Integral Inequalities of Hadamard Type for r-Convex Functions

Ngo Phuoc Nguyen Ngoc, Nguyen Van Vinh and Pham Thi Thao Hien

Department of Mathematics Belarusian State University ngochvn@gmail.com

Abstract

The main aim of the present note is to establish new Hadamard like integral inequalities involving r-convex functions.

Mathematics Subject Classification: 26D15

Keywords: Hadamard's inequality, r-convex functions

1 Introduction

The inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}$$

which holds for all convex functions $f:[a,b]\to \mathbf{R}$ is also known as Hadamard's inequality.

C.E.M. Pearce, J.Pecaric and V. Simic generalized this inequality to a r-convex positive function f which is defined on an interval [a,b], for all $x, y \in [a,b]$ and $t \in [0,1]$

$$f(tx + (1-t)y) \le \begin{cases} (t[f(x)]^r + (1-t)[f(y)]^r)^{1/r}, & \text{if } r \neq 0, \\ [f(x)]^t [f(y)]^{(1-t)}, & \text{if } r = 0. \end{cases}$$

We have that 0-convex functions are simply log-convex functions and 1-convex functions are ordinary convex functions.

2 Main Results

We start with the following theorem.

Theorem 2.1. Let $f:[a,b] \to (0,\infty)$ be r-convex function on [a,b] with a < b. Then the following inequality holds for $0 < r \le 1$:

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \le \left(\frac{r}{r+1}\right)^{1/r} \left([f(a)]^{r} + [f(b)]^{r} \right)^{1/r}.$$

Proof. Since f is r-convex function and r > 0, we have

$$f(ta + (1-t)b) \le (t[f(a)]^r + (1-t)[f(b)]^r)^{1/r}$$

for all $t \in [0, 1]$. It is easy to observe that

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = \int_{0}^{1} f(ta + (1-t)b)dt$$

$$\leq \int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r}dt$$

Using Minkowski's inequality, we have

$$\int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r} dt \le \left[\left(\int_{0}^{1} t^{1/r} f(a) dt \right)^{r} + \left(\int_{0}^{1} (1-t)^{1/r} f(b) dt \right)^{r} \right]^{1/r}$$

$$= \left(\frac{r}{r+1} [f(a)]^{r} + \frac{r}{r+1} [f(b)]^{r} \right)^{1/r}$$

$$= \left(\frac{r}{r+1} \right)^{1/r} ([f(a)]^{r} + [f(b)]^{r})^{1/r}.$$

Thus

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \le \left(\frac{r}{r+1}\right)^{1/r} \left([f(a)]^{r} + [f(b)]^{r} \right)^{1/r}.$$

This proof is complete.

Corollary 2.2. Let $f:[a,b] \to (0,\infty)$ be 1-convex function on [a,b] with a < b. Then the following inequality holds:

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a) + f(b)}{2}.$$

Theorem 2.3. Let $f, g : [a, b] \to (0, \infty)$ be r-convex and s-convex functions respectively on [a, b] with a < b. Then the following inequality holds for $0 < r, s \le 2$:

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \frac{1}{2} \left(\frac{r}{r+2}\right)^{2/r} ([f(a)]^{r} + [f(b)]^{r})^{2/r} + \frac{1}{2} \left(\frac{s}{s+2}\right)^{2/s} ([g(a)]^{s} + [g(b)]^{s})^{2/s}$$

Proof. Since f is r-convex function and g is s-convex function (r > 0, s > 0), we have

$$f(ta + (1-t)b) \le (t[f(a)]^r + (1-t)[f(b)]^r)^{1/r}$$

$$g(ta + (1-t)b) \le (t[g(a)]^s + (1-t)[g(b)]^s)^{1/s}$$

for all $t \in [0, 1]$

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx = \int_{0}^{1} f(ta+(1-t)b)g(ta+(1-t)b)dt$$

$$\leq \int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r} (t[g(a)]^{s} + (1-t)[g(b)]^{s})^{1/s}dt$$

Using Cauchy's inequality, we have

$$\int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r} (t[g(a)]^{s} + (1-t)[g(b)]^{s})^{1/s} dt$$

$$\leq \frac{1}{2} \int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{2/r} dt$$

$$+ \frac{1}{2} \int_{0}^{1} (t[g(a)]^{s} + (1-t)[g(b)]^{s})^{2/s} dt$$

Using Minkowski's inequality, we have

$$\int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{2/r} dt$$

$$\leq \left[\left(\int_{0}^{1} t^{2/r} [f(a)]^{2} dt \right)^{r/2} + \left(\int_{0}^{1} (1-t)^{2/r} [f(b)]^{2} dt \right)^{r/2} \right]^{2/r}$$

$$= \left([f(a)]^{r} \int_{0}^{1} t^{2/r} dt + [f(b)]^{r} \int_{0}^{1} (1-t)^{2/r} dt \right)^{2/r}$$

$$= \left(\frac{r}{r+2} [f(a)]^{r} + \frac{r}{r+2} [f(b)]^{r} \right)^{2/r}$$

$$= \left(\frac{r}{r+2} \right)^{2/r} ([f(a)]^{r} + [f(b)]^{r})^{2/r}$$

Similary we have:

$$\int_{0}^{1} (t[g(a)]^{s} + (1-t)[f(b)]^{s})^{2/s} dt \le \left(\frac{s}{s+2}\right)^{2/s} ([g(a)]^{s} + [g(b)]^{s})^{2/s}$$

Thus

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \frac{1}{2} \left(\frac{r}{r+2}\right)^{2/r} ([f(a)]^{r} + [f(b)]^{r})^{2/r} + \frac{1}{2} \left(\frac{s}{s+2}\right)^{2/s} ([g(a)]^{s} + [g(b)]^{s})^{2/s}$$

Corollary 2.4. In Theorem 2.3, if s = r = 2, we have

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \frac{1}{4} \left([f(a)]^{2} + [f(b)]^{2} + [g(a)]^{2} + [g(b)]^{2} \right)$$

Corollary 2.5. In Theorem 2.3, if s = r = 2 and f(x) = g(x), we have

$$\frac{1}{b-a} \int_{a}^{b} [f(x)]^{2} dx \le \frac{1}{2} ([f(a)]^{2} + [f(b)]^{2})$$

Theorem 2.6. Let $f, g : [a, b] \to (0, \infty)$ be r-convex and s-convex functions respectively on [a, b] with a < b. Then the following inequality holds if r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$:

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \left(\frac{[f(a)]^r + [f(b)]^r}{2}\right)^{1/r} \left(\frac{[g(a)]^s + [g(b)]^s}{2}\right)^{1/s}$$

Proof. Since f is r-convex function and g is s-convex function (r > 0, s > 0), we have

$$f(ta + (1-t)b) \le (t[f(a)]^r + (1-t)[f(b)]^r)^{1/r}$$
$$g(ta + (1-t)b) \le (t[g(a)]^s + (1-t)[g(b)]^s)^{1/s}$$

for all $t \in [0, 1]$.

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx = \int_{0}^{1} f(ta+(1-t)b)g(ta+(1-t)b)dt$$

$$\leq \int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r} (t[g(a)]^{s} + (1-t)[g(b)]^{s})^{1/s}dt$$

Using Holder's inequality, we have

$$\int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r})^{1/r} (t[g(a)]^{s} + (1-t)[g(b)]^{s})^{1/s} dt$$

$$\leq \left(\int_{0}^{1} (t[f(a)]^{r} + (1-t)[f(b)]^{r}) dt\right)^{1/r} \left(\int_{0}^{1} (t[g(a)]^{s} + (1-t)[g(b)]^{s}) dt\right)^{1/s}$$

$$= \left([f(a)]^{r} \int_{0}^{1} t dt + [f(b)]^{r} \int_{0}^{1} (1-t) dt\right)^{1/r} \left([g(a)]^{s} \int_{0}^{1} t dt + [g(b)]^{s} \int_{0}^{1} (1-t) dt\right)^{1/s}$$

$$= \left(\frac{[f(a)]^{r} + [f(b)]^{r}}{2}\right)^{1/r} \left(\frac{[g(a)]^{s} + [g(b)]^{s}}{2}\right)^{1/s}$$
Thus

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \left(\frac{[f(a)]^{r} + [f(b)]^{r}}{2}\right)^{1/r} \left(\frac{[g(a)]^{s} + [g(b)]^{s}}{2}\right)^{1/s}.$$

Corollary 2.7. In Theorem 2.6, if r = s = 2, we have

$$\frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx \le \sqrt{\frac{[f(a)]^2 + [f(b)]^2}{2}} \sqrt{\frac{[g(a)]^2 + [g(b)]^2}{2}}.$$

Corollary 2.8. In Theorem 2.6, if r = s = 2 and f(x) = g(x), we have

$$\frac{1}{b-a} \int_{a}^{b} [f(x)]^{2} dx \le \frac{[f(a)]^{2} + [f(b)]^{2}}{2}.$$

References

- [1] B. G. PACHPATTE, A note on integral inequalities involving two log-convex functions *Mathematical Inequalities & Applications*, 2004, no. 7, 511-515.
- [2] GOU-SHENG YANG, Refinements of Hadamard's inequality for r-convex functions *Indian J. pure appl. Math*, no. 32(10), 1571-1579.
- [3] BESSENYEI MIHALY, Hermite-Hadamard-type inequalities for generalized convex functions *Debrecen*, *Hungary*, 2004
- [4] SEVER S.DROGOMIR AND CHARLES E.M. PEARCE, Hermite-Hadamard-type inequalities for generalized convex functions.

Received: March, 2009