (an b)), (4.5.15)

where a constant C' is the same for all ¢. The function ¢, vanishes on I, \ J, and is
continuous on I,,. The listed properties imply that

[y (1) — ¥y (t2)] < Cltr — to (4.5.16)

for all ¢1,¢, € I,. In particular, (4.5.16) implies absolute continuity of 1,. Consequently,
this function is differentiable almost everywhere on I, and can be recovered from its
derivative:

Wy (t) = / dij(T) dr. (4.5.17)

While writing down the last equality, we took (4.5.11) into account. The derivative
dip,(t)/dt is bounded. From (4.5.17) with the help of the Cauchy-Bunyakovskii inequality,
+(v)

we obtain
rld
o < |20 e t/
0

Let us show that, almost everywhere on I,, di,(t)/dt coincides with the function
Y(y;t) defined by formula (4.5.13). Indeed, by (4.5.13), diy,(t)/dt = ¥ (y;t) if t € J,. If
t € 1,\ J, does not coincide with any of the endpoints of the intervals (a;,b;), then ¢ is
a limit point of the set I, \ J,. Since 1|\ s, = 0, existence of the derivative di,(t)/dt
implies that it is equal to zero. The function U (y: t) vanishes on I, \ J,, by definition
(4.5.13). Thus the relation di,(t)/dt = v(y;t) is proved for all ¢ € I, such that the
derivative dy,(t)/dt exists, with the possible exception of the endpoints of the intervals
(CLZ‘, bz)

We can now rewrite (4.5.18) as

d¢y

(4.5.18)

7 (z,€)
. GOP <t [ &0k

0
We multiply this inequality by p(z,&;t) and integrate it with respect to ¢

T+ (:I:,f) T+ (:I:,f) T+(:E,§)

p(x, &)Y (x, & t)dt < / tp(z,&;t) dt / Y (x, & 1) [2dt.

0 0 0
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By (4.5.12), the first integral on the right-hand side of the last formula can be replaced
by Ao. Multiplying the so-obtained inequality by do(z,&) and integrating it over 0_QM,
we arrive at (4.5.14). The lemma is proved.

To prove Lemma 4.3.4 we will need the next claim. It is of a purely algebraic nature,
although formulated in terms of analysis.

Lemma 4.5.3 Let M be a compact n-dimensional Riemannian manifold, f € C*®(S™1y,),
m > 1. Define the function ¢ € C®(TM) = C*®(BIM) and semibasic covector field
F e C®(BYM) by the equalities

P(,8) = fir i (@)ET . E™ F(2,6) = g (2)€2 . 6 (4.5.19)
Then the next inequality is valid:
2
[ \ppas < PEEEEE +em = / |25, (4.5.20)

P r o o f. We shall show that this claim is reduced to a known property of eigenvalues of
the Laplacian on sphere.
It follows from (3.6.34) that inequality (4.5.20) is equivalent to the next one:

J| [ 1@ oPase)] ave@ < 222 [ o, o) don(©)| V().

M QM M QM

Consequently, to prove the lemma it suffices to show that

[ 1R e dae) < "2  weorase. wsa

for every x € M.

Fixing a point z, we introduce coordinates in some of its neighbourhoods so that
gij(x) = 6;;. With the help of these coordinates we identify T, M and R", the latter
furnished with the standard Euclidean metric. Then Q,M is identified with the unit
sphere €2 of the space R"; the measure dw,, with the standard angle measure dw; the
function p(x, &), by (4.5.19), with a homogeneous polynomial ¢ of degree m on R"; the
field F, with Vi/m. Thus, to prove (4.5.21) it suffices to verify the inequality

/|V¢|2dw < m(n +2m —2) / 5|2 d (4.5.22)
Q Q

on the space P, (R™) of homogeneous polynomials of degree m. Applying the Green’s
formula

/|W| do = /1/1 (m* = A)vdo (¥ € Pu(RY))

where A, is the spherlcal Laplaman [131], we see that (4.5.22) is equivalent to the claim:
all eigenvalues py, of the operator m? — A,, on the space P,,(R™) do not exceed m(n +
2m — 2). It is known that the eigenvalues of the Laplacian A, are precisely the numbers
Ar = —k(n + k — 2) and the spherical harmonics of order & are just the eigenfunctions
belonging to A;. Therefore the eigenvalues of the operator m? — A, on P,,(R") are those
of pp = m?* — A, for which & < m. The maximal of them is m(n + 2m — 2). The lemma is
proved.
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4.6 Reduction of Theorem 4.3.3 to an inverse
problem for the kinetic equation

Let a field f € C*(S™71),) on a CDRM M satisfy the conditions of Lemma 4.3.4. We
define the function

0

u(z,§) = /(f(%,s(t)),%?g(t)ﬁdt ((z,6) € T°M) (4.6.1)

T (2.8)

on T°M, using the same notation as used in definition (4.2.2) of the ray transform. The
difference between equalities (4.2.2) and (4.6.1) is the fact that the first of them is con-
sidered only for (x,¢) € 9, QM while the second one, for all (z,£) € T°M. In particular,
we have the boundary condition

ulo,on = 1f. (4.6.2)
Since 7_(x,§) = 0 for (z,&) € 0_QM, we have the second boundary condition

ula_am = 0. (4.6.3)

The function u(z, ) is smooth at the same points at which 7_(z, &) is smooth. The
last is true, as we know, at all points of the open set T°M \ T(OM) of the manifold T°M.
Let us show that the function u satisfies the kinetic equation

Hu = f;, ., (2)€0 .. € (4.6.4)

on T°M \ T(OM).

Indeed, let (z,€) € TOM \ T(OM) and v = ¢ : [7-(2,€),7(2,£)] — M be the
geodesic defined by the initial conditions v(0) = x and 4(0) = &. For sufficiently small s €
R, we put z; = y(s) and & = (s). Then v,, ¢, (t) = y(t + ) and 7_ (x4, &) = 7-(x, &) — s.
Consequently,

[e=]

u(r(3),4(5) = ulwa &) = [ (FOme () AT (0)) dt =
T (25,6s)

S

= [ Ce®) A0 .

T (2.,8)

Differentiating this equality with respect to s and putting s = 0 in the so-obtained relation,
we come to

"yi(O)g; + V(O)SZ = firin (7(0))4(0) ... 4" (0). (4.6.5)

Inserting v(0) = z, §(0) = £ and the value 5°(0) = =T, (2)&7¢" from equation (1.2.5) of
geodesics into the last relation and taking (4.4.3) into account, we arrive at (4.6.4).
The function u(z, &) is homogeneous in its second argument:

u(z, \) = A" tu(z, €) (A>0). (4.6.6)
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Indeed, since v, ¢(t) = 7ue(At), if follows from (4.6.1) that

0

u@ ) = [ (FCanelt)), () dt =
T—(z,\E)

[e=]

= [ e Az O0)) de =
Al (z,6)

=X [ (@), A (0)) dt = Nz, €).
T (2.8)

Thus, the function u(z,§) is a solution to the boundary problem (4.6.2)—(4.6.4) and
satisfies the homogeneity condition (4.6.6). Besides, we recall that condition (4.3.7) is
imposed upon the field f in the right-hand side of equation (4.6.4). Lemma 4.3.4 thereby
reduces to the next problem: one has to estimate the right-hand side of the kinetic
equation (4.6.4) by the right-hand side of the boundary condition (4.6.2).

By Lemma 4.4.1, identity (4.4.9) is valid for the function w(x,£) on T°M \ T(OM).
Using (4.6.4), we transform the left-hand side of the identity

2(%% %<H“)> = Q%iu ‘ %z(HU) - 2%% . 888 (fil...’imfil » -fim) -

=2mV'u- fiiy. i, &% .. & =V 2Cmufii, i, &% .. ) = 2mu(V' fiiy. )67 . 6™ =

ho 4 .
= V0" = 2mu(df )iy, &0 8 (4.6.7)

where ‘ ‘ ' '
0" =2mu g fpiy. i, T (4.6.8)

The second summand on the right-hand side of (4.6.7) vanishes by (4.3.7). Thus, the
application of Lemma 4.4.1 to function (4.6.1) leads to the next identity on T°M\T(OM) :

h . v . v h . . v .
IVul* = Rijué'¢ Vu - Viu = vi(8' — ') — viw', (4.6.9)

where the semibasic vector fields v, w and ¢ are defined by formulas (4.4.10), (4.4.11) and
(4.6.8).

We are going to integrate equality (4.6.9) over QM. In course of integration, some
precautions are needed against singularities of the function u on the set T'(OM). For this
reason we will proceed as follows. Let r : M — R be the distance to M in the metric g.
In some neighbourhood of OM this function is smooth, and the boundary of the manifold
M, ={x € M | r(z) > p} is strictly convex for sufficiently small p > 0. The function u
is smooth on QM,, since QM, C T°M \ T(OM). We multiply (4.6.9) by the volume form
d¥ = d¥?! and integrate it over QM,. Transforming then the right-hand side of the
so-obtained equality by the Gauss-Ostrogradskii formulas (3.6.35) and (3.6.36), we obtain

h e
/ (IVul® - Rijklflfkvju Vi) dY =
oM,
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- / (5 —v,0) dS22 — (n+ 2m — 2) / (w, £) dS. (4.6.10)
o0M, am,

The factor n + 2m — 2 is written before the last integral because the field w(zx,§) is
homogeneous of degree 2m — 1 in its second argument, as one can see from (4.4.11) and
(4.6.6). Besides, (4.4.11) implies that (w, &) = (Hu)? and, consequently, equality (4.6.10)
takes the form

/ [|%u|2  Run€ & Viu - Wi+ (n 4 2m — 2)(Hu)2] w= [ (-vvyas
M, OOM,
(4.6.11)
Here v = v,(z) is the unit vector of the outer normal to the boundary of the manifold
M,.
We wish now to pass to the limit in (4.6.11) as p — 0. To this end, we first note
that both the sides of the last equality can be represented as integrals over domains
independent of p. Indeed, since QM, C QM, the domain of integration Q2M, for the
leftmost integral on (4.6.11) can be replaced with QM by multiplying simultaneously
the integrand by the characteristic function x,(z) of the set M,. The right-hand side of
(4.6.11) can be transformed to an integral over 9QM with the help of the diffeomorphism
po: O0M — 0QM, defined by the equality p(z,&) = (2/,¢'), where a point 2’ is such
that the geodesic 7,,,, whose endpoints are = and z’, has length p and intersects O M
orthogonally at the x, and the vector & is obtained by the parallel translation of the
vector £ along v,,.

The integrands of (4.6.11) are smooth on QM \ 9yQM and, consequently, converge to
their values almost everywhere on 9QQM as p — 0. We also note that the first and third
summands in the integrand on the left-hand side of (4.6.11) are nonnegative. Therefore,
to apply the Lebesgue dominated convergence theorem, it remains to show that: 1) the
second summand in the integrand on the left-hand side of (4.6.11) is summable over QM
and 2) the absolute value of the integrand on the right-hand side of (4.6.11) is majorized
by a function independent of p and summable over 02M. We shall demonstrate more,
namely, that the absolute values of the integrand on the right-hand side and of the second
summand in the integrand on the left-hand side of (4.6.11) are bounded by some constant
independent of p. Indeed, since these expressions are invariant, i.e., independent of the
choice of coordinates, to prove our claim it suffices to show that these functions are
bounded in the domain of some local coordinate system.

In a neighbourhood of a point xqg € M we introduce a semigeodesic coordinate system
similarly as in Lemma 4.1.3. Then g;,, = d;,,, v* = —0.,. It follows from (4.4.10) and (4.6.8)
that

(0 —wv,v) = f”%o‘u . %au — §°‘%au . %"u — 2mu fmlmimfléil L. Eimet (4.6.12)

In this formula (and in formula (4.6.14) below) the summation from 1 to n — 1 over the
index « is assumed. It is important that the right-hand side of (4.6.12) does not contain

h h
Vyu. It follows from Lemma 4.1.3 and equality (4.6.1) that the derivatives Vou (1 < a <
n—1) and Viu (1 < i <mn) are locally bounded.

Thus we have shown that passage to the limit is possible in (4.6.11) as p — 0. Accom-
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plishing it, we obtain the equality

h . v . v

QM

- / (Lu — 2mu (G, f, €71)) d=20-2, (4.6.13)
OOM

where L is the differential operator given in a semigeodesic coordinate system by the
formula

h h
Lu = £"V*u - Vot — €2Vt - V", (4.6.14)
Note that until now we did not use the restriction on sectional curvatures and boundary

conditions (4.6.2)—(4.6.3); i.e., integral identity (4.6.13) is valid, for every solenoidal field
f on an arbitrary CDRM, in which the function « is defined by formula (4.6.1).

4.7 Proof of Theorem 4.3.3

In view of the boundary conditions (4.6.2)—(4.6.3), equality (4.6.13) can be written as:

h . v v
/ [yvuP — Ryju€' €V u - V'u+ (n + 2m — 2)(Hu)?| dS =

QM

= [ @) = 2m(If) Gof ) as, (47)

9, QM

If (y',...,y*"?) is a local coordinate system on 9,QM, then we see from (4.6.14)
that Lu is a quadratic form in variables u, du/dy" and Ou/0|¢|. According to homogene-
ity (4.6.6), du/0|¢| = (m — 1)u and, consequently, L is a quadratic first-order differential
operator on the manifold 0,Q2M. So the absolute value of the right-hand side of rela-
tion (4.7.1) is not greater than C(ml||If|lo - |7, flonllo + |11 f]|3) with some constant C
independent of f. Consequently, (4.7.1) implies the inequality

/ |%u|2d2 + (n+2m —2) / (Hu)*dx <
oM oM

< [ Ryu€€Viu - udS + CmllIf o iuflondlo + IIFIR). (472)
QM

It turns out that the integral on the right-hand side of (4.7.2) can be estimated from
above by the left-hand side of this inequality. To prove this fact, we first note that, for
(x,€&) € QM, the integrand on the right-hand side of (4.7.2) can be estimated as:

Riju€'€*Viu - V'u < K*(z,6)|Vu(z, &), (4.7.3)

where K1 (z,¢) is defined by formula (4.3.2).
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In view of the boundary condition (4.6.2), the field Vu satisfies the conditions of
Lemma 4.5.1. Applying this lemma, we obtain the estimate

/ K+, 6)|Vulz, €)2dS < k* / | HVul?ds, (4.7.4)
oM oM
where kT = kT (M, g) is given by equality (4.3.3).
v v h
Applying the operator V to equation (4.6.4), since V and V commute, we obtain

v h
HVu=mF — Vu, (4.7.5)
where F' is the semibasic field defined by formula (4.5.19). It follows from (4.7.5) that

v h h h
HV? < m?|F]? + 2m|F|[Vu] + [Vul? < m(m + D|FP + (m+ 1) [V, (4.7.6)

The arguments of the next paragraph are slightly different in the cases m = 0 and
m > 0.

First we assume that m > 1. By Lemma 4.5.3, inequality (4.5.20) holds in which ¢
is expressed by relation (4.5.19). Comparing (4.5.19) and (4.6.4), we see that ¢ = Hu.
Consequently, (4.5.20) can be rewritten as:

/ |FPds <

QM QM

From (4.7.6) and (4.7.7) we obtain the inequality

n+am-— 2 27;” —2 / (Hu)2dY. (4.7.7)

/ \HVu2dS < (m + 1)(n + 2m — 2) / (Hu)%dS + (m + 1) / Vul?dS.
QM

QM QM

This inequality is obtained for m > 1. But it holds for m = 0 too, as follows from (4.7.5).
Together with (4.7.3) and (4.7.4), the last inequality gives

[ R iu - Vluds < K (m+ D(n+2m —2) [ (Hupds +
QM

QM
h
+EHm+ 1) / Vul2ds. (4.7.8)
QM

Estimating the integral on the right-hand side of (4.7.2) with the help of (4.7.8), we
arrive at the inequality

1=k (m+1)] (O/ Vul?dS + (n +2m — 2) /(Hu)sz) <

QM

< (mllfllo - llgufloarllo + 1) -

Under assumption (4.3.4) of Theorem 4.3.3, the quantity in the brackets is positive and
we obtain the estimate

h
/ (Vul?d2 < Ci(mllLfllo - 17w floello + IL17)- (4.7.9)
QM
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It remains to note that equation (4.6.4) implies the estimate

h
IFR<C [ 1HuPas < Cy [ [Vulas,
QM QM

From (4.7.9) with the help of the last estimate we obtain (4.3.8). Lemma 4.3.4 is proved
as well as Theorem 4.3.3.

4.8 Consequences for the nonlinear problem
of determining a metric from its hodograph

We start with introducing the next definition that slightly differs from that of Section
1.1: a Riemannian metric on a compact manifold M with boundary is called simple if the
boundary is strictly convex and every two points p, ¢ € M are joint by a unique geodesic
depending smoothly on p, q. According to the definition, a simple metric is dissipative.

Recall that in Section 1.1 we introduced the hodograph of a simple Riemannian metric
and formulated Problem 1.1.1, that of determining metric from its hodograph. In the
current section we shall prove the next two claims related to this problem.

Theorem 4.8.1 Let g7 (0 < 7 < 1) be a one-parameter family, of simple Riemannian
metrics on a compact manifold M, which depends smoothly on 7. If the hodograph Iy is
independent of T and the metric ¢° satisfies the inequality k™ (M, ¢°) < 1/3, then there
exists a diffeomorphism ¢ : M — M such that o|oyr = Id and ¢*g° = g'.

Theorem 4.8.2 Let ¢°, g* be two simple Riemannian metrics on a compact manifold M.
If their hodographs coincide, ¢° satisfies the condition k™ (M, ¢°) < 1/3 and g' is flat (i.e.
with zero curvature tensor), then there exists a diffeomorphism ¢ : M — M such that
oloar = 1d and ¢*g° = ¢'.

We say that a CDRM (M, g) satisfies Conjecture I, if the conclusion of Theorem 4.3.3
is valid for tensor fields of degree m on this manifold, i.e., if the solenoidal part of every
field f € C*°(S™1},) is uniquely determined by the ray transform If. Let us show that
Theorem 4.8.1 follows from the next claim.

Lemma 4.8.3 Let g" (0 < 7 < 1) be a one-parameter family of simple metrics on a com-
pact manifold M. If every g7 satisfies Conjecture Iy and the hodograph Iy is independent
of T, then there exists a diffeomorphism ¢ : M — M such that p|apr = Id and ¢*¢° = g'.

Indeed, by Theorem 4.3.3, a metric g satisfies Conjecture I if the condition k* (M, g) <
1/3 holds. So, under the conditions of Theorem 4.8.1, there exists 75 > 0 such that g”
satisfies Conjecture I for 0 < 7 < 7. Applying Lemma 4.8.3, we obtain a diffeomorphism
¢ : M — M such that ¢|gy; = Id and p*¢° = ¢g™. Since ¢ is an isometry of the Riemannian
manifold (M, ¢°) onto (M, g™), we have k™ (M, g™) = kT(M,¢°) < 1/3. Now we can
repeat the same reasoning for 7 € [rg, 1], and the proof of Theorem 4.8.1 is accomplished
evidently.
Similarly, Theorem 4.8.2 follows from the next claim:
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Lemma 4.8.4 Let ¢°, g' be two simple metrics on a compact manifold M. Suppose that
one of them is flat and the other satisfies Conjectures Iy and Is. If their hodographs
coincide, then there exists a diffeomorphism ¢ : M — M such |ay = Id and ¢*¢° = ¢*.

P roofof Lemma 4.8.3. Repeating the arguments after the formulation of Problem
1.1.1, we make sure that I7(0g”/01) = 0 for all 7, where I” is the ray transform corre-
sponding to the metric g”. According to Conjecture Iy, this implies, for every 7, existence
of a field v™ € H?*(7},;) such that

—2d"v" = d¢" /O, v |onr = 0. (4.8.1)

It follows from (4.8.1) that v (z) is smooth in (z,7) € M x [0, 1]. Indeed, as was noted
in Section 2.5, the operator of inner differentiation d7 is elliptic (it does not matter that in
Section 2.5 operator d is considered for the Euclidean metric and here, for a Riemannian
one; since its symbol is the same in the two cases). It is known that an elliptic operator
is hypoelliptic [111], i.e., smoothness of the right-hand side of equation (4.8.1) implies
smoothness of a solution v".

We consider the system of ordinary differential equations dy*/dr = (g7)" (y)vj (y,7)
on M. The system has the solution ¢'(x,7) defined for 0 < 7 < 1 and satisfying the
initial condition ¢(z,0) = z. By boundary condition (4.8.1), the diffecomorphism ¢ : z —
o(x,7) is identical on 9M. Converting the argument that led us to (4.8.1), we see that
g° = (¢7)*g". The lemma is proved.

In the remainder of the section we shall show that Problem 1.1.1 is equivalent to some
nonlinear inverse problem for a system of kinetic equations. If one of the two metrics is
flat, then the above-mentioned problem is linear and we obtain the claim of Lemma 4.8.4.
Besides the proof of Lemma 4.8.4, this problem is of some independent interest, to the
author’s opinion.

Lemma 4.8.5 Let a CDRM M satisfies Congecture I,,. If a function w(x,§) continuous
on QM and smooth on QM \ OQM is a solution of the boundary problem

Hw = fi, i ()" €™, Wloeons = Viy o ()0 ... ™1,
then w(x,€) is a homogeneous polynomial of degree m — 1 in &.

P roof We extend v to a field continuous on M and smooth on M \ M and put
W=w—v; 4 ()" ... &1 Then w is a solution to the boundary problem

Hi = f;, i (2)E0 ... b|pgn = 0. (4.8.2)

Converting the argument that led us to (4.6.2)—(4.6.4), we see that (4.8.2) implies the
equality If = 0. By Conjecture I,,, the last equality implies existence of a field & such
that do = f and 0|ppy = 0. The function @;, _; , (x)"...&m is a solution to the
boundary problem (4.8.2) and, consequently, coincides with @w. The lemma is proved.
The hodograph I'y(z,y) of a simple metric is a smooth function for = # y. For z,y €
OM, let a = T'y(x,y);v : [0,a] — M be a geodesic such that v(0) = z,v(a) = y. By the
formula for the first variation of the length of a geodesic [41], the next equalities hold:

(1(0),8) = =0Ty(x,y)/0¢  for &€ T(OM),

(4.8.3)
((a), &) = OLy(z,y)/0¢ for ¢ € T,(0M),
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which mean that the angles, at which v intersects 0M, are uniquely determined by the
hodograph.

Let ¢° and g' be two simple metrics whose hodographs coincide. These metrics induce
the same Riemannian metric on OM, i.e., g0 (x)£'¢! = g;(2)€°¢ for (x,€) € T(OM). By
Y and 7' we denote the unit outer normal vectors to M with respect to these metrics.
Let us find a diffeomorphism v : M — M such that ¥|sy = Id and (dy)v® = &', and put
g' =v¢*g". Then I'yo = I',1 and the metrics ¢°, g* coincide on OM :

g (@) = gl (2)¢'¢ for x €M, & €T, M. (4.8.4)

If Problem 1.1.1 has a positive answer for ¢°, g*, then it has also a positive answer for
the initial pair ¢°, g'. Thus in studying the problem it suffices to consider pairs of metrics
meeting condition (4.8.4).

Lemma 4.8.6 Let ¢°, g' be two simple metrics such that their hodographs coincide and
condition (4.8.4) is satisfied. For x € OM and 0 # £ € T, M, if v* : [0,a*] — M is the
mazximal geodesic, of the metric g¢* (o =0, 1), defined by the initial conditions v*(0) = z
and ¥*(0) = &; then the equalities a® = a', v°(a®) = v!(a') and 4°(a®) = 4! (a') are valid.

Proof Weput ¢ = (¢58¢) 2 y =~°(a°). Then [{]a® = T4a(z,y). Since g is
simple, there exists a geodesic ' : [0,a"] — M of this metric such that ¥*(0) = z and
¥'(a®) = y. The length of the geodesic 4! is equal to |£|a” and, consequently,

71 (0)] = [ (a”)] = |¢] = 15°(0)] = |4°(a”)]. (4.8.5)

By (4.8.3), the angles between any vector n € T,,(9M) (n € T,(0M)) and the vectors
40(0), 41(0) (the vectors 4°(a®), 41 (a)) are equal. Together with (4.8.5), this gives

€ =4%0) =7'0), °(a") =73'(a"). (4.8.6)

Both the mappings 7' : [0,a'] — M and 7' : [0,a°] — M are the maximal geodesics of the
1

~—

metric g' and satisfy the same initial conditions v'(0) = 4'(0) = 2 and 4'(0) = 4'(0) = &.
Consequently, they coincide, i.e., a® = a' and v'(¢) = '(¢). Now (4.8.6) implies the claim
of the lemma.

Remark. The function 7, : 0_QM — R introduced in Section 4.1 can be called the
angle hodograph of a dissipative metric g. Lemma 4.8.6 means that, if the hodographs
of two simple metrics coincide, then their angle hodographs coincide too. The author
does not know whether the converse assertion holds. It is just for this reason, that,
investigating Problem 1.1.1, we restrict ourselves to considering only simple metrics and
not formulating this problem for the class of dissipative metrics.

Let ¢° and g' be two simple metrics, on a compact manifold M with boundary, such
that their hodographs coincide and condition (4.8.4) is satisfied. Let us construct a
diffeomorphism @ : T°M — T°M in the following way. Given (z,&) € T°M, let vy, :
[a,b] — M be a maximal geodesic of the metric ¢° satisfying the initial conditions 7275(0) =
z and 49 (0) = & We put y =49 (a) and n = 4 (a). Then y € M and (n,v(y)) < 0.
Let v, ,(t) be the maximal geodesic, of the metric g', satisfying the conditions v, (a) =y
and 4, ,(a) = n. By Lemma 4.8.6, such a geodesic is defined on [a,b]. We put ®(z,§) =
(75.,(0),%,.,(0)). Changing the roles of ¢° and g', we see that ® is a diffecomorphism.



136 CHAPTER 4. THE RAY TRANSFORM ON A RIEMANNIAN MANIFOLD

By Lemma 4.8.6, the so-constructed diffeomorphism ® satisfies the boundary condition
O(x, &) = (x,&) for z€IM. (4.8.7)

It follows from the definition of ® that it transfers the geodesic flow of the metric ¢° into
the geodesic flow of the metric ¢g'. Consequently, the geodesic vector fields H° and H! of
these metrics are ®-connected.

Fig. 2

We will assume for simplicity that some global coordinate system can be introduced
over M. Let ®(z,&) = (y(x,&),n(x,£)) be the coordinate form of ®. Writing down the
condition of ®-connectedness of H° and H! in coordinate form, we arrive at the system
of equations

0. i 0. 1; ik
H' =7,  H'n'=-Tuyn'n" (4.8.8)
By (4.8.7), the boundary conditions
yi(x, &) =, ni(x,&) =¢& for €M (4.8.9)

hold. If Problem 1.1.1 has a positive answer for the given pair of metrics, then y(x,¢)
is independent of ¢ and the mapping = — y(z) coincides with the diffeomorphism ¢
participating in the formulation of the problem. Thus we arrive at the next question
equivalent to Problem 1.1.1: is it true that, for any solution y(z, &), n(x, ) of boundary
problem (4.8.8)-(4.8.9), the functions y* are independent of £?

P r oo fof Lemma 4.8.4. If the metric is flat, then in some neighbourhood of every
point a coordinate system can be introduced such that its Christoffel symbols vanish
everywhere. Given the supplementary condition of simplicity of the metric, one can easily
see that such a coordinate system exists on the whole of M globally. So for flat ¢!, system
(4.8.8) simplifies as follows:

H%' = 7', H%'" = 0. (4.8.10)

If ¢° satisfies Conjectures I; and I, then (4.8.9) and (4.8.10) imply with the help of Lemma
4.8.5 that the functions n'(z, £) are linear in € and y'(x, £) are independent of €. Thus we
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obtain the diffeomorphism ¢ : M — M, ¢ : x +— y(z) satisfying the boundary condition
¢lonm = Id. The first of the equations (4.8.10) now takes the form 1 = d, () and, conse-
quently, the above-constructed diffeomorphism ® looks like: ®(z,&) = (¢(x), drp(§)). As
we have seen, ® transforms the geodesic flow of the metric ¢° into the same of g'. Since a
geodesic flow preserves the length of a tangent vector and these metrics coincide on 9M,
we obtain ¢*¢" = g'. The lemma is proved.

4.9 Bibliographical remarks

The general scheme of the method used in the proof of Theorem 4.3.3 is known in math-
ematical physics for a long time under the name of the method of energy estimates or
the method of quadratic integrals. At first, for classical equations, the main relations
of the method had a physical sense of energy integrals. While being extended later to
wider classes of equations, the method was treated in a more formal manner [30]. Roughly
speaking, the principal idea of the method can be explained as follows: given a differential
operator D, we try to find another differential operator L such that the product LuDu
can be decomposed into the sum of two summands in such a way that the first summand
is presented in divergence form and the second one is a positive-definite quadratic form in
the higher derivatives of the function u. The Pestov identity (4.4.9) is an example of such
decomposition. The first summand on the right-hand side of (4.4.9) is a positive-definite
quadratic form in derivatives Ou/0z’, the second and third summands are of divergence
form while the last summand is considered, from the viewpoint of the method, as an
undesirable term.

In integral geometry the method was at first applied by R. G. Mukhometov [83, 84, 85]
to a two-dimensional problem. Thereafter this approach to integral geometry problems
was developed by R. G. Mukhometov himself [86, 87, 88, 89] as well as others [7, 10, 12,
90, 108]. For multidimensional problems, the method have obtained a rather complicated
form, so almost every of the mentioned articles is not easy for reading. In this series,
some papers due to A. Kh. Amirov [3, 4, 5, 6] can be distinguished where some new ideas
have arisen.

The first and foremost difference between Mukhometov’s approach and Amirov’s one,
which determines other distinctions, is the choice of the coordinates on the manifold QM.
A. Kh. Amirov uses the same coordinates (z,¢) = (2!, ..., 2", &', ..., £") as we have used
in this chapter, while R. G. Mukhometov uses the coordinates (z!,...,a" z' ... 2""1)
where z € OM is a point at which the geodesic v, ¢ meets the boundary. Each of these
coordinate systems has its own merits and demerits. For instance, being written in the
coordinates (z, z), the kinetic equation is of a more simple structure (dose not contain
the derivatives with respect to z). But at the same time, if the right-hand side of the
equation depends on ¢ in some way (for instance, in this chapter we are interested in
the polynomial dependence on &), then in the coordinates (x, z) the dependence obtains
very complicated character. On the other hand, using the coordinates (x,¢), there is no
problem with the right-hand side. But at the same time, since the equation contains the
derivatives with respect to &, to apply the method successfully, we have to impose some
assumptions, on the coefficients of the equation, which require positive definiteness for a
quadratic form.

In [102] L. N. Pestov and V. A. Sharafutdinov implemented the method in covari-
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ant terms and demonstrated that, in this approach, the mentioned assumptions on the
coefficients of the equation turn into the requirement of nonpositivity for the sectional
curvature. Of course, the last requirement is more sensible from a geometrical standpoint.

In [116] the author used the coordinates (z,n) that differ from (z,§) as well as from
(x,z). Namely 7 is the vector tangent to the geodesic v, ¢ at the point z. By means of
these coordinates, the claim of Theorem 4.3.3 was obtained for a domain M C R"™ and for
metrics C*-close to that of Euclidean space. The system (z,7) has the same advantage
as (r,z), i.e., the kinetic equation does not contain the derivatives with respect to 1. At
the same time, if a metric is close to that of Euclidean space, the coordinates (z,7) and
(x,&) are close. The last circumstance makes application of the method a full success.

Finally, in [121] the author noticed that the Poincaré inequality allows one to obtain
estimate (4.7.8) that leads to Theorem 4.3.3 which unites and essentially strengthens the
results of [102] and [116]. Note that this observation is of a rather general nature, i.e., it
can be applied to other kinds of the kinetic equation, as we will see in the next chapters.
On the other hand, this observation allows one to extend essentially the scope of the
method, since making it possible to replace the assumptions of positive definiteness of
a quadratic form by conditions of the type “of a slightly perturbed system”. The last
conditions often turns out to be more acceptable for a physical interpretation.

Theorem 4.8.1 generalizes essentially a theorem due to R. Michel [80]. He proved
the same claim under the assumption that there exists a function Ky(x) > 0 such that
the sectional curvature satisfies the inequalities —1/n < K(z,0)/Ky(z) + 1 < 1/n where
n = dim M.

Theorem 4.8.2 is a rather special case of a result due to M. Gromov [42]. He obtained
the same claim without the condition k™ (M, g) < 1/3. A simple proof of the claim is
presented in the paper [22] by C. B. Croke.



Chapter 5

The transverse ray transform

It is known that anisotropy of each of the medium characteristics, the dielectric and
magnetic permeabilities, and conductivity, is followed by polarization effects for an elec-
tromagnetic wave propagating in the medium. A similar assertion is valid for elastic
waves in a solid body. A possibility arises of detection and quantitative estimation, of
the anisotropy of a medium contained in a bounded domain, by comparing the degrees
of polarization of the incoming and outcoming waves. In the framework of geometrical
optics, evolution of the polarization ellipse is usually described by a system of ordinary
differential equations which connects the values, on a light ray, of the electromagnetic field
and of the sought medium characteristic (for definiteness, we say here on electromagnetic
waves, although similar consideration is possible for elastic waves too). Consequently, for
every ray, the degree of polarization of the outcoming wave depends only on the values
of the medium characteristic on the ray, i.e., our problem is of a tomographic nature.
Thus, to settle the problem it is natural to use tomographic methods of measurements,
i.e., to measure polarization for each ray in a sufficiently large family. By polarization
tomography the author means the combination of methods for measurements and data
processing which arises in such a way. The domain of potential applications of polariza-
tion tomography is rather spacious: lightconductor optics, plasma physics, the earthquake
prediction problem and many others. There relate photoelasticity problems one of which
is considered in Section 2.16.

The mathematical nature of polarization tomography problems differs radically from
that of classical tomography. The difference is responsible for two next circumstances.
First, the polarization effects are due to the vector nature of waves. Consequently, it
is unnatural and mostly impossible to reduce the polarization tomography problem to
that of finding a scalar field, i.e., our problems are concerned to vector tomography as a
matter of fact. The second feature is related to the transverse character of electromagnetic
waves and is described as follows. The result of each measurement is “an integral along
a ray”’ with the integrand depending only on the component, of the desired medium
characteristic, which is orthogonal to the ray.

The first section of a physical nature has the only purpose of demonstrating that the
main notion of the current chapter, the transverse ray transform, relates to the above-
mentioned feature of polarization tomography rather than presents a product of idle
speculation. In Section 5.2 we define the transverse ray transform on a compact dissipative
Riemannian manifold and formulate the main result of the chapter, Theorem 5.2.2, which
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asserts that the transverse ray transform is invertible in sufficiently simple cases and
admits a stable estimate. The remainder of the chapter is devoted to the proof of this
theorem.

5.1 Electromagnetic waves in quasi-isotropic media

In this section we derive the equations, firstly obtained by Yu. A. Kravtsov [62, 63|, de-
scribing evolution of the polarization ellipse along a light ray under the assumption that
optical anisotropy of the media is comparable with the wavelength. Yu. A. Kravtsov
proposed to call such media quasi-isotropic (the term “slightly anisotropic media” is also
used). Our exposition as compared with that of [63] differs in systematical use of curvi-
linear coordinates and covariant differentiation. We shall first obtain the equations in
Riemannian form and then show that their Euclidean form coincides with Kravtsov’s
equations.

At the end of the section we will briefly discuss the nonlinear inverse problem of
determining the anisotropic part of the dielectric permeability tensor and show that the
linearization of this problem produces a problem of inverting the transverse ray transform
for a tensor field of degree 2.

5.1.1 The Maxwell equations

We consider the homogeneous Maxwell system (i.e., on assuming the absence of charges
and currents)

1
rot’H—gD:O, divD =0,
N at (5.1.1)
rot& + —-—B =0, divB =0,
cot
complemented by the material equations
DI =¢lg,  B=H. (5.1.2)

The magnetic permeability of the medium under study is assumed to be equal to unity.
Thus the only medium characteristic is the dielectric permeability tensor (&7 (z)) that is
assumed to depend smoothly on a point z € R?.

We restrict ourselves to considering fields that depend harmonically on the time:

E(x,t) = E(x)e ™, D(x,t) = D(x)e ™, H(x,t)=H(zx)e ™"
In this case system (5.1.1)—(5.1.2) amounts to the following
rot H +ikD = 0, rot B —ikH =0, (5.1.3)
DI =&l B (5.1.4)

where k& = w/c is the wave number,
We will assume that the tensor ] () is representable as

. 1
gl = ed] + Ex{, (5.1.5)
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where ¢ = £(x) is a smooth positive function. Representation (5.1.5) means that the
anisotropy of the medium is comparable in value with the wavelength. Such a medium is
called quasi-isotropic. In particular, in the case y = 0 we have an isotropic medium. The
function n = /¢ is called the refraction coefficient.

The operator rot presumes that the space R? is oriented. Therefore in the current
section we will use only coordinate systems that are compatible with the orientation. Let
xt, 22, 22 be a curviliner coordinate system, and the Euclidean metric is expressed by the
quadratic form

ds® = gjpda’ dz” (5.1.6)

in these coordinates. As usual, we denote g = det (g;;). The operator rot is written in
coordinate form as:

(rot a)! = eMay .y, (5.1.7)

where (e/*) is the discriminant tensor skew-symmetric in each pair of its indices and such
that €' = ¢~/2. One can easily see that these properties actually determine a tensor,
i.e., that its components are transformed by formulas (3.1.6) if coordinates are changed
in an orientation preserving way.

With the help of the discriminant tensor, system (5.1.3)—(5.1.5) is written as:

M H,y .+ ik D7 =0, (5.1.8)

By —ikH) =0, (5.1.9)
1

D;=cE; + ExjkEk. (5.1.10)

Recall that we use the rule of raising and lowering indices: E; = gj B, B/ = ¢/"Ey;
The covariant derivatives participating in (5.1.8)—(5.1.9) are taken with respect to the
Euclidean metric (5.1.6).

5.1.2 The eikonal equation

Some version of the method of geometrical optics (or the ray method) is based on the
expansion of each of the fields A = E, H, D into the asymptotic series of the type

BN

A(z) = @ i le)fz (5.1.11)

m=0

—~

which are assumed to be valid in the topology of the space £(R?). We insert series (5.1.11)
into equations (5.1.8)—(5.1.10), implement differentiations and equate the coefficients of
the same powers of the wave number k on the left- and right-hand sides of the so-obtained
equalities. In such a way we arrive at the infinite system of equations

. m m—1 m . ,om—1
(m=0,1,...), (5.1.12)
0

ki m m—1 _mj
e (EkT;z+ Ek;l) H

-1 -1
where it is assumed that £ = H = 0.
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Consider the initial terms of this chain. Putting m = 0 in (5.1.12), we have
- 0.
e’ HkT;l—i-éEJ :0, (5113)

.. 0 0.
MELT — H =0. (5.1.14)

We see that x does not participate in (5.1.13)—(5.1.14). So the forthcoming consequences
of these equations are identical for isotropic and quasi-isotropic media. Inserting expres-

0
sion (5.1.14) for the vector H into (5.1.13), we have

jkl op q 2 _
e e BT T+ ek’ = 0.
One can easily verify the relation
ki _sisl  spsl
e’ erpg = 5q5p 5j5q
which allows us to rewrite the previous equation as:
0, L0 0.
E'rar? —F't'7r,+¢e¢E =0,
or, in invariant form, as:
0 5\ 0
(E,Vr)Vr + (e = |Vr?) E=0

where V7 is the gradient of 7. Taking the scalar product of the last equality and Vr, we
obtain

(E,Vr) =0. (5.1.15)
0
The previous equality now takes the form (e — |V7|?) E = 0. Since we are interested in the

case when system (5.1.13)—(5.1.14) has a nontrivial solution, the function 7 must satisfy
the eikonal equation:

Vr|? =n®=¢. (5.1.16)

The eikonal equation characteristics (rays) are geodesics of the Riemannian metric
dl? = n*ds* = hj, dz’ da", hjr = n*gik, (5.1.17)
Note also that (5.1.14) implies the relations
(i, V) = (I, H) = 0. (5.1.18)

Equalities (5.1.15) and (5.1.18) express the well-known fact of the transverse nature of an
electromagnetic wave within the scope of the zero approximation of geometrical optics.
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5.1.3 The amplitude of an electromagnetic wave

We fix a solution 7 to the eikonal equation (5.1.16). In a neighbourhood of each point
one can introduce so-called ray coordinates, i.e., curvilinear coordinates x!, 2%, 2% such

that 3 = 7 and the coordinate surfaces 2 = x3 are orthogonal to the coordinate lines

' = zj, x* = zf that are the geodesics of metric (5.1.17). In these coordinates the

Euclidean metric (5.1.6) has the form
ds? = gagdr®dz’ +n~2dr?. (5.1.19)

From now on in the current section Greek indices range over the values 1,2; on repeating
Greek indices, summation from 1 to 2 is understood. The gradient of 7 has the coordinates

T;a:’]‘;azo’ 7';3:1’ 7';3:”2, (5120)

By (3.2.13), the Christoffel symbols of the Euclidean metric in coordinates (5.1.19) look
as:

1 ,0¢9, 1 09, 0
Piﬁ = —-n’ J ﬁv Fg?, = 7937ﬂ7 Fii’) = _n_17n7
e — 53,08 on . — 1 0n o
33= N ¢ 928’ 33— — N o7
We introduce the notations
J? =det(gag), g =det(g;n) =n2J>% (5.1.22)

The quantity J is called the geometrical spreading . It is invariant in the following sense: if
the ray coordinates under studying are transformed so that they remain ray coordinates,
then J is multiplied by some factor constant on every ray z® = z§. By (5.1.21) and
(3.6.9),

dg ; 10g on 20J
2208 _ opa, — o1, — 903, = 2 fop i = 225 5.1.23
T "or o3 73 33 g@T+ "or T Jor (5.1.23)
We also need the equalities

gt =T g, 9®=Jgn, 9% =—-J g0 (5.1.24)

In ray coordinates equations (5.1.13)—(5.1.14) of the zero approximation look as:

0 0
P Hs +eE* =0, (5.1.25)

0 0
e*PEs — H* = 0. (5.1.26)

It follows from (5.1.18), (5.1.19) and (5.1.26) that, in ray coordinates, the components of

0 0
the vectors F and H satisfy the relations

0 0
E*=Fs=H>= H;=0, (5.1.27)

0 0 0
H' =g '?E,,  H=—-9g"Er (5.1.28)
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0 0

Conversely, if F1, and EF5 are arbitrary functions, then we obtain a solution to system
0 0

(5.1.25)-(5.1.26), defining H; and Hs by equalities (5.1.28). Thus the equations of the

zero approximation determine the vector fields j% and ﬁ[ up to the functions 1%1 and %2
that remain arbitrary. Differential equations for these functions can be obtained from the
equations of the first approximation, that is equations (5.1.12) for m = 1, taking the next
form in ray coordinates:

1 0 0 1 0
eE® = —€3a’8Ha;,8 — iX**Fa, H = €3aﬁEa;ﬂ' (5.1.29)
a,@?)l la__aklo . aﬁo
€ Hg+€E = —€ Hk;l X Eﬁ, (5130)
1 1 0
PRy — H = —e*M By (5.1.31)
Indeed, equations (5.1.30)—(5.1.31) can be considered as a linear algebraic system of 4

11 1 1
equations with respect to 4 unknown variables E1, F2, H1, H2. Note that the matrix of this

system coincides with the matrix of the system (5.1.25)—(5.1.26). The eikonal equation
(5.1.16) can be considered as the condition that the determinant of the system (5.1.25)—
(5.1.26) vanishes. It is essential that the rank of the system (5.1.25)—(5.1.26) is equal to 2
provided (5.1.16) holds. So, for solvability of system (5.1.30)—(5.1.31), its right-hand side

must satisfy some pair of linear conditions. The last conditions will give us both desired
0 0
differential equations on the functions F; and FE».

We start implementing the intended program with writing down equations (5.1.30)—
(5.1.31) in a more detailed form. Putting @ = 1 and then « = 2 in (5.1.30), we obtain
the system

1 1 0 0 0
g—1/2H2 + €E1 — g_1/2 <H3,2 _ H2,3> _ Z'XlocEa

o N n (9 ; L (5.1.32)
—g Hi+eE® =g <H1;3—H3;1>—ZXO‘EQ.
Similarly, equation (5.1.31) gives
1 1 0 0
H' =g "B+ g7 (Ez;s - E3;2> :
(5.1.33)

1 1 0 0
H? = —9_1/2E1 +g‘1/2 <E3;1 —E1;3)-

1 1

Inserting (5.1.33) into the equalities H, = gosH” and using (5.1.24), we obtain
1 1 0 0

H1 = 91/2n2 (E2 +E2’3 - E3;2> 9

(5.1.34)

1 1 0 0
Hy = g/?n? (—El + Byl — E1;3) _

1 1
Finally, inserting expressions (5.1.34) for the functions H, and H» into (5.1.32), we arrive
0 0
at the desired differential equations for the vector fields F and H:
0 0 0 0 0
n? (E£3 - E3;1> +g (H3;2 - H2;3) = iX'*Ea,

(5.1.35)
0 0 0 0 0
n2 (E%S _ E3’2> _ g_1/2 (H371 — H173> p— Z.XQOCECW
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From now on we will omit the index 0 in the notations j% and ](—)1 , since the higher
amplitudes ( E and H for m >0 ) are not used further in the current section.

Let us exclude the vector H from system (5.1.35). To this end we first transform this
system to a more convenient form. Putting § = 1, we multiply the first equation of the
system by ggi; the second, by gge and sum the so-obtained equalities. Then we perform
the same procedure with 8 = 2. After simple transformations using (5.1.22) and (5.1.24),
we arrive at the next system equivalent to (5.1.35):

Ey.3—FE3.+¢Y? (Hs.2 — H%3) = in 2\ E,,

3

(5.1.36)
Eyis — Eyp — ¢! (Hs, ' — H'5) = in” X3 E,.
Since E3 =0,
OF,
Eais = Esia = : 5.1.37
e ’ or ( )
From (5.1.28) with the help of (3.6.9), we obtain
(g 2E,) _
H1;3 :T+g 1/2(F§1E2—F§2E1):
_ 0F,
g 2E)
Wi === +o (i -ThE) =
_ OF;
=g ' [_87 + (M5 + T8s) By + r§3E2] ‘

Inserting values (5.1.21) of the Christoffel symbols into the last equalities, we have

oF 1, 0g9, 1 . 0g2a 0
Hl 3= g_1/2 2 N 791@ g2 El _ 79204 g2 —n 17n E2 7
or 2 or 2 or or (5.1.38)
_ OF 1, 001 _,0n 1 5,0014 o
H2 .= 1/2 | 1 - la . 17 E - 2« Bl
3= 9 or + 29 or " or 1+ 29 or 2

We now calculate the derivatives Hj. “. Using (5.1.27) and (5.1.28), we obtain
Hy;o = —TosHs = —gs,TosH" = g7/T05 (921 — q1552)

Inserting the Christoffel symbols (5.1.21), we come to

1 _ @92 391
Hy..,=—-qg V| 22Ep - 2ZCF, .
3; 2g (@T ! or 2

It follows from this that

1 0 0
Hy @ = g*fHy, 5= ~g~ V2% ( 9o2 p _ 9 E2> | (5.1.30)

2 or or

Inserting (5.1.37)—(5.1.39) into (5.1.36), we arrive at the system

O, 0ga ,
o b~ gf Ef =in"%PE;  (a=1,2), (5.1.40)

2
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where the notation
1 af agaﬁ nfl@

2 or or
is used. Equations (5.1.40) are just the above-mentioned solvability conditions for equa-
tions (5.1.30)—(5.1.31) of the first approximation. Observe that these conditions turn out
to be a system of ordinary differential equations along the ray z® = zf. Of course, it is
not coincidental. The situation is similar when the method of geometrical optics is applied
to hyperbolic equations of a sufficiently wide class; compare with Chapter 2 of the book
[44]. We also draw the reader’s attention to the feature mentioned in the introduction to
the current chapter: system (5.1.40) contains only the components, of the tensor y, which
are orthogonal to the ray.

The amplitude A of an electromagnetic wave is defined by the equality

a= (5.1.41)

A?2=|E* = g"PE, B, (5.1.42)
On the base of (5.1.40), we obtain an equation for A. To this end, we differentiate equality

(5.1.42)
DA? OBa—\ 0%
_ a7~
5 = 2Re <g o EB> + ——EaEs.

Inserting the expression for dF, /0t which follows from (5.1.40) into the last equation,
we obtain

2
% = Re Kgmgﬁ‘;agw — ago‘ﬁ> EoEs5+ inZXaﬁEaEﬂ‘| + 0
or or

From now on we assume that the tensor x is Hermitian, i.e., that xos = Xg,- In this case
the second summand in the brackets is pure imaginary and, consequently, can be deleted.
The expression in the parentheses is symmetric in o and 8 and, consequently, the first
summand in the brackets is real. So the previous equality can be rewritten as:

0A% (agaﬂ

a ag 4 « inl
Ea A S

or

By differentiating the identity g*’gg, = 05, we obtain the relation

oB
097 | yorg 99 _

W = (5.1.43)

with help of which the previous formula takes the form

A —
QAZT = —ago‘ﬁEaEg = —aA?

or
0A
2— A=0. .1.44
o +a 0 (5 )

By (5.1.23), equality (5.1.41) takes the form

C1on  10J
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Inserting this value into (5.1.44), we arrive at the equation

0 i
/2 71/2 _
57 {ln (n J A)} =0.
Integrating this equation, we obtain the classical formula for the amplitude of an electro-

magnetic wave:

C
A= ——, 5.1.46
— ( )

where C' is a constant depending on a ray. Observe that the tensor x does not enter this
formula, i.e., the amplitude of a wave in a quasi-isotropic medium coincides with that of
the corresponding isotropic medium. As is known, the physical interpretation of formula
(5.1.46) is as follows: within the scope of the zero approximation of geometrical optics,
the energy of an electromagnetic wave propagates along a ray tube.

5.1.4 Rytov’s law
We transform system (5.1.40), changing variables

E, = An"'n, (5.1.47)
where A is the amplitude defined by (5.1.42). Using (5.1.40) and (5.1.44), we obtain

Mo 0 (1 _ nokE, n 0A 20n ,
2or ~2ar (AE> =200y tamar et agite=
(5,098, 2.8 na 20n .,

1 <g 57 E,Y aF, +in XaEﬁ> + " E, + A@TEa

dg 20n
_ ByZIaB z =20
95 + 0ol +n X8

Thus we have arrived at the system

Mo 1 5 0gap 10n i g
- _ — — ="M = — — 17 2 . ].4
5 39 5 T g = 5,5 Xalls (a ) (5.1.48)

Until now all our calculations were performed with respect to the Fuclidean metric. Let
us invoke the Riemannian metric (5.1.17) that assumes the next form in ray coordinates:

dl? = hogdz®dz® + (d7)%,  gap = 1 2hap. (5.1.49)

Note that the vector n has unit length with respect to this metric, which fact explains
the meaning of the change (5.1.47). Inserting expression (5.1.49) for g, into (5.1.48), we
transform this equation so as to have

ona 1., Ohe i

Let f;k be the Christoffel symbols of metric (5.1.49); they are expressed from h,g by
formulas similar to (5.1.21). In particular, I, = 1P Ohap/07. From this, by the rule
for calculating a covariant derivative, we see that equation (5.1.50) can be rewritten as:

L (a=1,2) (5.1.51)
o = — . o = y . .
Nous 3 2n2X UL
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As mentioned above, the field 7 is orthogonal to the ray v : 2% = z, i.e.,

(n,4) = n; " =13 =0, (5.1.52)

and has unit length: ‘
In|? = 'Fnm, = 1. (5.1.53)

It follows from (5.1.52) and (5.1.53) that
M35 =0 (5.1.54)

The index 3 is distinguished in (5.1.51) and (5.1.54), since these equations are written
in ray coordinates. In an arbitrary coordinate system equalities (5.1.51) and (5.1.54) are
replaced with the next ones:

Dn i I

where D /dr = 4*V} is the operator of absolute differentiation along a ray +. Validity of
(5.1.55) follows from the fact that this formula is invariant under change of coordinates
and coincides with (5.1.51), (5.1.54) in ray coordinates.

To find a coordinate-free form of equation (5.1.55), we note that the tensor xy = (x¥)
can be considered as a linear operator y : R® — R?. For 0 # ¢ € R?, we denote by
P: : R® — R3 the orthogonal projection onto the plane &+ = {n € R? | (¢,) = 0}. In
coordinate form this operator is given by the formulas

1
(Pea); = <5f e

Thus equation (5.1.55) is written in coordinate-free form as follows:
Dn_ ¢
dr — 2n?

The right-hand side of equation (5.1.56) is understood in the following sense: considered
as a linear operator, the tensor x is applied to the vector n; the operator Pj is then
applied to the so-obtained vector. In the next section we shall see that the right-hand
side of (5.1.56) can be understood in another way: first the operator P; is applied to the
tensor x and the so-obtained linear operator is then applied to the vector 7,

In the case x = 0, i.e., for an isotropic medium, equation (5.1.56) means that the
vector field 7 is parallel along the ray - in the sense of the Riemannian metric (5.1.17).
This fact is well known to be equivalent to the Rytov law (we will discuss the Rytov
law for isotropic media in detail in the beginning of the next chapter). Therefore we call
equation (5.1.56) the Rytov law for quasi-isotropic media.

§j§k> ag.

Pyxn. (5.1.56)

5.1.5 The Euclidean form of the Rytov law

We fix a point on the ray v, and identify the origin of some Cartesian coordinate system
(2!, 22, 23) = (x,y,2) with the point and its coordinate vectors with the Frenet frame
A, v, 3 of the ray v at the point. In this coordinate system metric (5.1.17) has the form

de? = n*(dz® + dy* + dz?). (5.1.57)
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At the coordinate origin the next relations are valid:

Dv 1
dr  n
Dﬁ 1
ir n
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dv 9 3
1V:n e +F AF+T v +T170],
i (5.1.58)
1ﬁ (d )\+F3V+F3ﬁ>

where s is the Euclidean arc length of «v. The vector i = n=!\ is parallel along v in the
sense of metric (5.1.57) and, consequently, at the origin

D(n=t)\) N n d\
27V 7 = 1 = _ =z = —
9 nVi(n~A) = V1A . A s

Here n, = 0n/0z. Inserting the values of d\/ds, dv/ds and d3/ds which follow from the
Frenet formulas ( K is the curvature and & is the torsion of the ray)

dp

0=n +TLAN+T20 + 18,3 — %)\

dA dv

i K, T — K\ — K3, g = (5.1.59)
and the values . n, o o
= =T =T
rl, = % 2, = % I3, =0, (5.1.60)
= 7’; I2, =, rs, - =

for the Christoffel symbols of metric (5.1.57) into the previous equality, we see that the
relations n, = Kn, n, =0 hold at the origin. Now formulas (5.1.58) take the form

1/—|—7;:6).

We change variables in equation (5.1.56) by the formula n = n='F. The vector field
F is of unit length in the sense of the Euclidean metric (5.1.6) and is orthogonal to the
tangent vector A of the ray . Consequently, it can be represented as F' = F,v + F[3
where F,, and Fj are functions on the ray . We will obtain equations for these functions
which follow from (5.1.56). To this end we introduce the matrix

(5.1.61)

& 1 (nm

). Bk

dr n\n dr

X Xaw
Xvx  Xvv
XBx  XpBv

X3
Xv3
XBs

of components of the tensor y in the basis A, v, 5. First we calculate the right-hand side
of equation (5.1.56)

P

xn = Pax(n” (Bv + F3B)) = n~ ' (B, Paxxv + FyPaxf3) =

THE (X + xusB) + Fs(xauv + xs80)] =
=n"" (Y + xupF)v + (xpu Fo + x8F3)0] -

=nNn

(5.1.62)
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Now we calculate the left-hand side of (5.1.56)
Dn D (F, Fg )\
dr ~ dr ( VP ) B

1 dn 1dF lng FZ,DU Fs Dp
(Fov + Fyf) ndr "~ ﬁ ndr n dr’

n?dr
Using the relation d7 = nds and (5.1.61), at the origin we have

Dn Ny 1 dF, 1 dFs . F, (n, Fg ( )
== _22(F, I - LAY e -b
dr n3( vt ﬁﬁ)—i_n?ds 2d36 (nl/ Hﬁ)—i_n H+ ﬂ

Dy _ 1 [(dR, ar, _
[ I R E

Inserting (5.1.62) and (5.1.63) into (5.1.56), we arrive at the system

dF, )

ds = %(XVZ/FZ/ + XVﬁFﬁ> - KFﬁ 5 1.64
dFy; i (5.1.64)
ds %(Xﬂqu + XppEp) + KE,

which is just the Euclidean form of the Rytov law. Although we have proved (5.1.64) only
at the origin, these equations hold at each point of the ray, since they are independent of
choice of coordinates. Equations (5.1.64) were obtained by Yu. A. Kravtsov.

5.1.6 The inverse problem
We denote f = ix/(2n?) and rewrite (5.1.56) as

3;7 = P, fn. (5.1.65)
Assume a quasi-isotropic medium under investigation to be contained in a bounded do-
main D C R3. We also assume that the isotropic part ed,s of the dielectric permeability
tensor (5.1.5) is known from some considerations, i.e., the metric (5.1.17) and its geo-
desics are known. Our problem consists in determining the anisotropic part y,s of the
dielectric permeability tensor. To this end we can to fulfil tomographic measurements of
the following type: to examine the domain D along every geodesic of the metric (5.1.17)
(for instance, with the help of a laser in the case of the optical band), choosing arbitrary
polarization parameters for the incoming light and measuring them for the outcoming
light.

The mathematical formulation of our problem is as follows. Metric (5.1.17) is known
on a domain D. For every geodesic 7 : [0, 1] — D with the endpoints in the boundary of
D the value 7(1) of the solution to system (5.1.65) is known as a function of the initial
value n(0) and geodesic v:

n(1) = U(H)n(0). (5.1.66)

In other words, the fundamental matrix U(y) of system (5.1.65) is known. We have to
determine f(x) from U(v).
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With the problem formulated, we now distract ourselves from the initial physical
situation and consider the above-stated problem for a domain D C R"(n > 2) and for a
Riemannian metric

dt* = g;;dx'da? (5.1.67)
of the general type which is given on D. Of course, the factor P in (5.1.65) is now the
orthogonal projection in the sense of metric (5.1.67).

Note that the version of our problem obtained by omitting the factor P; in (5.1.65),
i.e., by replacing (5.1.65) with the equation

D17 .

is also sensible from a mathematical (and, perhaps, from an applied) standpoint. Such a
problem of vector tomography is considered in [137], uniqueness of a solution and a stable
estimate are obtained under some conditions on the smallness of the domain D and the
desired field f. Until now there is no success in extending the methods of [137] to the
case of equation (5.1.65).

The above-formulated inverse problem is nonlinear. Now linearize it. To this end we
fix a geodesic 7 : [0, 1] — D whose endpoints belong to the boundary of D and introduce
an orthonormal basis e;(t), ..., e,-1(t), e,(t) = cj(t) that is parallel along 7. In this basis,
system (5.1.65) looks like:

n—1
=y fynr (1<i<n-1).
j=1

We represent a solution to the Cauchy problem of the system by the Neumann series

1

/ dt+/F /tF(tl)dt1+...

0

1(0), (5.1.68)

where F' = ( fm)?j;ll and [ is the identity matrix. Deleting the terms that are nonlinear

in f, we obtain
7(1) — 7' (0) = / S f O O)d (1<i<n-—1). (5.1.69)

Multiplying each of the equalities (5.1.69) by &' and summing them up, we arrive at the
relation

Jf(v:€,m) / Z fis(t) (5.1.70)

0 tJ=1

n—1 _ .
where Jf(v;&,m) = X £(n'(1) — n*(0)) is a known function. To write equation (5.1.70)
i=1

in invariant form, we EJut ¢" =n" = 0 and increase the upper summation limit in (5.1.70)
to n. Then we note that the vector fields £(t) = &'e;(t) and n(t) = 1°(0)e;(t) are parallel
along v and perpendicular to the vector 4. Now equation (5.1.70) takes the form

TFGigm) = [ f(@)e @ @) dt (5.1.71)
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The integrand in (5.1.71) is evidently independent of the choice of a local coordinate
system in a neighbourhood of the point (). Thus we arrive at the next linear problem:

Problem 5.1.1 Let a Riemannian metric (5.1.67) be given in a domain D C R". De-
termine a tensor field f = (fi;) that is defined on D, if for every geodesic v : [0,1] — D
whose endpoints are in the boundary of D, bilinear form (5.1.71) is known for all £,m € v+,
where v+ is the space of vector fields parallel along v and orthogonal to 7.

In what follows we restrict ourselves to considering symmetric tensor fields f;; = fji.
In this case bilinear form (5.1.71) can be replaced with the quadratic one

I = [ F@mormd ey, (5.1.72)

The function Jf(v,n) defined by the last equality is called the transverse ray transform
of the field f.

Like every tomography problem, the problem of inverting the transverse ray transform
is overdetermined in dimensions n > 2 : the desired field f depends on the n-dimensional
variable € D while the known function Jf(v,n) depends on the 2(n — 1)-parameter
family of geodesics . At the same time our problem is underdetermined with respect to the
number of the sought functions: we have to determine n(n+ 1)/2 components of the field
f provided that only n(n —1)/2 coefficients of the quadratic form Jf(v,n) = a;(f,v)n'n’
are known (since dimy*+ =n — 1).

At the conclusion of the section we will show that, in the case when metric (5.1.67)
coincides with the Euclidean one (i.e., ¢ = const in (5.1.5)), the problem of inverting the
transverse ray transform is reduced to the classical tomography problem of inverting the
ray transform for a scalar function (for n = 3, to the problem of inverting the Radon
transform). Indeed, in this case geodesics coincide with straight lines that can be para-
meterized by a point z € R™ and a direction vector 0 # ¢ € R". Extending f by zero
outside D, in this case we can rewrite equation (5.1.72) as follows:

Jf(vm) = / fij(x +etm'nidt  (z,n € R", 0# &€ R, nLE). (5.1.73)

We fix 0 # 1 € R" and define the function ¢(y) = fi;(y)n'n’ on the hyperplane Ry~ =
{y € R" | (y,n) = p}. By (5.1.73), we know the integrals of ¢ along all straight lines
contained in R;'>!. So we can determine the values of ¢ on every hyperplane R}", and,
consequently, the field f on R too.

5.2 The transverse ray transform on a CDRM

Let (M,g) be a Riemannian manifold with boundary. By S™my, = (S™IIM, q,0,QM)
we denote the bundle over 9, QM induced from S™7;, by the restriction p : 0, QM —
M of the projection of the tangent bundle, i.e., S™my = p*S™t},. Thus sections ¢ €
C>*(S™myr) of this bundle are functions sending a point (x,§) € 9, QM to some tensor

(e, &) € STTM.
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Recall that, for a vector £ € T, M, by i¢ : S"T.M — S™T/M and je : S™MTIM —
S™T!M we denote the operators of the symmetric multiplication by ¢ and convolution
with &. These operators are dual to one other and, consequently, we have the orthogonal
decomposition S™T, M = Ker je @ Imie. Let P : S™T,M — S™T, M be the orthogonal
projection onto the first summand of the decomposition. As follows from Lemma 2.6.1,
for & # 0, this operator is given in coordinate form by the equality

(Pew)is i, = <6§j - |§|2&1§”1> ( o — W&"‘ ) Wy - (5.2.1)

The transverse ray transform on a CDRM (M, g) is the linear operator
J: C®(S™1y) — C(S"my), (5.2.2)
defined by the equality

I = [ EPufOo)d (@8 € a.0M), (5.2.3)
T (2.8)

where v = v,¢ : [T-(,€),0] — M is a maximal geodesic satisfying the initial conditions
7(0) = = and §(0) = & I4? is the parallel translation along v from the point y(t) to the
point y(0) = x.

Let us explain the relationship between this definition and definition (5.1.72) given in
Section 5.1. To this end we note that, for £, n € T, M, (5.2.1) implies the relation

Pen™ = (Pen)™. (5.2.4)

Let (x,€) € 0:QM, n € T, M, (£,1) = 0; and n(t) be a vector field parallel along v = 7, ¢
and such that n(0) = n. We take the scalar product of equality (5.2.3) with (n + a&)™,
where a € R. Using (5.2.4), we transform the integrand of the so-obtained equality as
follows:

(L (Pyo (1)), (n + a&)™) = (Pyoy f(4(8)), 17 (0 + a&)™) =
= Py J(¥(1)), (n(t) + a7 (£))™) = (f(v(1)), Py (n(t) + a7 (£))™) =
= (f(()), (Pyy(n(t) + ay(£)))™) = (f(v(£)), (n(£))™).
We thus obtain the equality

0

(Jf(,8), (n+a&)™) = (Jf(z,£),n") = / firin @) () o™ (8) dt,  (5.2.5)
(@)

which coincides up to a factor with (5.1.72) for m = 2.

It is interesting to compare (5.2.5) with operator (4.2.2), which may be called, in the
context of the current chapter, the longitudinal ray transform. First, for m = 0 these
transforms coincide. Second, for n = 2 they reduce to one other by a diffeomorphism
TM — TM mapping (z,§) into (z,&’), where & is obtained from £ by the rotation of
7/2 in the positive direction (for simplicity, we assume M to be oriented). For the other
values of m,n the operators I and J provide us with different information on a field f.
Simultaneous consideration of these transforms seems to be of some interest, but in this
book we leave aside this question.

The next claim is proved in exact analogy with Theorem 4.2.1.
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Theorem 5.2.1 For a CDRM M, the transverse ray transform (5.2.3) can be extended
to a bounded operator

J: H5(S™71,) — H*(S™my) (5.2.6)
for every integer k > 0.

For x € M, we put
K(z) = sup |K(x,0)|, (5.2.7)

where K (z,0) is the sectional curvature defined by formula (3.2.14).
For a CDRM (M, g), we introduce the characteristic

T+ (:17,.5)

K(M.g) = swp [ K (et) d. (5.28)
(z,£)e0-_QM 3

where v = 7, ¢ is a maximal geodesic defined by the initial conditions 7, ¢(0) = 2, %, ¢(0) =
€. Note distinctions of this characteristic from the quantity k™ (M, g) introduced by for-
mula (4.3.3). First, the integrand of (4.3.3) depends only on sectional curvatures in the
two-dimensional directions containing the vector 4, ¢(t) while the integrand of (5.2.8) de-
pends on all two-dimensional planes at the point v(¢). Second, the quantity k™ (M, g) is
determined only by positive values of the sectional curvature while k(M, g) depends on
the negative values too.
We can now formulate the main result of the current chapter.

Theorem 5.2.2 For integers m and n satisfying the inequalities n > 3 and n > m, there
exists a positive number €(m,n) such that, for every compact dissipative Riemannian
manifold (M, g) of dimension n satisfying the condition

k(M,g) < e(m,n), (5.2.9)
the transverse ray transform
J: HY(S™r),) — HY(S™my)
is injective. For a field f € H'(S™7},), the stability estimate
1fllo < ClIJ I (5.2.10)
holds with a constant C' independent of f.

In the theorem the condition n > 3 is essential, since we have seen that, for n = 2, the
operator J reduces to the operator I with nontrivial kernel. The second condition n > m
seems to be unessential; it is due to the method of the proof.

In what follows we assume that m > 1, since for m = 0, as we have seen, J coincides
with I and Theorem 5.2.2 is a consequence of Theorem 4.3.3.

The remainder of the chapter is devoted to the proof of Theorem 5.2.2. It has much in
common with the proof of Theorem 4.3.3, but at the same time it has some new principal
moments. Now we only note that, with the help of Theorem 5.2.1 and in exact analogy
with the argument presented just after the formulation of Lemma 4.3.4, one can easily
show that it suffices to prove Theorem 5.2.2 for a real field f € C*(S™7},).



5.3. REDUCTION OF THEOREM 5.2.2 TO AN INVERSE PROBLEM 155

5.3 Reduction of Theorem 5.2.2 to an inverse prob-
lem for the kinetic equation

Let (M, g) be a CDRM, f € C*°(S™7},). Define a semibasic tensor field u = (u;, 4, (z,§))
on T°M by the equality

uw, ) = [ P fO)d  (2.€) e TM), (5.3.1)
(z,8)

T—

where the same notations are used as in definition (5.2.3) of the transverse ray transform.
The difference between formulas (5.2.3) and (5.3.1) is the fact that (5.2.3) is considered
only for (z,£) € 9,QM while (5.3.1), for all (x,£) € T°M. In particular, we have the
boundary condition for u

ulo,om = J f. (5.3.2)
Since 7_(z,§) = 0 for (z,&) € 0_QM, we have the second boundary condition

ulg_anm = 0. (5.3.3)

The field v depends smoothly on (z,£) € T'M except for the points of the set T°(OM)
where some derivatives of u can be infinite. Consequently, some of the integrals considered
below are improper and we have to verify their convergence. The verification is performed
in the same way as in Section 4.6, since the singularities of the field u are due only to
the singularities of the lower integration limit in (5.3.1). So we will not pay attention to
these singularities in what follows.

The field u(x, &) is homogeneous in its second argument

u(z, t€) =t tu(x, &) (t>0) (5.3.4)
and satisfies the differential equation
Hu(e,€) = Pef(x) (5.3.5)

on TO°M \ T°(OM). Relations (5.3.4) and (5.3.5) are derived from definition (5.3.1) by
repeating the corresponding arguments of Section 4.6 almost word by word, we omit the
proofs.

We note finally that the field v = (u;,. 4, (%,€)) is symmetric in all its indices and
satisfies the relation

Jeu(z, &) =0, (5.3.6)

as follows immediately from the fact that the integrand of (5.3.1) has the same properties.
Observe a specific character of the right-hand side of equation (5.3.5). Conditionally
speaking, it is a product of the two factors depending upon different arguments. This
circumstance is crucial for what follows.
Written in coordinate form, equation (5.3.5) presents a system of differential equations
for components of the field u. This constitutes a principal distinction with Chapter 4 where
one equation was considered.
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Thus we have arrived at the following inverse problem for the kinetic equation: one
has to estimate the factor f(x) on the right-hand side of (5.3.5) by boundary value (5.3.2)
of a solution to the equation.

For a field wu(z,§) satisfying (5.3.2)—(5.3.6), we write down the Pestov differential
identity (4.4.4), multiply it by the volume form 0% and integrate over QM. Transforming
the divergent terms of the so-obtained equality in accord with the Gauss-Ostrogradskii
formulas (3.6.35) and (3.6.36), we arrive at the relation

J [Vl + (0= 2)w,)] dz =

QM

- 29 /4 &, (Hu)) dS - Jw (v, 1) AT +Q A/4 Ralu] dS, (5.3.7)

where v is the outer normal to dM, the semibasic vector fields v and w are defined by
formulas (4.4.5), (4.4.6) and the notation

R4 [U} = Rijklfifk%juil'"im : %luil.‘.im + Z Rikqufquil'"ik*lpik“'"im%juil...im (5-3-8)

k=1

is used. The coefficient n — 2 at the second summand of the integrand on the left-hand
side of (5.3.7) is due to the fact that the field w(z,&) is homogeneous of degree —1 in
its second argument as follows from (4.4.6) and (5.3.4). Moreover, (4.4.6) implies that
(w, &) = |Hul?, and equality (5.3.7) takes the form

/ [|%u|2 +(n— 2)|Hu|2} dx,

QM

_ 29 A/4 (Vu, O (Hu)) dS - 44 (0, 1) d52n=2 +Q A/4 Rufu] d5.. (5.3.9)

5.4 Estimation of the summand related to the
right-hand side of the kinetic equation

Most of difficulties are caused by the first summand on the right-hand side of (5.3.9). As
is seen from (4.6.7), in the previous chapter the integrand of the corresponding summand
was in divergent form; in the present case this is not so.

By the definition of the operator P, the right-hand side of equation (5.3.5) can be
represented as

Pef(x) = f(x) — iey(z,§) (5.4.1)

with some symmetric semibasic field y of degree m — 1 which in turn can be decomposed
into the sum

y(@,8) = y(x,8) +ich(z,€),  jey(z,§) = 0. (5.4.2)
From (5.3.5) and (5.4.1), we obtain

V(Hu) = V(f —icy) = —V(icy)-
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Written in coordinate form, this relation gives
Vi(Hw)iy i = =Vi(1eY)iy.ie = —0 (31 -« 0m) Vi(&i, Yin. i) =

= —U(il - -im)(giilym...im + gi1Viyi2...im)a

where o (i .. .1y,) is symmetrization in the indices i1, ..., ;. This implies that
h hi i1 v i i v
(Vu, V(Hu)) = V'u'" - Ni(Hu)iy iy = =NV U (Giiy Yig.im, + i Villin.im) =

h .. i h . .. . v h .. .
112...7 T 1122...7 112...7
= —Vu' 2ty = V(G u ) Niliy i = — VU

Writing the last equality of this chain, we used condition (5.3.6). Inserting expression
(5.4.2) for y into this relation and using (5.3.6) again, we obtain

h v h .. .
(Vu, V(Hu)) = =Vu" " - (Y. i + EixPig..ivy) =

Ao h o hoo
= =Nau" " iy — Vil ) iy = =N iy (5.4.3)
h
Introducing a semibasic tensor field §u by the equality

h hp
(0Wis.cimr = V' Upiy i1 (5.4.4)

we rewrite (5.4.3) in coordinate-free form

(Vu, V(Hu)) = —(§u, §). (5.4.5)

From (5.4.5) with the help of the inequality between the arithmetical and geometrical
means, we obtain

h v h o 1 ~12
20(Vu, ¥ (Hw)| < ldul? + 7|3 (5.4.6)

where b is an arbitrary positive number. We transform the first summand on the right-
hand side of inequality (5.4.6), extracting the divergent part from this term. To this end
we write

e ) hoo . h
[oul” = (0u)™ " (0U)iy...ip, = V"™ N gy 4, =
b () Pizeim Pizeimy wha
= V(W NV gy i) — 0NV UGy =
h Pig..0 hq p h b qig...0

= V(P 2" g iy i, ) — Uiy i VN, ut 2 (5.4.7)

h

By commutation formula (3.5.12) for the operator V,

h h . . h h . . . ) .
VquUQZ2mZm — qupuqz2---'bm _ lepqgjviuqm---lm +

m
+ qupquj 12:dm + Z Risquuqi?'-isfljis+1...im.
s=2
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Inserting this expression into the second summand on the right-hand side of (5.4.7), we
obtain

h h h L h .. h
’(SUP = _UZQ...iMVququ'"lm + Vp(umz"'lquuqig...im) 4 Rz[u], (5.4.8)

where the notation
- v . . .
Rz[u] = Rijklgju.’<;2._.imvlulZQ.HZm o

m

— RFpd, oot 3T R gl et dertim (5.4.9)

12...0m,
s=2

is used for brevity.
We now transform the first summand on the right-hand side of (5.4.8) in the order
reverse to that used in (5.4.7):

h 9 h P h Qo h » h qio..i
|oul” = _Vq(u~i2...imvpu )+ VoWiy. i, = VpU +

h . h ho .. h
+ Vp(upm.,.Zquuqumim) + R2[u] — vpquQ...lm . unpig...im‘l'
Koo . h. hooo
+ V,;(U”Q'”vajujizmim — Uji2ml'mv]U“2mzm> + RQ [U] (5410)
Defining a semibasic vector field v by the formula
, o h hooo
' = u“””’”V”ummim — Ujm“.imvjuzwmzm, (5411)
we write the above-obtained relation (5.4.10) in the form
h g he s o h h .
lou|® = V' """ Ny, + Vit" + Ralul. (5.4.12)
We introduce one else semibasic tensor field (the last one!) z on T°M by the equality

h &
Villiy iy, = |§I2

The idea of this new notation is the fact that the tensor z is orthogonal to the vector &
in all its indices:

(HWiy i + Ziiy.ign- (5.4.13)

E%iy iy, =20y i, = 0, (5.4.14)

while the tensor %u = (6@“@117,1) has the mentioned property only in the last m indices.
Indeed, the second of the equalities (5.4.14) follows from (5.3.6), and the first follows from
(5.4.13) and the definition of the operator H.

From (5.4.14) we conclude that the summands on the right-hand side of (5.4.13) are
orthogonal to one other and, consequently,

h
|Vul|® = [Hul® + |2 (5.4.15)

The first summand on the right-hand side of (5.4.12) can by expressed through z.
Indeed,

S
¥ 12...7
Vi 2t iy =
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1J12...0 j 19...1 1
= (z Jiaedm 4 |£|2 (Hu)™ m) (Zjiig...im + |§|2§](HU)ZZ21m> =

_ Ziji2~-'im2’jii2...im + ’5‘25] z]zz m(Hu)m,,,,-mﬂL

28 it (Hu) 2 £€J(Hu)”2 T (HW iy iy,

If\2 €1

The last three summands on the right-hand side of the preceding formula are equal to
zero, by (5.3.5) and (5.4.14), and we obtain the relation

h. .. . h o
i 712...1 L 1ji2...1
Vi 2t N Uiy = 2 2 i

With the help of the above formula, (5.4.12) implies the inequality

h ho.
loul* < |2 + Vit" + Rs[ul. (5.4.16)
From (5.4.6) and (5.4.16), we conclude that

h v 1 h .
2(Vu, V(Hu))| < b|z|> + E\QP + bVt + bR [ul. (5.4.17)

Now express § through f. To this end, recall relations (5.4.1) and (5.4.2) that, if
combined, give
f=Pef +icg+ith, jey = 0. (5.4.18)

Applying the operator j¢ to the first of the equalities (5.4.18), we obtain
Jef = Jeiey + jeigh. (5.4.19)
Now use the next

Lemma 5.4.1 For an integer k > 1 the equality
k m
ok 2 :k—1 k
ngg—m+k|f| Le +m+k‘%‘7€
holds on the space of symmetric semibasic tensor fields of degree m.

In the case £k = 1 this claim coincides with Lemma 3.3.3 (it does not matter that
Lemma 3.3.3 is formulated for ordinary tensors and the present claim, for semibasic ones;
the proof remains the same). In the general case the claim is easily proved by induction
on k.

Transforming each of the summands on the right-hand side of (5.4.19) with the help
of Lemma 5.4.1 and taking the second of the equalities (5.4.18) into account, we obtain

2 -2
iof =g i (Zie+

@5J5> h.

The second summand on the right-hand side of the last relation is in the kernel of the
operator F, so it implies that

m o
y:@PH&f-
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Inserting this expression into (5.4.17), we obtain

m2

bl¢]*

h v h .
2[(Vu, V(Hu))| < blz|* + |Peje 12 + bVi0" + bRoul. (5.4.20)

Integrating inequality (5.4.20) and then transforming the third summand on the right-
hand side of the so-obtained inequality with the help of the Gauss-Ostrogradskii formula
for the horizontal derivative, we find

h v 2
2 [ IS Splas < [ (s 5 P ) as
QM QM

+ / (&, ) d=2"2 1 b / Rolu] . (5.4.21)
oOM QM

It follows from (5.3.9) and (5.4.21) that

3 2
/ {|Vu\2 + (n — 2)\Hu\2} ax < / (b]z|2 + "Z\P5j§f|2> A+

QM QM
+ / (b5 — v, v) dX2"? + / Rlu] ds, (5.4.22)
oOOM QM
where
Rlu] = Ryfu] + bRo[u]. (5.4.23)

Replacing the summands of the integrand on the left-hand side of (5.4.22) with their
expressions by formulas (5.3.5) and (5.4.15) and using factorization (3.6.34) of the form
d>, we rewrite inequality (5.4.22) as

/ { / [(1—b>\z|2+<n—1>|P§f|2—”;\Pg‘mﬂ dwx@}dvn(mw

< / (b5 — v, ) d52"2 4 / Rlu] dx. (5.4.24)
QM QM

Now an intermediate summary is in order. For a solution u to equation (5.3.5) satisfy-
ing conditions (5.3.4) and (5.3.6), we obtained inequality (5.4.24) where b is an arbitrary
positive number, the semibasic vector fields v and ¢ are defined by formulas (4.4.5) and
(5.4.11), the function R|u] is defined by (5.3.8), (5.4.9) and (5.4.23). As far as the field z
participating in (5.4.24) is concerned, in what follows we shall use only the equality

h
|Vul? = |2 + | PP (5.4.25)

which is a consequence of (5.3.5) and (5.4.15). Note that boundary conditions (5.3.2) and
(5.3.3) were not used until now.
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5.5 Estimation of the boundary integral and
summands depending on curvature

First we will estimate the last of the integrals on the right-hand side of inequality (5.4.24)

through [, \%u!sz.
Agree to denote various constants that depend only on m and n by the same letter C.
For a Riemannian manifold (M, g), a point z € M and vectors &, n, A\, u € T, M, the
inequality

| Rijra ()€ Nu'| < CK ()€l nl[Allul, (5.5.1)

holds where K(z) is defined by formula (5.2.7). It follows, for instance, from the ex-
plicit expression, of components of the curvature tensor through the sectional curvature,
presented on p. 112 of the book [41].

From (5.3.8), (5.4.9) and (5.4.23) with the help of (5.5.1), we see that the inequality

[Rfu](z,€)| < CK (@) (Ju(z, )I* + | Vu(, €)[) (5.5.2)

holds on M under the assumption that the number b in (5.4.23) satisfies the condition
0<b< 1.

By boundary condition (5.3.3), the fields u and V u vanish on 9_QM. Integrating
(5.5.2) and applying Lemma 4.5.1, we arrive at the relation

/ R[u]|dS < Ck /(\Hu|2+ | Hu|?)ds, (5.5.3)
QM QM

where k = k(M, g) is given by formula (5.2.8).
v h
Estimate [q,; |HVu[*d¥ through [,, |Vu|?d3. To this end, note that the definition

v v h
of H implies the commutation formula VH — HY = V. With the help of the last formula,
we obtain

|HGu? < 2(|Vul® + [V Hul?). (5.5.4)
Moreover, the inequality
Hul? = |(&, V)ul? < [Vul? (5.5.5)
holds on QM. Using (5.5.4) and (5.5.5), we transform (5.5.3) to find

[ ] ]

QM M =M

/ R[u]| dS < Ck . (5.5.6)

%Huzdwx@)) V™ (z)

We fix a point x € M and choose coordinates in some of its neighbourhoods so that
gij(xr) = &;;. Applying the operator V; = 9/9¢" to the equality

. eI ) . CIm
(Hu)sy..o, = (az; - ﬂ“gf? ) (52,:: - fﬁz ) Fivin (),

that follows from (5.3.5) and (5.2.1), we obtain the representation

(VHu)lem-kl = ’6‘72m72p’5111‘z::_1 (g)fjljm (ZI’.)
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with some polynomials Pfi:gﬁl(f) independent of z. The representation implies the

estimate .
[ 1¥HuP () < Clf @) (5:5.7)

QM

It follows from Lemma 5.6.1 given below that the quadratic form [q,_,, | P f|*dw(€) is
positive-definite on S™7T. M, and the estimate

FE<C [ 1Pfdun(e) (5.58)
Qe M

holds with a constant C' independent of x.
Combining (5.5.7) and (5.5.8), we obtain

[ \VHuPdo(©) <C [ |HuPdun(€). (5.5.9)
Qe M QoM

Inequalities (5.5.5) and (5.5.9) allows estimate (5.5.6) to take its final form:

[ Rulas <cr [ | Vul?dS.. (5.5.10)
QM QM

With the help of (5.5.10), our main inequality (5.4.24) implies the next one:

[ | leP = Dine = iR o) v -

M \Q:M

ek [ Vs < [ 5 —v,vyds (5.5.11)
QM OOM

Note that, deriving this estimate, we have used boundary condition (5.3.3), but (5.3.2)
was not used until now.

We now estimate the right-hand side of (5.5.11) through Jf.

From (4.4.5) and (5.4.11) we obtain, on 0QQM,

R .. . n
(b0 — v, v) = b(yu"* "N iy 4, — VU N W )

v . h .h .. . v
+ Vig]%zuu...hn . Vjuil...im _ Vifzvjuu'”lm . vjuil...im- (5‘5.12)

Show that the right-hand side of (5.5.12) depends only on the restriction of u to
OQM. To this end we choose a coordinate system z',...z" in a neighbourhood of a point
o € OM such that the boundary OM is determined by the equation 2" = 0 and g;, = ;.
Then the vector v has the coordinates (0,...,0,1) and (5.5.12) is written as:

R R
(b0 — v, v) = Lu = b(u"""""V Uqiy. i, — U """ Vallniy. i, )+

v L h h . . v
+ &V U Ny gy, — §PV U Ny (5.5.13)

where the summation from 1 to n — 1 over index « is performed.
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It is essential that Lu does not contain the derivative %n u. So if y', ..., y* 2 is
a local coordinate system on OQQM, then Lu is expressible by a quadratic form in the
components of the fields u, du/dy’ and du/0|¢|. By homogeneity (5.3.4), du/d|¢| = —u
and, consequently, L is a quadratic differential operator on the bundle p*(S™7},) where
p 1 O0QM — M is the restriction of the projection of the tangent bundle. So (5.5.13)

implies the estimate
L/ (bt — v, v) dX*2

QM

< Dl|uloanll3, (5.5.14)

where a constant D depends on m and (M, g), unlike the constant C' on (5.5.11). Depen-
dence D on b can be extracted by assuming that 0 < b < 1.
Recalling boundary conditions (5.3.2) and (5.3.3), we rewrite estimate (5.5.14) as

L/ (bt — v, v) d¥* 2

QM

< D||If|2. (5.5.15)

With the help of (5.5.15), our main inequality (5.5.11) takes the form

[ |00l = iR = T P et v -

M \QzM

—Ck / 1Vul2ds < D||Jf]2. (5.5.16)
QM

5.6 Proof of Theorem 5.2.2

The next claim contains the main algebraic difficulties of our problem.

Lemma 5.6.1 Let m,n be integers satisfying the conditions n > 3, n > m > 1. For
every Riemannian manifold (M, g) of dimension n and every point x € M, the quadratic
form

(BE £y = [ (0= DIPP = m? Pejef?] deoa(€) (56.1)

QoM

is positive-definite on S™T.M and the estimate
[ (0= DIPP? = m2IPjef 2] duoa(€) = 0161 (5.6.2)
Q.M

holds with a positive coefficient § depending only on m and n.

The proof of this lemma will be given later, and now we will finish the proof of Theorem
5.2.2 by making use of the lemma.
Proving Lemma 5.6.1, we will see that the estimate

[ IPefiPaene) < Cip? (5.6.3)

Q.M
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holds with a constant C' depending only on m and n. From (5.6.2) and (5.6.3), we obtain
the inequality

[ (= DIPE = mIPjef ] doa(©) 26 [ [PefPden(e), (5.64)

Qe M Q

where the coefficient 0 differs from that used in (5.6.2), but is also positive and depends
only on m and n.
In particular, (5.6.2) implies that

[ 1Pejef Pdn(€) < C1 [ 1P Pdu(e) (5.6.5)

QM QzM

with a constant C; depending only on m and n.
Assuming that 0 < b < 1, it follows from (5.6.4) and (5.6.5) that

[ [ 0iper = T e o) =

Qu M

= / [(n = DIPef[? = m?|Pejef 2] dws (&) — m?(1/b — 1) / | Peje f|*dw,(€) >

QuM
> (5-m*Ci(1/b=1)) [ [PfPdun(E).
QM
With the help of this inequality, (5.5.16) implies that

h
/ [(1 — )P + (5 - m2Cy (1/b— 1)) | P - ok|vu|2} ds < D|JfIP.  (5.6.6)
QM
Until now the number b was subordinate to the only condition 0 < b < 1. We choose

it in such a way that

§—m?Cy(1/b—1) =§/2
and denote by J; the minimum of the numbers 1 — b and §/2. then (5.6.6) implies that
h
[ [810a + Pes ) = ORIVl d < DI
oM

Recalling (5.4.25), we rewrite the last inequality as:

h
(6, — Ck) / |Vul?ds < DI|Jf|I2. (5.6.7)
QM

The constants §; and C' on (5.6.7) depend only on m and n, and the quantity k& =
k(M, g) satisfies condition (5.2.9) of Theorem 5.2.2. Choosing the value of (m,n) in the
formulation of the theorem in such a way that §; — Ce(m,n) = §;/2, (5.6.7) implies the
estimate

h
[ 1VuPds < Dy fIE, (5.6.8)
QM
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where Dy = 2D/0;.
With the help of the inequality

F@EC [ IPf(@)Pdw(e)

Q.M

following from Lemma 5.6.1 and equation (5.3.5), we obtain

1713 = [ 1@Pav @ <c |

M

[ 1Pef(@)Pdeon(e)

dV”(:c):C’/ | Hul2dS.
Oz QM

Using (5.5.5), we transform the last inequality to obtain:

h
IFR<C [ IvuPds. (5.6.9)
QM

Inequalities (5.6.8) and (5.6.9) imply estimate (5.2.10). Theorem 5.2.2 is proved.

5.7 Decomposition of the operators A; and A,

The remainder of the chapter is devoted to the proof of Lemma 5.6.1.

Under the conditions of this lemma, we choose an orthonormal basis for T, M and,
with its help, identify T, M and the space R" provided with the standard scalar product
(,). Then S™T! M is identified with S™ = S™R™, the m-th symmetric power of the space
R"; the sphere 2, M is identified with Q = {£ € R" | [¢| = 1}; and the measure dw,, with
the standard angle measure dw on €. Let w = 27™/2/T'(n/2) be the volume of .

We define the operators Ag, A; : S™ — S™ by the equalities

A= [Pedofe), A= [P (5.7.1)
Q Q

and put
B = (n—1)A4, —m?A;. (5.7.2)

Then, for f € S™,

(B.1) = [ [(n = DIPSP — m? Peje 1) do(s).

Q

Thus Lemma 5.6.1 is equivalent to positive definiteness of the operator B.

Let 6 = (0;;) € S? be the Kronecker tensor. By i : S™ — S™*? we denote the operator
of symmetric multiplying by ¢ and by j : S™*2 — S™ the operator of convolution with
0. The operators ¢ and j are dual to one other.

Lemma 5.7.1 For m > 1, the equalities

o [/
Ay = (m—a)IT <2> S aa(pym,n)#5? (o =0,1) (5.7.3)

p=0
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hold on S™, where [m/2] is the integral part of m/2 and

(=) &= B (1+ ak — a)k!
220 (pl)2 =, 2k(m — k)!(k — 2p)'T (k + %) '

(5.7.4)

aOé(p7 m? n) =

P r oo f. First of all we note that the set {n™ | n € R"} generates the vector space
S™ as follows from the equality

am

otP

m
(ZtieZ) =m!ef
=0 \ i

valid for a basis ey, ..., e, for the space R™ and every multi-index ( of length 3] = m.
By the last observation, to prove equalities (5.7.3) it suffices to show that the relations
ny /2 -
(Aat™,¢™) = (m = 1T (5 ) 3 aalpom.m) (@57, C") (575)

p=0

hold for every n, ¢ € €.
Note that, for |n| = [(| =1,

(@ 3mn™, ¢y = (™, G = (T T = (n, Q)

Thus the desired equalities (5.7.5) can be rewritten as:

(Aar™,¢") = (m = a)iT (5 [mz/j ol ) (0, € (5.7
-
By definition (5.7.1) of the operators A,
(Aa™ ¢ = L [(Pjen™ g du()  (a=0.1) (7.7
0
Note that, for || = |n| = 1, the relation

Jen™ = (m, &)™ (5.7.8)

is valid and, as one can easily see from (5.2.1),
Pen™ = (Fen)™ = (1 — (1, €)™, (5.7.9)

By (5.7.8) and (5.7.9), the integrand of (5.7.7) can be transformed as follows:
<P£j?nm> ]?<m> = (<777 €> <<7 £>>Q<anmia> Cmia> =

= ((n, (¢ ) ((n, ) = (n, £){¢, €)™

Inserting this expression into (5.7.7) and denoting x = (n, () for brevity, we obtain

(") = (1) (170 e [ o st B0
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From now on agree that (S ) =0 for ¢ < 0.

Calculate the integral on the right-hand side of (5.7.10). To this end choose an ortho-
normal basis ey, . .., e, for R" such that n = e;, ( = ve; + (1 — 2?)'/2¢y. Then

<777€> = gla <Cv€> = lfl + (1 - 12)1/252'

Consequently,

=8 €0 dute) = - [&lnt+ (1 a9 20] due) =

Q Q

& l -2 2[—2
=2 (27«) 77 /5 r&rd (5.7.11)

As is known [112],
I'(2 1 1
! fease =0 (s (e d).
7l (l + %) 2 2
Inserting this expression into (5.7.11), we obtain

= [(6)(¢.&) duoté) = Tl s (;r) D(1=rt )T (r5) a0 - a2y

al (1+3) 7=

Replacing the integral of (5.7.10) with its value from the last equality, changing the
summation limits in the so-obtained double sum and introducing the notation

ca(r,m,n) =T (r + ;) i (1) (”;_‘5‘) <2lr> M (5.7.12)

= ri+s)

we arrive at the relation

r (g) [m/2)
(Aan™, ¢™) = (=1)° . > calr,m,n)z™ (1 — 2?)".
r=0

Expanding the factor (1 — 22)" on the right-hand side of this equality in powers of z and
changing the summation limits in the so-obtained double sum, we obtain

T (g) [m/2] [m/2] .
(Aan™, (") = (—1)aT Z%) (—1)? [z:: (—=1)" (p) ca(r,m,n)} P, (5.7.13)

Recalling that = = (1, () and comparing the above-obtained relation (5.7.13) with the
desired equality (5.7.5), we see that relations (5.7.5) hold with

B (_1)p+a [m/2] r
ao(p,m,n) = e p— ; (—1) (p) Colrym,n). (5.7.14)
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Now to finish the proof we have to verify that equalities (5.7.14) are equivalent to formula
(5.7.4).

Inserting expression (5.7.12) for c,(r,m,n) into (5.7.14), changing the summation
limits in the so-obtained double sum and introducing the notation

~(p,1) = Eﬁ(—w @ <2lr> r (r 4 ;) r (z g ;) (5.7.15)
we arrive at the equality
ao(p,m,n) = wg]g(_l)l <77—_a> 1% (5.7.16)

It turns out that sum (5.7.15) can be simplified. To this end, use the well-known

relations
1 2r — 1) 1 20 — 2r — D!
r(r+)=(r2r)ﬁ, F(l—r+>:( r- DU o

2 2 ol—r
Inserting these expressions into (5.7.15), we obtain
x 2 r\ (1
v(p, 1) = 5 1;0(—1)“ (p) <2T> (2r — N(20 —2r — D).

After simple transformations the last equality takes the form:

v(p, 1) = 22558!)_2]9); Wf(_l)r (l :];9> <2l _l 27") ‘

r=p

We change the summation index of this sum according to the formula & = r — p:

v(p, 1) = (—DpL!)2 U%p(—nk (l ;p> <2l - Zf - 2k> . (5.7.17)

22lp!(l - p>! k=0
We now use the known relation ([103], p. 620, formula (62))

/2] e () (2n — 2k nem [T

S (1) g (M),

= k n+m m
Putting n = [ — p, m = p in this formula, we obtain

> (—1)F (l ;p> <21 - 259 - 2k:> . (l ;p> . (57.18)

Note that the upper summation limit in this formula can be decreased to [[/2] — p, since

(2[ —2p — 2k‘> =0 for k > [I/2] — p. Inserting (5.7.18) into (5.7.17), we obtain

w‘\
IS]
.

l

Uk

10D = U S e = o) (5:7.19)

Finally, inserting the value of v(p, () from the last equality into (5.7.16), we arrive at
(5.7.4). The lemma is proved.
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5.8 Proof of Lemma 5.6.1

We first shall show that Lemma 5.6.1 is a consequence of the next

Lemma 5.8.1 Forn >3,m>1 and 0 < p < [m/2], the numbers ag(p, m,n) defined by
equality (5.7.4) are positive. The numbers a(p, m,n) defined by the formula
. 1 i % (k+1)!
a(p,m,n) = -1
( ) 22r(pl)? gp( ) 25(m — k)!(k — 2p)'T (k + 7

(5.8.1)

are positive in each of the next two cases: 1) n =3, 1 <m <2, 0<p<[m/2|; and 2)
n>4 m>1, 0<p<[m/2.

Indeed, by Lemma 5.7.1 the operator B = (n — 1)Ay — m?A; can be represented as:

[m/2]
B=m!T (;’) S b(p, m, n)i??, (5.8.2)
p=0
where
b(p,m,n) = (n — 1)ag(p, m,n) —may(p,m,n). (5.8.3)

On assuming that n > m > 1 and using positiveness of ag(p, m,n), from equality (5.8.3)
it follows that
b(p, m,n) > mlao(p,m,n) — a1 (p, m,n)]. (5.8.4)

Comparing (5.7.4) and (5.8.1), we see that
aO(pa m, n) _(l1<p, m, TL) = d(p7m7n) (585>

Relations (5.8.4) and (5.8.5) show that positiveness of a(p, m,n) implies the same for
b(p,m,n).

Thus, for n > m > 1 and n > 3 all coefficients of sum (5.8.2) are positive. So, for
0F#fesm,

[m/2

]
(B ) =miT (5) 3 oo mm) (74,374 = mlT (5 ) b0, m m)l 2 > 0,
p=0

This proves Lemma 5.6.1.
P roofof Lemma 5.8.1. We consider the integral

1
m—2p

I,(p,m,n) = /x2p+o‘(1 — x)"/Q_Q_O‘ <1 — ;) dz. (5.8.6)

0

It converges under the next restrictions on the parameters:
n
——1

0<p<[m/2], O§oz<2

(5.8.7)

and, evidently, it is a positive number.
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We transform the right-hand side of (5.8.6), expanding the last factor of the integrand
in powers of x :

Ia p,m,n)=\m — 2p ! /$r+2p+a 1— 1 n/2—2—adx.

Expressing the integral on the right-hand side of the last equality through the I'-function,
we obtain

m—2p r 9 ]
Ty, n) =T (5 =1=a) m—2)! 3 (-1 rrasD
i r=0 2rrl(m —2p = )IT (r + 2p + 3)

Changing the summation index of the last sum by the formula & = r + 2p, we arrive at
the relation

Io(p,m,n) = 2%T <n—1—a) (m —2p)! Y (—1)F Lik+1+0a) .
2 e 26(m—k)!(k—2p)IT (k+2)
(5.8.8)
We put @ = 0 in (5.8.8), In this case restrictions (5.8.7) look as: n >3, 0 < p < [m/2].

As the result, we have

e (1) (g S gy K
folp,m,m) = 2 F(z 1>( it 2 () 25(m — k)!(k — 2p)IT (k +2)’

The right-hand side of the last equality differs only by a positive factor from the right-
hand side of (5.7.4) for a = 0. So positiveness of Iy(p, m,n) implies that of ag(p, m,n).
Thus the first claim of the lemma is proved.

We now put a = 1 in (5.8.8). In this case restrictions (5.8.7) look as: n > 5, 0 <p <
[m/2]. As a result, we have

o (T (o S (k+1)!
h(p,m,n) =2 F(z 2>( 27’)!,%( ) 25(m — k)!(k — 2p)'T (k +3)

The right-hand side of the last equality differs only by a positive factor from the right-
hand side of (5.8.1) and, consequently, positiveness of I (p, m, n) implies that of a(p, m,n).
This proves the second claim of the lemma for n > 5.

For n = 4, equality (5.8.1) has the form

1 n 1
P 25, B = = 21

a(p,m,4) =

Changing the summation index by the formula k& = 2p + r, we obtain

N 1 " (m=2p\ 1 (1—1/2)"
a(p,m;4) = 24 (p)2(m — 2p)! ; (=1) ( r ) o ()2 (m—2p) v

Finally, for n = 3, the second claim of the lemma is verified by the direct calculation
according to formula (5.8.1).
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5.9 Final remarks

As we have already noted, the restriction n > m is most likely to be unessential for
validity of Theorem 5.2.2, it is rather due to the method of the proof. But this restriction
does not exhaust the possibilities of our method. Indeed, this restriction has been used
only in the proof of Lemma 5.6.1. The claim of the lemma is equivalent to the positive
definiteness of the operator B. Thus Theorem 5.2.2 is valid in all cases when the next
question has a positive answer.

Problem 5.9.1 For what values of m and n s the operator

B = (n—1)Ay— m2A, i [t = 1P~ mic Pejelaoe)
Q

positive-definite on the space STR™?

Lemma 5.6.1 gives only a partial answer to this question. The author failed in finding
a full answer.

If the condition n > m is replaced with n — 1 > fm for some 3 < 1, then inequality
(5.8.4) becomes

b(p7m7n> Z m[ﬁa’()(paman) - al<pam7n)] = md,@(pvm7n)7

where
1 m (k+ B)k!

~ _ 1)k
2P = iy 22 Y i k= 2T (k+35)

Thus the problem reduces to the question: for what 3 are the numbers ag(p, m, n) positive
in the domain n — 1 > fm, 0 < p < [m/2]?

Another possible approach to Problem 5.9.1 is in finding the eigenvalues of the operator
B and examining their positiveness. As one can show, each of the operators A, (o =0, 1)
has [m/2] 4 1 eigenspaces S;* C S™ such that S} (0 < k < [m/2]) consists of the tensors
of the type i* f, where f € S™~ % satisfies the condition jf = 0. The space ST belongs to
the eigenvalue A\o(m — 2k, m,n), of the operator Ay, which is expressed by the equality

n—2
n+2m — 4k — 2

Xo(m — 2k, m,n) = w(im — 2k, m,n)

through the coefficients of the Fourier expansion

|2 m/2) .
ey = O m = 2k,m,n)CL T (t) (5.9.1)
=) = 2

in the Gegenbauer polynomials. At the same time S}* belongs to the eigenvalue A\ (m —
2k, m,n) of the operator A; related, for m—2k > 0, to the coefficients of expansion (5.9.1)
by the equality

n—2
m(n + 2m — 4k — 2

A(m —2k,m,n) = >><

x[(m+n—2)u(m —2k,m,n) — (m+n—3)u(m — 2k,m — 2,n)]
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If m — 2k = 0, then the correspondent eigenvalue of the operator A; is zero. Thus our
problem reduces to verification, of positiveness of some linear combinations of the coeffi-
cients of expansion (5.9.1), which is connected with tremendous algebraic difficulties. In
despair of finding a theoretical solution to Problem 5.9.1, the author took an experimental
way and calculated the eigenvalues of the operator B for 1 < m,n < 50. The results of the
calculation allow one to formulate the conjecture that the problem has a positive answer
for n > (8m + 23)/13.



Chapter 6

The truncated transverse ray
transform

The reader, perhaps, has already paid attention to the distinction, between systems
(2.16.1) and (5.1.64), which exists even in the case of a homogeneous medium when the
torsion x is equal to zero. Meanwhile, both systems describe the same physical process,
evolution of the polarization ellipse along a light ray.

The mentioned distinction relates to polarization measurements performed in practice.
In the previous chapter we assumed that fundamental matrix (5.1.66) of system (5.1.65)
is known for every ray. In physical terms, it means that one has to measure not only
polarization ellipse but also the phases of electric vector oscillations in two mutually
perpendicular directions. However, only the difference of the phases is usually measured
in practical polarimetry. This circumstance compels us to replace (5.1.65) with a system
similar to (2.16.1) and the transverse ray transform, with some new integral geometry
operator which is called the truncated transverse ray transform.

In the first section we discuss the transition from (5.1.65) to a system of the type of
(2.16.1). This transition is well known in the physical literature (for instance, see [1]). In
the remainder of the chapter our presentation mainly follows the paper [127].

In Section 6.2 we define the truncated transverse ray transform of a tensor field of
degree m on a compact dissipative Riemannian manifold of dimension n and formulate
the main result of the chapter, Theorem 6.2.2, which asserts that in sufficiently simple
cases this transform is invertible on the subspace of fields orthogonal to the metric tensor.
Sections 6.3-6.5 contain the proof of Theorem 6.2.2. It is interesting that, for n > 3 the
proof repeats, almost word by word, the corresponding arguments of the previous chapter;
a supplementary complication arises only in the case n = 3, m = 2 which is of the main
interest from the standpoint of the physical interpretation. In Section 6.6 we obtain an
inversion formula for the truncated transverse ray transform on Euclidean space in the
case n = 3,m = 2.

6.1 The polarization ellipse

Let us return to considering equation (5.1.56) on assumption that the tensor x = y;; is real
and symmetric. We fix aray v : [0, 1] — R? and an orthonormal basis e;(7), e2(7), e3(7) =
cy(7) that is parallel along 7 in the sense of metric (5.1.17). Let n(r) = m(7)ei(r) +

173
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n2(7)e2(7) be the expansion of a solution to equation (5.1.56) in this basis, and yx;; be the
components of the tensor yx in this basis. Equation (5.1.56) is equivalent to the system

d’l]l
ar = o2 (xum + x12m2)
rooen (6.1.1)

dns 7

dr = 2 (X217 + X2272) -

The vectors n and E = An~'n are complex. It is the real vector
&(7,1) = Re [n(r)e' "]
that has a physical meaning. We fix a point 7 = 7y on the ray. The end of the vector
£(t) = Re [(mer + 1pes) €570 (6.1.2)

runs an ellipse in the plane of the vectors ey, eq; it is called the polarization ellipse. Let
us express its parameters through 7, ns.

fi

b ]

Fig. 3

Let fi, fo be an orthonormal basis for the polarization plane whose orientation coin-
cides with that of ey, e5 and the vector f; is directed along the major axis of the polar-
ization ellipse. Let o be the angle of the rotation from the basis ey, e5 to the basis fi, fa,
ie.,

fi =ejcosa+ eysina, fo = —eysina + ey cos (6.1.3)

If a,b are the semiaxes of the ellipse, then

£(t) = acos(pg — wt) f1 £ bsin(pg — wt) fo = Re [(aﬁ Fibfs) ei(wo_“t)} . (6.1.4)
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The choice of the sign in these equalities depends on whether the polarization is right or
left, i.e., on the direction in which the end of the vector £(t) runs over the ellipse as the
time increases. Inserting values (6.1.3) of the vectors f; and fo into the last formula, we
obtain

£(t) = Re {((a cosa +ibsina)e; + (asina F ibcos a)es) ei(“"‘)""t)} :

Comparing this equality with (6.1.2), we conclude

m = (acosa % ibsina)e’@ =+ py = (asina F ibcos a)el P07k, (6.1.5)

The vector 1 has unit length in metric (5.1.17), i.e., |m|? + |72)> = n™2. In view of the

last equality from formulas (6.1.4) we find a® + b* = n~2. We define the angle ¢ by the
conditions
a=n"2cosy, b=n"?siny, -7w/2<¢Y <7/ (6.1.6)

Note that |¢| coincides with the angle between the major axis of the polarization ellipse
and its diagonal, i.e., determines the shape of the ellipse. The sign of ¢ depends on
whether the polarization is right or left.

We define a complex number ® by the conditions

tan @ = ny/m1, —7/2 < Re® < 7/2. (6.1.7)

From (6.1.5) and (6.1.6), we obtain

tan o — 7 tan ¢
1+ itanatan)’

tan ® = (6.1.8)

This formula shows that @ is uniquely determined by the angles o and ¢. To make this
dependence clearer, we introduce some new quantity v by the relations

tant) = — tanh ¢, —00 < P < 0. (6.1.9)

Note that (6.1.9) establishes a one-to-one correspondence between 1) and . Now formula
(6.1.8) takes the form:

tan o + i tanh ¢ _ tana + tan(it))
1 —itanatanhey 1 — tan o tan(i)

tan & = = tan(a + iY)).

By the above-imposed restrictions on « and Re @, this implies that
d=a+ it (6.1.10)

The next claim summarizes the above considerations: the complex ratio ny/m of the
components of the vector n is in one-to-one correspondence with the pair of the angles
(cv,v) that determine the shape and disposition of the polarization ellipse.

In the case of an isotropic medium, when x = 0, the vector 7(7) is parallel along the
ray v and, consequently, the ratio 75/m; is constant on the ray. Thus we arrive to the
Rytov law for isotropic media: the angles o and 1 are constant along a ray. To find a
Euclidean version of the law, we address system (5.1.64) that has the next form in the
case of an isotropic medium:

dF,/ds = —kFg, dFg/ds = KF,. (6.1.11)
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Introduce a complex number ¥ by the conditions
tan U = F/F,, —7m/2 < ReW¥ < 7/2 (6.1.12)
and denote by 6 the angle between the vectors F' and v. As above, we obtain the equality
U =0 + it (6.1.13)

From (6.1.12), we conclude

LR
ds_ds arc anFy = K.

Comparing the last equality with (6.1.13), we arrive at the Euclidean version of the Rytov
law:

g
ds

We return to considering a quasi-isotropic medium. In practical polarimetry one
usually measures the angles a and 1 that are represented in Fig. 3. As far as the
phase ¢g in (6.1.5) is concerned, measuring this quantity is connected with measuring
distances that are comparable with the wavelength; therefore the phase ¢, is not usually
measured.

Let us address the inverse problem of determining the tensor field x from results of
polarization measurements. We assume that a quasi-isotropic medium under investigation
is contained in a bounded domain D C R?, metric (5.1.17) is known, and the angles «
and 1 can be measured for outcoming light along every geodesic 7 : [0,1] — D with the
endpoints on the boundary of D. We denote by U(~) the fundamental matrix of system
(6.1.1), i.e.,

771(1) [ U1 U2 771(0) [ W11 U2
< n2(1) ) B < U21 U2z ) ( 12(0) > ’ v = ( Uz Uzz ) (6.1.15)
In Section 5.1, considering the inverse problem, we assumed the matrix U(7) to be com-
pletely known. Now, by the above conclusion, we assume that the ratio 7y(1)/n(1) is
known as a function of the ratio 72(0)/n;(0), for all solutions to system (6.1.1). As one can
easily see, this is equivalent to the fact that the matrix U(7) is known up to an arbitrary
scalar factor. In other words, the results of the measurement do not change if a solution

(m1(7),m2(7)) is multiplied by (") where A(7) is an arbitrary real function on the ray.
Using the last observation, we change the variables in system (6.1.1) as follows:

3 (6.1.14)

i iT
f= ﬁx, ¢ = exp [—W/(Xn + X22) dT] n.

70

Then system (6.1.1) is transformed to the next one

Oclfl = ; (fi1 = f22) Gt + fr2Co,
T (6.1.16)
dCo

P Ja1G1 + ; (fa2 — f11) G2
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that is similar to (2.16.1) in structure.

As compared with (6.1.1), system (6.1.16) has the next advantage: the results of the
measurements allow us to completely determine the fundamental matrix U(7) of system
(6.1.16). Indeed, note that the trace of the matrix of this system is equal to zero. Therefore
the fundamental matrix of the system satisfies the condition

det U(v) = 1. (6.1.17)

Assume that, for every solution {(7) to system (6.1.16), the ratio (5(1)/¢1(1) is known as
a function on ((0)/¢1(0). As above, this allows us to determine the matrix U(y) up to
some factor. This factor is found from condition (6.1.17).

Equations (6.1.16) are written in a basis e1(7), ea(7), e3(7) = (1) related to the ray
7. To find an invariant form of the equations, we note that the matrix of system (6.1.16)
considered as a symmetric tensor on R3

%(fn —f22) fi2
Q"yf: fa1 %(f22—f11)
0 0

o O O

is the orthogonal projection of the tensor f = (f;;) onto the subspace Ker j N Ker js, of
the space S?R? of symmetric tensors of degree 2, which is defined by the equations

Jf=h7f;=0, (G4 f)i = fiy3’ =0,

where (h;;) is metric tensor (5.1.17). The subspace Ker j N Ker j; C S?R? depends only on
the vector 4(7) but not on the choice of the orthonormal basis e;(7), e2(7), e3(1) = (7).
Consequently, the orthogonal projection Qs : S?R? — S?R? onto this subspace is well-
defined. Thus system (6.1.16) takes the invariant form:

D¢
= (Quf)C (6.1.19)
As in Section 5.1.6, we now distract ourselves from the initial physical situation and
consider equation (6.1.18) for a domain D C R" and for a Riemannian metric (5.1.67),
of general type, which is given on D.

If the tensor field f is a multiple of the metric tensor, i.e., fi; = AN(z)gi; (z € D), then
Qs f = 0 and equation (6.1.18) degenerates. Therefore it is natural to consider only the
tensor fields that satisfy the condition jf = f;;¢" = 0. Thus we arrive at the next inverse
problem.

A Riemannian metric ¢ is given on a bounded domain D C R"; a symmetric tensor
field f of degree 2 is defined on D and satisfies the condition jf = 0. For every geodesic
v :[0,1] — D with the endpoints in the boundary of D, the value {(1) of any solution
to equation (6.1.18) is known as a function of the initial value ((0) and the geodesic 7.
In other words, the fundamental matrix U(y) of system (6.1.18) is known. One has to
determine the field f(z) from U(7).

Linearizing this problem in accord with the scheme of Section 5.6.1, we arrive at the
next
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Problem 6.1.1 (the problem of polarization tomography) Let a Riemannian met-
ric g be given in a bounded domain D C R". Determine a symmetric tensor field f = (fi;)
that is defined on D and satisfies the condition jf = fi;9” = 0, if the tensor

KI() = [ 1@/ (1)) dt

is known for every geodesic v : [0,1] — D with endpoints in the boundary of D. Here I@’O
is the parallel translation along v from the point (t) to the point ~(0).

6.2 The truncated transverse ray transform

Recall that, for a Riemannian manifold (M, ¢g) and a point x € M, by i : S™T/M —
S™T2T' M, we denote the operator of symmetric multiplication by the metric tensor g
and by j : S™P2T'M — S™I'M, the operator of convolution with g. For £ € T, M, let
ig : SMTIM — S™HTIM and je : S™TTIM — S™I!M be the symmetric multiplication
by the vector £ and the convolution with £. Let Q¢ : S™1/M — S™I M be the orthogonal
projection onto the intersection of the kernels of the operators j and je. Recall also that
Py S™IYM — S™I'M denotes the orthogonal projection onto Ker je. The next claim is
an analog of Lemma 2.6.1.

Lemma 6.2.1 For (z,§) € TM and f € S™I,M (m > 0), there exist uniquely deter-
mined tensors y € S™VI'M and a € S™*T!M such that

f=Qcf +icy +1a, (6.2.1)
Jea = 0. (6.2.2)
The tensor y can be represented as
y =y +ich, Jey = 0, (6.2.3)
where y 1s expressed via f by the equality

The proof of the lemma will be given in Section 6.4.
The truncated transverse ray transform on a CDRM (M, g) is the linear operator

K :C®(S™ny,) — C=(S"rum), (6.2.5)
defined by the equality
0
Kiw = [ BQuofG)d (.6 €a.0M), (6:2.6)
7 (2.,€)

where the notation is the same as in the definition (5.2.3) of the operator J.
As in the previous two chapters, one shows that (6.2.5) is extendible to a bounded
operator
K : H*(S™7,) — H"(S™my) (6.2.7)
for every integer k > 0.
The main result of the current chapter is the next
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Theorem 6.2.2 For integers m and n satisfying the inequalities n > 3 and n > m, there
exists a positive number €(m,n) such that, for every compact dissipative Riemannian
manifold (M, g) of dimension n satisfying the condition

k(M,g) < e(m,n), (6.2.8)

where k(M,g) is defined by formula (5.2.8), every field f € H'(S™r,) satisfying the
condition
if=0 (6.2.9)

1s uniquely determined by K f. The stability estimate
[ fllo < ClIE £l (6.2.10)
holds with a constant C' independent of f.

In the theorem the condition n > 3 is essential, since ()¢ = 0 and the operator K is
equal to zero in the case m > 2 = n. As far as the second condition n > m is concerned,
remarks are possible that are similar to those of Section 5.9.

In what follows we assume that m > 2, since Q¢ = P and the operator K coincides
with J for m < 2.

As in the previous two chapters, using the boundedness of operator (6.2.7), one can
see that it suffices to prove Theorem 6.2.2 for a real field f € C°°(S™1,). The proof is
presented in the next section. Our exposition of arguments similar to those used in the
previous chapter will be kept at a minimum.

6.3 Proof of Theorem 6.2.2

The next claim is an analog of Lemma 5.6.1.

Lemma 6.3.1 Let (M,g) be a Riemannian manifold of dimension n. For every point
x € M and every tensor f € S™T!M (m > 0) satisfying (6.2.9), the equality

BiD == [ 0= DIQuf — m| Pejef ] de€) = x(m,m)lf7 - (63.)

Qe M

holds with a coefficient x(m,n) depending only on m and n. The coefficient x(m,n) is
positive forn >m >3 orn —1>m = 2 and equal to zero form —1 =m = 2.

The proof of the lemma is presented in Section 6.5.

Now we start proving Theorem 6.2.2. As above, we denote by the letter C' various
constants depending only on m and n. For a real field f € C*(S™r,) (m > 2, n =
dim M > 3) satisfying (6.2.9), we define a semibasic tensor field v = (w;, 4, (z,£)) on
T°M by the equality

[en]

uw, ) = [ EAQuufG@) A (2,€) € TM), (6:3.2)
T (2.,8)
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where the same notations are used as in (5.3.1). This field satisfies the equation

with boundary conditions (5.3.3) and

The field u is symmetric in all its indices, satisfies the homogeneity relation (5.3.4), con-
dition (5.3.6), and the next equality

Jju(z, &) =0. (6.3.5)

Writing down the Pestov identity for v and integrating it, we arrive at relation (5.3.9).
Using decomposition (6.2.1), we transform the integrand of the first integral on the right-
hand side of (5.3.9) as follows:

(Vu, V(Hu)) = (Vu, V(Qef)) = (Vu, V(f — icy — ia)) =

= —(Vu, V(iey)) — (Vu, V(ia)). (6.3.6)

Let us show that the second summand on the right-hand side of (6.3.6) is equal to zero.
Indeed,

h v h . . . v h . . . v
(Vu, V(ia)) = VU - (giyi, Vitiy..i,) = V' (JU)"* "™ - Vit i, -
By (6.3.5), the right-hand side of the last formula is equal to zero. Thus (6.3.6) gives

(Vu, V(Hu)) = —(Vu, V(iey))- (6.3.7)

With the help of representations (6.2.3) and (6.2.4), we transform the right-hand side
of equality (6.3.7) in the same way as in Section 5.4. As a result, we arrive at inequality
(5.4.22) where some semibasic field z = (2, _4,,) is defined by formula (5.4.13), symmetric
in the last m indices, satisfies (5.4.14), (5.4.15) and the relations

1192 _

9" Ziigig. iy = 0, (6.3.8)
R, izim h, L Jijigedm, 6.3.9
Vu : V]uzz?..zm =2z Zjiig.im - ( . )

h
Besides, for the field ju defined by formula (5.4.4), equality (5.4.5) holds. Using (6.3.3)
and (5.4.15), we transform inequality (5.4.22) to obtain

(1= B)=P + (0= DIQeP — ™| Paje | don(e) } avria) <
i ] o)

< / (b5 — v, v) dX2 + / Rlu] d=. (6.3.10)
oM QM
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Recall that here b is an arbitrary positive number, the semibasic vector fields v and v are
defined by formulas (4.4.5) and (5.4.11), the function R|u] is defined by formulas (5.3.8),
(5.4.9) and (5.4.23). The field z satisfies the equality

h
[Vul® = [2* + Q¢ fI” (6.3.11)

that follows from (5.4.15) and (6.3.3).

The integrals on the right-hand side of (6.3.10) satisfy the estimates similar to those
of Section 5.5. With the help of these estimates, (6.3.10) implies the next analog of
inequality (5.5.16):

/ { / [(1—b>|z\2+<n—1>\@§f|2—”;ﬂpggfe] d%@}dvn(x)

—Ck / Vul?dS < D||Kf|2. (6.3.12)
QM

Forn >m >3 or n —1 > m = 2, the quadratic form (Bf, f) in (6.3.12) is positive-
definite, by Lemma 6.3.1, and the proof of Theorem 6.2.2 is completed in the same way
as in Section 5.6.

In the case n — 1 = m = 2 the quadratic form (Bf, f) is equal to zero, and therefore
the first summand on the right-hand side of equality (5.3.9) must be investigated more
carefully. The next circumstance turns out to be crucial here: the factors on the right-
hand side of (6.3.9) differ from one other by the transposition of the first two indices.
According to this observation, we decompose the field z = (z;;;) into the sum of two fields

z=z" 427, (6.3.13)

where
1

1 —
g = 5(2111« + Zjik), Zijk = i(zwk — Zjik)- (6.3.14)

Summands on the right-hand side of (6.3.13) are orthogonal to one other and, conse-

quently,
2> =272 + |27 ) (6.3.15)

Moreover, (6.3.13) and (6.3.14) imply that

R A e A (6.3.16)

By (6.3.15) and (6.3.16), equalities (6.3.9) and (5.4.15) take the form

h . . h

V- g = 21 = 27, (6.3.17)
h

IVul? = [Hul? + [F]* + [7 %, (6.3.18)

h
In Section 5.4, for the field fu, the relation

h h. . h ho
loul®> = V" - Vjug + Vit" + Ralul, (6.3.19)
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was obtained. Together with (6.3.17), it implies the equality

h .
bul? = |22 = |27 + Vit + Rafu. (6.3.20)

From (5.4.5), using (6.3.20), we obtain the estimate

h v h .
21(Vu, V(Hu))| < 272 = |27 + 5> + Vit" + Ra[u]. (6.3.21)

Let us reproduce the arguments used in deriving (6.3.12) from inequality (5.3.9); but
now, instead of relations (5.4.15) and (5.4.17), we use (6.3.18) and (6.3.21) respectively.
As a result, instead of (6.3.12), we arrive at the next more precise inequality:

[ ] [2127 1+ (0 = DIQef = mi|Peje 1] duon (&) § dV" () <

M \QaM
h 2 2
< Ck / IVul?dS + D||K f||2.

By Lemma 6.3.1, in the case n = 3, m = 2 under consideration, the sum of the last
two summands on the left-hand side vanishes after integration over €2, M. Thus, the last
inequality takes the form:

h
/|z‘|2d2§0k / IVul2dS + D|| K f|)2. (6.3.22)
M QM

Introducing the notations
h h
1A = [1f@Pav@),  =F = [ RS vl = [ s,
M QM QM

we rewrite estimate (6.3.22) as
h
l=7|1* < Cklvull® + DI K £ (6.3.23)

h
It turns out that the norm ||Vul||? can be estimated from above by ||f]| - |z~ ||. To this
end, we multiply the equality

1|n

\512 |€!2

which follows from (6.3.14) and (5.4.13), by ¢/* and perform the summation with respect
to j, k. Taking the equalities ju = j(Hu) = je(Hu) = 0 into account, we obtain

h _
(du)i = =229

Inserting this expression into (5.4.5), we conclude

h v .
(Vu, V(Hu)) = 22;,5'¢"".
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This relation implies the estimate

h v _
[{(Vu, V(Hu))| < Clz7] - [g].

Multiplying the last inequality by the volume form dw, (&), integrating it and applying
the Cauchy-Bunyakovskil inequality, we arrive at the estimate

1/2
| 15w, V(Hw)) | deon(€ )<0(/ 2 P, (€ ) (/ [ des (€ ) (6.3.24)

with a constant C' independent of z.
The expression (6.2.4) of the tensor g(z,§) from f(z) implies the estimate

[ lilden©) < Cilf@)?
Q. M

with some constant C independent of z. Comparing the last relation with (6.3.24), we
obtain the inequality

1/2
| 1(Gu V(H) o (©) < Clf (o (/ 27 duoe (€) ) .

QM

Multiplying this inequality by dV"(x) and integrating it over M, we obtain

[ 1w vEu) as < ) -7 (63.25)

It follows from (5.3.9) and (6.3.25) that

h
[Vl < ClI7I - el = [ oy ds2+ [ Rafu]as.
QM

oOM

The integrals on the right-hand side of this relation are estimated as above, and we arrive
at the inequality

h h
Ivull® < CILA- N2~ I + CiklIvull® + D K £ (6.3.26)

Recall that the quantity k = k(M, g) is subordinate to condition (6.2.8) of the theorem.
The constants C' and C on (6.3.26) are universal unlike the coefficient D; depending on
(M, g). Choose the value of e(m,n) in the formulation of the theorem in such a way that
Cik < 1. Then (6.3.26) implies the relation

h —
Ivull® < CIAI - 127+ Dl K AR

which can be transformed as follows with the help of the inequality between arithmetical
and geometrical means:

h C B
IVull* < b||f||2+71||2 I+ Dull K £IIT, (6.3.27)
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where b is an arbitrary positive number.

The final part of the proof consists in comparing estimates (6.3.23) and (6.3.27). Ma-
jorizing the second summand on the right-hand side of (6.3.27) with the help of (6.3.23),
we obtain the inequality

h C h
[VulP < blIfI7 + = (CRIVul® + DIKFIT) + Dill I,
which can be written as

Ck\ k& D
(1= S iseute < o+ e (6:325)

Furthermore, we have the estimate

h
If1I? < Chllvul)?, (6.3.29)

which is concluded in full analogy with inequality (5.6.9). From (6.3.28) and (6.3.29), we
obtain

b

We choose the quantities b and €(m,n) in such a way that the number in the parentheses
is positive. Then (6.3.30) gives

Ck h D
(1- G- co) 1bure < i (6:3:30

h

IVul* < Di|| K fII7. (6.3.31)
From (6.3.29) and (6.3.31), we finally obtain

I£1I* < Dol K f12.

The theorem is proved.

6.4 Decomposition of the operator ()

Before proving Lemma 6.2.1, we will expose a few auxiliary claims. For ¢ € T, M, on
S™T'M (m >0, n =dim M) the next commutation formulas are valid:

. k o moo .
Jeif = — k|£|22§ 1y T kl]gjg, (6.4.1)
3 2k(n+2m+2k—-2) ,_ m(m — 1) g
k k—1 k
= 6.4.2
S 2k —Dm12k)  (mi2k—Dmiz2k) " (6.4.2)
g 2 m-1_
. 2 mo
Jet = p— 225 + — 2@]5, (644)

The first of these formulas have been proved above (Lemmas 3.3.3 and 5.4.1). Equalities
(6.4.2) and (6.4.3) can be proved by arguments similar to those in the proof of Lemma
3.3.3; we omit them. Relation (6.4.4) is obtained from (6.4.3) by passing to the dual
operators. Strictly speaking, (6.4.1) and (6.4.2) are meaningful only for £ > 0; nevertheless
we can assume these equalities to hold for & = 0 too, since the coefficient of the first
summand on the right-hand side is equal to zero in this case.



6.4. DECOMPOSITION OF THE OPERATOR Q¢ 185

Lemma 6.4.1 For £ # 0, the next commutation formulas are valid:

Pgi = ZP& ngg, (645)

|§|2

JPe = Pej — — Peje. (6.4.6)

|§|2

P r oo f. It suffices to verify the first formula, since it implies the second by passing
to dual operators.

The operator i¢j¢ is nonnegative, since it is the product of two operators dual to one
other. Therefore (6.4.1) implies that jeie is positive for £ # 0 and, consequently, has an
inverse operator (jeig) ™"

Recall that P is the orthogonal projection onto the first summand of the decomposi-
tion

S™TIM = Ker je ® Im ig. (6.4.7)

Let P¢ = E — P (E is the identity operator) be the projection onto the second summand
of this decomposition. The next formula is valid:

E — P = P¢ = i¢(jeie) ' je. (6.4.8)

Indeed, the operator defined by equality (6.4. 8) vanishes on the first summand of decom-

position (6.4.7) and satisfies the relations P£ P¢, Pei¢ = i¢. These properties uniquely
determine the projection onto the second summand.
Using (6.4.8) and (6.4.4), we obtain

N 2 . mo.
Pei = i¢(jeic) " (jei) = ie(jeie) ™" <m+ SR 2%) :

_ m
P . — . .. —1 . .. -1 - ) 6.4‘9
gl = ielele) g telte) T e (6.4.9)
By (6.4.4), taking permutability of the operators ¢ and 4 into account, we write
Geie)i = (jei)i ( 2 .+m+1..). 2 ,2+m+1< )
1e)t = (Jet)le = ? ] = i i

Multiplying the extreme terms of this chain of equalities by (jeig) ™! from left and right,

we obtain L3 9

m 1 .
1 Uele) T — ——— Uete) i (ete)

The last relation holds on S™1)M; therefore we have to decrease the value of m by one,

applying this equality for transformation of the second summand on the right-hand side

of (6.4.9). We thus obtain

-1

(Jeig) 1 =

m [m+2. 2 i 1] .
i(Jete)” 1—E(kzs) Yig (jeie) | Je.

_ 2
P .: . . . _1.
¢l m+27f§(kzs) et ol | T

Rewriting the last formula as

2
m + 2

ie(Jeie) Vig(E — ig(jeie) ' je)

Pei = ici(jeie) ™"
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and recalling (6.4.8), we obtain

Pei=iP; +

o Qis(jsis)_lisps-

This implies that

Pei=(E—Pg)i=i—Pei=i—iPe— ie(Jeie) e P,

m+ 2
ie.,

2
m+ 2

We put k = 2 in equality (6.4.1), multiply it by P from the right and use the relation
JePe = 0; as a result we have

Pei = iP; — ie(jeig) Vi Pe. (6.4.10)

. m+2 . ,
1¢Pe = ———7J¢1: Pe.
I3 2|§|2 §et €
Multiplying the last equality by (jeig) ™! from the left, we obtain

AN m—+ 2.
(jglﬁ) llgpé = W@gpg. (6411)

(6.4.10) and (6.4.11) imply (6.4.5). The lemma is proved.

Lemma 6.4.2 For £ # 0, the operator jFP¢i maps isomorphically the space Kerje onto
itself.

P roof We consider the operator jPi : S™I/M — S™IL'M. With the help of
the equality PcjPr = jPg following from (6.4.6), we obtain jPei = P¢jFei. Consequently,
Im(jPei) C Ker je. Let us prove that the restriction

JjPei : Ker je — Ker j¢ (6.4.12)
is an isomorphism. Let a tensor u of degree m be in the kernel of operator (6.4.12), then

Jeu =10, jPdu=0. (6.4.13)
Taking the scalar product of the second of these equalities with u, we obtain

0 = (jPeiu, u) = (Priu, iu) = (Priu, Peiu).

Thus, system (6.4.13) is equivalent to the next one:

jeu=0,  Peiu=0. (6.4.14)
We transform the second of equations (6.4.14) with the help of (6.4.5):
1
2

0 = Peiu = iPeu — —iz Peu.

€
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By the first of the equations (6.4.14), Peu = u, and therefore the previous equality
gives

We take the scalar product of the last relation with iu and transform the so-obtained
formula to the form

(jiu,u) = |€|2<z§u , Jetu). (6.4.15)
By (6.4.2), (6.4.4) and the first of the equations (6.4.14), we obtain
s 2(n + 2m) " m(m — 1) i
M= Dm+2)" " mrDm+2)7"
2
Jeltu = e 2Z§U

Inserting these expressions into (6.4.15), we arrive at the equality

2(n+2m)| 24 m(m—1)|, 2=

2
7 6.4.16
m+1 m—+1 Ju |z§u| ( )

55

Finally, using (6.4.1) and the first of equations (6.4.14), we obtain

e
m+ 1

licul® = (jeieu, u) = |ul?.
Inserting the last value into the right-hand side of (6.4.16), we conclude that
2(n + 2m)ul* + m(m — 1)|jul* = 2Jul*.

This equality can hold only for u = 0. The lemma is proved.
Proofof Lemma 6.2.1. First we prove uniqueness of representation (6.2.1), (6.2.2).
Successively applying the operators j and j¢ to the first of these equalities, we obtain

Jiey + jia = 57, (6.4.17)
Jetey + Jeta = Jef. (6.4.18)

From (6.4.18), we infer
y = —(Jeie) ' jeia + (jeie) e f (6.4.19)

and substitute the obtained expression into (6.4.17)

jia — jig(jeie) " jeia = jf — jig(jeie) " jef-
Rewriting the last equation as

J(E — i¢(jeie) ™ je)ia = j(E — ie(jeic) " je) f

and using (6.4.8), we obtain
jPeia = jP;f. (6.4.20)
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The right-hand side of (6.4.20) belongs to Ker j¢, since jej P = jje P = 0. Therefore, by
Lemma 6.4.2, equation (6.4.20) has a unique solution satisfying (6.2.2). Together with
(6.4.19), this proves uniqueness.

We now prove existence. Let f € S™T'M. By Lemma 6.4.2, equation (6.4.20) has a
unique solution a satisfying (6.2.2). Defining y by formula (6.4.19) and f, by the equality

f=f+icy+ia, (6.4.21)

one can easily see that jf = jgf = 0 and the summands on the right-hand side of (6.4.21)
are orthogonal to one other. Consequently, f =Qf.
Finally, we prove validity of (6.2.4). Inserting the value (6.2.3) of y into (6.4.18), we
obtain
Jeiel + Jeigh + jeia = je f. (6.4.22)

We transform each of the summands on the left-hand side of this equality with the help
of (6.4.1) and (6.4.4), taking (6.2.2) and the second of equations (6.2.3) into account:
A

= — h =
Jetey =~ =Y, Jele

Inserting these values into (6.4.22), we obtain

2 o[ 2]€)? m—2. 2 .
7|£| Q+25< < h + zggh—{—a) = jef.
m m m m

Applying the operator P to the last equality and taking the relation Pei¢e = 0 into account,
we arrive at (6.2.4). The lemma is proved.

In Section 6.5 we will need the decomposition, of the operator ()¢, which is given by
the next

Lemma 6.4.3 For 0 # § € T,M and a tensor f € S™IM satisfying the condition
jf =0, the representation

[m/2]
Qef = ];) cmkwpgikjgk f (6.4.23)
18 valid where
m! n-+2m—3

k= . 4.24
mk = 9kk1(m — 2k)! (n + 2m — 3)(n + 2m — 5)...(n + 2m — 2k — 3) (6.4.24)

First we will prove an auxiliary relation.

Lemma 6.4.4 For k > 0, the equality

2k
(m+ 2k — 1)(m + 2k)

m(m — 1)

P, 2 -k —
eJet (m + 2k — 1)(m + 2k

‘5’2P§Z~k71 +

)sz’kjg. (6.4.25)

is valid on S™I M.
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P r o o f proceeds by induction on k. For k = 0, validity of (6.4.25) is trivial, since
the factor at the first summand on the right-hand side is equal to zero. Assume (6.4.25)
to hold for £ = [. Increasing the value of m on this equality by 2 and multiplying it by ¢
from the right, we arrive at the formula

21
C (m 20+ 1) (m+ 20+ 2)

(m + 1)(m + 2)
(m+ 20+ 1)(m + 20 +2)

Pejgittt = €2 Pei + Pei'jZi. (6.4.26)
valid on S™T) M
Using (6.4.2) and (6.4.4), we obtain

2 = Jeied) = Je (——sie + —ie) =~ e + —(jed)je =
¢TI et T e T e T g Ve

2 < 1 |§|2E+ m ..>+ m ( 2 ,+m—1._).
= 7 1 1 -
m+2\m+1 m+19) T e Un 1 T e 1e) e

9

- (m+1)(m+2) EFE +

m(m—1) . , 4dm
(m+1)(m +2)" N (m 4 1)(m + 2

LeJe-
)
Multiplying the end terms of this chain of equalities by Pei' from the left, we obtain

m(m —1) L2 4m
) m+2) & T T m

2

2 [
m T Dm i) e+

Peiljdi = "y Peitigje.
(6.4.27)
The last summand on the right-hand side of this formula is equal to zero, since ¢ commutes
with 7¢ and Pzt = 0. Deleting this summand and replacing the second term on the right-
hand side of (6.4.26) with its value (6.4.27), we arrive at (6.4.25) for kK = [+ 1. The lemma
is proved.
P roofof Lemma 6.4.3. We denote the right-hand side of formula (6.4.23) by f. To

prove the equality Q¢ f = f we have to show that

jef=0, jf=0 (6.4.28)

and .
f—f€lmic+Imi. (6.4.29)

First we prove (6.4.29). By (6.4.24), ¢,;,0 = 1 and sum (6.4.23) can be written as:

[m/2]

f=Pf+ Z oo Pei" G f. (6.4.30)

1
€%
Since f — P f € Im g, to prove (6.4.29) it suffices to show that each summand of the sum
on (6.4.30) belongs to Imig + Im 4. But this fact follows evidently from (6.4.5).

Validity of the first of the relations (6.4.28) follows directly from (6.4.30), since je Pr =
0. To verify the second, we apply the operator j to equality (6.4.30):

~ [m/2] 1
if = Z ka|5|2kJPe@ kgt f. (6.4.31)
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Using (6.4.6), we obtain

JPei" i f = Peji® i f — — Pejéi® s f.

|§|2

Transposing the operators j and * in the first summand with the help of (6.4.2) and then
using permutability of j and j¢ and the condition jf = 0, we obtain

2k(n+2m —2k—2) _ , .
k k—1 2k 2k ¢
/= m(m — 1) e |€|2 €j£Z jg

Transforming the second summand with the help of Lemma 6.4.4, we arrive at the relation

jPeijZ

2k(n 4 2m — 2k — 3)
m(m — 1)

(m—2k—1)(m—2k) 1

m(m - 1) |§|2P k 2k+2f

szkfljgkf o

JPe" i f =

Inserting the last value into (6.4.31), we obtain

~ 1 [m/2]
if=—— S 2 om — 2k — -
Jf m(m — 1) kz::l [2k(n + 2m — 2k — 3)Cmg
1
— (m—=2k+1)(m —2k+ 2)cpm 1] =5 HE: Pei* 12t f.

Thus, to verify the second of equalities (6.4.28) it suffices to show that the numbers in
brackets are equal to zero. This fact follows directly from (6.4.24). The lemma is proved.

6.5 Proof of Lemma 6.3.1

By Lemma 5.7.1, for a tensor f € S™T'M satisfying (6.2.9), the equality
1 .
= [ iePejef dwa(€) = pulm, m) f (6.5.1)
QM
holds where
k

p(m,n) =—(m—1) 'F( )kz_% 2 (m — BT (k+%) (6.5.2)
Consequently,
L Pt = (L [ Pl do©.0) = w659
Q.M QM

Given 0 < k < [m/2], we consider the operator Ay : S™T/M — S™I'M defined by
the formula

1 .
A== / P2 du, (€). (6.5.4)
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Let us show that it can be expanded as follows

[m/2]
Ap =3 axlp,mn) PP (6.5.5)

p=0

and find the first coefficient of the expansion.

By the same arguments as in Section 5.7, we can assume that S™T/M = S™R" and
2, M coincides with the unit sphere € of the space R". To prove (6.5.5) it suffices to show
that

[m/2]
(An™, ™ = > ar(p,m,n)(n, ()" (6.5.6)
p=0
for n, ¢ € L.
We write

(Ped®jetn™, ¢ = GEMn™, M (PeQ)™) = (& m)* | PeC [ (n, PeQ)™ ™ =
= <5777>2k(1 - <£7 C>2)k(<777 C> - <£777> <§7 C>)m_2k'

Inserting this expression into (6.5.4) and introducing the notation x = (1, (), we obtain

(A, ¢ = L [, €70~ (G (@ — (0,.€)(G, €)™ dw(e).

Q

We expand the integrand in powers of x :

(A, =3 (-1 (m‘ﬂ’“) e [l (¢, €)' (1, €7 duf€). (65,7
=0 Q

The integral on (6.5.7) is found by arguments similar to the corresponding paragraph of
Section 5.7:

= / B €)1 = (€, €)% dw(€) =

r(2) & p+[1/2] —r+Hr(r+ L
_T(3) 1y <k:> > <2p+l> Dk +1tp=r+ 00 +3) iy _ 2y

T
= p) = \ 2r L(k+l+p+3)

Inserting the last expression into (6.5.7) and expanding the right-hand side of the so-
obtained equality in powers of x, we obtain

o <@) mik Xk: p%mi it (m_52k> (k) <2p2:- l) @ y

=0 p=0 r=0 s=0 p
T(k+l+p—r+4)T(r+1)
F(k+l+p+13)
Equality (6.5.8) implies, first, possibility of the representation

> xm—2k+2p—2r+2s‘ (658)

[m/2)
(An™, ™ = > ar(p,m,n)z™ ", (6.5.9)

p=0
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i.e., validity of (6.5.5)—(6.5.6) and, second, the fact that the coefficient of ™ on (6.5.9)
depends only on the summands of (6.5.8) that relate to p = k, s = r. In other words,

ap(0,m,n) =
CD(g) el -2k (2 4+ )\ D2kl r+ 5T ()
D YD VN e ( l >< . ) ey - (6.5.10)

Transforming (6.5.10) by changing the summation index of the first sum with respect to
the formula 2k + [ = p, we obtain

ap(0,m,n) =
L Q) ()

(6.5.11)
Note that the inner sum coincides with the quantity (0, p) defined by formula (5.7.15).
Inserting the value (5.7.19) of this quantity into (6.5.11), we arrive at the equality

m

n p!
ar(0,m, ) = (=1)*T () (m—2k)1 S (—1)7 . (6.5.12)
2 S 2(m—p)l(p— 20T (p+2)
Thus we have shown that, for a tensor f € S™T!M satisfying (6.2.9), the equality
1
Apf = " / Pgikjg%f dw, (&) = ax(0,m,n) f (0<k<[m/2]) (6.5.13)
Q.M

holds with the coefficients ax(0,m,n) given by formula (6.5.12). From this with the help
of Lemma 6.4.3, we obtain

1
= [ Qef dwn(&) = Mm, ), (6.5.14)
QM
where
[m/2] —1)P 2 _
A(m,n):m!F<n> > ( )' nt2m =3 X
2/ = 2vpl (n+2m—3)(n+2m —5)..(n+2m —2p — 3)
X fj (—1)* i (6.5.15)
=, 25 (m — k)(k — 2p)'T (k+2) o
Relations (6.5.3) and (6.5.14) imply equality (6.3.1) with
x(m,n) = (n — D)X(m,n) — m?u(m,n). (6.5.16)

We have now to demonstrate that the last claim of Lemma 6.3.1 is valid for the quantity
x(m,n) given by formulas (6.5.2), (6.5.15) and (6.5.16).
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For m = 2, by the direct calculation relevant to formulas (6.5.2) and (6.5.15), we
obtain the equality x(2,n) = n — 3, which proves the claim of Lemma 6.3.1 in the case
m = 2. Therefore, we further assume that

n>m>3. (6.5.17)
The quantity A(m,n) is nonnegative, so the inequality
(n — DA(m,n) — m*u(m,n) > m[A(m,n) — mu(m,n)].
holds under assumption (6.5.17). By (6.5.2) and (6.5.15),

1
m!F(g)D‘(m’”) — mp(m,n)] =
¥ p ! n+2m-—3
= pz% (1) 2Ppl (n 4+ 2m — 3)(n 4+ 2m — 5)...(n 4+ 2m — 2p — 3) X
DS, k! Ly .

Sy 2m =R k=2 (k+3) S 2m—k)T (k+3)

Extracting the summands that correspond to p = 0 and p = 1 from the first sum on the
right-hand side and including them into the second sum, we rewrite the latter equality in
the form

1
mlr(g)[/\(m,n) —mp(m,n)] = v(m,n) + k(m,n), (6.5.18)
where
U k+1 R LAY k(k—1)
v(m,n) = g::o( b 2k (m — k)T (k:+ g) 2n+2m -5 kz::z( ) 2k(m — k)T (k:+ %)7
(6.5.19)
[m/2]
B (—1) n+2m-—3
K(m,n) = 1;2 2ep! (n+2m —3)(n+2m —5)...(n + 2m — 2p — 3) %
X f: (—1)* k! (6.5.20)

k=2p 2k(m — k)!(k — 2p)'T (k N %)

with k(3,n) = 0. Let us prove that v(m,n) > 0 under condition (6.5.17) and x(m,n) > 0
under the condition n > m > 4, thereby we shall complete the proof.

Recall that integral (5.8.6) was introduced in Section 5.8, and equality (5.8.8) was
established for it. Taking & =1 and p =0 in (5.8.8), we obtain

m_k
N

k=0

k1 B 1
(m—k)T (k+2)  ml(2-2)

LI (0,m,n). (6.5.21)

As is seen from (5.8.6), the integral I;(0,m,n) converges only for n > 5. So we assume
for a while that n > 5. Taking a = 0 and p = 1 in (5.8.8), we obtain

Nk k(k—1) B 1 -
k;z( Y 26(m — k)T (k+2)  4(m—2)T (2 —1) Lo(1,m, n). (6.5.22)
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We insert values (6.5.21) and (6.5.22) into (6.5.19):

m(m — 1)
n—4)(n+2m —5)

1
v(im,n) = ) [Il((),m, n) — X Ip(1,m,n)|. (6.5.23)

mll (5 — 2

From this, using positiveness of Iy(1,m,n) and the inequality

m(m — 1)
4(n —4)(n+2m —5)

1
<7a
-2

valid under the assumptions n > 5 and (6.5.17), we conclude

1 1
vimn) > ——— [[ 0,m,n) — =Iy(1,m,n ] .
) > ey [0 = 1t
Inserting the expressions of I;(0,m,n) and Iy(1,m,n) given by formula (5.8.6) into the
last equality, we obtain

v(im,n) > m'Fé‘—Q) 0/1x(1 — g)"/23 <1 - ;)m_2 [(1 - ;)2 - ;x(l - x)] dx.

The integrand is positive for 0 < = < 1. Thus positiveness of v(m,n) is proved in the
case n > 5. For n = 4, according to (6.5.17), we should only examine the case m = 3.
Positiveness of v(3,4) is checked by a direct calculation by formula (6.5.19).

For m = 4 or m = 5, the outer sum in (6.5.20) consists of a single positive term.
Therefore, we further assume that

n >m > 6. (6.5.24)

Collecting the terms of the outer sum in (6.5.20) in pairs corresponding to even values,
p = 2q, and odd values, p = 2¢ + 1, we rewrite (6.5.20) as

1 n+2m-—3

k(m,n) > 2§2q§[:m/2] 2%0(2¢)! (n+2m = 3)(n +2m = 5)...(n +2m — 4q = 3) e
where ) i (—1)*K! _
T & 26 (m — k)I(k — 4q)IT (k+3)
) , i (—1)*k! . (6.5.25)

2(2¢ + 1)(n+2m —4q = 5) | 235 25 (m — k)!(k — 4g — 2)IT (k + 3)

We shall show that quantities (6.5.25) are positive. Putting in (5.8.8) first « =0, p =
2q, and then o =0, p = 2¢g + 1, we have

m |
> (-1t . :
k=4q

24(m — k)l(k — 4q)IT (k+2) — 210 (3 — 1) (m — 4q)!

IO<2q7 m, n)a
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DR EI -
1o 28(m — k)(k — 4g — 2)IT (k + 2)
1
= Iy(2g + 1,m,n).
24+2T (% — 1) (m — 4q — 2)! of )
Inserting these values into (6.5.25), we obtain
Kq(m,n) =
1 —4qg—1 —4
241" (3 — 1) (m — 4q)! 8(2¢ +1)(n + 2m — 4q — 5)
(6.5.26)
Let us integrate

1 T m—4q
In(2q,m,n) = /x4q(1 — x)"/22 (1 - 2) dx
0

by parts:

1 P dglatt

m—4q
/22 _x> _
Ig+1) da (I—2) (1 2 du

Io(2¢,m,n) =

1

—4 /$4q+1 )23 <1 B x>m4q d &
4q+ J 2

m — 4q

1 o 22 T m—4q—1
B T Y (s K
2(4q + 1) (1-=2) 2

Inserting this expression for Iy(2q, m, n) and value (5.8.6) for I4(2¢+1,m,n) into (6.5.26)
we obtain

1

/ 4q+1 /2-3 A
x™ 1—x"<1—) f(x)dz,
249+ (% - 1) (m — 4q)! 0/ ( ) 2 (@)

Ke(m,n) =

where

n—4 \2 m—4q x
f(x):4q+1(1_2> +4q+1(1_x><1_2)_
_ (m—4g—1)(m—4q) (1 — 7)

4(2¢ +1)(n+2m — 4q — 5) '

Thus, for completing the proof it suffices to show the function f to be positive on the
interval (0, 1) under conditions (6.5.24) and

4 <d4qg <m. (6.5.27)
First, since 4¢ 4+ 1 < 2(2q + 1),

f(x)>2(2ql+1)l(n—4) (1—;>2+(m—4q)(1—x) (1-%)-
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(m —4q — 1)(m — 4q)

© 2(n+2m—4q—5) x(l—x)].

Then, (6.5.24) and (6.5.27) imply the inequality n — 4 > m — 4¢ from which we obtain

f@) > m l(l N ;)2 t{1-a) <1 N ;) "2 sznllz;ql— 52-2))-

Finally, (6.5.24) and (6.5.27) lead to

m—4qg —1 1
<z,
2(n+2m—4q—>5) 2
and, hence,
m — 4q A x 1
— 1= = 1— 1— =) —=xz(1—- )
f(x)>2(2q+1)[< 2) T I)< 2) gl =2)| >0

Lemma 6.3.1 is proved.

6.6 Inversion of the truncated transverse ray
transform on Euclidean space

As have been mentioned at the end of Section 5.1, inversion of the transverse ray transform
on Euclidean space reduces to the problem of inverting the ray transform of a scalar
function. The situation is different for the truncated transverse ray transform. In the
current section we will obtain an inversion formula for the operator K in the case m =
2,n = 3, which is of profound interest for polarization tomography. In the general case this
formula is not found yet. Our arguments will appreciably follow the scheme of Sections
2.11-2.13.

We will use only Cartesian coordinate systems on R?. We use lower indices for denoting
tensor components; on repeating indices the summation from 1 to 3 is understood.

For a tensor field f € §(S?) (see the definition in Section 2.1), the truncated transverse
ray transform is defined by the formula

Kf(z,€) = / Qcf(x +t6)dt (z € R?, £ R). (6.6.1)

According to one remark of Section 6.1, we consider the problem of inverting operator
(6.6.1) on the subspace of S(5?) defined by the condition

Jf = fur =0. (6.6.2)
As is seen from (6.4.23), for such tensors, the projection ()¢ is given in coordinate form
as follows
1
€1

1
21¢[

1

(Qéf)ij = fij - 2‘5’2

(fipgpgj + fjpgpgi) + qugpfqgifj + qugpfq(sij' (663)
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We define the operator i : C°(S?% R? x R3) — C*°(S5?; R?) by the equality (an analog
of formula (2.11.1))

pole) = 1 [ . ) do©), (6.6.4)

where ) is the unit sphere of the space R?.

Let us calculate the composition K : 8(S?) — C*(S5?). Starting with (6.6.1) and
(6.6.3), we repeat the correspondent arguments of Section 2.11. In such a way, for a field
f satisfying (6.6.2), we obtain

puKf = Bif+ Byf + Bsf + Buf, (6.6.5)
where )
Bif = o—f 2|72, (6.6.6)
1 Tk TiTk

(Baf)ij = 5 <fzk * W + fin * |$|4> , (6.6.7)

1 T;T;TLT)
(Bsf)ij = Efkl * W, (6.6.8)

1 T

(Baf)ij = Efkl * W(Sij- (6.6.9)

Denoting h = 2pK f and applying the Fourier transform to relations (6.6.5)—(6.6.9), we
arrive at the algebraic system of equations:

A 1/ A 3 . 1. R
fij — B (fikEjk + fjkgik) + Efklggjk[ + kalgkléij = |ylhij, (6.6.10)

where the notations e; = y;/|y| and ;; = 6;; — e;e; are used.
System (6.6.10) is uniquely solvable, as the next claim shows.

Lemma 6.6.1 If the right-hand side meets the condition jiL = 0, then system (6.6.10)
has a unique solution satisfying the condition jf = 0. The solution is expressed through
the right-hand side by the formula

~ ~ ~ ~ ~ 5.
fij = 2|y‘ |:4h” -3 (hikekej + hjkekei) + hklekeleiej + ghklekel&j . (6611)

P r o of. One can directly verify that the operators A : f — hand B : h— f defined
by formulas (6.6.10) and (6.6.11) map the space Ker j into itself. So, it suffices to establish
validity on Ker j of the identity obtainable by inserting value (6.6.11) for f into the left-
hand side of equation (6.6.10). This identity is also verified by a direct calculation. The
lemma is proved.

Writing (6.6.11) in invariant form

. 6 . 1 .., 51
f(y) =2y <4 R + W@i]i + 3WZJ§> h(y),

applying the inverse Fourier transform to the last equality and using arguments sited
before the formulation of Theorem 2.12.2, we arrive at the next
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Theorem 6.6.2 A tensor field f € S(S?) on R? satisfying condition (6.6.2) is recovered
from its truncated transverse ray transform by the formula

4 5
f=2(=A) (4 —6ATNS + A2 + 3@A152> LK T,
T
where the operator u is defined by equality (6.6.4), A is the Laplacian, d is the operator of
inner differentiation, § is the divergence and i is the operator of symmetric multiplication
by the Kronecker tensor.



Chapter 7

The mixed ray transform

Here we will investigate the equations of dynamic elasticity by the same scheme as that
which was applied to the Maxwell system in Chapter 5.

In Section 7.1 the traditional method of geometrical optics is applied to quasi-isotropic
elastic media. We restrict ourselves to considering the zero approximation. We show that,
relative to the classical case of isotropic media, in our case formulas for the zero approxi-
mation have the next features. First, the formula for the amplitude of a compression wave
contains some factor that describes the accumulation, due to anisotropy, of the wave phase
along a ray. Second, the Rytov law for shear waves contains a term that depends linearly
on the anisotropic part of the elasticity tensor. Then we discuss the inverse problems
of determining the anisotropic part of the elasticity tensor. For compression waves, the
inverse problem is equivalent to the problem of inverting the (longitudinal) ray transform
I, of a tensor field of degree 4, which was investigated in Chapter 4. For shear waves, the
inverse problem, after linearization, leads to a new operator L of integral geometry which
is called the mixed ray transform.

In Section 7.2 the definition of the mixed ray transform is generalized to tensor fields
of degree m + [ symmetric in the first m and last [ indices. This generalization is given
to emphasize that the already-investigated operators I (the ray transform) and J (the
transverse ray transform) are special cases of the operator L.

The problem of inverting the operator L is considered in Section 7.3. Our exposition
of arguments similar to those used in the previous chapters is kept at a minimum. As in
the cases of the operators J and K, our problem reduces in the long run to some algebraic
question generalizing Problem 5.9.1. The author could solve the latter only form =1 = 2,
so the final result is obtained only in this case. The algebraic problem is considered in
Section 7.4.

The material of the chapter is first published in this book.

7.1 Elastic waves in quasi-isotropic media

7.1.1 The equations of dynamic elasticity

Let (z',2% 2%) be a curvilinear coordinate system in R? in which the Euclidean metric
is given by quadratic form (5.1.6). Elastic oscillations are described by the displacement
vector u(x,t) = (u', u?, u?®). Within the frames of linear elasticity theory the strain tensor

199
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is introduced by the equality

1
eik = 5 (Wisn + i), (7.1.1)

while determining the stress tensor by the formula
Ojk = Qjgime™, (7.1.2)
where a = (@) is called the elasticity tensor. It is assumed to possess the symmetries
Ajklm = Qkjlm = Gjkmi = Qimgk- (7.1.3)
System (7.1.1), (7.1.2) is closed with the equilibrium equations

0%u;
qu—pmjzo, (7.1.4)

where p is the density of a medium. The covariant derivatives are taken in the Euclidean
metric (5.1.6). We restrict ourselves to considering waves harmonic in the time: u(x,t) =
u(x)e™*. Equations (7.1.1) and (7.1.2) do not change, and (7.1.4) is replaced with

o+ wipu; = 0. (7.1.5)
We assume the elasticity tensor to be representable as
1
Ajkim = AGjkGim + 1 (0510km + OjmOn) + — Cikim (7.1.6)

where A and p are positive functions called the Lame parameters, and c is referred to as
the anisotropic part of the elasticity tensor. A medium satisfying (7.1.6) is called quasi-
isotropic (the term “slightly anisotropic medium” is also used). In particular, in the case
¢ = 0 we have an isotropic medium. Equation (7.1.2) is rewritten as follows:

1
Ok = )\glQOgjk + 2N5jk -+ ;Cjklmé'lm. (717)
We assume A, i, p, Cjrim t0 be smooth real functions of a point z = (a!, 22, 2%).

7.1.2 The eikonal equation

The method of geometrical optics consists in representating a solution to system (7.1.1),
(7.1.5), (7.1.7) by the asymptotic series

R J o plwT jk L iwT gk
=T Y G =T X T = X

where 7 = 7(x) is a real function. We insert the series into the equations under consid-
eration, implement differentiations and equate the coefficients of the same powers of the
frequency w on the left- and right-hand sides of the so-obtained equalities. In such a way
we arrive at the infinite system of equations

m 1 /m m m m
6jk == 5 (uj;k + uk;j + J;T;k + JIICT;j) (TTL = _1707 )7 (718>
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m m m . m—1
Ojk = AP € pg Gk + 21E ji + iCjkpg € 17 (m=-1,0,...). (7.1.9)
Gk O = MU =0 (m=—2,—1,..), (7.1.10)

o -1 -2 -2
where it is assumed that v = =0=0.

Consider the initial terms of this chain. Puttingm = —11in (7.1.8), (7.1.9) and m = —2
in (7.1.10), we have

-1 1 /0 0

Eik = 5 (UjT;k+UkT;j) , (7111)

-1 -1 -1

Ojf = )\gpq Epq9ik 2u €k, (7'1'12>
Otk — pli; = 0. (7.1.13)

We see that ¢ does not participate in (7.1.11)—(7.1.13). So the conclusions to be derived
from these equations are identical for isotropic and quasi-isotropic media.
From (7.1.11) and (7.1.12), we obtain

Bik = )\apT;pgjk + :u(g’jT;k + %kTU)' <7114>

Inserting the last expression into (7.1.13), we arrive at the relation
(A + ,lL)?E)LpT;pT;j + ,U/T;pT;ngj — p?E)Lj =0
which can be written in invariant form
(A + ) (U, VIYVT + (u| V7|2 = p)ti = 0. (7.1.15)

If the equality
V7> =p/u (7.1.16)

holds, then (7.1.15) implies the relation
(0, V) = 0. (7.1.17)

If (7.1.16) does not hold, by taking the scalar product of (7.1.15) and V7, we obtain
|V7|> = p/(X\+ 2u). Inserting the last expression into (7.1.15), we have

(7.1.18)

Thus, we have arrived at the next conclusion: the function 7 satisfies the eikonal
equation

V7[> = n? (7.1.19)
whose right-hand side assumes one of the two values:
n? = n}% =p/(A+2p) (7.1.20)
or
n*=n?=p/u. (7.1.21)

The reciprocals v, = 1/n, and v, = 1/n, are called the velocities of compression and shear
waves respectively. For n = n, a wave has a longitudinal nature within the scope of the
zero approximation: the displacement vector is a multiple of V7. For n = n, a wave is of
a transversal nature within the scope of the zero approximation: the displacement vector
is orthogonal to V.

The characteristics (rays) of the eikonal equation are geodesics of the Riemannian
metric (5.1.17).
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7.1.3 The amplitude of a compression wave

The amplitude A, of a compression wave is defined by (7.1.18). A formula for A, is
obtained from equilibrium equation (7.1.10) for m = —1. To simplify calculations we use
ray coordinates.

We fix a solution 7 to the eikonal equation (7.1.19) for n = n,. In some neighbourhood
of any point one can introduce ray coordinates x!, 2%, 2> = 7 as was explained in Section

5.1.3. The Euclidean metric (5.1.6) has the form (5.1.19) in these coordinates. The

gradient of 7 is given by equalities (5.1.20). By (7.1.18), the vector field @ has the

coordinates
0 0 0

Ug =0 =0, U3=n"A, U®=nA, (7.1.22)

In the current section Greek indices assume the values 1,2; on repeating Greek indices,

summation from 1 to 2 is understood. By (5.1.20) and (7.1.22), formulas (7.1.14) take
the form ) , )

Oap = MGapAy, a3 =0, o33=(\+2u)n"'A,. (7.1.23)

In the derivation of a formula for A, we will need only the following equations, of system
(7.1.8)—(7.1.10), which are written down below, while taking (5.1.19) and (5.1.20) into
account:

1
gaﬁ: 5 (&a;ﬁ—i_gﬁ;a) y g33:1(,)1/3;3+%63, (7124)
-2 af 0 0 . —lpq
O33 = An g " Eap + ()\ + 2,[1,)533 + 1C33pg €77, (7125)
O F 4 n2 033 — plig = 0. (7.1.26)

Using (5.1.21) and (7.1.22)—(7.1.23), we obtain

1 o A
U, g = nc‘?ngA Uy, 5 = nla&p, (7.1.27)
_ 0g,,
O%ioz;ﬂ = un STB Apa
- 0A ON+2 0
i3 = (A+2u)n 152+ 1 OAF 2 | (A +2u)n 250 | A,
or or or
The last two equalities imply
-1 04, 09ap =~ O(N+2p) on
A 42 op A 2u) | A, 1.2
= 2 S o g0 200 1 PO B, 12w
From (7.1.24) and (7.1.27), we obtain
0 1 Jdg, 0 _,0A 1
Cas = N gTﬁA 33 =1 17: + us. (7.1.29)

With the help of the last formulas, (7.1.25) implies

0A, 09a
_lai‘i‘ )\ -1 a,B gﬁA +ZC33pq ()\+2,u)

0
033 = (A + 2u)n
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Inserting the found value for 033 and value (7.1.28) for B;k;k into (7.1.26), we arrive at
the relation

94, 1
2(A + 2#)”@ + 5(/\ + 2u)ng

0Ga O+ 2p) on
af 8
5 +n 57 + (A +2p) 5 A+

+ inQngpqglpq + [(A + 2u)n* — p]zl@ = 0.
By (7.1.20), the coefficient of 11Lg in this formula is equal to zero. Thus, inserting into the

last formula the expressions

—1
B =n*A,

that follows from (7.1.11), (5.1.20) and (7.1.22), we arrive at the equation for the ampli-
tude A,:

80141, N (1 03995 1 1 O(A+2u) 119n in403333> A, = 0.
-

4 or | 2X+2u 07 +27187 224+ 2u
Using notation (5.1.22) and formula (5.1.23), we transform equation (7.1.30) so as to
obtain

-1 —1
e ="¢g® =,

(7.1.30)

0 1 1/2 i nt
i /2,1/2 "
57 [ln (ApJ n = (A + 2/1) } ~ ot 2M033337

which, with (7.1.20) and (5.1.22) taken into account, implies

0 ——
E {ln (Ap Jpl)p)} == _QIOZUS C3333-

Integrating the last equation, we obtain the formula for the amplitude of a compression
wave:

C T
A, = —’/ d 1.31
» mexp [ ZTO 20@303333 T] (7.1.31)

where C' is a constant depending on a ray; d7 is the length element of the ray in metric
(5.1.17); the integration is executed starting from a fixed point of the ray to the current
point in which the amplitude is calculated.

Formula (7.1.31) is obtained in a ray coordinate system for the ray z® = z. For an
arbitrary ray v = (y!,72,7%), in arbitrary coordinates this formula looks like

A, = ¢ exp [—z’ / %cjklmyjy’ffylfy%] , (7.1.32)
\/Jpup 2 2pup
where 47 = dr’ /dr. Validity of (7.1.32) follows from the fact that this formula is invariant
under change of coordinates, and coincides with (7.1.31) in ray coordinates.
For ¢ = 0, (7.1.32) gives the classical formula for the amplitude of a compression wave
in an isotropic elastic medium:

a,- (7.1.33)

b=
\/Jpvp

Comparing (7.1.32) and (7.1.33), we conclude that slight elastic anisotropy leads to the

accumulation, of the phase of a compression wave along a ray, which is expressed by the

integral in (7.1.32). A formula close to (7.1.32) is obtained in [17] in another way.
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7.1.4 The amplitude of a shear wave

We fix a solution 7 to the eikonal equation (7.1.19) for n = n, and introduce a ray

coordinate system as above. Formulas (5.1.20) are preserved and (7.1.22), (7.1.23) are
replaced with:

Uy = U3 =0, (7.1.34)

_U;g =0, _Uloc?) = /“(lom ?7;3 = 0. (7135)

From system (7.1.8)—(7.1.10), in this case we use only the next equations

0 10 0 1

6&3:§(ua;3+u3;a+ua)a (7136)
ga3 = 2Mga3 + icagpq_glpq, (7.1.37)
_O%Jzk;k + n23a3 - P%La = 0. (7138)

Inserting value (7.1.36) for £, and the expressions

-1 -1 0 -1
Eaﬁ:()’ E_:043: n2ua7 53320

N —

that follow from (7.1.11), (5.1.20) and (7.1.34

~—

into (7.1.37), we obtain

0 0 0 . 0
Op3 = M(Uq ;3 + Us. o + %La) + ancagﬁguﬁ. (7.1.39)

From (7.1.34) and (7.1.35), we find the covariant derivatives

0

0 ou 1 5. 0gago 0 1 5. 0gag0
_ o By Y9ap _ By Y5ap
Uy .3 = - = U, Ug.q = —=0g  —— U, 7.1.40
BT or 29 or 5 29 or ( )
-1 1 5 (090 | Jgsy0
Oapin = Pl < or us + or o)
0
1 O(uua) 1 5 0gap0 _,0no
Ta3i3 = or 2" or ty T i 87'ua‘

By (5.1.23), the last two equalities imply

0
-1 4 5 | OUg, 10J 10n 10w\ o
k= S (el e . 1.41
Ok ; pr {87’ +<J87'+n87'+u87' Ha (7 )

From (7.1.39) and (7.1.40), we obtain the representation

0
0 ou 0Gas 0 1 . 0
_ o By YYa 2 Jé]
O3 = Usy + Uy | + N7 Cozpztl
3= H ( or 7 Tor ) 803

and insert it into (7.1.38)

0
1 O, 0Gas 0 1 . 0
Uozk;k T 'unQ (87- B gmgfu'y) + (NWQ — p)Uq + 2714001353“5 = 0.
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By (7.1.21) the coefficient of 11La in the last formula is equal to zero. Inserting expression
(7.1.41) for the first term in the last formula and introducing the notation

197 10n  1du

=—-—+ - - 7.1.42
¢ J67+n87'+u87 ( )
we arrive at the next system for the functions 8a :
0
Oug 0 OGas 0 n? 0
27 4 atlg — gﬂvﬁu7 = —z;cagﬁguﬁ (a=1,2). (7.1.43)

From now on we will omit the index 0 in the notation 8, since other amplitudes (rﬁ for
m # 0) are not used further in the current section.
The amplitude As of a shear wave is defined by the equality

A? = |ul* = g*Pu, . (7.1.44)

From (7.1.43), we will obtain an equation for A,. To this end, we differentiate (7.1.44)

DA? 0 OUa_ og’
9 = 2Re <g '687_'&6) + 5 Ualls:

Inserting the expression for du, /01, which follows from (7.1.43), into the last formula,
we obtain

2

A2 0G5 n
= Re VBT g% ) ug iy — i— CospzulT® | +
or g9 or g 8 u 383

g’

U Ug-

The tensor ¢ has the same symmetries (7.1.3) as the tensor a. Therefore, the second
summand in the brackets is pure imaginary and, consequently, can be omitted. The ex-
pression in the parentheses is symmetric in « and 3 and, consequently, the first summand
in the brackets is real. So the last formula can be rewritten as:

0A? 0g*? 0G-s
s _ ay B6ZIv0  _af -

or ( or t9y or 9 ) tatls

In view of (5.1.43), this equation takes the form
0A,
24, 9 = —ag®Pugtiy = —aA?,
or oA
25" +ad, =0, (7.1.45)
T

Inserting value (7.1.42) for a into the last equation and using (7.1.21), we obtain

9l (7)) =0

Integrating, we arrive at the classical formula for the amplitude of a shear wave:
C
As = )
VI pug
where C' is a constant depending on a ray. Observe that this formula remains the same
for an isotropic and quasi-isotropic media.
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7.1.5 Rytov’s law

We transform system (7.1.43) by changing variables

Uq = Asn_lnou (7146)
where A is the amplitude defined by formula (7.1.44). Using (7.1.43) and (7.1.45), we
obtain 5 P 5 oA ) 5

Ne n n Oug n 0As n
2—=2" U =2 —2—( aT 77 Ua =
or _ Cor <AS“ > Ao CAzor T Aot
n 0Ga n? na 2 On

dg 2 0n n
_ ByZIaB z . B
g 87_ n’Y + n 67— T]Oé 1 ILL Ca3ﬁ377 .

We thus arrive at the equation

on. 1 4 0g 10n in?
g e = — = —Ca3s39” ) 7.1.47
Until now all our calculations were performed in the Euclidean metric. Let us invoke

the Riemannian metric (5.1.17), which assumes the form (5.1.49) in ray coordinates. Note
that the vector n has unit length with respect to this metric. Inserting expression (5.1.49)
for g into (7.1.47), we transform this equation as follows

877 1 oh 3 1 n4

e e Ay 7.1.48

or 2 ar 2 Ca3psT] ( )
It is essential that raising the index of the vector n is performed with respect to metric
(5.1.49), i.e., n° = hP7n,. We convince ourselves in the same manner as in Section 5.1.4
that equation (7.1.48) is equivalent to the next one

o1
Na: 3 = —zwca%gnﬁ (v =1,2). (7.1.49)

S

Besides, the relations |n|> = 1 and (n,%) = 0 imply that
N3:.3 = 0 (7150)

In (7.1.49) and (7.1.50) the covariant derivatives are taken in metric (5.1.49). The
index 3 is distinguished in these equations, since the former are written in ray coordinates.
In an arbitrary coordinate system these equations are replaced with the next:

Dn 1 . e
(dT)j = 5080 = B Carm (7.1.51)

where 67 is the Kronecker tensor. Validity of (7.1.51) follows from the fact that this
formula is invariant under change of coordinates and coincides with (7.1.49), (7.1.50) in
ray coordinates. We call equation (7.1.51) the Rytov law for a quasi-isotropic elastic
medium (in Riemannian form). For an isotropic medium it takes the form
Dn
dr

and means that the vector field 7 is parallel along a ray in the sense of metric (5.1.17).

0 (7.1.52)



7.1. ELASTIC WAVES 207

7.1.6 The inverse problem for compression waves

First of all we emphasize that the inverse problems considered below are of a rather
formal character due to the next two circumstances. First, we deal only with the problem
of determining the anisotropic part of the elasticity tensor while the isotropic part is
assumed to be known. In practice, the latter is usually found as a solution of an inverse
problem. The information given in such an inverse problem is usually the travel times field.
The anisotropic part of the elasticity tensor gives some distortion into the travel times
field. Thus, it stands to reason to consider both inverse problems simultaneously. Second,
we impose no boundary condition on the boundary of a domain under consideration.
Thus, we treat the problems as if the waves propagate in an unbounded medium, and
use the boundary only as a surface at which the sources and detectors of oscillations are
disposed. In point of fact, due to the reflection effects on the boundary, the possibility
of registrating information that is used below as the data for inverse problems, seems to
be rather problematic. Here we will not settle this question but only attract the reader’s
attention to the fact of existence of it and similar questions.

Let an elastic medium be contained in a bonded domain D C R?. We assume that the
coefficient n,, of refraction for compression waves is known, i.e., metric (5.1.17) and its
geodesics are known. Our problem is that of determining the tensor field ¢ in the Hooke
law (7.1.7). To this end, assume that we can dispose a source of compression waves in
every point of the boundary 0D and measure the phase of a compression wave on the same
surface 0D. We introduce the notation bji, = o¢jkim/ (2pfug) where o is symmetrization,
as the reader would recall. By (7.1.32), the problem is equivalent to the next: one has
to determine a tensor field b which is defined on D, provided the number exp[—iIb(7y)] is
known for every geodesic v whose endpoints are in dD; here [ is the ray transform. By
the conventional monodromy principle, the function 76(7) can be uniquely recovered from
exp|—iIb(7)], if the boundary 9D is connected. Thus, our problem reduces to inverting
the operator 1.

In the three-dimensional case the tensor ¢ possessing symmetries (7.1.3) has 21 dif-
ferent components. The symmetric tensor b = oc has only 15 different components.
Consequently, 6 components of the desired tensor are lost just in posing the problem.
As we know, b is recovered from Ib up to a potential field of the type dv, where v is a
symmetric tensor field of degree 3 depending on 10 arbitrary functions. Thus our problem
allows us to determine 15 — 10 = 5 independent local functionals of the desired field.

7.1.7 The inverse problem for shear waves

Introduce a tensor field f by the equality

fikim = _iw(cﬂkm + Cimki)-
S

It follows from (7.1.3) that f possesses the symmetries
Fiktm = Srjim = Fikmi; (7.1.53)

Fiktm = fimjk, (7.1.54)
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and c is recovered from f by the formula
Cikim = 205 (fitkm + Fimit — fikim)-

Further we do not use symmetry (7.1.54) and consider the inverse problem for tensor
fields possessing only (7.1.53). The question is formulated as follows: for every geodesic
v : [a,b] — D with endpoints in 9D, the value n(b) of a solution to system (7.1.51) is
known as a function of the initial value n(a) and the geodesic, n(b) = U(~)n(a); one has
to determine the field f(z) from U(y). Linearizing this problem by the scheme of Section
5.1.6, we arrive at the next linear problem.

Problem 7.1.1 Given is a Riemannian metric in a bounded domain D C R"™. Determine
a tensor field f = (fjum) that is defined on D and has symmetries (7.1.53), if for every
geodesic 7y : la,b] — D whose endpoints are in 0D, the quadratic form

Lf(v,n) = / Fitm (Y@ @) (@A (@)™ () dt - (ner™) (7.1.55)

is known on the space v of vector fields parallel along v and orthogonal to +.

The operator L defined by equality (7.1.55) is called the mized ray transform, according
to the fact that the integrand in (7.1.55) depends on the component of the field f, whose
two indices are directed along a ray and two other indices are orthogonal to the ray.

Note that (7.1.55) is obtained from the equations of elasticity by two asymptotic
passages. The first of them is the expansion into asymptotic series in w, and the second
one is the linearization of the inverse problem. They are applicable together provided
that w™! < ¢jpm < 1.

7.2 The mixed ray transform

Given a Riemannian manifold (M, g), let S™7},; ® S'7}, be the bundle of covariant tensors
of degree m + [ symmetric in the first m and last [ indices. For (z,£) € T M, we define

the operator
Ae : S™TIM @ S'TIM — S™T.M

by the equality ‘ '
(A£f>217,m = fil...imjl.“jlgjl A ng_
By the mized ray transform on a CDRM (M, g) we mean the operator
L:C=(S™r, ® S'r),) — C®(S™ ), (7.2.1)

that is defined by the formula

0

Liwe) = [ EPohufGm)d  (@8eanm),  (722)
T (x,€)

where v = v, ¢ and the notation of Section 5.2 is used.
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The relationship between (7.2.2) and (7.1.55) is expressed by the equality
0
(Lf(x,6), (n+ag)™) = / Fireciminea (YO (B) o™ (OF(F) . A7 () dt - (T.2.3)
T (2.8)

which holds for (£,n) = 0. This equality is verified in the same manner as (5.2.5).

As in Chapter 4, we convince ourselves that (7.2.1) is extendible to a unique bounded
operator

L: H*S™ry, @ S'ry,) — HF(S™my) (k> 0).

Note that in the case m = 0 the operator L coincides with the (longitudinal) ray transform
I investigated in Chapter 4; and in the case [ = 0, with the transverse ray transform J of
Chapter 5.

To what extent does Lf determine the field f? In order to answer the question, we
introduce the next two mutually dual algebraic operators

il
S™h © S'Tyy § Sy @ Sy (7.2.4)

by the equalities
(B iy iy jroity = uil...imjl...jlgimﬁa
(AW cigiegi = 01 )0 (1 1) (Ginji Uiz o) -
If f = A\w for some w € C®(S™ 17, ® S""171,), then the integrand in (7.2.3) is identical
zero and, consequently, L(Aw) = 0.
We also introduce some differential operators (analogs of d and § of Section 3.3)
6/

C>(S™r), @ S'rh,) § C>(S™rh,; @ Sy (7.2.5)

by the formulas
(dlu)il...imjl...jl =0o(J1-- -jl)uil...imjl...jl,l g0

Y. — ey AdUl
(6 u)ll---lmh---]z—l - uu---lm]l---ﬂ ;]z+1g .

If f = d'v and the field v € C>(S™1};,®S5'17},) satisfies the boundary condition v|sy = 0,
then the integrand in (7.2.3) is the total derivative with respect to ¢t and, consequently,
L(d'v) =0.

For the operators d’ and A considered together, the next analog of Theorem 3.3.2 is
valid:

Lemma 7.2.1 Let M be a compact Riemannian manifold, k > 1. For every field f €
H*(S™7h, @ S'r),), there exist °f € H*(S™r}, @ S'ry,), v € H*1(S™r, ® Si74,) and
w € H*¥(S™ 17}, ® S'1711,) such that

f="f+dv+ v, (7.2.6)
§f=p’f=0, uww=0, vloy =0. (7.2.7)

The field °f is uniquely determined by the field f, and the estimate
I°flle < ClIf |k (7.2.8)

1s valid with a constant C' independent of f.



210 CHAPTER 7. THE MIXED RAY TRANSFORM

Note that uniqueness of v and w is not asserted. The author does not know whether
the uniqueness holds. As before, we call *f the solenoidal part of the field f.

P r o o f. By directly calculating in coordinates, we verify that d’ and A commute.
Let H*(S™7h, ® S'='7},) be the subspace, of the space H*'(S™7;, @ S'='74,), which
consists of all the fields v satisfying the boundary condition v|gy; = 0. For the operators
d" and ¢, an analog of Theorem 3.3.2 holds which is formulated and proved by repeating,
almost word by word, the content of Section 3.3. In particular, it implies that the operator

d - H*=1(s™r, @ S7ir ) — H*(S™r), ® S'rh))
has closed range. Since A and p are algebraic operators, the decomposition
H*(S™1, ® S'71,) = Ker @ Im ), (7.2.9)

holds and, consequently, the range Im X is closed. Thus, Im d’ +Im ) is a closed subspace
of Hk(S™r}, @ S'7},), and therefore the decomposition

H*(S™r), @ S'1;) = (Ker & NKer p) @ (Imd’ + Im \). (7.2.10)

holds. By °f we denote the result of projecting the field f onto the first summand of the
decomposition (7.2.10). Since the projection is bounded, estimate (7.2.8) is valid. By
(7.2.10), the representation

f=°f+dv+ M\, (7.2.11)

exists with some field v’ satisfying the boundary condition v'|5); = 0. Now, according to
(7.2.9), we represent v’ as
v =v+4 ", po = 0. (7.2.12)

It follows from the condition v'|sp = 0 that v|gas = 0. Inserting (7.2.12) into (7.2.11) and
using permutability of d’ and A, we arrive at (7.2.6) and (7.2.7) with w = w' + d'w"”. The
lemma is proved.

The main result of the current chapter is the next

Theorem 7.2.2 Forn > 2, there exists e(n) > 0 such that, for every CORM (M, g) of
dimension n satisfying the condition

k(M,g) < e(n) (7.2.13)

whose left-hand side is defined by formula (5.2.8) and for every field f € H*(S*1,,25%1},),
the solenoidal part °f of the field f is uniquely determined by Lf. The conditional stable
estimate

1°£18 < €y (3w *flosallo - 1E£ o+ NZAIT) < Co (1flla - IEF o+ IEFIT) . (7:2.14)

holds with constants Cy and Cy independent of f; here (5,5 )ivinjs = firiajrjn?’? and v is
the unit normal vector to OM.

The proof of the theorem is presented in the next section. The proof is performed
for arbitrary m,[. Only after reducing the proof to a purely algebraic question, we put
m=10=2.
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7.3 Proof of Theorem 7.2.2

First of all, repeating the arguments that are presented after the formulation of Lemma
4.3.4, we see that it suffices to prove Theorem 7.2.2 for a real field f € C>(S™7}, @ S'7},)
satisfying the conditions
df=0, (7.3.1)
wf =0. (7.3.2)

The solenoidal part of such a field coincides with f.
We define a semibasic tensor field u(z, &) = (us,.;,,) on T°M by the equality

u@&) = [ AP fGO)d (@) € TOM), (7.3.3)
T—(2,£)

The field u is symmetric in all its indices, homogeneous in its second argument:

u(z, t&) =t u(x, €) (t>0), (7.3.4)
satisfies the algebraic condition
Jeu(z,€) =0, (7.3.5)
the differential equation
Hu(x,&) = PeAef(x) (7.3.6)
and the boundary conditions
ulo_am =0, (7.3.7)
ulo,om = Lf. (7.3.8)

We write down the Pestov identity (4.4.4) for u, integrate it over QM and transform
the divergent terms of the so-obtained equality by the Gauss-Ostrogradskii formulas for
the horizontal and vertical divergence. We thus arrive at the relation

[ |[vul + (4 21 = )| Hup
QM

s =2 / (Vu, VHu) d5—
QM

- / (0, V) d52"2 4 / Rulu] d=, (7.3.9)
QM oM
where the semibasic vector fields v and w are defined by formulas (4.4.5) and (4.4.6);
the expression Ri[u], by equality (5.3.8). We write down the second summand of the
integrand on the left-hand side of (7.3.9), taking homogeneity (7.3.4) and the equality
(w,&) = |Hul? into account.
By the definition of the operator P, the right-hand side of equation (7.3.6) can be
represented as

Pelef(x) = Aef (z) — igy(, ) (7.3.10)
with some symmetric semibasic field y which, in turn, can be represented according to
(5.4.2). The field g participating in (5.4.2) is expressed through f as follows:

m

WngAgf. (7.3.11)

Y=
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We apply the operator % to equality (7.3.10) and take the scalar product of the so-

h
obtained equality and Vu. In such a way, taking (7.3.6) into account, we obtain

h v h v h v
(Vu, VHu) = (Vu, VA¢ f) — (Vu, Vigy). (7.3.12)

Transforming the second summand on the right-hand side of (7.3.12) in the same manner
as in the beginning of Section 5.4, we arrive at the equality

(T, Hu) = (Y, A S) — (5u, ), (7.3.13)

h
where Ju is defined by formula (5.4.4).
Now address the first summand on the right-hand side of (7.3.13). By the definition
of Ag,

h v h . v . .
(Vu,VA¢f) = AVAZTEES N v (fil...imjl...jlfjl .- -f]l> =
b i ' j
= [V iyt fil...imkjg...jl£J2 .- -fjl =

k K
=V (lu“ " fir ko 807 - -5”) =y (9 P fir o ikiaey ;p) §7...¢0

The second term on the right-hand side of the last formula is equal to zero, by (7.3.1).
Thus, introducing a semibasic vector field @w by the equality

Wy = W o ke &€ (7.3.14)

h v h .
we have the representation (Vu, VA¢f) = V;@0'. In view of this representation, (7.3.13)
takes the form

h v h . h
(Vu, VHu) = v,0" — (§u, 7). (7.3.15)

Estimate the last summand on the right-hand side of (7.3.15). To this end, repeat
the arguments of the second half of Section 5.4. As a result, arrive at the inequality (an
analog of (5.4.17))

h v 1 ho . ho .
2(Vu, VHu)| < b|z|? + g\gﬁ + bV 4 Vit + bR [u], (7.3.16)

where b is an arbitrary positive number; the quantities z, © and Rs[u] are defined by
formulas (5.4.9), (5.4.11) and (5.4.13). Equality (5.4.15) holds.

By (7.3.11), (7.3.16) and (5.4.15); formula (7.3.9) implies the inequality (an analog of
(5.4.24))

/ { / [(1 B2+ (20 1>1P5A§f|2”;|ngsAgf\2] dwx@)} AV (x) <

< / (b5 + @ — v, ) dE22 4 / Rlu] d=, (7.3.17)
oM QM

where notation (5.4.23) is used.
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By repeating the corresponding arguments of Sections 5.5 and 4.7, we establish that
estimate (5.5.10) holds for the last integral on the right-hand side of (7.3.17) and the
absolute value of the first integral on the right-hand side of (7.3.17) does not exceed the
quantity D(I||7, floarllo - |1Lf|lo + |Lf||?), where D is a constant depending on (M, g).
Using these estimates, (7.3.17) implies the next analog of inequality (5.5.16):

/1] [(1—b>|z|2+<n+21—1>|P5Agf|2—”;|nggAgf|2] dua(€) | AV () —

M Q.M
h .
—Ck [ 1VuPds < D (W flowloll Lo + ILFIE)
QM

Finally, repeating the arguments of Section 5.6, we find out that Theorem 7.2.2 holds in
the case of those [, m,n, that answer the next question:

Problem 7.3.1 Let S™ = S™(R™). For what values of [, m,n is the quadratic form

(Bf, f) = j}/ [(n+ 2 = 1) PeAc f? — m?| PejeAe f 2] dua (6) (7.3.18)
Q

positive-definite on the space Ker i C S™® S, where the operator i is defined by formula
(7.2.4)7

This problem is a generalization of Problem 5.9.1. Addressing the problem, the author
failed in applying the method that was used in the previous two chapters for studying
similar questions. In the next section we use another approach to answering the question
in the case m =1 = 2.

7.4 The algebraic part of the proof

In this section S™ = S™(R") (see Section 2.1). Only the Cartesian coordinates in R" are
in use; all tensor indices are written in the lower position; on repeating indices summation
from 1 to n is assumed. We restrict ourselves to considering real tensors only. For f € S™,
alongside with the norm | f| generated by the scalar product (2.1.3), we will need the norm
Il ]| that is defined by the equality

1712 = = [ 1iF. €7 Pawe); (14.1)

recall, that here Q is the unit sphere of R™ and w is its volume. We also recall that
the operators, i : S™ — S™2 of symmetric multiplication by the Kronecker tensor and
j 8™ — §™=2 of convolution with this tensor, were introduced in Section 2.1.

Lemma 7.4.1 For f € 8™ satisfying the condition jf = 0, the equality

m!

(n—l—2)...(n+2m—2)|f|2' (742)

171 = -

holds.
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P roof We will show that this claim follows from a known property of spherical
harmonics. Note that in coordinates the polynomial p(£) = (f, &™) can be written twofold:

0(&) = firimbiv -Gy = D fab™ (7.4.3)
|a)l=m
In the last sum o = (v, . .., ;) is a multi-index, £ = €7 ... £, The coefficients of these

two sums are related by the equality f, = %}fi(a) Where z( )=(1...12...2...n...n);
the index 1 is repeated oy times, 2 is repeated ay times, and so on. For |a| = m, (7.4.3)
implies that D% = a!f, and, consequently,

fI* = —*EjaWMQ E:

" lal=m \al

1
&ﬂW@? (7.4.4)

By (7.4.3), the condition jf = 0 means that Ap = 0, i.e., that ¢ is a solid spherical
harmonic of degree m. By Lemma XI.1 of [131], the equality

27T (2 4+m)T'(m+ 1
|Z /ID“ &P dw(€) = (2;(2)( : )/www(o,

holds. Comparing it with (7.4.1) and (7.4.4), we arrive at (7.4.2). The lemma is proved.

Lemma 7.4.2 The next equalities are valid:

2 _ 1 2 - 12 or 2
2 __ 3 2 - 12 3
19 = sy O+ 815, for fe 8 (7.4.6)
2 __ 3 2 - 12 -2 r12 4
19 = s s mn g G+ 240+ 8127, for fes' (747)

P roof We will only prove (7.4.6), the other two relations are proved in a similar
way. First, with the help of commutation formula (6.4.2) for ¢ and j, possibility of the
representation

f=Ff+iv, jf=0 (7.4.8)
is established for f € S3, where f and v are expressed through f as follows:
x 3
=f— =  f. 7.4.9
f=f1 n+2]ﬁ panr Y4 (7.4.9)

The summands of expansion (7.4.8) are orthogonal to one another in the sense of the
scalar product generating norm (7.4.1), since the functions (f,&%) and (iv,£3)|q = (v, &)
are spherical harmonics of different degrees. Therefore, by Lemma 7.4.1, (7.4.8) and
(7.4.9) imply the equality

AP = 11712+ o)) = P+ *lf
6 M@j%( 4) ] (7.4.10)
- n(n+2)(n+4)|f’ * n(n+2)2’jf’ '
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Taking the scalar product of the first of the relations (7.4.9) and f and using the fact that
the operators i and j are dual to one other, we obtain |f|> = | f|*> — ~25|j f|*. Inserting

(n+2)
the last expression into (7.4.10), we arrive at (7.4.6). The lemma is proved.

The operator A¢ : S? ® S? — S? introduced at the beginning of Section 7.2, for
m = [ = 2 is given in coordinate form by the equality

(Aef)ij = fijmé&e- (7.4.11)

For f € S?® S? and 1 < 4,5 < n, we define a tensor f;; € S? by putting (fi;)u = fiju
and a tensor f; € S®, by putting (f;)ju = o (k) fiju-

Lemma 7.4.3 For f € S?®5?, the quadratic form B defined by formula (7.3.18) satisfies
the relation

(Bf, f) = (n+3) Y [IfiI” = 2(n +5) Y AI* + (n + Do I (7.4.12)

Proof. Given ¢ € (2, by using (7.4.11) and coordinate representation (5.2.1) of the
operator P, we obtain

(Pelef)ig = fpari(0ip — €ip) (Giq — £560) &1
This implies the equality
|PAef1? = (Pele f)i(Pele )i = Fispafiirs€pbabrbs —
— 2 fipgr fistu€pa&r&s&ibu + foars fruvwép&arés€i&uobuw

which can be written in the form

|PAefI? = (fi;, €)% — 2Z<fi,§3>2 + (o f, €M

ihj

Integrating the last relation, we obtain
1
= [ IPeAerPdu() = SNl =2 AP + oI (7.4.13)
Q 7, A

In a similar way we obtain the coordinate representation

(Pejelef)i = fojr(0ip — £:6p)EsEkE0
which implies

1
= [ 1PejehefPdw(&) = S IAIR = llo I (7.4.14)
Q 7

Inserting (7.4.13) and (7.4.14) into (7.3.18), we arrive at (7.4.12). The lemma is proved.
Recall that in Section 7.2 the operator 1 was introduced. For m =1 = 2 it is given in
coordinate form as follows: (ff)ik = fipkp-
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Lemma 7.4.4 For a tensor f € S* ® S? satisfying the condition pf = 0, the inequality

n(n+2)(n+4) 12(n—|— 7)

(Bf, [) = (n*+5n+2)|fI* = 4(n+5) fijur firg + lof|?. (7.4.15)

holds.

P r oo f. Expressing the norms || - || that participate in (7.4.12) through |- | with the
help of Lemma 7.4.2, we arrive at the relation

nn 4 2(BSS) =200+ 3 DUl + 0+ Sifl - ”+5Z|fz|2

,J

(n—l—?)

8(n + 5) . ‘
Z\ fil® + Slof2 + 24ljof[2 + 3% (). (7.4.16)

+4)(n +6)

The quantities on the rlght—hand side of this equality are expressed as:
Yol = fiwafige = 1 f P, (7.4.17)
i,J

Z 5fis” = Z (fijo)® = 1317, (7.4.18)

i,

) 1 2
(sz’)j = (fi)jkz5kz = g(fijkl + firj + filjk)fskl = gfijpp + gfipjp-

Under the condition puf = 0, the second summand on the right-hand side of the last
formula is equal to zero, and we obtain

, L
DAl = glifT (7.4.19)
Next,
2 g, 1 1
% ijkl ikjl iljk ) Jijkl — 5 Jikjl)ijkl o JiljkJijkl-
IR = U+ o Fase)fune = 511+ 2 fas fomt + 5 e

Observing that the last two terms on the right-hand side of this equality coincide, we
obtain

1 2
Z fil* = §|f|2 + gfijklfikjl- (7.4.20)

Inserting (7.4.17)—(7.4.20) into (7.4.16), we arrive at the relation that implies inequality
(7.4.15). The lemma is proved.

To estimate the second summand on the right-hand side of (7.4.15), we represent the
tensor f as the sum

f=f+f, (7.4.21)
where

fiim = ;(fijkl + fikgt), fim = ;(fz'jkl — fikjt)- (7.4.22)
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The summands on the right-hand side of (7.4.21) are orthogonal to one another and,
consequently,

=1+ (7.4.23)
It follows from (7.4.22) that f* and f~ possess the symmetries
fis = Fikgos T = = Fiwjis

with whose help we find the second summand on the right-hand side of (7.4.15):

figi it = (Figpa + Fiji) (Fikg + firjt) =

= (fis + Figr) i — figm) = FP =1 P (7.4.24)
Inserting (7.4.23) and (7.4.24) into (7.4.15), we arrive at the inequality
n(n+2)(n+4) 12(n—|— 7)

(Bf.f) = (0 +n—18)|f]* +8(n+5)|f | + o f1%. (7.4.25)

2
The tensor f € 5?2 ® S? is expressed through f~ and of by the relation
figer = (0 f )ijui + (fz]kl + fow + Fiim + Foan) — 2(fk:_lz’j + frji T firig + finge) (7.4.26)
that is verified by inserting the expressions (7.4.22) and
1
(0 f)ij = B(fz’jkl + firgi + fujre + Fiwa + Fiie + frij)

into the right-hand side of (7.4.26). The first summand on the right-hand side of (7.4.26)
is orthogonal to the others and, consequently,

f1? = 1o fI? + || (7.4.27)
where
5, . B _ _ 1 _ _ _
hiji = E(fijkl + fow + fii + Fran) — E(fklij + fraji T fiwig + Figi)-
The last formula implies the inequality
5) 1
hl < =|f |+ =|f"|=2|f
< 215+ ST =20
which, together with (7.4.27), gives
1 1
—2s Sz L
7P = 51~ Hlo]
With the help of the last inequality, (7.4.25) implies

n(n+2)(n+4) (n+5)(n+6) —6(n+7)
2 n+6

Finally, using the evident relation |o f| < |f|, we arrive at the estimate

n(n+2)(n2—|— 4)(n +6) (Bf.f) > (n® + Tn? — 24)|

that implies positive definiteness of the form (Bf, f) for n > 2.

o 1%,

(Bf.f) = (n* +3n—8)|f]" — 2
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Chapter 8

The exponential ray transform

Since recently the so-called problem of emission tomography gains popularity in mathe-
matical tomography. In physical terms the problem reads as follows: given is a bounded
domain which contains a medium that can absorb particles (or radiation); one has to
determine a distribution of sources of particles inside the domain from the known flux
on the boundary of the domain. Stated mathematically, the problem consists in invert-
ing the operator that differs from the ray transform (4.2.2) by the presence of the factor
exp [— 1P e(s; e (8)) ds] in the integrand. The function e(x,¢) is called the absorption
(or the attenuation), and the corresponding integral geometry operator is called the ex-
ponential ray transform (the term “attenuated ray transform” is also in use). We will
denote this operator by I°.

Statements of problems of emission tomography can vary considerably. For instance,
the problem of simultaneously determining the source f and the absorption ¢ is of great
practical import. We will here deal with a more modest problem of determining the source
f on condition that the absorption ¢ is known. Moreover, we will assume the absorption
e(z,€) to be isotropic, i.e., independent of the second argument. Emphasize that the
absorption €(x) can be complex. In this connection recall that, for wave processes, the
imaginary part of the absorption describes the frequency dispersion.

In the current chapter we will restrict ourselves to considering the exponential ray
transform of scalar functions, i.e., the case m = 0 in (4.2.2). In the case m > 0 investiga-
tion of the exponential ray transform comes across the next fundamental question: does
there exist, for I¢, an analog of the operator d of inner differentiation?

In the first section we give a definition of the exponential ray transform on a compact
dissipative Riemannian manifold and formulate the main result of the chapter, Theorem
8.1.1, which asserts that this operator is invertible under some condition on the metric and
absorption. This condition requires absence of conjugate points, on every geodesic, of some
system of equations whose coefficients depend on the curvature tensor and absorption. We
give also three consequences of the theorem which concern the cases of the zero absorption
and zero curvature.

Section 8.2 contains the exposition of some new notion of tensor analysis, the so-called
modified horizontal derivative, which plays the main role in the proof of Theorem 8.1.1.
In the author’s opinion, this notion will find other applications in integral geometry in
future. So the exposition of the second section is rather detailed.

Section 8.3 contains the proof of Theorem 8.1.1. In Sections 8.4 and 8.5 we apply
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the modified horizontal derivative to two questions related to the nonlinear problem of
determining a metric from its hodograph. First, we obtain a formula which expresses the
volume of a simple compact Riemannian manifold through its hodograph. Then we prove
that a simple metric is uniquely determined by its hodograph in a prescribed conformal
class.

In Section 8.6 we discuss the relationship of our theorems to previous results on the
subject.

The material of the current chapter is published in this book for the first time.

8.1 Formulation of the main definitions and results

Let (M, g) be a CDRM. We fix a (complex) function ¢ € C*°(M) which is further called
the absorption. Given the absorption e, by the exponential ray transform we mean the

linear operator
IF: C®(M) — C*(0,.0M) (8.1.1)

defined by the equality

Ff.§) = [ [Oumelt)exp [— / em,g(s))ds] dt ((x,6) €0.QM), (8.1.2)

7 (,8) t

where v, ¢ @ [7-(2,€),0] — M is a maximal geodesic defined by the initial conditions

Y2e(0) = x and 4,¢(0) = &.
As in Section 4.2, one can show that operator (8.1.1) has some bounded extension

I°: H*(M) — H"(0,.QM) (8.1.3)

for any integer k£ > 0.
Recall that a system of linear equations
de 1 n
T AMy =0 (a<t<by=(y,...y")
is said to be without conjugate points on the segment |a, b] if there is no nontrivial solution
to this system which vanishes in two distinct points of the segment [a, b].

Theorem 8.1.1 Let a compact dissipative Riemannian manifold (M, g) and a function
e € C°(M) be such that, for every (x,&) € QM, the equation

D e . .
Wzy +R(Y,9)7 =0 (8.1.4)

has no pair of conjugate points on the geodesic v = Yy ¢ : [T—(x,&), T+ (x,€)] — M. Here

D/dt is the total derivative along vy (see Section 3.2), and ]E{(ﬁ,y) cTyyM — TyyM s
the linear operator that in coordinate form is defined by the equalities

3 . £

(R(%.9)i = R\’ y",

13
Rijin = Rijia + |1 (9t — gugin), (8.1.5)
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and (Rjjui) is the curvature tensor. Then the operator
If: HY(M) — H' (0, QM) (8.1.6)
is injective and, for f € HY (M), the stability estimate
1fllo < CILE Il (8.1.7)
holds with a constant C' independent of f.

For practical applications, the case is important in which the absorption e is not
smooth. Of course, our assumption ¢ € C*(M) is excessive. It suffices to assume that
e € CY(M). In this case, operator (8.1.6) is bounded and depends continuously on ¢ €
CY(M). In the case when ¢ is a piecewise smooth function, the possibility of introducing
bounded operator (8.1.6) depends on the geometry of the surfaces of discontinuity of the
function e and its first-order derivatives.

If e =0, then the operator I¢ = I coincides with the ray transform (4.2.1) for m = 0.

In this case R = R and (8.1.4) coincides with the classical Jacobi equation [41]. A
Riemannian manifold (M, g) is said to have no pair of conjugate points if the Jacobi
equation has no pair of conjugate points on every geodesic. Such a CDRM is simple in
the sense of the definition given in Section 1.1.

Corollary 8.1.2 Let (M, g) be a CDRM without conjugate points. The ray transform
I:HY (M) — HY(0.QM)
is injective and, for f € HY(M), the stability estimate

1fllo < CIL Il
holds with a constant C' independent of f.

We will now briefly discuss the role of the curvature tensor in Theorem 8.1.1 and
Corollary 8.1.2. It is well known that if all sectional curvatures are nonpositive, then the
Jacobi equation has no pair of conjugate points on every geodesic. Of course, when the
right-hand side of (8.1.5) is added with the summand containing |¢|?, the last claim can
become wrong; but a general tendency remains valid: the more negative is the sectional
curvature, the more values of || are allowed without violating the assumptions of Theorem
8.1.1. In other words: large values of the absorption can be compensated by negative
values of the curvature.

We now consider the case in which M is a bounded domain in R™ and the metric g
coincides with the Euclidean one. The integration in (8.1.2) is performed over straight
lines, i.e., this definition is replaced with the next

0
Ff@o= [ fla+igewm

T (2.8)

0

—/a(x + s€) ds] dt ((z,€) € 0.QM).  (8.1.8)

t

System (8.1.4) reduces to the scalar equation

@y

T2+ le|*y = 0.

We thus obtain
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Corollary 8.1.3 Let M be a bounded domain in R™ with smooth strictly convex boundary
OM ; e € CY(M) be a function such that the equation

&y

L POy =0 (8.1.9)

has no pair of conjugate points on every straight-line segment v : [a,b] — M. Then
operator (8.1.6), which is defined by formula (8.1.8), is injective and estimate (8.1.7)
holds.

A few conditions are known ensuring the absence of conjugate points for scalar equa-
tion (8.1.9). Some of them are based on the Sturm comparison theorems, while the others,
on Lyapunov’s integral estimates [46]. The simplest of them guarantees the absence of
conjugate points under the assumption that the inequality

godiamM <7 (8.1.10)

holds, where
go = sup |e(z)], diamM = sup |z —y|. (8.1.11)
xeM z,yeM

We thus arrive at

Corollary 8.1.4 Let M be a closed domain in R™ with smooth strictly convex boundary,
and let a function ¢ € CY(M) be such that the quantities g and diamM defined by
equalities (8.1.11) satisfy condition (8.1.10). Then operator (8.1.6), which is defined by
(8.1.8), is injective and estimate (8.1.7) holds.

8.2 The modified horizontal derivative

Before starting with a formal exposition, we will informally discuss an idea that underlines
the proof of Theorem 8.1.1.

The Pestov identity (4.4.4) played the main role in our proofs of all the main results
of the previous four chapters. For the sake of convenience, we write down the identity
here in the simplest case when m = 0:

h v h h . v . . v . v
2(Vu, V(Hu)) = |Vul? + Viv' + Viw' — Riju&' € viu - v'u. (8.2.1)

Here v and w are the semibasic vector fields determined through the function u by formulas
(4.4.10) and (4.4.11). We applied this identity to inverse problems for various kinds of the
kinetic equation. Let us reproduce here one of these equations, namely equation (4.6.4)
in the simplest case m = 0:

Hu(z,§) = f(x). (8.2.2)

Let us now discuss the question: has the Pestov identity (8.2.1) any modifications ap-
propriate for investigating inverse problems for equation (8.2.2) as well as identity (8.2.1)
itselt? )

The application of the operator V to equation (8.2.2) seems to be justified, since
the operator annihilates the right-hand side of the equation. On the other hand, the
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v h
multiplication of the vector V(Hu) just by Vu, which is performed on the left-hand
side of identity (8.2.1), is not dictated by equation (8.2.2). Appropriateness of such the
multiplication is rather explained by the form of the right-hand side of identity (8.2.1) that

h hoo .
consists of the positive-definite quadratic form |Vu|2 and divergent terms V;v" and %iw’.

The right-hand side of (8.2.1) also contains the fourth summand Rijklfié.k%j u- %lu, but
the very term is just undesirable for us. Using a rather remote analogy, our observation

h
can be expressed by the next, leading but nonrigorous statement: Vu is an integrating

factor for the equation %(H u) = 0. Does this equation admit other integrating factors?
To answer the question, let us analyze the proof of the Pestov identity which is pre-

h
sented in Section 4.4. What properties of the horizontal derivative ¥V were used in the
proof? First of all, such were commutation formulas (3.5.11) and (3.5.12). As far as the

h
properties of the operator V¥ listed in Theorem 3.5.1 are concerned, they were used in a
rather incomplete manner. Namely, the first of the properties listed in Theorem 3.5.1 was
not utilized at all, and instead of the second we made use of a weaker claim:

Hu = gi%u. (8.2.3)

If the first hypothesis of Theorem 3.5.1 is omitted and the second is replaced by (8.2.3);
h
then, of course, the claim of the theorem about uniqueness of the operator V is not valid.

It turns out that in this case the operator % is determined up to an arbitrary semibasic
tensor field of degree 2. This arbitrariness can be used for compensating the last term on
the right-hand side of (8.2.1); this is the main idea of the proof of Theorem 8.1.1.

Now we turn to the formal exposition.

Let (M, g) be a Riemannian manifold. We fix a real semibasic tensor field a = (a”) €
C>(32M) such that it is symmetric

a’ = a’, (8.2.4)
positive-homogeneous in its second argument
a’(x, ) = Aa"(x,€)  (A>0) (8.2.5)

and orthogonal to the vector &: 3
a’(z,£)¢; = 0. (8.2.6)
With the help of this tensor field, we define the modified horizontal derivative

V1 C=(BIM) — C=(87' M) (8.2.7)

by the equality

a a . a a . .
_ k_i1..0, s
where
Lk iy Bk iy E dp..ir
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and

T S
ko i1eeir _ kDo i1 L kim | el 1Pime 1 L kp | ileir
A"u ]1 Js =a Vpujl-ujs Z Vpa ujl---js + Z vﬂma ujl--~jm—1pjm+l--~js'
(8.2.10)

The operator % is evidently independent of the choice of a natural coordinate system
presenting in formulas (8.2.8)—(8.2.10) and, consequently, the operator is globally defined.
Let us consider its main properties.

First of all, V commutes with the convolution operators CF and is a derivative relative
to the tensor product in the next sense:

Vo) =p(Vueo) +ue Ve  (ue C(6I(M))

where p"™! is the permutation of upper indices which translates the (r + 1)-th index to
the last position (compare with Theorem 3.5.1). Both of these properties are verified by
direct calculations in coordinates and thus or%itted.

Let us find out the interrelation between ¥V and H. To this end we multiply equality
(8.2.10) by & and perform the summation over k. Using (8.2.5) and (8.2.6), we obtain

T S
k,iteir _ Z L im0 dm—1Dim 1y Z L kp ity .
EeA ug g = §kVpa™™ g, RED DR A ATy S T
m=1 m=1

im o 81 bm—1PlmA 1. 0 Z 1.0l
- Z a u]l ]s a]mu]1 ]m 1p]7n+1 ]s

Here, as usual, the rule a; = g;ra™ of lowering indices is used. Consequently,

fkvku“ U= (Hu) ' 4 Z a“”uZl A1 Plmd e Z a’ u“ i (8.2.11)

Ji--ds )i Ji.--ds 1w dm—1PJme41.--Js
In particular, for a scalar function u € C*(T'M),
Hu = &V'u. (8.2.12)
From (8.2.6) and the equality £*V,a/ = a¥ following from (8.2.5), we obtain

Vi =g =0. (8.2.13)

In the case of a general field a, the metric tensor is not parallel with respect to % Indeed,
a i v i v i v i v i
V'gjr = Vija® - gpr + Via” - gjp = Vjai, + Via;.

In view of this fact one must exercise some care while raising and lowering indices in
a
expressions that contain V. It explains why we preferred to start with defining the
a .
operator V' with the upper index.

We will now obtain a commutation formula for the operators % and % Using (3.5.11),
we derive

(9% = 9% uog = (A = %) i
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Transforming the right-hand side of this equality in accord with definition (8.2.10), after
simple calculations we arrive at the formula

r
vV o . . ) o
— . Um | U tm—1PbmA1-br N7, 4P 0Ly . )
T Z Vija u]ln-]s J Jma ujl.‘.jmflp]erl.‘.jS‘ (8214>
m=1 m=1

In particular, for a scalar function u € C*°(TM),
(%i V; — %%Z) u=0. (8.2.15)

We will now obtain a commutation formula for %2 and %j . First, consider the case of
a scalar function u € C*°(T'M). By (8.2.9),

a.a . a .a . h.h . h .h.
(VZV]—V]VZ>U= <Vz J—V]VZ>U+

h. o b h. b o o o
+ (vw _ AJV1> ut (szﬂ - vw) w+t (ATAT — A A u. (8.2.16)
Calculate the last term on the right-hand side of (8.2.16):
(A — VA u=
= aip%p(Aju) — %paij - APy — ajp%p(Aiu) + %paji - APy =
= aip%p(Aju) - ajp%p(Aiu) = aip%p(ajq%qu) - ajp%p(aiq%qu)
Using permutability of %p and %q, obtain
(AiAj - AjA’) u = (aip%pajq - ajp%pai‘o %qu. (8.2.17)
We now calculate the second term on the right-hand side of (8.2.16):

h. . . h . h. . v v . v
(VﬁAJ - AJ%Z) u=V'(a"Vyu) — a]pvpelu + Vpa® - %pu'

h . v
Using permutability of V* and V,, we infer
h . . . h . h . . v v .. h
(VZAJ — AJVZ) u=V'a? Vyu+ Vpa” - VPu.
By alternating the last equality with respect to ¢ and j, derive
h. o h h. b hoo oo\ w
(v’AJ — A3v1> u+ (A’vﬂ — VJA1> u= (vlafp — V]a”’) V. (8.2.18)
Inserting (8.2.17), (8.2.18) and (3.5.12) into the right-hand side of (8.2.16), we obtain

a.a . a .a. .. h . . h . . ) . . v . v
(Vz T = VJV1> u=— (qumgq +V0a® —V'a’? 4+ ?'Vv,a’’ — aquanp> Vou. (8.2.19)
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We introduce the semibasic tensor field
a h v h v
Rijki = Riji + ViVjair, — ViVjaq +

+ alpvpvjaik - akpvpvjail + VPa, - Vjayy — VPa - Vjagp. (8.2.20)
Performing the convolution of this equality with &/ and taking homogeneity (8.2.5) into
account, we obtain
a . . h h v v
Rijn&’ = Rijm& + Viaw — Viai + apVPai — apyVia. (8.2.21)

In view of (8.2.21), formula (8.2.19) takes the final form:
(%Z v %J%Z) u = —fa%pqiij%pu (8.2.22)

Similar but more cumbersome calculations show that, for a semibasic tensor field of
arbitrary degree, the next commutation formula is valid:

el L&k i1 Lpqkl ¢ & Q1.0
VIV = VVY Juy T = =R Vg T A+

- Bimakl,) i1 im—1Pim41..ir - pgkl, ..y

+ D g R T =Y G R e (8.2.23)
m=1 m=1

The semibasic tensor field ( }a%ijkl) defined by (8.2.21) will be called the curvature tensor

for the modified horizontal derivative % As follows from (8.2.21), it is skew-symmetric in
the indices k and [ but, in general, it is not skew-symmetric in ¢ and 7 in contrast to an
ordinary curvature tensor. We shall need the following properties of the tensor:

a h a
Ripkg€PT = Ripng€PE" 4 EPVptir + aipa’} = Rpigr&’€Y, (8.2.24)
Ripkq§P€" = Ripig€PEY, RpqirE€9E" = Ripgr&PE1E" = 0. (8.2.25)

Relations (8.2.25) follow from (8.2.24) with the help of (8.2.6). To prove the first of
equalities (8.2.24), we multiply (8.2.21) by &' and summarize over [. Using (8.2.6), we
obtain

a . . h v
Riju€’ € = Riju& € + Vi, — &' VPay. (8.2.26)
It follows from (8.2.6) that
£V ay = —ag. (8.2.27)

Transforming the last summand on the right-hand side of (8.2.26) with the help of (8.2.27),
we obtain the first of equalities (8.2.24). To prove the second one, we multiply (8.4.20)
by £¥¢*F and summarize over i and k:

a i ok ik | S i ekl kel pid
Rijn€'€" = Rijm&'€" + Vi(§'€"Viain) — £ V(€' Viaa) +

+ apl VPV am + £V an - Viay, — EVPaq - E¥Vak,.
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Transforming the summands on the right-hand side of the last formula with the help of
(8.2.27), we arrive at the second of equalities (8.2.24).

Since the above-obtained properties of the operator % are quite similar to the corre-
h
sponding properties of V, we can assert that an analog of the Pestov identity (4.4.9) is

valid for % Nevertheless, we will give the detailed proof of this identity, since in Section
4.4 it was obtained only for real functions while here we need it for complex functions.

Lemma 8.2.1 Let M be a Riemannian manifold. For a function u € C®(TM), the
identity

2Re (Vu, V(Hu)) = [Vul> + Vv + Vo' — Ry € Viu - v'a (8.2.28)

holds, with
Vi = Re (&%ju . %jﬂ — @%zu . %ju) i (8229)
w' = Re <§j%iu : %ﬂ‘u) . (8.2.30)

Proof By (82.12),
2(Vu, V(Hu)) = 2V'u - Vi(§;V71) = 2|Vul* + 24,V'u - ViV
Therefore
4Re(Vu, V(Hu)) = 4|Vul? + 26,Viu - ViVia + 26,V - ViViu. (8.2.31)

We introduce a function ¢ by the equality

26,V 0 ViV + 26,V - ViV U = (fﬁ"u SR AT %ju) +

+V (é}-%iu Vi + VT %m) —V (6]'%2’“ VI &V %jU> —p. (8232)

Show that ¢ is independent of the second-order derivatives of the function u. To this
end express the derivatives of the products taking part in the last equality through the
derivatives of the factors. Using (8.2.13), obtain

Y= _253'%2@ : %Z%]ﬂ - ij%iﬂ : %i%ju +
+ 2|Vl + &§ViViu - VI + &V ViV + ViV Vi VT - ViV +
+ &V VA V- VIV EVIVT - Vi + 6V VIV —
- gj%Z%zu : %jﬂ - fg%ﬂt : %Z%jﬂ - fy%z%ﬂ %ju - fg%ﬂ : %Z%ju
After evident transformations, this equality takes the form

Y= 2|%u|2 + 51%% : (%j%z — %@%]) u—+ 5]%1ﬂ (%j%z — %@%]) u+
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v .U a .

+ &V (vﬁi - %Wl) U+ &Viu - (%ivz - %"%) T+
Fedm (80— )t g (8- $90)a
Applying commutation formulas (8.2.15) and (8.2.22), obtain
o = AUl + g€ - G+ RIEE -
The last two summands on the right-hand side of this formula are equal. Thus we derive
o = 2|Vul® + 2Rut " Viu - V',

Inserting the last expression into (8.2.32) and then (8.2.32) into (8.2.31), we arrive at the
claim of the lemma.

We will now try to compensate the last term on the right-hand side of Pestov identity
(8.2.28). Since additional terms of the same kind can arise in applications of the identity,
we formulate our result in the following form.

Theorem 8.2.2 Let (M,g) be a CDRM and S € C®(BIM;T°M) be a real semibasic
tensor field on T°M possessing the properties

Siqufpgq = Sjpiqugq = Spiqupfqa Sipqrfpfqgr =0
and positive homogeneous of degree zero in &:
Sigra(x,t&) = Sijua(, €) (t >0).

Assume that, for every (z,§) € QM, the equation

l;;y +(R+9)(t)yy =0 (8.2.33)

has no pair of conjugate points on the geodesic v = Yy ¢ : [T-(x,&), T4 (x,€)] — M; here
[(R+S)(®)] = g™ (Rija + Sigra) (7(1): ()37 (£)7' (2)-

Then there exists a real semibasic tensor field a = (a¥) € C™(B2M;T°M) satisfying
conditions (8.2.4)—(8.2.6) and the equation

(]a%z'jkl + Sijkl)éiﬁk =0. (8.2.34)
Proof By (82.24), equation (8.2.34) is equivalent to the next:
(Ha)ij + aipd} + RipjqfP =0, (8.2.35)

where we put R = R+ S for brevity.

If the field a(x, &) is positively-homogeneous of degree 1 in &, then the left-hand side
of equation (8.2.35) is homogeneous of degree 2. Consequently, if we find a solution to
equation (8.2.35) on QM then we obtain a solution on the whole T°M with the help of
extension by homogeneity. Therefore we further consider equation (8.2.35) on QM.
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We represent QM as the union of disjoint one-dimensional submanifolds, the orbits of
the geodesic flow. Restricted to an orbit, (8.2.35) gives a system of ordinary differential
equations. For distinct orbits, these systems does not relate to one other. We have to
find a solution on every orbit in such a way that the family of the solutions forms a field
smooth on the whole QM. The last requirement can be satisfied by appropriate choosing
the initial values for the orbits. We start to realize our plan.

Given (z,&) € 0_QM, we consider a maximal geodesic v = v, ¢ : [0, 74 (2,§)] = M
defined by the initial conditions v(0) = =, 4(0) = £. Taking = = ~(¢) and £ = 4(¢) in
(8.2.35), we obtain the system of the ordinary differential equations of the Riccati type:

Da = . .
(dt> +apaj + Ripjgy"3* = 0. (8.2.36)
)

To prove the theorem, it suffices to establish existence of a symmetric solution (a;;(t)) to

system (8.2.36) on the segment [0, 7, (x,&)], which depends smoothly on (z,£) € 0_QM
and satisfies the additional condition

aij(t)¥ (t) = 0. (8.2.37)

Taking the convolution of (8.2.36) with 47, we see that an arbitrary solution to system
(8.2.36) satisfies (8.2.37), provided this condition is satisfied for t = 0. Let us show that

a similar assertion is valid for symmetry. Indeed, a solution a;;(t) to system (8.2.36) is
represented as a;; = afj + a;; where aZ;- is symmetric and a;; is skew-symmetric. Inserting

this expression into (8.2.36), we obtain

+

Da*t o o
[( dt ) B +g™ (a;a;rj + aipaqj) + Riqu7p7q
ij

+

Da~ _ _
(dt) ) + gpq (a;aq]— + a,-pa;rj)] = 0.

J

The expression in the first brackets is symmetric and the expression in the second brackets
is skew-symmetric. Consequently,

Da~
Yo gt —
( dt )..+gpq (aipq; + aipag;) = 0.
ij

The last equalities can be considered as a homogeneous linear system on a,;. This system,
together with the initial condition a~(0) = 0, implies that = = 0.

Thus, symmetry of the field (a;;) and its orthogonality to the vector ¢ are insured by
the choice of the initial value. We now consider the question of existence of a solution to
system (8.2.36). Raising the index i, we rewrite this system as:

Da\" Pi Di _ i by
(dt)j +apaf + Ry =0 (Rj = R'pq7"77)

or in matrix form

D ~
dTa +a®+R=0. (8.2.38)
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We look for a solution to this equation in the form

Db

= _"p! 8.2.39
a=— ( )
Inserting (8.2.39) into (8.2.38), we arrive at the equation
D*» -
—+ Rb=0. 8.2.40
T (82.40)

Conversely, if equation (8.2.40) has a nondegenerate solution b, then equation (8.2.38) is
satisfied by the matrix a defined by formula (8.2.39).

We denote by z = (2}(z,&;t)) the solution to equation (8.2.40) which satisfies the
initial conditions ‘

0)=0 (DZ(O)Y = (8.2.41)

z(0) =0, o i 2.

Observe that the field z(x,&;t) is smooth with respect to the set of its arguments. By

the condition of the theorem about the absence of conjugate points, the matrix z;: (x,&;1)

is nondegenerate for 0 < ¢t < 7,(z,§). By initial conditions (8.2.41), there is t; > 0

such that the matrices z(z,§;t) and %(x, &;t) are positive-definite for 0 < t < 7(z,§) =
min (to, 74 (z,§)). Consequently, the matrix

~ D

b(w,&:t) = dTZ + Az (8.2.42)
is nondegenerate for 0 < t < 7(x,¢) and any A > 0. The determinant of the matrix
z(x,&;t) is bounded from below by some positive constant on the segment ¢, < t <
74 (7,§). Consequently, choosing a sufficiently large positive constant A in (8.2.42), we
can guarantee that the matrix b(z,&;t) is nondegenerate for all (z,¢;t) belonging to the
set

G={(2,&1) | (2, €0.QM, 0 <t <7 (z, )}

Thus, we have found a nondegenerate solution b = (Eg(sc,f ;1)) to equation (8.2.40)
depending smoothly on (x,&;t) € G and satisfying the initial conditions

b.(0) = ¢, (Zf(@)z = Ad. (8.2.43)

J

We now define

b;(x, &t) = l;;(a:,f, t) — Atﬁ;ﬁf(t)%vm(t) ((z,&t) € G). (8.2.44)

The matrix b = (b}) meets equation (8.3.24) and the initial conditions

b’ (0) = 4t (gf«») = A0 = £°¢)). (8.2.45)

J

Let us show that the matrix b(x,&;t) is nondegenerate for all (z,&;t) € G. Indeed, let
Y = Yae and n € Ty )M be a nonzero vector. We represent it as n = 7 + py(t) where
7L%(t) and |7j|? + p* > 0. Then

bty = (b — M) (i + i) = B + p(Di47 — A, (8.2.46)
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Equation (8.2.40) and initial conditions (8.2.43) imply that

DL(£)37(£) = (1 + M)A (t).

Inserting this expression into (8.2.46), we obtain

bty = B(t) |7 +$ 4] (8.2.47)

The vector in the brackets is nonzero, since A > 0, ¢ > 0 and 7.L%(¢). Since the matrix
(5} (t)) is nondegenerate, the right-hand side of equality (8.2.47) is not equal to zero for
n # 0. Since this is true for any ¢, the matrix b = (bj(x,&;t)) is nondegenerate. Thus
we have constructed the nondegenerate solution b = (b%(z,&;t)) to equation (8.2.40),
which satisfies initial conditions (8.2.45). Consequently, the matrix a = (aé- (x,&;t)) that
is defined by formula (8.2.39) satisfies equation (8.2.38) and the initial conditions

aj(z,;0) = A(0; — £'¢;)-

Lowering the index ¢, we obtain
aij(x, & 0) = Mgij — &&))-

Whence we see that the tensor a;;(x,&;0) is symmetric and orthogonal to the vector &.
As was noted, validity of these properties for ¢ = 0 implies their validity for all £. The
theorem is proved.

In conclusion of the section we will obtain a Gauss-Ostrogradskii formula for the

divergence %iui, where u € C®(3)M) is a semibasic covector field. By definition (8.2.8)-
(8.2.10),

a . h . . h . ) v h . v .

V'u; = V'u; + A'v; = V'u, + aVyu; + Via'? - v, = V', + Vp(a™w;). (8.2.48)
We now assume the field u to be homogeneous in its second argument:

u(z, &) = tru(z, §) (t >0).

We multiply equality (8.2.29) by d¥?"~! integrate it and transform the integrals on the
right-hand side of the so-obtained equality by the Gauss-Ostrogradskii formulas for the
horizontal and vertical divergences. As a result, we obtain

/Vu,dEQ" 1— / Vu dE 2+ (A +n— 1) /fp Py, dX? 1
oOM

We observe that the integrand of the second integral on the right-hand side of this equality
is equal to zero by (8.2.6). We thus obtain the next Gauss-Ostrogradskii formula:

/ Vi dE?l = / (v, u) A2, (8.2.49)
oOM
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8.3 Proof of Theorem 8.1.1

First of all we note that to prove the theorem it suffices to establish estimate (8.1.7) for
a smooth function f.
For f € C*(M), we define a function u € C>(T°M) by the equality

0 0
uw )= [ Flumelt) exp [—\51 JEC) ds] at. (5.1
T (,€) ¢
This function satisfies the equation
Hu(z,§) + e(x)[€]u(z,§) = f(z), (8.3.2)
the boundary conditions
ulo_am =0, ulo,om = I°f (8.3.3)

and the condition of homogeneity
u(z, ) = A\ tu(z, €) (A>0). (8.3.4)

Let a = (a”) € C°°(32M) be some semibasic tensor field satisfying conditions (8.2.4)-

(8.2.6); a choice of this field will be specified later. By ¥ we denote the modified horizontal
derivative that is defined with the help of a. We define a semibasic covector field y = (y;)
and a semibasic vector field z = (z*) on T M by the equalities

%u:—é;@+%, (8.3.5)
a . H . .
Viu = |§|Z P4 (8.3.6)

The summands on the right-hand side of each of these equalities are orthogonal to one
other. Indeed, taking the scalar product of each of these equalities and &, we obtain

EVu = —u+ (y,€),  &V'u=Hu+ (z§). (8.3.7)

By (8.3.4) and (8.2.12), ¢iViu = —u and &Viu = Hu. Therefore (8.3.7) implies that
(y,€) = (2,&) = 0. Thus, for || =1, it follows from (8.3.6) that

IVul? = |Hul? + |22, (8.3.8)

Applying the operator V to equation (8.3.2), we obtain

Eu

= 0.
€]

VHu + e|€|Vu +
Together with (8.3.5) this implies that

VHu = —¢l¢ly.
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Taking the scalar product of the last equality with %u and using (8.3.6), we obtain

(Vu, V(Hu)) = —z[¢]{z,y).

From the last equality, we derive the estimate

2|(Vu, V(Hu))| < 2(le| [€] [y]) 2] < le2I€P1yl? + |2 (8.3.9)

Let us write down the Pestov identity (8.2.28) for the function uw. Estimating the
left-hand side of the identity by (8.3.9) and replacing the first summand on its right-hand
side with expression (8.3.8), we obtain the inequality

[Hul? < |e*ly]* — %ivi - %iwi + ﬁu‘jklgigk%ju : %lﬂ, (8.3.10)

which is valid for || = 1; here the fields (v;) and (w') are defined by formulas (8.2.29),
(8.2.30).
We transform the last term on the right-hand side of (8.3.10) by using (8.3.5) and the

symmetries of the tensor ]%m-jkl:
]a%ijklgigk%ju Vi = Ia%ijkl(g A %u)"j(g A %ﬂ)kl = Ia%z'jkz(g Ay)T(ENGH = ]%ijklgigkyjyl.

Inserting the last expression into (8.3.10), we obtain
|Hul|? < —V'v; — Viw' + (Rijklfifk + ‘5’29]1) T

Using the relations ||* = ¢;;£'¢? = 1 and (y,&) = ¢;;¢'y’ = 0, the last inequality takes
the form:

|Hu|* < —V'v; — Viw' + {Rijk:l + |el*(gingji — gilgjk)] giehyiy (8.3.11)

Taking a in (8.3.11) to be some tensor field that exists by Theorem 8.2.2 with S =
le|*(gikgj1 — gugjx), we transform this inequality as follows

2 < A
|Hu|” < =V'v; — Viw".

We multiply the last inequality by the volume form d¥ = d¥?"~!, integrate it over QM
and apply Gauss-Ostrogradskii formulas (8.2.49) and (3.6.35). As a result, we obtain the
inequality

/ \Hul?ds < — / (0, v) dE2"2 — (n — 2) /<w,g> dx.

oM oM oM

The coefficient of the second integral on the right-hand side is due to the homogeneity
of the field w which ensues from (8.2.26) and (8.3.4). It also follows from (8.2.26) that
(w, &) = |Hul? and, consequently, the last inequality takes the form

(n—1) / |Hul?dy < — /(v,y) 22, (8.3.12)
QM oM
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In the same way as in the previous chapters (see the arguments at the end of Section
4.6 and in the beginning of Section 4.7) we show that boundary conditions (8.3.3) and
formula (8.2.29) imply the estimate

L/ (v, v) dx?"?

QM

< C|IFEfIIy

with a constant C' dependent on (M, g) and the tensor field a but independent of f. In
view of the estimate, (8.3.12) implies the inequality

|Hul? = [ |Hulds < CllEfI. (8.3.13)
QM

It remains to observe that equation (8.3.2) implies the estimate
IF115 < 2[[Hull* + 2<5]jul)? (8.3.14)

where ¢q is defined by formula (8.1.11). With the help of the Poincaré inequality (Lemma
4.5.1), the first of the boundary conditions (8.3.3) implies the estimate

lull* < Cal | Hul”
Whence and from (8.3.14) it follows that
115 < Coll Hull*. (8.3.15)

Finally, (8.3.13) and (8.3.15) imply (8.1.7). The theorem is proved.

8.4 The volume of a simple compact
Riemannian manifold

Recall that in Section 4.8 we accepted the next definition: a compact Riemannian manifold
(M, g) is called simple if the boundary M is strictly convex and every two points z,y € M
are joint by a unique geodesic which depends smoothly on x,y. The definition implies
that (M, g) is a CDRM without conjugate points. The converse claim is also valid: a
CDRM without conjugate points is simple; we will not prove this assertion here (compare
with one of remarks after the formulation of Theorem 4.3.3). Given a simple Riemannian
manifold, the distance function p(z,y) is smooth for z # y.

As was established in Section 4.8, for a simple compact Riemannian manifold (M, g),
the function 7, : _QM — R (which can be called the angle hodograph) is uniquely
determined by the hodograph I'y : OM x OM — R.

Recall that, for 0 # ¢ € T, M, by P: we denote the orthogonal projection onto the
hyperplane orthogonal to &, i.e., Pen =n — (&, )&/ |E%

The main result of the current section is the next
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Theorem 8.4.1 Let (M, qg) be a simple compact Riemannian manifold of dimension n.
The Riemannian volume V(M) is expressed through the angle hodograph T, : 0QM — R
by the formula

[(n/2)

VM) = s e

/ / (Pevry v) dus(€) AV (@), (8.4.1)

oM Q- M

where v is the unit vector of the outer normal to the boundary, dV" ! is the Riemannian
volume of OM, QM = {§ € Q.M | (¢,v) < 0} and dw, is the angle measure on the
sphere 3, M .

Possibly, formula (8.4.1) will be clearer after the next remark: the vector Pg%T_,_ (x,€)
is the gradient of the restriction of the function 7, (z, -) to the unit sphere Q, M, where the
latter is considered as a Riemannian manifold whose metric is induced by the FEuclidean
structure of 7, M (which in turn is induced by the Riemannian metric g).

We introduce the notation 0_-TM = {(x,&) € TM |z € OM, (£,v) < 0}. Our proof
of Theorem 8.4.1 is based on the next claim which will also be used in the next section.

Lemma 8.4.2 Let (M,g) be a simple compact Riemannian manifold. There exists a
semibasic tensor field a € C°(B5M; T'M \ 0_-TM) satisfying (8.2.4)—(8.2.6) and possess-
ing the next two properties:

(1) The corresponding curvature tensor satisfies the relation

Rijug'¢" = 0. (84.2)
(2) Let us fiz a point yo € OM and define the unit vector field n on M\ {yo} by putting
n(x) = 4(0)/|7(0)|, where v, : [=1,0] — M is the geodesic satisfying the boundary

conditions v,(—1) = yo, 72(0) = x. Then the equality

VI ()] = (V). (). (8.4.3)
holds for every function f € C*°(TM).

Proof It suffices to define a”(z, &) in the case |£| = 1; for the other values of &,
the field a(x, &) is extendible by homogeneity (compare with the arguments after formula
(8.2.35)). Let (z0,&) € QM \ 0_QM and v = 706, : [7-(70,&0),0] — M be the geodesic
satisfying the initial conditions v(0) = xg, ¥(0) = &. Then yo = Y(7_(x0,&)) € OM. We
construct the unit vector field n(z) on M \ {yo} as described in the formulation of the
lemma and define

aj(wo, &) = 1", j(x0). (8.4.4)
As usual, we put a¥ = g/*al. Let us show the field a = (a) to satisfy all claims of the
lemma.

First of all a € C°(QM \ 0_QM), by definition. Since the vector field n(z) is of unit
length,

n';j(@)mi(x) = 0. (8.4.5)
Noting that
n(zo) = &o (8.4.6)
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and putting = 7 in (8.4.5), we obtain
at& = 0. (8.4.7)

To prove symmetry of the field a”, we fix (xg,&), introduce the function p(z) =
p(x,yo), where p is the distance function in the metric g, and note that n(z) = Vp(z).
Consequently,

gz‘knk;j ="Mi;5 = Psij
Thus, the tensor a(zo, &) coincides with the value of the Hessian of the function p at the

point xy and, consequently, is symmetric.
To prove property (8.4.3), we differentiate f(x,n(x)) as a composite function:

k
Vs (o) = o s )] = o | 2 o) + o) 3 @) 509
On the other hand, by the definition of covariant derivatives,
Pl = O ) + (o),
(&1 an(o)) = 9 | 5L (o)) = T ) S o) | + o) S5 o),

Expressing the partial derivatives On* /027 and g0 f /0x? from the last two equalities and
inserting these values into (8.4.8), we obtain

Vi [flan(@)] = (V)@ n(@) + [¢9F (@) — a®(a,n())] §g< n().

For x = xg, the expression in the brackets is equal to zero, and we thus arrive at (8.4.3).
Finally, we prove (8.4.2). As has been noted, the field 7;.; = giun”®.; is symmetric
and, consequently, equality (8.4.5) can be rewritten as follows:

Ui ;jnj = 0.
Differentiating this equality, we obtain
m w0 k=0,

Changing the limits of differentiation in the first factor with the help of (3.2.11), we
transform this equation as follows

W 00k + Rlugn'n’ =0, (8.4.9)
Formulas (8.4.4) and (8.4.6) imply the similar equality at any point of the geodesic 7, i.e.,
' (v(t) = aj(y(t),4(t)), (8.4.10)

n'(v(8) = 7'(2), (8.4.11)
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Putting = = ~(¢) in (8.4.9) and substituting values (8.4.10)—(8.4.11) for n* and 7" ;, we
see that the tensor field a = a(y(t),¥(t)) along the geodesic 7 satisfies the equation

(%k +alal + Riugi'57 = 0.
Validity of this equation for every geodesic v is equivalent to condition (8.4.2), as has
been established in the proof of Theorem 8.2.2. The lemma is proved.

Note that the field a has a singularity of the type 7= near 0_TM.

Let us apply formula (8.4.3) in the case f = 7_. Given (x¢,&) € QM \ 0_QM,
let Yo = Vap.6 (T-(20,&0)) stands for the point y, participating in the formulation of the
lemma. Then 7_(z,n(z)) = —p(x,yo) and n(ze) = & = (Vep)(To,yo). Putting f = 7_
and x = x¢ in (8.4.3), we obtain

=0 = —(Vap) (w0, y0) = (VT-) (0, &o)-
From this, taking the homogeneity of 7_ into account, we arrive at the relation

§

e (8.4.12)

V=

which holds on T°M \ O_TM.

P r oo fof Theorem 8.4.1. Let a be the tensor field constructed in Lemma 8.4.2. By
(8.4.2), for a real function u € C®(T°M \ d_TM), the Pestov identity (8.2.28) has the
form

2V, V(Huw)) = |Vul? + Viv; + Vi, (8.4.13)

where
v = EVIU- Vi — &V - Vi, (8.4.14)
w = @%iu . %ju. (8.4.15)

By (8.4.12), for u = 7_ these formulas look like

1

e —Viv; — V', (8.4.16)
1 ) v v
Vi = —@&fjvjﬂl +Vit- = (PeVT)i, (8.4.17)
w' = . 8.4.18
€12 —

Let € be a small positive number and M, = {x € M | p(x,0M) > ¢}. We integrate
equality (8.4.16) over QM. and transform the divergent terms according to the Gauss-
Ostrogradskii formulas (4.6.35) and (8.2.49). As a result we arrive at the equality

/ s = — / (v,v) d522 — (n — 2) / (w, €) dS. (8.4.19)

QM. OQM, QM.
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By (8.4.18), (w,&) =1 for |{] = 1. So (8.4.19) is rewritten as:

(n—1) / s = — / (Pevr_, v) dS?n2. (8.4.20)
QM. OOM.

The integrand on the right-hand side of this equality has no singularity near 0_QM
and, moreover, it vanishes on 0_QM. So we can pass to the limit in (8.4.20) as ¢ — oc.
Passing to the limit and using representations (3.6.34) for dX = dX**~! and d¥?" 2, we
obtain

(n—1) / / de (€) dV™(z) = (—1)"*! / / (BT, v) dw, (€) AV (z).  (8.4.21)

M Q, M qF M

The left-hand side of (8.4.21) is equal to (n—1)w,V™(M), where w, = 272 /T'(n/2) is the
volume of the unit sphere in R™. We change the integration variable on the right-hand
side of (8.4.21) by the formula £ = —7. Under this change the form dw, () transfers into

(—1)"dw,(n) and the field Pg%T_, into the field Pn%nr. As a result we arrive at (8.4.1).
The theorem is proved.

8.5 Determining a Riemannian metric in
a prescribed conformal class

Let M be a compact manifold. We introduce a Riemannian metric on M and denote
the distance between points z,y € M in this metric by p(z,y). Given a function f :
M x M — C, we introduce the notation

“fHW}(Mka) =
= [ [ [ @) (%t @)l + Naf @ y)) + o™ @yl y)] V@) aviy), (85.)

where dV is the Riemannian volume form. Under any change of the metric, norm (8.5.1)
is replaced with an equivalent one.

Recall that, given a Riemannian manifold (M, g) and a point « € M, the exponential
mapping exp, : T,M D U — M is defined by the equality exp,(§) = 7z.¢(1), where v, ¢(¢)
is the geodesic satisfying the initial conditions 7, ¢(0) = z, 4,¢(0) = €. The exponential
mapping is defined for £ € T, M such that the geodesic 7, ¢(t) is defined for ¢ € [0, 1].
Given § € U, by d¢exp, : T, M — Ty, (e)M we denote the differential of the exponential

mapping.

Theorem 8.5.1 Let (M, gy) be an n-dimensional compact Riemannian manifold with
boundary. Given positive numbers \g and kg, by A(Xo, ko) we denote the set of real func-
tions A € C°(M) satisfying the inequalities

Ao <A< A (8.5.2)

and the next two conditions:
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(1) the Riemannian metric
9= (8.5.3)

is such that (M, g) is a simple Riemannian manifold;
(2) if (,&) € TM is such that the exponential mapping exp, of metric (8.5.8) is
defined at the point &, then its differential satisfy the inequalities

kolnl < |(dgexp,)nl < ko'l (n € T.M). (8.5.4)

Then, for every two functions A, A e Ao, ko) and the corresponding metrics g = Mgy
and § = N2qy, the estimate

A — S\H%Q(M) < Oy = Tyllwaonrxons, n-1) (8.5.5)

holds with a constant C' depending only on (M, go), Ao and ko. Here I'y and 'y are the
hodographs of the metrics g and §.

Note that the norm

HFQHWf(ﬁMX(?M,n—l) = / / {p(z)in (‘erg‘ -+ ’Vyrg’) —+ péfn‘rg” d‘/onfl(m) d‘/onfl(y)
OM OM

is finite for every metric g, since its hodograph satisfies the estimate I'y(z,y) < Cy po(z,y)
with some constant Cj, where p, is the distance function of the metric gq.

Proof Letusfix afunction A\ € A(\g, ko) and denote g = A%gy. Let a be the
semibasic tensor field constructed in Lemma 8.4.2 for the metric g. By Lemma 8.2.1, for
every real function u € C®(T°M), the Pestov identity (8.4.13) holds. Both parts of this
identity are quadratic forms in the function u. Equating the correspondent symmetric
bilinear forms, we obtain the identity

(Vu, V(HD)) + (Vii, V(Huw)) = (Vii, Vi) + Vi + Vi (8.5.6)
which holds for every real functions u, @ € C°°(T°M); here
1 a . v a._ W v a . vo_oa.
vi =g <§ivju VU + &V - Viu—&EViu - VVa — &V - V]u> , (8.5.7)
i 1 a. aj~ a.. aj
w:2<§jVu-Vu+§jVu-Vu). (8.5.8)

Let 7_(x, &) be the function corresponding to the metric g. We put u = 7_ in (8.5.6)—
(8.5.8), and assume the function 4 to be positively homogeneous of degree —1 in its second
argument:

a(z,t€) =t ta(z, &) (t>0). (8.5.9)
The left-hand side of (8.5.6) is equal to zero. Indeed, by (8.4.12),
a v a (% 1 .U a (%
(Vr, V(Hu)) +(Vi, V(HT.)) = e ‘Vi(Hu) = (Va, V(1)) =0,

since the function Ha is homogeneous of degree zero. In view of (8.4.12) into account,
formulas (8.5.6)—(8.5.8) take the form

1 v . a.
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<&Vﬂ_ V u— @Vlr_ Vﬁu + éPu + VZ ) ; (8.5.11)

w =1 (v“ + é? ) (8.5.12)

We choose a small € > 0 and denote M, = {z € M | p(z,0M) > €}, where p is the
distance function in the metric g. Integrating equality (8.5.10) over QM. and transforming
the divergent terms by the Gauss-Ostrogradskii formulas, we obtain

/R(Eﬁl+(n——2Xug€ﬁcﬁ]::L/ (v, 1) dE22, (8.5.13)

QM. OQM.

where v is the unit vector of the outer normal to 0QM.. By (8.5.11) and (8.5.12),

(w, &) = Hil
(v,v) = ; [Iﬂ' (si%ﬂ_ - 5]-%_) Vi + ﬁ"?a + (v, %a>] -

Inserting these expressions into (8.5.13), we obtain

: | v (60m — GV ) i+ 0, V) + (6 v)a] de

/)HﬂdZ::—————
2(n—1 )

€

(8.5.14)
Formula (8.5.14) holds for every function 4 satisfying the homogeneity condition
(8.5.9). In particular, putting @ = 7_ and taking (8.4.12) into account, we conclude

— / dy = 2(711_1) / [Vi (fi%jr — Q%ﬂ') %jt + (v, %7:) + (¢, V>T] dx?n—2,
QM. B

€

(8.5.15)

Taking the difference of (8.5.14) and (8.5.15) and introducing the notation
w=1u-"T, (8.5.16)

we obtain
/(L+H®d2:
QM.
1 . v » o "

Tn-1) / [VZ (&VJT - ENﬂ) Viw + (v, Vw) + (£, v)w| dS* 2 (8.5.17)

OQM.

We specialize now the choice of the function @ in (8.5.16). Let X be a function belonging
to the class A(Xo, ko) and § = A2gy be the corresponding metric. Given (z,&) € T°M, by
Yog ¢ [T-(x,€),0] — M we denote the geodesic of the metric g which satisfies the initial
conditions v,¢(0) = =, 4,¢(0) = & and put
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where § is the distance in the metric § and |¢] = (g;;6°¢7)1/? is the modulus of the vector
¢ in the metric g. Let us show that under such choice the integrand on the right-hand
side of (8.5.17) can be estimated as follows:

S

1+Ha>1-2. (8.5.19)

>~

Indeed, let us fix (x,&) € T°M and denote y = v, ¢(7_ (2, €)). We join the points y and x
by a geodesic v of the metric g and denote by n the tangent vector, at the point x to this
geodesic, which has the unit length in the metric g, i.e., |n|~ = 1. By the formula for the
first variation for the length of a geodesic [41],

d

i@l [P(vae(t),y)] = (€M™, (8.5.20)

where (, )~ is the scalar product in the metric g.

Fig. 4

Introducing the notation

ﬂ(m7§) = ,5(13,’7x7§(7'_<$,§))), (8521>

we can write
Ofi

i e - (- ). (85.22)

On the other hand, differentiating the equality

Pae(t),y) = i(Vag(t), 12e() (1 = Yae(7-(2,€)))

with respect to ¢, we obtain

P00 = S5 (0 e OV L) + 5 (), T OV (0

Putting ¢ = 0 here and using equation (1.2.5) for geodesics, we conclude

d| .. i

], PO 9] = 5 (@98 = or

o

i (1, )5 ()€,
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Comparing the last equality with (8.5.22), we see that

Hpw,€) = 5| 1pmelt), )]

Together with (8.5.20), the last formula gives
Hii(z, €) = (€)™
Combining this equality with (8.5.18) and (8.5.21), we obtain

1 ~
Hi(r, €) = — - Hp(a,¢) = &2 (5.5.23)
€] €]
We now recall that g = ﬁ—zg and |n|~ = 1. So (8.5.23) implies the inequality
. -l A LA
H < = — —.

Thus (8.5.19) is proved.
With the help of (8.5.19), formula (8.5.17) gives the inequality

[

M.

! ‘ v ¥ Vel - 2n—2
< 2{"}”(”_1)39{4 {V (&VjT_ - ijiT_) V'w + (v, Vw) + (&, v)w| dX"*.  (8.5.24)

€

> | >

Here dV™ is the Riemannian volume form of the metric g and w,, is the volume of the unit
sphere in R".
Let us now make use of the next claim.

Lemma 8.5.2 For the function w given by formulas (8.5.16) and (8.5.18), the right-hand
side of (8.5.24) can be estimated as follows:

v (fi%ﬂ' — gj%ﬂ') %jw + <y7 %w> + <€7 V>w dn2n—2 <

lim
e—0
£

< Oy - Fgwa(aanM,n_n, (8.5.25)
where a constant C' depends only on (M, go), Ao and ko.

The proof of the lemma will be given at the end of the section, and now we finish
proving the theorem with its help. From now on we agree to denote various constants
depending only on (M, go), Ao and kg by the same letter C'.

Estimating the right-hand side of (8.5.24) with the help of (8.5.25) and passing to the
limit as € — 0, we obtain

A
/ <1 B )\> av* < ||y - FgHWf(aanM,nq)- (8.5.26)
M
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The volume forms dV" and dV{' of the metrics g and gy are connected by the equality
dV"™ = X\"dVy"; so (8.5.26) can be rewritten in the form

/(/\ — NAMldvg < o0y — Usllwiomxans, n-1y-
M
The metrics g and g are equal in rights, so we can write the second inequality
[ O =XV < CIT, = Tallwonontn -
M.
Summing the last two inequalities, we obtain
/()\ — AN\ =X avy < O, - Ullwonrxon, n-1)- (8.5.27)
M

Condition (8.5.2) implies the relation
A=A = = A= 22 X3 4 A7) > (= DA A= V)2
Therefore (8.5.27) implies the estimate
JO =22V < CIT = Tallwz@arons o
i

which coincides with (8.5.5). The theorem is proved.
P r oo fof Lemma 8.5.2 is based on the next two observations. First, it follows from
definition (8.5.16), (8.5.18) of the function w that the equality

w(z, &) =Ty(z,y) = Tg(z,y) (8.5.28)

holds for (z,£) € 00QM, where y = v, ¢(7_(x,€)). Second, the integrand in (8.5.25) de-

pends only on values of the function w on 9Q2M,, since the vector 3; = l/i(&;%ﬂ'_ —@%ﬂ;)
is tangent to OM.. To make use of these observations, we will change the integration vari-
ables of integral (8.5.25) in two steps.

First of all, we represent integral (8.5.25) as

/ [Vi (57?637_ - 5]'%”—) Viw + (v, Vw) + (€, l/>w] ds? 2 =

00 M,
— / (I(2) + Io(x)) dV™Y(2), (8.5.29)
OMe.
where i § .
Li(x) = / v (fiVjT_ — @Vﬁ_) Vw dw, (€), (8.5.30)
Q. M

L(z) = / <<y,%w>+<f >w> deo, (€). (8.5.31)

—_,V
27
s €
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We change the integration variable in (8.5.30) and (8.5.31) by the formula
T ([L’, 5)

= ——22¢ (8.5.32)
€]
Since the function 7_ is homogeneous of degree —1, it follows from (8.5.32) that
_T—(xﬂ?) = |§|7 _T—(xag) = |77| (8533>
and the inverse of mapping (8.5.32) coincides with (8.5.32):
¢ = _T‘(T’”)n. (8.5.34)
n

Mapping (8.5.32) transfers the sphere Q, M into the hypersurface Y, M = {n € T, M |
—7_(z,n) =1} of T, M. Let dS"~! be the volume form on Y, M induced by the Euclidean
structure of the space T, M (which, in turn, is induced by the Riemannian metric g). The
Jacobian of the mapping 2, M — Y, M, £ — n is easily seen to be equal to

dw, (&) _\cosoc|
dsy=t(n)  [n|*!

(8.5.35)

where « is the angle between the vectors %T_<I, ¢) and &. Using homogeneity of 7_ and
equalities (8.5.33), we obtain for £ € Q, M

vea —7 1
s — <VUT (2,8),8) _ T (z,8) _ v|n| N ‘
V(.9 [V (2, mPIvr(zn)]  |nllV7-(z,n)|

Inserting this expression into (8.5.35), we find

dw, (&) _ 1
dSg=H ) [p| T (x,m)|

Since the integrands in (8.5.30) and (8.5.31) are homogeneous of degree —2, they are
multiplied by |n|? under the change (8.5.32). Thus, after the change, integrals (8.5.30)
and (8.5.31) take the form

L) = [ PV @) (nj%n_—m%ﬂ_) ViwdSi W), (8.5.36)
Y. M

L@ = [ WYl (<u, Su) + (v m”|2>w) i) (85.37)
Y. M

For x sufficiently close to M and not belonging to M, the semibasic covector field
ai(a,n) = |n| V| (nﬁﬂ — m%ﬂ) (8.5.38)

is smooth and bounded: |a| < 2. Consequently, formula (8.5.36) assumes the form (we
return to denoting the integration variable by &)

L(z) = / € Vi dSL(E). (8.5.39)

YoM
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Let us restrict the function w(z,n) to the hypersurface Y, M C T, M considered as a
Riemannian manifold with the metric induced by the Euclidean structure of T, M, and let
grad,w denotes the gradient of the restriction. We will estimate the integrand in (8.5.37)
through |w| + [grad, w|. To this end we introduce the notation

¢=v—(v,Vrin. (8.5.40)

Using homogeneity of 7_, one can easily see that the vector ( is orthogonal to %T, and,
consequently, is tangent to the hypersurface Y, M = {n | — 7_(z,n) = 1}. Therefore the
inequality

(¢, Vw) < [¢] - [grad,w] (8.5.41)
holds. Using (8.5.40) and (8.5.41), we estimate the integrand of (8.5.37):

Y| (<u, Su) + |:|2>w> _

— (<<,%w> Yo+ (v m”|2>w) <

i o v 1
< InPrvr- T L ICT - lgrad,w| + V-] - w] + —|w]
ul

= 1¢] - P97 lewad ]+ = (1l 97| ol (35.42)
By the relation (7, %72) = —7_, the inequality
1< ol 197 ()] (5.5.43)
holds for n € T, M. Besides, (8.5.40) implies the estimate
[ < T nl - [V7-(z,m)l.
which together with (8.5.43) gives
<ol [l et < (3.5.41)
With the help of (8.5.44), from (8.5.42) we obtain

P _ v n —n —n
| 1(<u,w>+<u,W>w)s2|n|3 jgrad, ] + 2>,

On using this inequality, (8.5.37) implies the estimate (we return to denoting the integra-
tion variable by &)

() <2 [ (I leradaol + 6 wl) S5 (€). (8.5.45)

Y. M
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We now implement the second change of the integration variable £ +— y in (8.5.39)
and (8.5.45) by the formula

= exp,(—&) = e, (§) (8.5.46)
(the second equality is the definition of the right-hand side). Since the hypersurface Y, M

is defined by the equation 7_(x,§) = —1, it is transferred just into M under mapping
(8.5.46). By the same reason,

€| = plz,y) (8.5.47)

where p is the distance in the metric g. Thus, after the change (8.5.46), relations (8.5.39)
and (8.5.45) transform to the next:

Sy~ (§)

Vi) dv"(y),

L(x) <2 [ (p"I(gradgw) o e | + |pl* w0 ;)
oM

Ii(z) :aé P> (ai%iw) oe, " m AV t(y).

where dV"~! is the Riemannian volume form corresponding to the metric g. By condition
(8.5.4), the Jacobian dS7~1(£)/dV"!(y) is bounded by some constant depending only on
Ao and kg, and the estimate

(gradew) o ;'] < Clgrad, (wo e, ")]

holds where grad, stands for the gradient on the Riemannian manifold M. Therefore
the previous relations give

L(z) <C / (p*"grad, (wo e, M) + [p "wo e ') AV (y), (8.5.48)
oM

L(z)<C / P AV (y). (8.5.49)
oM

< -1
o V'w | oe,

Equality (8.5.47) and definition (8.5.16), (8.5.18) of the function w imply the relation

- p(z,y)
(woe Y)(y) =1—- (8.5.50)
p(z,y)
where p is the distance in the metric §. Consequently,
grad,(woe;') = p~'grad,(p — p) — p~*(p — p)grad,p. (8.5.51)

The gradient grad,p of the function p(z,y) on the manifold OM is the orthogonal pro-
jection of the gradient V,p to the hyperplane T,(0M). Since |V,p| = 1, the inequality
lgrad, p| <1 holds. Consequently, (8.5.51) implies the estimate

lgrad, (w o e;t)| < p~tlgrad,(p — )| + p~%|p — pl. (8.5.52)
With the help of (8.5.52), inequality (8.5.48) gives

L) < C [ (o lerad,(p = p)] + ' "lp = 5l) V().
oM
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Integrating this inequality over x € 0M,., we obtain

[ p@avri@ < [ [ (2 lerad (0 5+ 0o — ) Vi) aviia)

OM. OM: OM

Passing to the limit here as ¢ — 0, we conclude

@ L(z)dV™ () <

OM.

oM oM

It remains to note that, by condition (8.5.2), p and dV"~! can be replaced with py and
dVy"! corresponding to the metric gy as well as grad, can be understood in the sense of
go. We thus obtain

E Lz)dv" Y z) < C|T, — Lollwaonexons,n) - (8.5.53)
OM.

We now address integral (8.5.49). Let us fix a point yg € M and construct the unit
vector field n(z) on M \ {yo} as is described in claim (2) of Lemma 8.4.2. The field is
connected with mapping (8.5.46) by the equality

(8.5.54)

- e; (o) o ex (o)
1) = Tl ~ 2@ v0)

By Lemma 8.4.2, the relation
(V) (z,n(z)) = Viw(e, n(z))]

holds for every function w € C*°(T'M). Assuming w(zx,§) to be homogeneous of degree
—1 in its second argument, the last relation together with (8.5.54) implies that

(Vw)oe;' = p ' Vulp- (wo e ),

Recalling that (8.5.50) is satisfied by the function w participating in (8.5.49), we write
the last equality in the form

(Vw)oe;' = p~'Val(p — p).

Therefore the integrand of (8.5.49) can be represented as:

Li -1
aVw|oe,

By (8.5.38), the vector field ; o e, ! is tangent to M. and bounded. So the previous
equality implies the estimate

< -1
o V'w| oe,

3—n

p =" |(aio e ) Vilp — )|

3—n

p < 2p°7" |grad,(p — )|,
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where grad, stands for the gradient on the Riemannian manifold dM.. With the help of
the last inequality, integral (8.5.49) is estimated as follows:

I(@) < C [ " grad,(p = )| dV"~(y).
oM

As above, from this we obtain the inequality

E Li(z)dvV"H(z) < CIT, - gl onrxont,n

OM;.

. (8.5.55)

Relations (8.5.53), (8.5.55) and (8.5.29) imply (8.5.25). The lemma is proved.

8.6 Bibliographical remarks

The crucial point of this chapter is the Pestov identity (8.4.13) that does not explicitly
contain the curvature tensor in contrast to its initial version (4.4.9). The first identity
of such kind was obtained by R. G. Mukhometov [86]. The reader familiar with this
paper would probably agree that our proof of the identity is simpler. Using his identity,
R. G. Mukhometov proved the uniqueness in the linear problem of integral geometry for
scalar functions, obtained a formula for the volume of a simple Riemannian manifold and
the fact that a metric is uniquely determined by its hodograph in a prescribed conformal
class. In Sections 8.4-8.5 we followed some ideas of [86].

Corollary 8.1.2 is almost coincident with one of the results of [86]. The only distinction
is that our definition of CDRM includes the assumption of strict convexity of the boundary,
while the Mukhometov theorem assumes the boundary to be convex (without the modifier
“strict”).

Our formula (8.4.1) for the volume is linear in the hodograph in contrast to Mukhome-
tov’s formula which, moreover, is painfully noninvariant. In two-dimensional case this
formula was known earlier [110].

It is interesting to note a difference between Theorem 8.4.1 and the corresponding
Mukhometov’s result. Instead of (8.5.5), he obtained the estimate

1A = Allzoan < ClITy =Tl ca@nrxonys

where

||f||i5(aanM) -

= [ [ [ @) (et P+ [N 2) + 0 @ |V )] av ! (@) dV = ().
M oM

The problem of emission tomography is thoroughly investigated in the case when the
metric is Euclidean and the absorption € is constant [95, 125, 133]. In the case of the
Euclidean metric and nonconstant absorption (Corollaries 8.1.3 and 8.1.4 relate to this
case), as far as the author knows, all results are obtained under some assumptions on
smallness of the absorption € or the domain M [106, 73, 52]. Of particular interest is the
paper [27] by D. Finch, where Corollary 8.1.4 is proved in which the right-hand side of
inequality (8.1.9) is replaced with 5.37.
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