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We study the notions of strongly convex function as well as �-strongly convex function. We present here some new integral
inequalities of Jensen’s type for these classes of functions. A re	nement of companion inequality to Jensen’s inequality established
by Matić and Pečarić is shown to be recaptured as a particular instance. Counterpart of the integral Jensen inequality for strongly
convex functions is also presented. Furthermore, we present integral Jensen-Ste
ensen and Slater’s inequality for strongly convex
functions.

1. Introduction and Preliminaries

�eword “convexity” is themost important, natural, and fun-
damental notations in mathematics. Convex functions were
presented by Johan Jensen over 100 years ago. Over the past
few years, multiple generalizations and extensions have been
made for convexity. �ese extensions and generalizations in
the theory of inequalities havemade valuable contributions in
many areas of mathematics. Some new generalized concepts
in this point of view are quasiconvex [1], strongly convex
[2], approximately convex [3], logarithmically convex [4],
midconvex functions [5], pseudoconvex [6], �-convex [7], �-
convex [8], ℎ-convex [9], delta-convex [10], Schur convex [11–
15], and others [16–19].

�e main ingredient of our investigation is the strongly
convex function [2]. Let Ψ be the real function de	ned on
interval � and � be positive number, then we say that the
function Ψ is strongly convex with modulus � on � if

Ψ (
� + (1 − 
) ) ≤ 
Ψ (�) + (1 − 
)Ψ ()
− �
 (1 − 
) (� − )2 (1)

for all , � ∈ � and 
 ∈ [0, 1].
Every strongly convex function is convex, but the con-

verse is not true in general. Strongly convex functions have
been utilized for proving the convergence of a gradient type

algorithm for minimizing a function. �ey play a signi	cant
role in mathematical economics, approximation theory, and
optimization theory. Many applications and properties of
them can be found in [2, 9, 20]. In 2016, Adamek [21] further
generalized the notion of strongly convex function. �ey

replaced the nonnegative term �(�−)2 by a nonnegative real
valued function � and de	ned it as follows: functionΨ is said
to be �-strongly convex function if

Ψ (
� + (1 − 
) ) ≤ 
Ψ (�) + (1 − 
)Ψ ()
− 
 (1 − 
) � (� − ) (2)

for all , � ∈ � and 
 ∈ [0, 1]. From [22], we also have

Ψ () + Ψ�+ () (� − ) + � (� − ) ≤ Ψ (�) , (3)

where Ψ is �-strongly convex function.
In literature the following inequality is well-known as

Jensen inequality.

�eorem 1 (see [4]). Let (Λ,�, �) be ameasure space with 0 <�(Λ) < ∞ and Ψ : � → R be convex function. Suppose � :Λ → � is such that �, Ψ(�) ∈ �1(�), then one has

Ψ( 1� (Λ) ∫Λ ���) ≤ 1� (Λ) ∫ΛΨ (�) ��. (4)
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In 1981, Slater proved a companion inequality to the
Jensen inequality [23].

�eorem 2. Let (Λ,�, �) be a measure space with 0 < �(Λ) <∞ and Ψ : � → R be increasing and convex function. Suppose� : Λ → � is such that Ψ(�), Ψ�+(�), and �Ψ�+(�) ∈ �1(�). If∫ΛΨ�+(�)�� ̸= 0, then one has

1� (Λ) ∫ΛΨ (�) �� ≤ Ψ(∫Λ �Ψ�+ (�) ��∫ΛΨ�+ (�) �� ) . (5)

In the case when Ψ is strictly convex, then equality holds in (5)
if and only if � is constant almost everywhere on Λ.
Remark 3. Some improvements and reversions of Slater’s
inequality are given in [24, 25].

�e following inequality is the integral analogue of
another companion inequality to the Jensen inequality.

�eorem 4 (see [26]). Let (Λ,�, �) be a measure space with0 < �(Λ) < ∞ and Ψ : � → R be convex function. Suppose� : Λ → � is such that �, Ψ(�), Ψ�+(�), and �Ψ�+(�) ∈ �1(�)
and

� = 1� (Λ) ∫Λ ���
Ψ = 1� (Λ) ∫ΛΨ (�) ��.

(6)

�en the following inequalities hold:

0 ≤ Ψ − Ψ (�) ≤ 1� (Λ) ∫Λ (� − �)Ψ�+ (�) ��. (7)

If the function Ψ is strictly convex, then equality holds in (7) if
and only if � is constant almost everywhere on Λ.

Matić and Pečarić established a general inequality from
which one can directly obtain inequalities (5) and (7).

�eorem 5 (see [27]). Let all the assumptions of�eorem 4 be
ful
lled. If �1, �2 ∈ �, then one has

Ψ (�1) + Ψ�+ (�1) (� − �1) ≤ Ψ
≤ Ψ (�2) + 1� (Λ) ∫Λ (� − �2) Ψ�+ (�) ��. (8)

Also, when Ψ is strictly convex, then equality in the le� side in
(8) holds if and only if � = �1 almost everywhere on Λ, while
equality in the right side in (8) holds if and only if� = �2 almost
everywhere on Λ.
Remark 6. Under the assumptions of �eorem 4, let

∫ΛΨ�+(�)�� ̸= 0 andΨ = ∫Λ �Ψ�+(�)��/ ∫ΛΨ�+(�)�� ∈ �, then
by setting �2 = Ψ in (8), we get Slater’s inequality (5), and

similarly by setting �2 = � in (8), we get (7).

Merentes and Nikodem improved the Jensen inequality
for strongly convex functions as follows.

�eorem 7 (see [28]). Let (Λ,�, �) be a probability measure
space andΨ : � → R be strongly convex functionwithmodulus�. Suppose � : Λ → � is a Lebesgue integrable function and! = ∫Λ ���. �en the following inequality holds:

0 ≤ ∫
Λ
Ψ (�) �� − Ψ (!) − �∫

Λ
(� − !)2 ��. (9)

For more recent results related to strongly convex func-
tion and Jensen type inequalities we recommend [22, 29–34].

�is paper is organized as follows. In Section 2, we
establish general inequalities for �-strongly convex function
as well as strongly convex functions. As a consequence, we
obtain integral Jensen inequality and Slater’s inequality for
strongly convex functions. Also by the virtue of these general
inequalities we deduce converse of Jensen inequality. In Sec-
tion 3, we give some properties of strongly convex functions.
By using these properties of strongly convex functions we
prove Jensen-Ste
ensen and Slater’s type inequalities.

2. Jensen’s Type Inequalities

We start this section to give the following general theorem.

�eorem 8. Let (Λ,�, �) be a measure space with 0 < �(Λ) <∞ and Ψ : � → R be F-strongly convex function. Suppose� : Λ → � is such that , Ψ(�), Ψ�+(�), and �Ψ�+(�) ∈ �1(�)
and also � = (1/�(Λ)) ∫Λ ���, Ψ = (1/�(Λ)) ∫ΛΨ(�)��. If�1, �2 ∈ �, then one has

Ψ (�1) + Ψ�+ (�1) (� − �1) + 1� (Λ) ∫Λ � (� − �1) ��
≤ Ψ
≤ Ψ (�2) + 1� (Λ) ∫Λ (� − �2) Ψ�+ (�) ��

− 1� (Λ) ∫Λ � (�2 − �) ��.

(10)

Proof. Since Ψ is strongly convex function, therefore

Ψ () − Ψ�+ () ( − �) + � (� − ) ≤ Ψ (�) . (11)

Letting  → � and � → �2, in (11), we get

Ψ (�) − Ψ�+ (�) (� − �2) + � (�2 − �) ≤ Ψ (�2) . (12)

Taking integral of (12) and then dividing by �(Λ), we obtain
Ψ ≤ Ψ (�2) + 1� (Λ) ∫Λ (� − �2) Ψ�+ (�) ��

− 1� (Λ) ∫Λ � (�2 − �) ��.
(13)

Similarly, rearranging (11), we get

Ψ () + Ψ�+ () (� − ) + � (� − ) ≤ Ψ (�) . (14)
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Letting  → �1 and � → �, in (14), we have

Ψ (�1) + Ψ�+ (�1) (� − �1) + � (� − �1) ≤ Ψ (�) . (15)

Taking integral of (15) and then dividing by �(Λ), we get
Ψ (�1) + Ψ�+ (�1) (� − �1) + 1� (Λ) ∫Λ � (� − �1) ��

≤ Ψ.
(16)

Combining (13) and (16), we obtain (10).

By virtue of �eorem 8, we can deduce some new and
interesting consequences.

Proposition 9. Suppose that all the assumptions of�eorem 8
are satis
ed. �en

1� (Λ) ∫ΛΨ (�) ��

≤ 1� (Λ) ∫Λ �Ψ�+ (�) ��

+ inf
�∈�

{Ψ (�) − �� (Λ) ∫ΛΨ�+ (�) ��}

− inf
�∈�

{ 1� (Λ) ∫Λ � (� − �) ��} .

(17)

Proof. If we set  = � in (11) and taking integral over Λ and
then dividing by �(Λ), we have

1� (Λ) ∫ΛΨ (�) �� − 1� (Λ) ∫Λ �Ψ�+ (�) ��

+ �� (Λ) ∫ΛΨ�+ (�) �� + 1� (Λ) ∫Λ � (� − �) ��
≤ Ψ (�) ,

(18)

or equivalently

1� (Λ) ∫ΛΨ (�) �� ≤ 1� (Λ) ∫Λ �Ψ�+ (�) �� + Ψ (�)

− �� (Λ) ∫ΛΨ�+ (�) ��

− 1� (Λ) ∫Λ � (� − �) ��.
(19)

Taking the in	mum over � ∈ �, we obtain (17).

Proposition 10. Suppose that all the assumptions of �eo-

rem 8 are satis
ed and $ = (1/�(Λ)) ∫ΛΨ�+(�)��, then
0 ≤ Ψ − Ψ (�) − 1� (Λ) ∫Λ � (� − �) ��
≤ inf
�∈�

{Ψ (�) − �$} + 1� (Λ) ∫Λ �Ψ�+ (�) �� − Ψ (�)
− inf
�∈�

{ 1� (Λ) ∫Λ � (� − �) ��}
− 1� (Λ) ∫Λ � (� − �) ��

≤ 1� (Λ) ∫Λ �Ψ�+ (�) �� − �$
− inf
�∈�

{ 1� (Λ) ∫Λ � (� − �) ��}
− 1� (Λ) ∫Λ � (� − �) ��.

(20)

Proof. By setting �1 = � and �2 = � ∈ � in (10), we have

Ψ(�) + 1� (Λ) ∫Λ � (� − �) �� ≤ Ψ
≤ Ψ (�) + 1� (Λ) ∫Λ (� − �)Ψ�+ (�) ��

− 1� (Λ) ∫Λ � (� − �) ��.
(21)

Indeed, the following equivalent form of (21) is

0 ≤ Ψ − Ψ (�) − 1� (Λ) ∫Λ � (� − �) ��
≤ Ψ (�) + 1� (Λ) ∫Λ (� − �)Ψ�+ (�) �� − Ψ (�)

− 1� (Λ) ∫Λ � (� − �) ��
− 1� (Λ) ∫Λ � (� − �) ��.

(22)

Taking the in	mum over � ∈ �, we can easily derive the
	rst and the second inequality in (20). �e remaining third
inequality in (20) follows because

inf
�∈�

{Ψ (�) − �$} ≤ Ψ (�) − �$. (23)

Corollary 11. Let (Λ,�, �) be a measure space with 0 <�(Λ) < ∞ and Ψ : � → R be strongly convex function
with modulus �. Suppose � : Λ → � is such that �, Ψ(�),
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Ψ�+(�), and �Ψ�+(�) ∈ �1(�) and also � = (1/�(Λ)) ∫Λ ���,
Ψ = (1/�(Λ)) ∫ΛΨ(�)��. If �1, �2 ∈ �, then one has

Ψ (�1) + Ψ�+ (�1) (� − �1) + �� (Λ) ∫Λ (� − �1)2 ��
≤ Ψ
≤ Ψ (�2) + 1� (Λ) ∫Λ (� − �2) Ψ�+ (�) ��

− �� (Λ) ∫Λ (� − �2)2 ��.

(24)

Remark 12. If we put �1 = � in (24) and take probability
measure space, then we obtain integral Jensen inequality (9)
for strongly convex function.

In the following corollary, we obtain integral Slater’s
inequality for strongly convex function.

Corollary 13. Suppose Ψ, �, �(Λ), �, and Ψ are stated as in

Corollary 11 and assume that ∫ΛΨ�+(�)�� ̸= 0; also if � =
∫Λ �Ψ�+(�)��/ ∫ΛΨ�+(�)�� ∈ �, then

Ψ ≤ Ψ(�) − �� (Λ) ∫Λ (� − �)2 ��. (25)

Proof. By setting �2 = � in (24), we deduced

Ψ ≤ Ψ(∫Λ �Ψ�+ (�) ��∫ΛΨ�+ (�) �� )

+ 1� (Λ) ∫Λ(� − ∫Λ �Ψ�+ (�) ��∫ΛΨ�+ (�) �� )Ψ�+ (�) ��

− �� (Λ) ∫Λ(� − ∫Λ �Ψ�+ (�) ��∫ΛΨ�+ (�) �� )
2

��.

(26)

Since (1/�(Λ)) ∫Λ(� − ∫Λ �Ψ�+(�)��/ ∫ΛΨ�+(�)��)Ψ�+(�)�� =0, therefore (26) is equivalent to (25).
In the following corollary, we obtain a converse of the

Jensen inequality for strongly convex function.

Corollary 14. Suppose Ψ, �, �(Λ), �, and Ψ are stated as in
Corollary 11, then one has

0 ≤ Ψ − Ψ (�) − �� (Λ) ∫Λ (� − �)2 ��
≤ 1� (Λ) ∫Λ (� − �)Ψ�+ (�) ��

− 2�� (Λ) ∫Λ (� − �)2 ��.
(27)

Proof. By setting �1 = �2 = � in (24), we obtain (27).

3. Jensen-Steffensen Inequality for
Riemann-Stieltjes Integrals

To prove the main results of this section, 	rst we prove the
following lemma which will play a key role in the proof of
main results.

Lemma 15. Let Ψ : (', *) → R be strongly convex function
withmodulus �. Suppose  is 
xed element from interval (', *),
then

(a) the function Δ �(3) : (', *) → R de
ned by

Δ � (3) = Ψ (3) − Ψ () − Ψ�+ () (3 − ) − � (3 − )2 (28)

(b) and the function Δ�(3) : (', *) → R de
ned by

Δ� (3) = Ψ () − Ψ (3) − Ψ�+ (3) ( − 3) − � ( − 3)2 (29)

are nonnegative on (', *), decreasing on (', ] and increasing
on [, *).
Proof. By de	nition of strongly convexity we have

Δ � (3) = Ψ (3) − Ψ () − Ψ�+ () (3 − ) − � (3 − )2
≥ 0, ∀3,  ∈ (', *) (30)

It means that Δ �(3) is nonnegative on (', *).
Let ' < 31 < 32 ≤ . Since Ψ is strongly convex with

modulus �, therefore Ψ�+(3) − 2�3 is increasing and hence

Ψ�+ (32) − 2�32 ≤ Ψ�+ () − 2�; (31)

it follows

Ψ�+ () (31 − 32) ≤ Ψ�+ (32) (31 − 32) − 2�32 (31 − 32)
+ 2� (31 − 32) . (32)

Setting 3 = 31 and 3 = 32 in (28) and then taking the
di
erence, we get

Δ � (31) − Δ � (32) = Ψ (31) − Ψ (32)
− Ψ�+ () (31 − 32) − � (31 − )2
+ � (32 − )2

≥ Ψ (31) − Ψ (32)
− Ψ�+ (32) (31 − 32)
+ 2�32 (31 − 32) − 2� (31 − 32)
− � (31 − )2 + � (32 − )2

(by using (32))
= Ψ (31) − Ψ (32)

− Ψ�+ (32) (31 − 32) − � (31 − 32)2
≥ 0.

(33)

Hence, Δ �(3) is decreasing on (', ].
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Also, if  ≤ 31 < 32 < *, then similarly as above by
strongly convexity we have

Ψ�+ () − 2� ≤ Ψ�+ (31) − 2�31, (34)

from which it follows that

Ψ�+ () (31 − 32) ≥ Ψ�+ (31) (31 − 32) − 2�31 (31 − 32)
+ 2� (31 − 32) . (35)

Setting 3 = 31 and 3 = 32 in (28), then taking the di
erence
we get

Δ � (31) − Δ � (32) = Ψ (31) − Ψ (32)
− Ψ�+ () (31 − 32) − � (31 − )2
+ � (32 − )2

≤ Ψ (31) − Ψ (32)
− Ψ�+ (31) (31 − 32)
+ 2�31 (31 − 32) − 2� (31 − 32)
− � (31 − )2 + � (32 − )2

(by using (35))
= Ψ (31) − Ψ (32)

− Ψ�+ (31) (31 − 32) − � (31 − 32)2
≤ 0.

(36)

Hence, Δ �(3) is increasing on [, *).
In the same manner as above, we also obtain Δ�(3) is

nonnegative on (', *).
Let ' < 31 < 32 ≤ , then by strongly convexity we have

Ψ�+ (31) − 2�31 ≤ Ψ�+ (32) − 2�32, (37)

that is, Ψ�+ (32) ( − 32)
≥ Ψ�+ (31) ( − 32) − 2�31 ( − 32) + 2�32 ( − 32) . (38)

Setting 3 = 31 and 3 = 32 in (29) and then taking the
di
erence we get

Δ� (31) − Δ� (32) = Ψ (32) − Ψ (31)
− Ψ�+ (31) ( − 31)
+ Ψ�+ (32) ( − 32) − � ( − 31)2
+ � ( − 32)2

≥ Ψ (32) − Ψ (31)

− Ψ�+ (31) ( − 31)
+ Ψ�+ (31) ( − 32)
− 2�31 ( − 32) + 2�32 ( − 32)
− � ( − 31)2 + � ( − 32)2

(by (38))
= Ψ (32) − Ψ (31)

− Ψ�+ (31) (32 − 31) − � (32 − 31)2
≥ 0.

(39)

Hence, Δ�(3) is decreasing on (', ].
Also, if  ≤ 31 < 32 < *, then by strongly convexity we

have

Ψ�+ (31) − 2�31 ≤ Ψ�+ (32) − 2�32, (40)

i.e., Ψ�+ (31) ( − 31) ≥ Ψ�+ (32) ( − 31)
− 2�32 ( − 31)
+ 2�31 ( − 31) .

(41)

Setting 3 = 31 and 3 = 32 in (29) and then taking the
di
erence we get

Δ� (31) − Δ� (32) = Ψ (32) − Ψ (31)
− Ψ�+ (31) ( − 31)
+ Ψ�+ (32) ( − 32) − � ( − 31)2
+ � ( − 32)2

≤ Ψ (32) − Ψ (31)
− Ψ�+ (32) ( − 31)
+ Ψ�+ (32) ( − 32)
− 2�31 ( − 31) + 2�32 ( − 31)
− � ( − 31)2 + � ( − 32)2

(by (41))
= Ψ (32) − Ψ (31)

− Ψ�+ (32) (31 − 32) + � (31 − 32)2
≤ 0.

(42)

Hence,Δ�(3) is increasing on [, *).�is completes the proof.

�e following lemma is given in [35].

Lemma 16. Let � : [', *] → R be a nonnegative function
and suppose ? : [', *] → R is either a bounded variation or
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continuous. Also assume that the functions � and ? have no
common discontinuity points.

(a) If � is increasing on [', *], then
� (*) inf

�≤
≤�
∫�


�? ($) ≤ ∫�

�
� ($) �? ($)

≤ � (*) sup
�≤
≤�

∫�


�? ($) .

(43)

(b) If � is decreasing on [', *], then
� (') inf
�≤
≤�

∫

�
�? ($) ≤ ∫�

�
� ($) �? ($)

≤ � (') sup
�≤
≤�

∫

�
�? ($) .

(44)

In the next result, we prove some general integral inequal-
ities for strongly convex functions.

�eorem 17. Suppose � : [', *] → (@, ]) is monotonic and
continuous function and let Ψ : (@, ]) → R be a strongly
convex function with modulus �. If ? : [', *] → R is either a
bounded variation or continuous and satisfying ?(') ≤ ?($) ≤?(*) for all $ ∈ [', *], ?(*) − ?(') > 0, then � and Ψ given by

� = 1? (*) − ? (') ∫�
�
� ($) �? ($) ,

Ψ = 1? (*) − ? (') ∫�
�
Ψ (� ($)) �? ($)

(45)

are well de
ned and � ∈ (@, ]). Also, ifΨ�+(�($)) and ? have no
common discontinuity points, then for �1, �2 ∈ (@, ]), one has

Ψ (�1) + Ψ�+ (�1) (� − �1)
+ �? (*) − ? (') ∫�

�
(� ($) − �1)2 �? ($) ≤ Ψ

≤ Ψ (�2)
+ 1? (*) − ? (') ∫�

�
(� ($) − �2) Ψ�+ (� ($)) �? ($)

− �? (*) − ? (') ∫�
�
(� ($) − �2)2 �? ($) .

(46)

Proof. Under the given conditions in [35], it has been shown
that

� ([', *]) = [� (') , � (*)] ⊆ (@, ]) . (47)

We de	ne the function � : [', *] → R by �($) = Δ �1(�($)),
where Δ �1 is de	ned as in Lemma 15(a), i.e.,

� ($) = Δ �1 (� ($))
= Ψ (� ($)) − Ψ (�1) − Ψ�+ (�1) (� ($) − �1)

− � (� ($) − �1)2 .
(48)

FromLemma 15(a) it follows that� is nonnegative and since�
and Ψ(�) are continuous therefore the integral ∫�� �($)�?($)
exists. �us we discuss the following three cases:

(i) If �(*) ≤ �1, since � is increasing on [', *] and by
Lemma 15(a) Δ �1 is decreasing on (@, �1], therefore� = Δ �1(�($)) is decreasing on [', *]. So using
Lemma 16 (b), we obtain

∫�
�
� ($) �? ($) ≥ � (') inf

�≤
≤�
{? (F) − ? (')} = 0. (49)

(ii) If �1 ≤ �('), since Δ �1 is increasing on [�1, ]) by
Lemma 15(a), therefore � = Δ �1(�($)) is increasing
on [', *]. So using Lemma 16 (a), we have

∫�
�
� ($) �? ($) ≥ � (*) inf

�≤
≤�
{? (*) − ? (F)} = 0. (50)

(iii) If �(') < �1 < �(*), since � is continuous on [', *],
there exists at least one point $ ∈ (', *) such that�($) = �1. Also by Lemma 15(a), � is decreasing on[', $] and � is increasing on [$, *]. Using Lemma 16,
we have

∫�
�
� ($) �? ($) = ∫

�
� ($) �? ($) + ∫�


� ($) �? ($)

≥ � (') inf
�≤
≤

{? ($) − ? (')}
+ � (*) inf

≤
≤�
{? (*) − ? ($)} = 0.

(51)

From the above three subcases we conclude that

∫�
�
� ($) �? ($) = ∫�

�
{Ψ (� ($)) − Ψ (�1)

− Ψ�+ (�1) (� ($) − �1)
− � (� ($) − �1)2} �? ($) ≥ 0.

(52)

i.e., Ψ (�1) {? (*) − ? (')} + Ψ�+ (�1)
⋅ {∫�
�
(� ($)) �? ($) − �1 {? (*) − ? (')}}

+ �∫�
�
(� ($) − �1)2 �? ($)

≤ ∫�
�
Ψ (� ($)) �? ($) .

(53)

Dividing (53) by ?(*) − ?(') > 0, we obtain the le�
side of the inequality (46). Similarly, if � is decreasing
we consider the cases �(') ≤ �1 (� is increasing
on [', *]), �1 ≤ �(*) (� is decreasing on [', *]),
and �(') < �1 < �(*) (� is decreasing on [', $]
and increasing on [$, *]). In all three cases we obtain

∫�� �($)�?($) ≥ 0 from the 	rst inequality in (46)

which directly follows.
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Similarly, we can prove the right side of the inequality (46).

We de	ne the function � : [', *] → R by �($) = Δ�2(�($)),
where Δ�2 is de	ned as in Lemma 15(b), i.e.,

� ($) = Δ�2 (� ($))
= Ψ (�2) − Ψ (� ($)) − Ψ�+ (� ($)) (�2 − � ($))

− � (�2 − � ($))2 .
(54)

Since � is monotonic and continuous,Ψ(�) is continuous andΨ�+(�) is monotonic which have no common discontinuity

point with ?.�erefore the integral∫�� �($)�?($) exists. Using
the same process as above we have ∫�� �($)�?($) ≥ 0, which
means that

∫�
�
{Ψ (�2) − Ψ (� ($)) − Ψ�+ (� ($)) (�2 − � ($))
− � (�2 − � ($))2} �? ($) ≥ 0.

i.e., {? (*) − ? (')}Ψ (�2) − ∫�
�
Ψ (� ($)) �? ($)

+ ∫�
�
(� ($) − �2) Ψ�+ (� ($)) �? ($)

− �∫�
�
(� ($) − �2)2 �? ($) ≥ 0.

(55)

If we divide by ?(*)−?(') > 0, we obtain the second inequality
of (46). So, both inequalities of (46) are proved.

Now, we are in a situation to obtain the following result.

Corollary 18. Suppose all the assumptions of �eorem 17 are
satis
ed, then one has

0 ≤ Ψ − Ψ (�) − �? (*) − ? (') ∫�
�
(� ($) − �)2 �? ($)

≤ 1? (*) − ? (') ∫�
�
(� ($) − �)Ψ�+ (� ($)) �? ($)

− 2�? (*) − ? (') ∫�
�
(� ($) − �)2 �? ($) .

(56)

Proof. By setting �1 = �2 = � in (46), we obtain (56).

Remark 19. If we set � = 0 in (56), we obtain �eorem 3.2 in
[35].

In the following corollary, we obtain integral Slater’s
inequality for strongly convex functions.

Corollary 20. Suppose all the assumptions of �eorem 17 are

satis
ed and assume ∫�� Ψ�+(�($))�?($) ̸= 0; also if � =
∫�� �($)Ψ�+(�($))�?($)/ ∫�� Ψ�+(�($))�?($) ∈ �, then

Ψ ≤ Ψ(�) − �? (*) − ? (') ∫�
�
(� ($) − �)2 �? ($) . (57)

Proof. Similar to the proof of Corollary 13, setting �2 = � in
the right hand side of (46), we get (57).

Remark 21. If we set � = 0 in (57), we obtain Slater’s inequality
for convex functions given in [35].
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[27] M. Matić and J. Pečarić, “Some companion inequalities to
Jensen’s inequality,” Mathematical Inequalities & Applications,
vol. 3, no. 3, pp. 355–368, 2000.

[28] N. Merentes and K. Nikodem, “Remarks on strongly convex
functions,” Aequationes Mathematicae, vol. 80, no. 1-2, pp. 193–
199, 2010.
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