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Abstract

The main aim of the present note is to establish new Hadamard like
integral inequalities involving r-convex functions.
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1 Introduction

The inequality

f(a;b) Sbia/bf(filf)d:zz:gM

which holds for all convex functions f : [a, b] — R is also known as Hadamard’s
inequality.

C.E.M. Pearce, J.Pecaric and V. Simic generalized this inequality to a r-
convex positive function f which is defined on an interval [a,b], for all x,y €
la,b] and t € [0, 1]

)" _ r l/r’ ifr 7
s+ -om < { R EG

We have that 0-convex functions are simply log-convex functions and 1-
convex functions are ordinary convex functions.
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2 Main Results

We start with the following theorem.

Theorem 2.1. Let f : [a,b] — (0,00) be r-convex function on [a,b] with
a < b . Then the following inequality holds for 0 < r < 1:

b—a /bf(x)dx = (ﬁ) " ([f (@) + [FB))"

Proof. Since f is r-convex function and r > 0, we have

flta+ (1 =1t)b) < (t[f(a)]"+ (1 — t)[f(b)]r)l/r
for all ¢t € [0,1]. It is easy to observe that
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Using Minkowski’s inequality, we have
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Thus

b—a/f = (Hl)l/r([f(a)]w [F (D))

This proof is complete. O
Corollary 2.2. Let f : [a,b] — (0,00) be I-convex function on [a,b] with
a < b. Then the following inequality holds:
b

1 fla) + f(b)
b_a/f(x)dxg —
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Theorem 2.3. Let f, g : [a,b] — (0,00) be r-convex and s-convez functions

respectively on [a,b] with a < b . Then the following inequality holds for
0<r s <2

Proof. Since f is r-convex function and ¢ is s-convex function (r > 0,s > 0),
we have

flta+ (1 =1)b) < (tf(@) + (1= D[FOI)

g(ta+ (1 —t)b) < (t[g(a)]® + (1 — t)[g(b)]*)/*

for all ¢ € [0, 1]

1
1

P /f(x)g(x)dx = /f(ta + (1 —=t)b)g(ta+ (1 —t)b)dt

0

1

< /(t[f(&)]r + (L= OF O] (tlg(a)]* + (1 1)[g(0)]*)

0

Using Cauchy’s inequality, we have

o _

(@] + A =B (tg(@)]* + (1 = 1)[g®)]") " dt
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Using Minkowski’s inequality, we have

1

[ i@y + - ooy

0

B 1 r/2 1 r/2 2/r
< (/ t2/r[f<a>]2dt) +(/ <1t>2/f[f<b>12dt) ]

0

= (gt + Lgtsor)

:< ; )Q/T([f(a)]“r[f(b)y)?/r

r -+ 2

Similiary we have:

1

[ ota + = oo < (S
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2/s
) (lg(@)]" + o))"

Thus

— / e i (F(@F + P + @) + [s(®))

Corollary 2.5. In Theorem 2.3, if s =r =2 and f(x) = g(x), we have
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Theorem 2.6. Let f, g : [a,b] — (0,00) be r-convex and s-convez functions
respectively on |a,b] with a < b. Then the following inequality holds if r > 1
and l + l =1:

b_@/f oy = (LT UOIY" (ool + o

Proof. Since f is r-convex function and ¢ is s-convex function (r > 0,s > 0),
we have

for all t € [0, 1].

—a

b 1
7 ! /f(x)g(x)dx = /f(ta + (1 —=t)b)g(ta+ (1 —t)b)dt

Using Holder’s inequality, we have

tf ()] + (1= O)Lf O] (tlg(a)) + (1 = t)[g(b)]*)"/>dt
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Thus
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Corollary 2.7. In Theorem 2.6, if r = s = 2, we have
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Corollary 2.8. In Theorem 2.6, if r = s =2 and f(x) = g(x), we have

/ iz < VP LU0
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