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Abstract

At first, we construct a connection between the Atangana–Baleanu and the
Riemann–Liouville fractional integrals of a function with respect to a monotone
function with nonsingular kernel. By examining this relationship and the iterated form
of Prabhakar fractional model, we are able to find some new Hermite–Hadamard
inequalities and related results on integral inequalities for the two models of fractional
calculus which are defined using monotone functions with nonsingular kernels.
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1 Introduction

As we know, the fractional calculus is a fundamental model considered as a powerful tool

in many fields, for example, rheology, dynamic systems, biophysics, electrical networks,

blood flow phenomena; see for details [6, 32, 43, 52]. On September 1695 the fractional

calculus was considered by Leibniz as a new model of mathematical analysis which in-

volves derivatives and integrals taken to fractional orders or orders outside of the integer

numbers. After Leibniz, many famousmathematicians and physicians have studied theory

and application of this model for fractional derivatives and integrals and fractional differ-

ential equations; see for detail [12, 13, 35, 55]. Some of them were Grunwald, Liouville,

Riemann–Letnikov, Caputo, andAtangana–Baleanuwhichwewill consider inmore detail

in the next section. The inequality is a modern model of mathematical analysis that de-

scribes the growth rate of competingmathematical analysis. Thismodel is also used in var-

ious fields such as integral equations, ordinary and partial differential equations [29, 59]. In

particular, they have been successfully used in the study of fractional differential equations

and sometimes called fractional integral inequalities. They have been vital in proving the

uniqueness or existence of solutions for somewell-known fractional differential equations

and in providing boundedness to solve certain fractional boundary and initial value prob-

lems, see for detail [1, 7, 19, 24, 26, 33, 34, 41, 48–51]. The rest of the article is organized as

follows: In Sect. 2, we recall some basic definitions and tools about fractional derivatives
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with Mittag-Leffler and power law kernels of a function with respect to another function

in the sense of Caputo and Riemann and their corresponding integrals. The existence of

the strictly increasing function in the kernel allows us to include a large class of fractional

operators, and hence our results will generalize and unify many existing results in the

literature treating Hermite–Hadamard inequalities. We start Sect. 3 by introducing the

corresponding fractional integral of the fractional operators with Mittag-Leffler kernels

depending on a function and proving it for the first time. Then, we proceed to proving the

Hermite–Hadamard fractional inequalities in the setting of these generalized fractional

integrals. An example with supporting figures is presented in this section as well to clarify

the proved main result. We devote Sect. 4 to presenting a related trapezoidal equality for

such a class of fractional integrals. Finally, in Sect. 5, we outline our conclusions about the

novel results we have proved in this short interesting study.

2 Definitions and preliminaries

Always, it is important and necessary to specify which model or definition is being used

because there are many different ways of defining fractional integrals and derivatives. The

most frequent definition of fractional integrals and derivatives is the Riemann-Liouville

one, in which fractional integrals and derivatives are defined as follows.

Definition 2.1 ([32, 43, 52]) For any L1 function f (x) on an interval [ν1,ν2] with x ∈

[ν1,ν2], the η1th left-RL fractional integral of f (x) is defined by

RL
J

η1
ν1+

f (x) :=
1

Γ (η1)

∫ x

ν1

(x – ξ )η1–1f (ξ ) dξ (1)

for Re(η1) > 0. Also, for any Cn function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the

η1th left-RL fractional derivative of f (x) is defined by

RL
D

η1
ν1+

f (x) :=
dn

dxn
RL
J
n–η1
ν1+

f (x) (2)

for n – 1 ≤ Re(η1) < n.

Observe that since RL
D
–η1
ν1+ f (x) =

RL
J

η1
ν1+f (x) and the derivative formula (2) is the analytic

continuation of the integral formula (1) in η1, thus differentiation and integration can be

unified in a single operator that we call differintegration.

Definition 2.2 ([52]) For any L1 function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the

η1th right-RL fractional integral of f (x) is defined by

RL
J

η1
ν2–

f (x) :=
1

Γ (η1)

∫ ν2

x

(ξ – x)η1–1f (ξ ) dξ (3)

for Re(η1) > 0. Also, for any Cn function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the

η1th right-RL fractional derivative of f (x) is defined by

RL
D

η1
ν2–

f (x) := (–1)n
dn

dxn
RL
J
n–η1
ν2–

f (x) (4)

for n – 1 ≤ Re(η1) < n.
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In the recent decades, a strong modern direction of research in fractional calculus has

brought the attention of interested researchers in various disciplines to investigate various

possible ways to define fractional integrals and derivatives, often with different properties

from the classical RL definition. Some of them are more effective than the RL model that

can be used to model real-life data [8, 23]. One of the most recent models of fractional

calculus discussed in this paper is the fractional calculus of a function with respect to

another function (which is often calledψ-RL fractional calculus) that was firstly defined in

the classical RL model by Osler [44] and the concept has been extended by many authors;

e.g. [17, 56]. As shown in many papers cited below, it has been especially useful in real-

world modeling.

Definition 2.3 ([17, 44, 56]) Suppose that (ν1,ν2) ⊆ R is a finite or infinite interval of

the real numbersR and ψ(x) is an increasing positive monotone function on the interval

[ν1,ν2] with ψ ′(x) ∈ L1(ν1,ν2). Then the ψ-RL fractional integrals of a function f with

respect to another function ψ(x) on [ν1,ν2] is defined by

J
η1
ν1+

f (x) =
1

Γ (η1)

∫ x

ν1

ψ ′(ξ )
(

ψ(x) –ψ(ξ )
)η1–1f (ξ ) dξ (5)

for η1 ∈C and Re(η1) > 0. Furthermore, the ψ-R fractional derivatives of a function f with

respect to another function ψ(x) is defined by

RL
ψ(x)D

η1
ν1

+ f (x) =

(

1

ψ ′(x)

d

dx

)n
(

RL
ψ(x)J

n–η1
ν1

+ f (x)
)

(6)

for η1 ∈ C with Re(η1)≥ 0 and n – 1≤ Re(η1) < n.

Special functions have a strong relationship with fractional calculus [28, 32], and the

Mittag-Leffler function is a particular important one in this area, see e.g. [21, 22, 31].

There are two important models of fractional calculus which have been defined by in-

tegrals similar to (1) but with Mittag-Leffler (ML) functions in the kernel, namely the

Atangana–Baleanu and Prabhakar models [9, 10].

Definition 2.4 ([17]) For any function f (x) which is differentiable with f ′ ∈ L1[ν1,ν2] and

x ∈ [ν1,ν2], the η1th Atangana–Baleanu (AB) fractional derivative of f (x) with respect to

another function ψ(x) in the RL sense is defined by

ABR
ψ(x)D

η1
ν1+

f (x) :=
B(η1)

(1 – η1)ψ ′(x)
·
d

dx

∫ x

ν1

ψ ′(ξ )Eη1

(

–η1

1 – η1

(

ψ(x) –ψ(ξ )
)η1

)

f (ξ ) dξ , (7)

and in the Caputo sense it is defined by

νABR
ψ(x)D

η1
ν1+

f (x) :=
B(η1)

1 – η1

∫ x

ν1

Eη1

(

–η1

1 – η1

(

ψ(x) –ψ(ξ )
)η1

)

f ′(ξ ) dξ (8)

for 0 < η1 < 1, where ψ(x) is as before, Eη1 (z) is the standard one-parameter ML function,

and B(η1) > 0 is a normalization function that satisfies B(0) = B(1) = 1.

It is clear that the above definitions are for left AB integrals and derivatives. In a natural

way similar to Definition 2.2, we can define right AB integrals and derivatives possibly.
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Definition 2.5 ([27, 46]) For any L1 function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2],

the Prabhakar fractional integral operator is defined by

P
J

η1 ,η2 ,γ ,ω
ν1+

f (x) :=

∫ x

ν1

(x – ξ )η2–1Eγ
η1 ,η2

(

ω(x – ξ )η1
)

f (ξ ) dξ (9)

for Re(η1) > 0, Re(η2) > 0, and γ ,ω ∈ C, where E
γ
η1 ,η2 (z) is the three-parameter ML func-

tion.

Also, for any Cn function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the Prabhakar frac-

tional derivative operator is defined as follows:

P
D

η1 ,η2 ,γ ,ω
ν1+

f (x) :=
dn

dxn

(

P
J

η1 ,n–η2 ,–γ ,ω
ν1+

f (x)
)

(10)

for Re(η1) > 0, n – 1≤ Re(η2) < n, and γ ,ω ∈C.

Again, the above definitions are for left Prabhakar integrals and derivatives. In a natu-

ral way similar to Definition 2.2, we can define right Prabhakar integrals and derivatives

possibly.

Remark 2.1 Observe that Definition 2.5 can be seen as a special case of the generalized

Prabhakar model defined in [57].

Definition 2.6 ([17]) For any L1 function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the

generalized Prabhakar fractional integral operator of a function f (x) with respect to an-

other function ψ(x) is defined by

P
ψ(x)J

η1 ,η2 ,γ ,ω
ν1+

f (x) :=

∫ x

ν1

(

ψ(x) –ψ(ξ )
)η2–1Eγ ,κ

η1 ,η2

(

ω
(

ψ(x) –ψ(ξ )
)η1

)

f (ξ ) dξ (11)

for Re(η1) > 0, Re(η2) > 0, Re(κ) > 0, Re(κ – η1) < 1, and γ ,ω ∈ C, where ψ(x) is as before

and E
γ ,κ
η1 ,η2 (z) is the generalized ML function defined by

Eγ ,κ
η1 ,η2

(z) :=

∞
∑

n=0

Γ (γ + κn)zn

Γ (γ )Γ (η1n + η2)
. (12)

Also, for any Cn function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the generalized

Prabhakar fractional derivative operator of a function f (x) with respect to another func-

tion ψ(x) is defined by

P
ψ(x)D

η1 ,η2 ,γ ,ω
ν1+

f (x) :=
dn

dxn

(

P
ψ(x)J

η1 ,n–η2 ,–γ ,ω
ν1+

f (x)
)

(13)

for Re(η1) > 0 and n – 1≤ Re(η2) < n and γ ,ω ∈ C.

It is important to see Definitions 2.4 and 2.6 as interesting analogues of the basic Def-

inition 2.1 from a pure mathematical point of view. Also, they have their own properties

consistentwith those of theML functions [5, 15, 18, 27].On the other hand, if we look care-

fully from an applied science point of view, we can deduce that these models of fractional

calculus can be matched with real data where power law behavior disappears [14, 20, 58].
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In the current study, we point out the uniting topic of integral inequalities involving the

aforementioned novel models of fractional calculus. Particularly, we consider the well-

known Hermite–Hadamard (HH) inequality, which has been successfully studied for RL

fractional integrals. Also, we prove some new results analogous to the classical results

which are valid in the generalized AB and Prabhakar models of fractional calculus. Finally,

a related inequality of trapezoidal type is pointed out.

3 The new fractional HH-inequality

Our next findings are based on the following lemma.

Lemma 3.1 For any L1 function f (x) on an interval [ν1,ν2] with x ∈ [ν1,ν2], the η1th

Atangana–Baleanu (AB) fractional integral of a function f (x)with respect to another func-

tion can be represented as follows:

AB
ψ(x)J

η1
ν1+

f (x) :=
η1

B(η1)
RL

ψ(x)J
η1
ν1+

f (x) +
1 – η1

B(η1)
f (x), 0 < η1 < 1, (14)

where B(η1) and ψ(x) are as before.

Proof The expression (14) is well defined iff the ψ-RL integral RL
ψ(x)J

η1
ν1+f (x) is well defined,

which matches our assumptions on f for the η1th ψ-ABR fractional derivative to be well

defined. Following [17] where the AB fractional derivatives of a function f (x) with respect

to another function ψ(x) can be represented in the series form

ABR
ψ(x)D

η1
ν1+

f (x) =
B(η1)

1 – η1

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x). (15)

It is sufficient if we show that

ABR
ψ(x)D

η1
ν1+

(

AB
ψ(x)J

η1
ν1+

f (x)
)

= f (x)

and

AB
ψ(x)J

η1
ν1+

(

ABR
ψ(x)D

η1
ν1+

f (x)
)

= f (x)

for each a, η1, f , ψ as stated. By using (15), we deduce that

ABR
ψ(x)D

η1
ν1+

(

AB
ψ(x)J

η1
ν1+

f (x)
)

= ABR
ψ(x)D

η1
ν1+

(

η1

B(η1)
RL

ψ(x)J
η1
ν1+

f (x) +
1 – η1

B(η1)
f (x)

)

=
η1

B(η1)
ABR
ψ(x)D

η1
ν1+

(

RL
ψ(x)J

η1
ν1+

f (x)
)

+
1 – η1

B(η1)
ABR
ψ(x)D

η1
ν1+

f (x)

=
η1

1 – η1

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

(

RL
ψ(x)J

η1
ν1+

f (x)
)

+

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x)
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=

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x) –

∞
∑

n=0

(

–η1

1 – η1

)n+1
RL

ψ(x)J
nη1+η1
ν1+

f (x)

= f (x);

AB
ψ(x)J

η1
ν1+

(

ABR
ψ(x)D

η1
ν1+

f (x)
)

=
η1

B(η1)
RL

ψ(x)J
η1
ν1+

(

ABR
ψ(x)D

η1
ν1+

f (x)
)

+
1 – η1

B(η1)
ABR
ψ(x)D

η1
ν1+

f (x)

=
η1

1 – η1

RL
ψ(x)J

η1
ν1+

(

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x)

)

+

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x)

=

∞
∑

n=0

(

–η1

1 – η1

)n
RL

ψ(x)J
nη1
ν1+

f (x) –

∞
∑

n=0

(

–η1

1 – η1

)n+1
RL

ψ(x)J
nη1+η1
ν1+

f (x)

= f (x);

which completes the proof. �

Remark 3.1 The discrete version of (15) was obtained in [4] and its generalization to the

case of generalized ML function case together with its discrete counterpart can be found

in [2] and [3], respectively.

Now, we recall the standard Hermite–Hadamard (HH) inequality for an L1 convex func-

tion f : [ν1,ν2] →R as follows:

f

(

ν1 + ν2

2

)

≤
1

ν2 – ν1

∫ ν2

ν1

f (x) dx ≤
f (ν1) + f (ν2)

2
. (16)

In 2013, HH-inequality (16) was generalized to fractional integrals of RL type by Sarikaya

et al. [53], which is as follows:

f

(

ν1 + ν2

2

)

≤
Γ (η1 + 1)

2(ν2 – ν1)η1

[

RL
J

η1
ν1+

f (ν2) +
RL
J

η1
ν2–

f (ν1)
]

≤
f (ν1) + f (ν2)

2
, (17)

where f is as before and η1 > 0.

Most recently, in 2019, HH-inequality (16) was generalized to fractional integrals of ψ-

RL type by Liu et al. [30] for an L1 convex and positive function f : [ν1,ν2] →R and for an

increasing positive monotone function ψ on (ν1,ν2] with ψ ′(x) ∈ L1(ν1,ν2):

f

(

ν1 + ν2

2

)

≤
Γ (η1 + 1)

2(ν2 – ν1)η1

[

RL
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤
f (ν1) + f (ν2)

2
, η1 > 0. (18)

Many further results have been derived from inequality (17); for details, see [16, 25, 34, 38,

47]. But so far such inequalities have not been investigated for other models of fractional
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calculus involving Mittag-Leffler kernels. We do so here, presenting the main results in

the following three theorems.

Theorem 3.1 If f : [ν1,ν2] →R is an L1 convex function, ψ is an increasing positive func-

tion on (ν1,ν2] with ψ ′(x) ∈ L1(ν1,ν2), and η1 ∈ (0, 1), then we have

f

(

ν1 + ν2

2

)

≤
B(η1)Γ (η1)

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

[

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤
f (ν1) + f (ν2)

2
. (19)

Proof From (14), we see that the AB fractional integral of a function f (x) is clearly a linear

combination of f (x) itself with its ψ-RL fractional integral. Then we have

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

=

[

η1

B(η1)
RL

ψ(x)J
η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+
1 – η1

B(η1)
(f ◦ ψ)

(

ψ–1(ν2)
)

]

+

[

η1

B(η1)
RL

ψ(x)J
η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

+
1 – η1

B(η1)
(f ◦ ψ)

(

ψ–1(ν1)
)

]

=
η1

B(η1)

[

RL
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

+
1 – η1

B(η1)

[

f (ν1) + f (ν2)
]

.

Since the quantities Γ (η1 + 1) and 2(ν2 – ν1)
η1 are positive, then by using inequality (18),

we get

2(ν2 – ν1)
η1

Γ (η1 + 1)
f

(

ν1 + ν2

2

)

≤
RL

ψ(x)J
η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

≤
2(ν2 – ν1)

η1

Γ (η1 + 1)
·
f (ν1) + f (ν2)

2
.

By multiplying by η1
B(η1)

and adding 1–η1
B(η1)

[f (ν1) + f (ν2)], we get AB integrals in the middle:

2(ν2 – ν1)
η1

Γ (η1)B(η1)
f

(

ν1 + ν2

2

)

+
1 – η1

B(η1)

[

f (ν1) + f (ν2)
]

≤
AB

ψ(x)J
η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

≤
2(ν2 – ν1)

η1

Γ (η1)B(η1)
·
f (ν1) + f (ν2)

2
+
1 – η1

B(η1)

[

f (ν1) + f (ν2)
]

. (20)
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By convexity of f , we have f ( ν1+ν2
2

) ≤
f (ν1)+f (ν2)

2
, so we can deduce

[

2(ν2 – ν1)
η1

Γ (η1)B(η1)
+
2(1 – η1)

B(η1)

]

f

(

ν1 + ν2

2

)

≤
AB

ψ(x)J
η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

≤

[

2(ν2 – ν1)
η1

Γ (η1)B(η1)
+
2(1 – η1)

B(η1)

]

f (ν1) + f (ν2)

2
,

which rearranges to the required result. �

Corollary 3.1 Theorem 3.1 with ψ(x) = x becomes

f

(

ν1 + ν2

2

)

≤
B(η1)Γ (η1)

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

[

AB
J

η1
ν1+

f (ν2) +
AB
J

η1
ν2–

f (ν1)
]

≤
f (ν1) + f (ν2)

2
,

which is proved by Fernandez and Mohammed in [19, Proposition 2.1].

Theorem 3.2 If f : [ν1,ν2] →R is an L1 convex function, ψ is an increasing positive func-

tion on (ν1,ν2] with ψ ′(x) ∈ L1(ν1,ν2), and η1 ∈ (0, 1), then we have

Q1(η1,ν2 – ν1)f

(

ν1 + ν2

2

)

+Q2(η1,ν2 – ν1)
f (ν1) + f (ν2)

2

≤
1 – η1

2B(η1)Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )

×
[

ABR
ψ(x)D

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ ABR
ψ(x)D

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤Q2(η1,ν2 – ν1)f

(

ν1 + ν2

2

)

+Q1(η1,ν2 – ν1)
f (ν1) + f (ν2)

2
, (21)

where the multipliers Q1(η1,ν2 – ν1) and Q2(η1,ν2 – ν1) sum to 1, therefore organizing

weighted averages on both ends of the inequality, and these are defined as follows:

Q1(η1,ν2 – ν1) =
E2η1 ((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
;

Q2(η1,ν2 – ν1) =

–η1
1–η1

(ν2 – ν1)
η1E2η1 ,η1+1((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
.

Proof Following [17], we have the following key result:

ABR
ψ(x)D

η1

ψ–1(ν1)+
f (x) =

B(η1)

1 – η1

∞
∑

k=0

(

–η1

1 – η1

)k
RL

ψ(x)J
kη1
ψ–1(ν1)+

f (x). (22)

The series being locally uniformly convergent (see [17]). From this formula, we see that

the AB derivatives can be written purely in terms of RL integrals. In view of this result,

many results can be proved in the AB model directly from the corresponding results in

the RL model.
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Here, we apply the HH-inequality for fractional ψ-RL integrals (18) with η1 replaced by

kη1:

f

(

ν1 + ν2

2

)

≤
Γ (kη1 + 1)

2(ν2 – ν1)kη1

[

RL
ψ(x)J

kη1
ψ–1(ν1)+

(f ◦ ψ)
(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1
ψ–1(ν2)–

(f ◦ ψ)
(

ψ–1(ν1)
)]

≤
f (ν1) + f (ν2)

2
.

Multiplying on all sides of the inequality by positive constants, we get

2(ν2 – ν1)
kη1

Γ (kη1 + 1)
f

(

ν1 + ν2

2

)

≤
RL

ψ(x)J
kη1
ψ–1(ν1)+

(f ◦ ψ)
(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1
ψ–1(ν2)–

(f ◦ ψ)
(

ψ–1(ν1)
)

≤
2(ν2 – ν1)

kη1

Γ (kη1 + 1)
·
f (ν1) + f (ν2)

2
.

The constant –η1
1–η1

is negative since 0 < η1 < 1. So, we need to split the above inequality

into two cases according to the parity of k.

If k is even, then we have

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
f

(

ν1 + ν2

2

)

≤

(

–η1

1 – η1

)k
[

RL
ψ(x)J

kη1
ψ–1(ν1)+

(f ◦ ψ)
(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1
ψ–1(ν2)–

(f ◦ ψ)
(

ψ–1(ν1)
)]

≤

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
·
f (ν1) + f (ν2)

2
.

If k is odd, then we have

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
·
f (ν1) + f (ν2)

2

≤

(

–η1

1 – η1

)k
[

RL
ψ(x)J

kη1
ψ–1(ν1)+

(f ◦ ψ)
(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1
ψ–1(ν2)–

(f ◦ ψ)
(

ψ–1(ν1)
)]

≤

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
f

(

ν1 + ν2

2

)

.

Summing over all k and making use of the series formula (22), we deduce

∑

k even

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
f

(

ν1 + ν2

2

)

+
∑

k odd

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
·
f (ν1) + f (ν2)

2

≤
1 – η1

B(η1)

[

ABR
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ ABR
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]
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≤

∑

k even

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
·
f (ν1) + f (ν2)

2

+
∑

k odd

(

–η1

1 – η1

)k 2(ν2 – ν1)
kη1

Γ (kη1 + 1)
f

(

ν1 + ν2

2

)

.

The sums over even and odd k can be rewritten more precisely as follows:

∞
∑

n=0

(

–η1

1 – η1

)2n 2(ν2 – ν1)
2nη1

Γ (2nη1 + 1)
f

(

ν1 + ν2

2

)

+

∞
∑

n=0

(

–η1

1 – η1

)2n+1 2(ν2 – ν1)
(2n+1)η1

Γ ((2n + 1)η1 + 1)
·
f (ν1) + f (ν2)

2

≤
1 – η1

B(η1)

[

ABR
ψ(x)I

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ ABR
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤

∞
∑

n=0

(

–η1

1 – η1

)2n 2(ν2 – ν1)
2nη1

Γ (2nη1 + 1)
·
f (ν1) + f (ν2)

2

+

∞
∑

n=0

(

–η1

1 – η1

)2n+1 2(ν2 – ν1)
(2n+1)η1

Γ ((2n + 1)η1 + 1)
f

(

ν1 + ν2

2

)

.

The infinite series appearing here can be re-explained as the power series for ML func-

tions:

2E2η1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

f

(

ν1 + ν2

2

)

+ 2

(

–η1

1 – η1

)

(ν2 – ν1)
η1E2η1 ,η1+1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

f (ν1) + f (ν2)

2

≤
1 – η1

B(η1)

[

ABR
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ ABR
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤ 2E2η1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

f (ν1) + f (ν2)

2

+ 2

(

–η1

1 – η1

)

(ν2 – ν1)
η1E2η1 ,η1+1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

f

(

ν1 + ν2

2

)

. (23)

We observe that the two functions E2η1 ((
–η1
1–η1

)2(ν2 – ν1)
2η1 ) and ( –η1

1–η1
)(ν2 – ν1)

η1 ×

E2η1 ,η1+1((
–η1
1–η1

)2(ν2 – ν1)
2η1 ) that appear as multipliers, since they arise from the even and

odd parts of a single infinite series, become a simpler ML function when they are added

together:

E2η1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

+

(

–η1

1 – η1

)

(ν2 – ν1)
η1E2η1 ,η1+1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

=
∑

k even

(

–η1

1 – η1

)k (ν2 – ν1)
kη1

Γ (kη1 + 1)
+

∑

k odd

(

–η1

1 – η1

)k (ν2 – ν1)
kη1

Γ (kη1 + 1)
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=

∞
∑

k=0

(

–η1

1 – η1

)k (ν2 – ν1)
kη1

Γ (kη1 + 1)

= Eη1

(

–η1

1 – η1
(ν2 – ν1)

η1

)

.

Also, the sum function Eη1 (
–η1
1–η1

(ν2 – ν1)
η1 ) is strictly positive [45], so it allows us to divide

by it in inequality (23) to get

E2η1 ((
–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
f

(

ν1 + ν2

2

)

+

–η1
1–η1

(ν2 – ν1)
η1E2η1 ,η1+1((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
·
f (ν1) + f (ν2)

2

≤
1 – η1

2B(η1)Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )

×
[

ABR
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ ABR
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤
E2η1 ((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
·
f (ν1) + f (ν2)

2

+

–η1
1–η1

(ν2 – ν1)
η1E2η1 ,η1+1((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
f

(

ν1 + ν2

2

)

,

which is the required result. �

Corollary 3.2 Theorem 3.2 with ψ(x) = x becomes

Q1(η1,ν2 – ν1)f

(

ν1 + ν2

2

)

+Q2(η1,ν2 – ν1)
f (ν1) + f (ν2)

2

≤
1 – η1

2B(η1)Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )

[

ABR
D

η1
ν1+

f (ν2) +
ABR

D
η1
ν2–

f (ν1)
]

≤Q2(η1,ν2 – ν1)f

(

ν1 + ν2

2

)

+Q1(η1,ν2 – ν1)
f (ν1) + f (ν2)

2
,

where the multipliersQ1(η1,ν2 – ν1) andQ2(η1,ν2 – ν1) are defined as follows:

Q1(η1,ν2 – ν1) =
E2η1 ((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
;

Q2(η1,ν2 – ν1) =

–η1
1–η1

(ν2 – ν1)
η1E2η1 ,η1+1((

–η1
1–η1

)2(ν2 – ν1)
2η1 )

Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )
,

which is proved by Fernandez and Mohammed in [19, Theorem 2.1].

Example 3.1 We verify the result of Theorem 3.2 for ψ(x) = x and the convex function

f (x) = e3x. Due to [32], we have

RL
J

η1
c+e

3x = e3x3–η1
γ (η1, 3(x – c))

Γ (η1)
, RL

J
η1
c–e

3x = e3x(–3)–η1
γ (η1, 3(x – c))

Γ (η1)
. (24)
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By making use of the series formula (22), we have

ABR
D

η1
c+e

3x =
B(η1)

1 – η1
e3x

∞
∑

k=0

(

–η1

1 – η1

)k

3–kη1
γ (kη1, 3(x – c))

Γ (kη1)
,

ABR
D

η1
c–e

3x =
B(η1)

1 – η1
e3x

∞
∑

k=0

(

–η1

1 – η1

)k

(–3)–kη1
γ (kη1, 3(x – c))

Γ (kη1)
.

Substituting the above expressions into HH-inequality (21), we get

Q1(η1,ν2 – ν1)e
3(ν1+ν2)/2 +Q2(η1,ν2 – ν1)

e3ν1 + e3ν2

2

≤
1 – η1

2B(η1)Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )

[

B(η1)

1 – η1
e3ν2

∞
∑

k=0

(

–η1

1 – η1

)k

3–kη1
γ (kη1, 3(ν2 – ν1))

Γ (kη1)

+
B(η1)

1 – η1
e3ν1

∞
∑

k=0

(

–η1

1 – η1

)k

(–3)–kη1
γ (kη1, 3(ν1 – b))

Γ (kη1)

]

≤Q2(η1,ν2 – ν1)e
3(ν1+ν2)/2 +Q1(η1,ν2 – ν1)

e3ν1 + e3ν2

2
.

Additional simplification process gives

Q1(η1,ν2 – ν1)e
3(ν1+ν2)/2 +Q2(η1,ν2 – ν1)

e3ν1 + e3ν2

2

≤
1

2Eη1 (
–η1
1–η1

(ν2 – ν1)η1 )

×

∞
∑

k=0

( –η1
1–η1

)k

Γ (kη1)

[

3–kη1e3ν2γ
(

kη1, 3(ν2 – ν1)
)

+ (–3)–kη1e3ν1γ
(

kη1, 3(ν1 – b)
)]

≤Q2(η1,ν2 – ν1)e
3(ν1+ν2)/2 +Q1(η1,ν2 – ν1)

e3ν1 + e3ν2

2
,

or dropping the multiplierQ leads to

2E2η1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

e3(ν1+ν2)/2

+
–η1

1 – η1
(ν2 – ν1)

η1E2η1 ,η1+1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

(

e3ν1 + e3ν2
)

≤

∞
∑

k=0

( –η1
1–η1

)k

Γ (kη1)

[

3–kη1e3ν2γ
(

kη1, 3(ν2 – ν1)
)

+ (–3)–kη1e3ν1γ
(

kη1, 3(ν1 – b)
)]

≤ 2
–η1

1 – η1
(ν2 – ν1)

η1E2η1 ,η1+1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

e3(ν1+ν2)/2

+ E2η1

((

–η1

1 – η1

)2

(ν2 – ν1)
2η1

)

(

e3ν1 + e3ν2
)

.
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Figure 1 A plot illustration for Example 3.1

For a specific value of η1 ∈ (0, 1
2
) and ν1 = 0, ν2 = 1, this inequality becomes

2E2η1

((

–η1

1 – η1

)2)

e3/2 +
–η1

1 – η1
E2η1 ,η1+1

((

–η1

1 – η1

)2)
(

1 + e3
)

≤

∞
∑

k=0

( –η1
1–η1

)k

Γ (kη1)

[

3–kη1e3γ (kη1, 3) + (–3)–kη1γ (kη1, –3)
]

≤ 2
–η1

1 – η1
E2η1 ,η1+1

((

–η1

1 – η1

)2)

e3/2 + E2η1

((

–η1

1 – η1

)2)
(

1 + e3
)

. (25)

The three functions given by the left-, middle-, and right-hand sides of the double inequal-

ity (25) are plotted in Fig. 1 against η1 ∈ (0, 1
2
) to demonstrate clearly that both inequalities

are valid.

Theorem 3.3 If f : [ν1,ν2] →R is an L1 convex function, ψ is an increasing positive func-

tion on (ν1,ν2] with ψ ′(x) ∈ L1(ν1,ν2), and η1,η2,γ ,ω > 0, then we have

f

(

ν1 + ν2

2

)

≤

P
ψ(x)J

η1 ,η2 ,γ ,ω

ψ–1(ν1)+
(f ◦ ψ)(ψ–1(ν2)) +

P
ψ(x)J

η1 ,η2 ,γ ,ω

ψ–1(ν2)–
(f ◦ ψ)(ψ–1(ν1))

2(ν2 – ν1)η2E
γ

η1 ,η2+1
(ω(ν2 – ν1)η1 )

≤
f (ν1) + f (ν2)

2
. (26)

Proof As in the theorem proof, analogous to (22), we have the following key result due to

[17]:

P
ψ(x)J

η1 ,η2 ,γ ,ω

ψ–1(ν1)+
f (x) =

∞
∑

k=0

Γ (γ + k)ωk

Γ (γ )k!
RL

ψ(x)J
kη1+η2

ψ–1(ν1)+
f (x). (27)

Again, this series is locally uniformly convergent (see [17]).

By making use of HH-inequality (18) and replacing η1 by kη1 + η2, we get

f

(

ν1 + ν2

2

)

≤
Γ (kη1 + η2 + 1)

2(ν2 – ν1)kη1+η2

[

RL
ψ(x)J

kη1+η2

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1+η2

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤
f (ν1) + f (ν2)

2
.
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Since the multiplier in the central term is positive and γ ,ω > 0 in series (27), so we can

proceed as follows:

Γ (γ + k)ω+

Γ (γ )k!
·
2(ν2 – ν1)

kη1+η2

Γ (kη1 + η2 + 1)
f

(

ν1 + ν2

2

)

≤
Γ (γ + k)ω+

Γ (γ )k!

[

RL
ψ(x)J

kη1+η2

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

kη1+η2

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

≤
Γ (γ + k)ω+

Γ (γ )k!
·
2(ν2 – ν1)

kη1+η2

Γ (kη1 + η2 + 1)
·
f (ν1) + f (ν2)

2
.

Summing over all k to get

∞
∑

k=0

Γ (γ + k)ω+

Γ (γ )k!
·
2(ν2 – ν1)

kη1+η2

Γ (kη1 + η2 + 1)
f

(

ν1 + ν2

2

)

≤
P

ψ(x)J
η1 ,η2 ,γ ,ω

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ P
ψ(x)J

η1 ,η2 ,γ ,ω

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

≤

∞
∑

k=0

Γ (γ + k)ω+

Γ (γ )k!
·
2(ν2 – ν1)

kη1+η2

Γ (kη1 + η2 + 1)
·
f (ν1) + f (ν2)

2
.

The left- and right-hand sides series in this inequality can be rewritten as the power series

for the three-parameter ML function:

2(ν2 – ν1)
η2E

γ

η1 ,η2+1

(

ω(ν2 – ν1)
η1

)

f

(

ν1 + ν2

2

)

≤
P

ψ(x)J
η1 ,η2 ,γ ,ω

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ P
ψ(x)J

η1 ,η2 ,γ ,ω

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

≤ 2(ν2 – ν1)
η2E

γ

η1 ,η2+1

(

ω(ν2 – ν1)
η1

) f (ν1) + f (ν2)

2
.

The result follows by a simple rearrangement. �

Corollary 3.3 Theorem 3.3 with ψ(x) = x becomes

f

(

ν1 + ν2

2

)

≤

P
J

η1 ,η2 ,γ ,ω
ν1+ f (ν2) +

P
J

η1 ,η2 ,γ ,ω
ν2– f (ν1)

2(ν2 – ν1)η2E
γ

η1 ,η2+1
(ω(ν2 – ν1)η1 )

≤
f (ν1) + f (ν2)

2
,

which is proved by Fernandez and Mohammed in [19, Theorem 2.2].

Example 3.2 We verify our result in Theorem 3.3 for ψ(x) = x and the convex function

f (x) = e2x on the interval [0, 1]. By making use of (24) and (27), it follows that

P
J

η1 ,η2 ,γ ,ω
d+ e2x = e2x

∞
∑

k=0

Γ (γ + k)ω+

Γ (γ )k!
2–kη1–η2

γ (kη1 + η2, 2(x – d))

Γ (kη1 + η2)
,

P
J

η1 ,η2 ,γ ,ω
d– e2x = e2x

∞
∑

k=0

Γ (γ + k)ω+

Γ (γ )k!
(–2)–kη1–η2

γ (kη1 + η2, 2(x – d))

Γ (kη1 + η2)
.
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Figure 2 Plot illustrations for Example 3.2

Substituting the above expressions into HH-inequality (26), we get

e≤
e2

∑

∞

k=0
Γ (γ+k)ω+

Γ (γ )k!
2–kη1–η2 γ (kη1+η2 ,2)

Γ (kη1+η2)
+

∑

∞

k=0
Γ (γ+k)ω+

Γ (γ )k!
(–2)–kη1–η2 γ (kη1+η2 ,–2)

Γ (kη1+η2)

2E
γ

η1 ,η2+1
(ω)

≤
1 + e2

2
,

which may be simplified to

2e ≤
1

Γ (γ )E
γ

η1 ,η2+1
(ω)

∞
∑

k=0

Γ (γ + k)ω+

k!Γ (kη1 + η2)

[

e22–kη1–η2γ (kη1 + η2, 2)

+ (–2)–kη1–η2γ (kη1 + η2, –2)
]

≤ 1 + e2. (28)

For further illustration of this result, we set ω = 1 and allow η2 to vary between 0 and 1.

Also, for several choices of η1 and γ , the results are shown in Fig. 2. In each situation, the

middle inequality of (28) is between the constant values of the left- and right-hand sides.

4 A related integral equality

Hermite–Hadamard (HH) inequalities are strongly connected with further well-known

integral inequalities which are said to be of trapezoidal type in the literature, see e.g. [11,

36–42, 47, 53, 54]. In the coming theorem, we prepare an equality of trapezoidal type

for the new integral operator. Also, we believe this result will be vital information for the

future studies of these models of fractional calculus.

Theorem 4.1 Suppose that f : [ν1,ν2] → R is an L1 function with η1 ∈ (0, 1). Also, sup-

pose that f ′ ∈ L1([ν1,ν2)], and ψ is an increasing positive function on (ν1,ν2] with ψ ′(x) ∈

L1(ν1,ν2), then we have

f (ν1) + f (ν2)

2
–

B(η1)Γ (η1)

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

[

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]
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=
(ν2 – ν1)

η1–1

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

×

∫ ψ–1(ν2)

ψ–1(ν1)

[(

ψ(ξ ) – ν1
)η1 –

(

ν2 –ψ(ξ )
)η1

](

f ′
◦ ψ

)

(ξ )ψ ′(ξ ) dξ . (29)

Proof By making use of Lemma 3.1, we get

RL
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

=
B(η1)

η1

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

–
1 – η1

η1
f (ν2);

RL
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

=
B(η1)

η1

AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)

–
1 – η1

η1
f (ν1).

By adding the last two inequalities together and then multiplying by Γ (η1+1)
2(ν2–ν1)

η1 > 0, we ob-

tain

Γ (η1 + 1)

2(ν2 – ν1)η1

[

RL
ψ(x)J

η1

ψ–1(ν1)+
f (ν2) +

RL
ψ(x)J

η1

ψ–1(ν2)–
f (ν1)

]

=
B(η1)Γ (η1)

2(ν2 – ν1)η1

[

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

–
(1 – η1)Γ (η1)

(ν2 – ν1)η1
·
f (ν1) + f (ν2)

2
.

This gives

f (ν1) + f (ν2)

2
–

Γ (η1 + 1)

2(ν2 – ν1)η1

[

RL
ψ(x)J

η1

ψ–1(ν1)+
f (ν2) +

RL
ψ(x)J

η1

ψ–1(ν2)–
f (ν1)

]

=
(ν2 – ν1)

η1 + (1 – η1)Γ (η1)

(ν2 – ν1)η1
·
f (ν1) + f (ν2)

2
–
B(η1)Γ (η1)

2(ν2 – ν1)η1

×
[

AB
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ AB
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

. (30)

Following [30, Lemma 3.1], it follows that

f (ν1) + f (ν2)

2
–

Γ (η1 + 1)

2(ν2 – ν1)η1

[

RL
ψ(x)J

η1

ψ–1(ν1)+
(f ◦ ψ)

(

ψ–1(ν2)
)

+ RL
ψ(x)J

η1

ψ–1(ν2)–
(f ◦ ψ)

(

ψ–1(ν1)
)]

=
1

2(ν2 – ν1)

∫ ψ–1(ν2)

ψ–1(ν1)

[(

ψ(ξ ) – ν1
)η1 –

(

ν2 –ψ(ξ )
)η1

](

f ′
◦ ψ

)

(ξ )ψ ′(ξ ) dξ . (31)

Making use of equations (30) and (31) completes the proof. �

Corollary 4.1 Theorem 4.1 with ψ(x) = x becomes

f (ν1) + f (ν2)

2
–

B(η1)Γ (η1)

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

[

AB
J

η1
ν1+

f (ν2) +
AB
J

η1
ν2–

f (ν1)
]

=
(ν2 – ν1)

η1+1

2[(ν2 – ν1)η1 + (1 – η1)Γ (η1)]

∫ 1

0

[

(1 – ξ )η1 – ξ η1
]

f ′
(

tν1 + (1 – t)ν2
)

dξ ,

which is proved by Fernandez and Mohammed in [19, Theorem 3.1].
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5 Conclusions

In this article, we have performed a connection between the Atangana–Baleanu and

Riemann–Liouville fractional integrals of a function with respect to an increasing func-

tion with nonsingular kernel. Also, we have recalled the iterated formula of the Prabhakar

fractional operator implemented by Fernandez and Baleanu [17]. In view of these indices,

we have presented new efficient inequalities of Hermite–Hadamard type (HH-type) in the

context of fractional calculus with respect to functions involving nonsingular kernels. In

fact, our findings generalize those in [19]. Due to the extensive recent studies and applica-

tions of AB and Prabhakar fractional operators, we believe that our results will be impor-

tant for the future studies of those models of fractional calculus and integral inequality.
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