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Abstract—For shapes represented as closed planar contours, we introduce a class of functionals which are invariant with respect to

the Euclidean group and which are obtained by performing integral operations. While such integral invariants enjoy some of the

desirable properties of their differential counterparts, such as locality of computation (which allows matching under occlusions) and

uniqueness of representation (asymptotically), they do not exhibit the noise sensitivity associated with differential quantities and,

therefore, do not require presmoothing of the input shape. Our formulation allows the analysis of shapes at multiple scales. Based on

integral invariants, we define a notion of distance between shapes. The proposed distance measure can be computed efficiently and

allows warping the shape boundaries onto each other; its computation results in optimal point correspondence as an intermediate step.

Numerical results on shape matching demonstrate that this framework can match shapes despite the deformation of subparts, missing

parts and noise. As a quantitative analysis, we report matching scores for shape retrieval from a database.

Index Terms—Integral invariants, shape, shape matching, shape distance, shape retrieval.
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1 INTRODUCTION

GEOMETRIC invariance is an important issue in computer
vision that has received considerable attention in the

past. The idea that one could compute functions of geometric
primitives of the image that do not change under the various
nuisances of image formation and viewing geometry was
appealing; it held potential for application to recognition,
correspondence, 3D reconstruction, and visualization. The
discovery that there exist no generic viewpoint invariants
was only a minor roadblock, as image deformations can be
approximated with homographies; hence, the study of
invariants to projective transformations and their subgroups
(affine, similarity, Euclidean) flourished. Toward the end of
the last decade, the decrease in popularity of research on
geometric invariance was sanctioned mostly by two factors:
the progress on multiple view geometry (one way to achieve
viewpoint invariance is to estimate the viewing geometry)
and noise. Ultimately, algorithms based on invariants did not
meet expectations because most entailed computing various
derivatives of measured functions of the image (hence, the
name “differential invariants”). As soon as noise was present
and affected the geometric primitives computed from the
images, the invariants were dominated by the small-scale
perturbations. Various palliative measures were taken, such
as the introduction of scale-space smoothing, but a more

principled approach has so far been elusive. Nowadays, the
field is instead engaged in searching for invariant (or
insensitive) measures of photometric (rather than geometric)
nuisances in the image formation process. Nevertheless, the
idea of computing functions that are invariantwith respect to
group transformations of the image domain remains im-
portant because it holds the promise to extract compact,
efficient representations for shape matching, indexing, and
ultimately recognition.

1.1 Why Shape Distances?

Our ultimate goal is to compare objects represented as
closed planar contours. This has obvious implications in
shape classification for object recognition, content-based
image retrieval, medical diagnosis, etc. At this level of
generality, this is a monumental task that admits no simple
meaningful solution [55]. Therefore, before we proceed any
further, we need to specify what we mean by “objects,” how
we describe their “shape” and concentrate our attention on
particular ways in which they can “differ.” Within the scope
of this paper, by object we mean a closed planar contour1

with no self-intersections embedded in IR2; its shape is the
equivalence class of objects obtained under the action of a
finite-dimensional group, such as the Euclidean, similarity,
affine, or projective group [42]. In other words, two objects
have the same shape if and only if one can be generated by
rotating, translating and scaling the other. However, in
comparing shapes, we want to be insensitive to certain
variations that can occur to an object; for instance, in Fig. 1,
we want rotated, jagged, articulated, and occluded hands to
be judged as having shapes that are similar to that of the
original hand. We prefer not to use the word “noise” when
referring to these variations because, with the exception of
the jaggedness, they are not obtained with standard
additive, zero-mean, or small variance perturbations. For
the case of the articulated and occluded objects, for instance,
the perturbation can be quite significant in energy and
highly localized along the contour. Our goal is to define a
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1. Many of our considerations can be extended to compact surfaces
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shape distance so that shapes that vary by Euclidean
transformations have zero distance and shapes that vary by
scaling and moderate articulation and occlusion have small
distance. In Fig. 1, all the hands should have low distance to
each other, but high distance to other classes of shapes.

The type of variations we want to be resistant to can be
lumped in three categories: “small deformations” that result
in small set-symmetric differences between the interior of the
curves being compared, “high-frequency noise” that affects a
large portion of the contour and “localized changes” that
significantly affect the total arclength of the contour but are
spatially localized, such as spikes or wedges.Many research-
ers have addressed the comparison of objects under small
deformations in away that is invariantwith respect tovarious
transformation groups (see Section 2); fewer have addressed
the sensitivity to high-frequency noise and yet fewer have
addressed localized changes [76], [65]. In this paper, we plan
to develop a framework that will address all of these
variations simultaneously. To this end, we plan to employ a
representation of shape in terms of integral invariants, so that
the distance between objectswill by construction be invariant
with respect to the action of the chosen group; basing these
invariants on integral computations allows us to address
high-frequency noise in a principled way. Finally, establish-
ing point correspondence (also called shape matching) among
contours allows us to handle localized changes and small
deformations. All these approaches are integrated into a
shape distance that is insensitive to all these nuisances.

1.2 Differential versus Integral Invariants

Commonly, shape invariants are defined via differential
operations. As a consequence, they are inherently sensitive to
noise. As most practical applications of invariants require
some robustness to small perturbations of the shape, it is
necessary to revert to smoothing and accept the unfortunate
side effect that meaningful informationwill be lost as well. In
this work, we introduce invariants which are defined as
integral functions of the shape. We restrict our analysis to
Euclidean invariants, although extensions to the similarity
andaffinegroups fitwithin the frameworkwepropose. These
integral invariants share the nice features of their differential
counterparts, being invariant to certain group transforma-
tions and being local descriptors, which make them well-
suited for matching under occlusions. Yet, in contrast to the
differential invariants, the integral ones are inherently robust
to noise and, therefore, do not require any preprocessing of
the input data. In addition, they have the favorable feature
that varying the size of the integration kernel provides a
natural multiscale notion that, unlike differential scale
spaces, does not require destructive smoothing.

1.3 From Invariants to Shape Distances

Based on integral invariants, we define a shape distance
betweenmatchingparts.Here, ameaningful shapematching,
a dense correspondencemapping the parametrized domains
of one shape to another (and vice versa), is crucial, as distance

is defined as the integral (over the shape) of the difference
between the invariant values of corresponding points. By
minimizing an appropriate energy functional, we compute
the optimal correspondence, which is affected both by
differences in the local geometry of the two curves and by
the amount of stretching or shrinking of the shapes’
parametrization required tomap similar points to each other.
Given this dense correspondence, the concepts of shape
comparison, modeling, and interpolation can be naturally
derived.We compute the optimal correspondence by casting
the problem as one of identifying the shortest path in a graph
structure, the nodes of which label possible correspondences
between the points of the two contours. Similar shortest-path
conceptswere exploited in the context of shapematching and
warping in [65], [76], [30], [41], [84], [4], [85].

In this paper, we briefly review the literature on shape
analysis in this context (Section 2) before defining integral
invariants and giving a few examples (Section 3). We then
explore an optimization framework for computing shape
distance and shapematching from invariants (Section 4), and
detail the implementation of this framework (Section 5). In
Section 4.1, we discuss the extension of the proposed integral
invariants to multiscale analysis. Finally, before concluding,
we demonstrate our method for computing correspondence
and shape distance on noisy shapes (Section 6).

2 PREVIOUS WORK AND OUR CONTRIBUTION

Given thewealth of existing work on invariance, scale-space,
and correspondence, our work naturally relates with a large
body of literature, as we describe in the next subsection. The
reader shouldnotice thatwe consider eachobject asoneentity
and perform no analysis or decomposition, so there is no
notionof hierarchy or compositionality in our representation,
which is therefore intrinsically low-level.

2.1 Shape and Shape Matching

In the literature, one finds various definitions of the term
shape. Kendall, for example, defines shape as whatever
remains of point coordinates once you factor out a certain
group transformation—for example, the similarity group
covering translation, rotation, and scaling. We refer to [26]
for a short review of the history of shape research. In this
work, we refer to shape as a closed planar contour modulo
certain group transformations. Moreover, we will denote by
shape matching the process of putting into correspondence
different parts of two given shapes. Applications of shape
matching in computer vision include the classification of
objects and the retrieval of objects of the same class based
on the similarity of the object boundary [41]. In medical
imaging, a given anatomical structure may be modeled by a
statistical shape representation [45], [21]. Statistical repre-
sentations of shape may also be useful when modeling
complex shape deformations; for example, when observing
the silhouette of a 3D object in various 2D views [18].
Intermediate shapes between two objects can be generally
obtained based on their correspondence [76].

There exists a vast literature on comparing shapes,
represented as a collection of points [3], [75], [87], [41], curves
[48], [91], [64], [5], [30], [92], [77], and continuous curves
reduced to various types of graph representations [94], [78],
[80], [63], [49], [38]; we represent curves as continuous objects
living in infinite-dimensional spaces. (In Section 5,we sample
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Fig. 1. Variations of a sample shape.
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the curve for implementation purposes.) Within this choice,
many have addressed matching curves under various types
of motions [3], [75], [87] and deformations [48], [91], [64], [5],
[30], [22], [92], [15], [82], [77], some involving amapping from
one curve to another that has some optimality property [6],
[30], [48], [64], [91], [15], [82], [5], [92], [85], [77].

The role of invariants in computer vision has been
advocated for various applications ranging from shape
representation [57], [7] to shape matching [6], [46], quality
control [88], [14], and general object recognition [66], [1].
Consequently, a number of features that are invariant under
specific transformations have been investigated [24], [39],
[25], [33], [56], [81], [74].

In particular, one can construct primitive invariants of
algebraic entities such as lines, conics, and polynomial
curves, based on a global descriptor of shape [59], [28].

In addition to invariants to transformation groups,
considerable attention has been devoted to invariants with
respect to the geometric relationship between 3D objects and
their 2D views. Invariant features can be computed from a
collection of coplanar points or lines [67], [68], [32], [9], [29],
[95], [1], [79], [40].

An invariant descriptor of a collection of points that relates
to our approach is the shape context introduced by Belongie
et al. [6], which consists of a radial histogram of the relative
coordinates of the rest of the shape at each point.

Differential invariants to actions of various Lie groups
have been addressed thoroughly [44], [36], [17], [58], [76],
[30], [48], [64], [91], [85], [37]. An invariant is defined by an
unchanged subset of the manifold which the group
transformation is acting on. In particular, an invariant
signature which pairs curvature and its first derivative
avoids parameterization in terms of arc length [13], [60].
Calabi and coworkers suggested numerical expressions for
curvature and first derivative of curvature in terms of joint
invariants. However, it is shown that the expression for the
first derivative of curvature is not convergent and modified
formulas are presented in [8].

In order to reduce noise-induced fluctuations of the
signature, semidifferential invariant methods are intro-
duced by using first derivatives and one reference point
instead of curvature, thus avoiding the computation of high-
order derivatives [62], [31], [43]. Another semi-invariant is
given by transforming the given coordinate system to a
canonical one [89].

A useful property of differential and (some) semi-differ-
ential invariants is that they can be applied to match shapes
despite occlusions, due to the locality of the signature [11],
[10]. However, the fundamental problem of differential
invariants is thathigh-orderderivativeshave tobe computed,
amplifying the effect of noise. There have been several
approaches to decrease sensitivity to noise by employing
scale-space via linear filtering [90]. The combination of
invariant theory with geometric multiscale analysis is
investigated by applying an invariant diffusion equation for
curve evolution [71], [72], [16]. A scale parameter is another
way to build a scale-space which is determined by the size of
the differencing interval used to approximate derivatives
using finite differences [12]. In [54], a curvature scale-space
was developed for a shape matching problem. A set of
Gaussian kernels was applied to build a scale-space of
curvature whose extrema were observed across scales.

To overcome the limitations of differential invariants,
there have been attempts to derive invariants based on
integral computations. A statistical approach to describe
invariants was introduced using moments in [35]. Moment
invariants under affine transformations were derived from
the classicalmoment invariants in [27]. Theyhave a limitation
in that high-order moments are sensitive to noise which
results in high variances. The error analysis and analytic
characterization of moment descriptors were studied in [47].
The Fourier transform was also applied to obtain integral
invariants [93], [52], [2]. A closed curve was represented by a
set of Fourier coefficients andnormalized Fourier descriptors
were used to compute affine invariants. In thismethod, high-
order Fourier coefficients are involved and they are not stable
with respect to noise. Several techniques have been devel-
oped to restrict the computation to local neighborhoods. The
wavelet transform was used for affine invariants using the
dyadic wavelet in [83] and potentials were also proposed to
preserve locality [34]. Alternatively, semilocal integral in-
variants are presented by integrating object curves with
respect to arc length [73]. More recently, attempts to develop
invariants with the locality properties, but without the
sensitivity, of differential invariants have resulted in func-
tionsof curves that arebasednot ondifferential operators, but
on integral operators applied to the contour or the character-
istic function of its interior [50], [65].

In this paper, we introduce a framework for integral
invariants along with two general classes of integral
invariants. We use the resulting invariant descriptions to
define a notion of distance between shapes and we illustrate
the potential of our representation on several experiments
with simulated and real images.

2.2 Implicit versus Explicit Contour
Representations

In the context of image segmentation, the implicit repre-
sentation of closed contours as the zero-crossing of
corresponding embedding functions has become increas-
ingly popular. The level set method [23], [61] provides a
framework to elegantly propagate boundaries in a way
which allows for topological changes of the embedded
contour and does not require reparameterization. Recently,
shape dissimilarity measures and statistical shape models
have been formulated on the basis of the level set
representation [45], [86], [69], [20], [19]. Yet, such implicit
representations do not provide inherent support for
pointwise correspondences. In order to model the notion
of corresponding features and parts and, therefore, take
these correspondences into account in a model of shape
similarity (quantified by shape distance), we revert to
explicit parameterizations of closed contours.

3 INTEGRAL INVARIANTS

In this section, we focus on the definition and examples of
integral invariants.

Throughout this section, we indicate with C : SS1 ! IR2 a
closed planar contour with infinitesimal arclength ds and G
a group acting on IR2, with dx the area form on IR2. We also
use the formal notation �C to indicate the interior of the
region bounded by C. � is either the curve C itself (a one-
dimensional object) or �C (a two-dimensional object) and
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d�ðxÞ the corresponding measure, i.e., the area form dx or
the infinitesimal arclength ds, respectively.

Definition 1. Let G be a transformation group acting on IR2. A
function I : IR2 ! IR is a G-invariant if it satisfies

IðCÞ ¼ Iðg � CÞ; 8g 2 G: ð1Þ

The function Ið�Þ associates to each point on the contour a
real number. In particular, if the point p 2 C is parameterized
by arclength, the invariant can be interpreted as a function
from ½0; L�, where L is the length of the curve, to the reals:

fC : SS1 ! IR2g7!fICðpðsÞÞ : ½0; L� ! IRg: ð2Þ
Similarly, if p 2 C is parameterized from ½0; 1�, the invariant
can be interpreted as a function from ½0; 1� to the reals:

fC : SS1 ! IR2g7!fICðpðsÞÞ : ½0; 1� ! IRg: ð3Þ
We abuse this generalized notation in our discussions.

This formal definition of an invariant includes some very
familiar examples, such as curvature.

Example 1 (Curvature). For G ¼ SEð2Þ, the curvature � of C
is G-invariant.

The profiles of the curvature for the rectangular shape in
Fig. 2aand itsnoisyversion inFig. 2bare shown inFigs. 2cand
2d, respectively. The curvature is called differential invariant
since its calculation is based on differential operations. The
curvature is a useful feature for describing shapes at
matching due to its invariant property under a group

transformation of SEð2Þ, which will be considered as a
transformation group G for the following invariants. How-
ever, as shown in Fig. 2d, it is sensitive to noise because the
calculation of the curvature is dependent on second-order
derivatives. Thus, we introduce an invariant that is robust to
noise by employing integral operations for its calculation.We
begin with a general notion of integral invariant.

Definition 2. A function ICðpÞ : IR2 ! IR is an integral

G-invariant if there exists a kernel k : IR2 � IR2 ! IR such that

ICðpÞ ¼
Z

�

kðp; xÞd�ðxÞ; ð4Þ

where kð�; �Þ satisfies
Z

�

kðp; xÞd�ðxÞ ¼
Z

g�

kðgp; xÞd�ðxÞ 8 g 2 G; ð5Þ

g�¼: fgx j g 2 G; x 2 �g.

The definition can be extended to vector invariants2 or to
multiple integrals. Note that the point p does not necessarily
lie on the contour C, as long as there is an unequivocal way
of associating p 2 IR2 to C (e.g., the centroid of the curve).

Note that a regularizedversion of curvature, or, in general,
a curvature scale-space, can be interpreted as an integral
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Fig. 2. Demonstration of the effect of noise on different invariants. (a) A rectangular shape. (b) A rectangular shape with noise. (c) Curvature of (a).

(d) Curvature of (b). (e) Distance Integral Invariant of (a). (f) Distance Integral Invariant of (b). (g) Local Distance Integral Invariant of (a). (h) Local

Distance Integral Invariant of (b). (i) Local Area Integral Invariant of (a). (j) Local Area Integral Invariant of (b).

2. While not discussed in this paper, vector-valued invariants could be
composed of, e.g., integral invariants at multiple scales, invariants of
increasing derivative or integral order, or even unrelated invariants.
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invariant since regularized curvature is an algebraic function
of the first and second-regularized derivatives [54]. There-
fore, integral invariants are quite general and contain
regularized differential invariants as a subset. However, the
spirit of this manuscript is to avoid the computation of
derivatives of contour data, sowewill not explore this subset.

Example 2 (Distance integral invariant). Consider G ¼
SEð2Þ and the following function, computed at every
point p 2 C:

ICðpÞ¼:
Z

C

jp� xjdsðxÞ; ð6Þ

where jy� xj is the Euclidean distance in IR2. This is
illustrated in Fig. 3a.

It is immediate to show that this is an integral
Euclidean invariant, since Euclidean transformations
preserve distance. We note that, unlike curvature, the
range of values for the distance invariant is IRþ (since the
Euclidean distance is always nonnegative).

The profiles of the distance integral invariant for the
shapes in Figs. 2a and 2b are shown in Figs. 2e and 2f,
respectively. Thedistance integral invariant is robust tonoise,
the effect ofwhich is reduced, as shown in Fig. 2f. However, it
is a global descriptor in that a local change of a shape affects
the values of the distance integral invariant for the entire
shape.

A version of the invariant IC that preserves locality can

be obtained by weighting the integral in (4) with a kernel

qðp; xÞ, so that ICðpÞ¼:
R
C kðp; xÞdsðxÞ where

kðp; xÞ¼: qðp; xÞdðp; xÞ: ð7Þ
The kernel qð�; �Þ is free for the designer to choose depending

on the final goal. This local integral invariant can be thought

of as a continuous generalization of “shape context,” which

wasdesigned fordiscretized shapes representedaspoints [6].

The difference is that the shape context signature is a local

radial histogram of neighboring points, whereas in our case,

we only store the mean of their distance. This allows

extension to continuous representations of shapes and

obviates the need to choose histogram granularity, etc.
The local distance integral invariant is a local descriptor

provided by the integral kernel restricted on a circular

neighborhood. It is also robust to noise as shown in Figs. 2g

and 2h. Thus, it may be effective for both noise and occlusion.

However, this invariant is not discriminative in that it can

have the same value for different geometric features. This

drawback is demonstrated in Fig. 4. The two points marked

by � and 4 on different geometric features of the shape in

Fig. 4a have the same local distance integral invariant as

shown in Fig. 4b. This is a motivation to introduce the

following invariant.

Example 3 (Area integral invariant). Define a ball BrðpÞ as a
function Br : IR

2 � IR2 7!f0; 1g to be an indicator function

on the interior of a circle with radius r centered at p,

Brðp; xÞ ¼ 1 jp� xj � r
0 otherwise:

�
ð8Þ

For any given radius r, the corresponding integral

invariant,
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Fig. 3. (a)Distance integral invariant defined in (6),made local bymeansof

a kernel as described in (7). (b) Integral local area invariant defined by (9).

Fig. 4. (a) A rectangular shape with two mark points � and 4. (b) Local
Distance Integral Invariant of (a) and corresponding mark points, which
have the same invariant value even though they have very different
shapes (i.e., a corner and a straight line). (c) Local Area Integral
Invariant of (a) and corresponding mark points.
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IrCðpÞ¼
:
Z

�C

Brðp; xÞdx; ð9Þ

can be thought of as a function from the interval ½0; L� to
IRþ (since area is always nonnegative), bounded above

by the area of the region bounded by the curve C. This is

illustrated in Fig. 3b and examples are shown in Fig. 2.

As shown in Figs. 2i and 2j, the local area integral
invariant is robust to noise and has a locality property
similar to the local distance integral invariant. In addition, it
has a strong descriptive power with respect to the marked
points on the shape shown in Fig. 4c. Thus, the local area
integral invariant is an effective descriptor for shape
matching and we rely on a variant of this integral invariant
throughout this work.

We note again that this integral invariant is a case of
“shape context,” this time with one histogram bin. In
addition to allowing extension to continuous representa-
tions of shape, local area invariants are explicity rotationally
invariant, while shape context achieves rotational invar-
iance by computing circular shifts of the radial descriptor.

Naturally, if we plot the value of IrCðpðsÞÞ for all values of s
and r ranging fromzero to amaximumradius so that the local

kernel encloses the entire curveBrðpÞ � C 8p 2 C (at which

point the invariant would be a constant), we can generate a

graph of a function that can be interpreted as a multiscale

integral invariant, as shown in Fig. 5. We will return to this

idea in Section 4.1. Furthermore, Brðp; xÞ can be substituted

by amore general kernel, for instance, a Gaussian centered at

pwith � ¼ r.
Note also that the integral invariant can also be defined

as normalized by the area of BrðpÞ for convenience.
Example 4 (Normalized area integral invariant).

IrCðpÞ¼
:
R
�C Brðp; xÞdxR

IR2 Brðp; xÞdx
: ð10Þ

The corresponding integral invariant is then bounded

between 0 and 1. Because it mimics the qualities of the

Area Integral Invariant discussed above, this is the invariant

we favor in the remainder of this work.

3.1 Relation of Local Area Integral Invariant to
Curvature

In this section, we note a formal connection between
traditional differential invariants and the Local Area
Integral Invariant in a limiting case. Curvature provides a
useful descriptor for shape matching due to its invariance
and locality. It is considered a complete invariant in the sense
that it allows the recovery of the original curve up to the
action of the symmetry group. Furthermore, all differential
invariants of any order on the plane are functions of
curvature [89] and, therefore, linking our integral invariant
to curvature would allow us to tap into the rich body of
results on differential invariants without suffering from the
shortcomings of high-order derivatives at its computation.

We first assume that the curve C is smooth,3 so that a
notion of curvature is well-defined and the curvature can be
approximated locally by the osculating circle shown in Fig. 6.
The invariant IrðpÞ denotes the area of the intersection of a
circle with radius r with the interior of C, and it can be
approximated to first-order by the area of the shaded sector in
Fig. 6, i.e., IrðpÞ ’ 2r2�. Now, the angle � can be computed as a
function of r andR using the cosine law: cosð�Þ ¼ r=2R. Since
curvature � is the inverse of Rwe have

IrðpÞ ’ 2r2 cos�1 1

2
r�ðpÞ

� �
: ð11Þ

Now, since cos�1ðxÞ is an invertible function, to the extent in
which theapproximationabove isvalid (whichdependsonr),
we can recover curvature from the integral invariant. The
approximation above is valid in the limit when r ! 0.

4 SHAPE MATCHING AND DISTANCE

Given two shapes represented by curves C1; C2, we want to
compute their shape distance, a scalar that quantifies the
similarity of the two contours. Basing this computation on a
group invariant will ensure that the shape distance is not
affected by group actions on the shape; further basing it on an
integral invariant will make the distance computation robust
to noise and local deformations of the contour. Naively, we
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Fig. 6. Construction of approximation of the area integral invariant.

(a) The computation of �. (b) the approximation of IrCðpÞ.
Fig. 5. Bottom row: Multiscale local area integral invariant for the shapes

(top row). (a) A rectangular shape. (b) A rectangular shape with noise.

3. Notice that our invariant does not require that the shape be smooth,
and that this assumption is made only to relate our results to the literature
on differential invariants.
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could define the shape distance to be the difference between
the invariant functions, but upon further reflection we see
that this distance is meaningful only if the computation
somehow compares similar parts of the two shapes. If we
compare one (for example) rabbit’s ears to another’s leg, we
will decide (incorrectly) that the two shapes are very
different. Yet this will be the effect of computing a shape
distance without first establishing a dense correspondence
between the points of the contours. Computing the difference
of invariant values between corresponding points implies
comparing one rabbit’s ears to the second rabbit’s ears, a
much more meaningful metric.

Thus,wewish to find an optimal correspondence between
the contours and concurrently measure the shape distance
based on the correspondence.Wewill express the correspon-
dence with a continuous disparity function dðsÞ : SS 7!IR that
reparameterizes two curves C1 and C2 (and their integral
invariants I1 and I2). Given two reparameterizations h1; h2 :

SS 7!SS where C1ðh1ðsÞÞ 	 C2ðh2ðsÞÞ ( 	 denotes correspon-
dence), the disparity function is

dðsÞ ¼ h1ðsÞ � h2ðsÞ
2

: ð12Þ

We require that h1; h2 are nondecreasing functions of s,
from which we derive �1 � d0ðsÞ � 1. Below, we define an
energy functional Eð. . . ; dÞ; the disparity function d
 that
minimizes an energy functional

d
ðsÞ ¼ argmin
dðsÞ

Eð. . . ; dÞ ð13Þ

describes the optimal point correspondence between the
two curves,

C1ðs� d
ðsÞÞ 	 C2ðsþ d
ðsÞÞ; 8s 2 SS: ð14Þ
Intuitively, two corresponding points on two contours

should have similar invariant values, which leads us to
define the energy functional EðI1; I2; dÞ for the discrepancy
between two integral invariants I1; I2, in terms of the
disparity function dðsÞ, as follows:

EðI1; I2; dÞ ¼ E1ðI1; I2; dÞ þ �E2ðd0Þ

¼
Z 1

0

kI1ðs� dðsÞÞ � I2ðsþ dðsÞÞk2

þ �kd0ðsÞk2ds;

ð15Þ

where � > 0 is a constant. The first term E1 of the energy
functional measures the similarity of two curves by integrat-
ing the localdifferenceof the integral invariant at correspond-
ing points. A cost functional based on a local comparisons
minimizes the impact of articulations and local changes of a
contour because the difference in invariants is proportionally
localized in the domain of the integral; contrast this with a
globaldescriptorwhere local changes influence thedescriptor
everywhere. Representing the correspondence with dðsÞ
ensures that the E1 term is both symmetric (we make this
precise below) and independent of the arclength of dðsÞ.4

The second term E2 of the energy functional is the elastic

energy of the disparity function dðsÞ that penalizes stretching
or shrinking of the mapped curve length. When dðsÞ ¼ 0, the

parameterizations of the two contours instruct the matching

directly (i.e., points on the contour with the same parameter

value correspond). dðsÞ such that d0ðsÞ ¼ 0 indicates circular

“shifts” of the correspondence. Other values of dðsÞ “stretch”
or “shrink” the length of segments of one contour onto the

other; it is this action of dðsÞ that theE2 energy termpenalizes.

To demonstrate the effect of the control parameter � in the

energy functional, one example of the optimal correspon-

dence between two integral invariants with various values of

the control parameter is shown in Fig. 7. One integral

invariant is represented by a straight line shown on the

bottom and the other integral invariant is represented by a

line with a spike shown on the top in each figure. The larger

the control parameter �, the more correspondence is

regularized, as shown in Fig. 7a. Fig. 7c shows that a feature

characterized by the spiculation in one integral invariant on

the top is mapped to an infinitesimal portion in the other

integral invariant on the bottom. The difference of geome-

trical features is emphasized more with a small �.

Ultimately, a notion of shape distance should be

symmetric. It is generally undesirable to privilege one

shape rather than the other when matching two shapes. The

energy functional defined in (15) is designed to satisfy a

symmetry property that gives

d
ðsÞ ¼ argmin
dðsÞ

EðI1; I2; dÞ () d
ðsÞ ¼ argmin
dðsÞ

EðI2; I1; dÞ

EðI1; I2; d
Þ ¼ EðI2; I1;�d
Þ:
ð16Þ

The shape distance DðC1; C2Þ between two curves C1; C2 is

measured via the optimal correspondence d
ðsÞ in the

energy functional E between their integral invariants I1; I2
as defined by

DðC1; C2Þ ¼ EðI1; I2; d
Þ: ð17Þ
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4. Correspondence representations such as the “warping function”
introduced in Section 5 implicitly couple the E1 term to the corresponden-
ce’s arclength and, thus, require normalization terms. We favor separating
the energy functional into an arclength-free penalty computed on
corresponding points in the E1 term, and an explicit warping penalty in
the E2 term.

Fig. 7. Correspondences between two invariant signals I1ðsÞ (top) and
I2ðsÞ (bottom) with different values for the control parameter � in the
energy functional. Smaller values of the parameter � in (15) will facilitate
contour shrinking and stretching in the matching process. (a) � ¼ 100,
(b) � ¼ 30, and (c) � ¼ 1.
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Since the energy functional is symmetric (up to the sign of

d
), the shape distance is as well. In Section 5, we outline the

computation of d
 and DðC1; C2Þ.

4.1 Shape Matching with Multiscale Integral
Invariants

The integral invariant intrinsically introduces the notion of

scale, varying the size of the kernel naturally forms a

multiscale invariant. While we do not exploit the multiscale

properties of these invariants or multiresolution methods in

this work, this section highlights some of the features and

potential of the integral invariant framework.

In [53], a curvature scale-space is used in a coarse-to-fine

procedure to establish a sparse matching between inflection

points of two shapes. Matches at a given scale are computed

frommatches at coarser scales. However, mismatching in the

first stage causes fatal errors. Further, since curvature scale-

space is derived from Gaussian smoothing, the inflection

points move with increased blurring, and reparameteriza-

tion is required to find correspondence between these

inflection points across scale. In Fig. 8, the curvature scale-

space and a multiscale integral invariant (more specifically,

the local area invariant with varying kernel radius) for the

shape in Fig. 2a are compared. The dislocation of the extrema

points occurs across scales in the curvature scale-space, as

shown in Fig. 8a. In contrast, the location of the extrema

points stays the same across scales in the multiscale integral

invariant, as in Fig. 8b since features at various scales are

observed based on the original shape rather than on blurred

versions of the shape. This obviates the need to compute

correspondences between scales.

A multiscale integral invariant, demonstrated in Fig. 9,

could also be used in a hierarchical description of features.

The matching using the integral invariants at a fine scale

provides a correspondence taking into accountdetail features

on the shapeswhilematching at a coarse scale considers large

features on the shapes. This is demonstrated in Fig. 10 on the

fine scale peak, which in accounted for in the fine-scale

matching but ignored in the coarser scale matchings.

With anymethod that allows a choice of scale, the question

of which scale is optimal for shape analysis arises. While the

choice of an optimal scale is a subject of continuing

investigation, we offer the following comment. In Section 3,

we noted that the kernel radius of the Local Area Integral

Invariant is bounded above by a valueR, forwhich the kernel

encompasses the entire shape. At this scale, the value of the

invariant is constant. So, rather than express scale in absolute

terms parameterized by the kernel radius r, scale can also be

parameterized in relative termsmeasured by the normalized

kernel radiusr=R, as inFig.9.Thisprovidesacommoncontext

to parameterize scale even among shapes of different sizes.

5 IMPLEMENTATION

In Section 4,we presented a distance between invariants (and

therefore shape) that depends on the choice of a disparity

function dðsÞ. To complete the calculation of distance and to

establish a local correspondencebetween the curves,wemust

optimize distance with respect to dðsÞ. This section briefly

outlines the implementation of the computation of the local

area integral invariant and a well-known approach to

globally optimize the correspondence for a discrete repre-

sentation of the curves as ordered sets of points.
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Fig. 8. Scalogram of the shape in Fig. 2a and trace of local extrema

across scales. (a) Scalogram of the curvature scale-space. Note the

dislocation of the extrema. (b) Scalogram of the integral invariant

scale-space.

Fig. 9. Integral Invariant for a noisy shape computed at different scales.

R ¼ 120 for this shape.

Fig. 10. Demonstration of correspondences between two rectangular
shapes with spikes at different scales. The figures show the optimal point
correspondence determined by our algorithm for increasing size of the
kernel width r in (10). The two spikes are identified as “corresponding” on
a fine scale only. (a) Fine scale, (b) intermediate scale, and (c) coarse
scale.
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To efficiently compute the local area integral invariant,

consider thebinary image�ð �CÞ (an indicator functiondefined
as 1 on the interior of the contour and 0 elsewhere) and

convolve it with the kernel kðp; xÞ¼: Brðp� xÞ, where p 2 IR2,

not just the curveC. Evaluating the result of this convolution

on p 2 C yields IrC , without the need to parameterize the

curve. However, we retain a parametrized representation of

the curve for the computation of the correspondence.
Our implementation is based on dynamic programming

approaches similar to those employed by many in the

shape, stereo, and registration (for medical imaging)

communities [70], [65], [76], [30], [41], [84], [4], [85].

In order to adopt a graph search framework, the

representation of the correspondence needs to be recast as

a parameterized path. Thus, we exchange the disparity

function dðsÞ for a warping function,5 hð�Þ ¼ ðh1ð�Þ; h2ð�ÞÞ for
curves ðC1ðsÞ; C2ðsÞÞ in the energy functional defined in (15)

by setting

s� dðsÞ ¼ h1ð�Þ
sþ dðsÞ ¼ h2ð�Þ:

ð18Þ

Since hi : ½0; Lh�7!SS1 for i 2 f1; 2g (with hið0Þ ¼ hiðLhÞ), the
warping function h : ½0; Lh�7!SS1 � SS1 is a path in SS1 � SS1,

parameterized by its length Lh, that represents the pointwise

correspondence between the curves C1ðsÞ; C2ðsÞ:

C1ðh1ð�ÞÞ 	 C2ðh2ð�ÞÞ; 8� 2 ½0; Lh� � IR: ð19Þ

Differentiating (18) with respect to s yields

1� d0ðsÞ ¼ h0
1ð�Þ

d�

ds

1þ d0ðsÞ ¼ h0
2ð�Þ

d�

ds
:

ð20Þ

Then, the original energy functional in (15) becomes

eEðI1; I2; h1; h2Þ ¼
Z Lh

0

kI1ðh1ð�ÞÞ � I2ðh2ð�ÞÞk2
� � h0

1ð�Þ þ h0
2ð�Þ

2

� �
d�

þ �

Z Lh

0

h0
2ð�Þ � h0

1ð�Þ
h0
1ð�Þ þ h0

2ð�Þ

����
����
2

 !
h0
1ð�Þ þ h0

2ð�Þ
2

� �
d�:

ð21Þ

In this way, the warping function hð�Þ derives a formula for
the energy functional in terms of ðh1ð�Þ; h2ð�ÞÞ,

h : EðI1; I2; dÞ ! eEðI1; I2; h1; h2Þ: ð22Þ
Then, finding an optimal disparity function d
ðsÞ in the
energy functional E becomes equivalent to finding an
optimal warping function h
ð�Þ ¼ ðh


1ð�Þ; h

2ð�ÞÞ in the

energy functional eE as follows:

d
ðsÞ ¼ argmin
dðsÞ

EðI1; I2; dÞ

m
ðh


1ð�Þ; h

2ð�ÞÞ ¼ arg min

h1ð�Þ;h2ð�Þ
eEðI1; I2; h1; h2Þ:

ð23Þ

To exploit the dynamic programming framework, we
must discretize the curve by sampling it at uniform
intervals. The result is an ordered set of points.

In the discrete case, an intuitive algorithm to compute
shape matching would be as follows: We first find an initial
correspondence between a point on each curve, say C1½i� 	
C2½j� (moreon this below).The“next” correspondence should
be the choice of action that minimizes the energy ((15)); the
possible actions are 1) locally contracting the first curve onto
the second, settingC1½iþ 1� 	 C2½j�, 2) locally contracting the
second curve onto the first, setting C1½i� 	 C2½jþ 1�, or
3) locally mapping the discrete points as one-to-one, setting
C1½iþ 1� 	 C2½jþ 1� (Fig. 13). By induction we can now
compute correspondences for every point on the curves. This
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Fig. 11. Optimal path through the graph. The path warps the
parameterization of the hand (on the bottom of the graph) and the
parameterization of the noisy occluded (four-fingered) hand (on the left
side of the graph). Both shapes are shown in Fig. 1. The gray levels
indicate the dissimilarity between points; lighter shade indicates higher
dissimilarity. See text for more details.

Fig. 12. Schematic view of a graph used to compute the correspondence

for two curves with M ¼ N ¼ 5. The dots are the nodes, and the arrows

are the directed edges. The dashed arrows are the “wrap around”

edges. A typical portion of this graph is shown enlarged in Fig. 13.

5. The representation of the reparameterization of two curves to achieve
pointwise correspondence has been approached in several different ways.
For example, in [76], symmetric and asymmetric “alignment functions” are
used. All of these methods are somewhat similar, with one main distinction:
symmetric representations result in symmetric energy and distance
functions, while asymmetric representations do not. Due to our focus on
shape distance, we restrict ourselves to symmetric reparameterizations: the
disparity function because it results in an energy functional that does not
depend implicitly on pathlength, and the warping function for its simplicity
to implement in a discrete dynamic programming framework.
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sketch of the algorithm lends itself to a graph formulation,
where each node of a directed graph is a correspondence
between a point on each curve, and each edge represents one
of thepossible actions, linking the currentnode to thepossible
“next” nodes. Assuming C1 and C2 are sampled with N and
M points, respectively, the graph is a regular grid with
NM nodes and 3NM edges. Because the curves are defined
on a periodic domain, the graph has edges that “wrap
around” from the top of the grid to the bottom, and from the
right side of the grid to the left, as shown in Fig. 12.6The edges
are weighted by the distance between the invariants
associated with the “next” node, cf., (15). We formalize and
extend this concept in the remainder of this section.

We sample the curves C1; C2 on the discrete domains
�1;�2 with equal spacing as follows:

�1 ¼½0;�s1; 2�s1; . . . ;M�s1 ¼ 1�;

�s1 ¼
1

M
; M 2 INþ;

ð24Þ

�2 ¼½0;�s2; 2�s2; . . . ; N�s2 ¼ 1�;

�s2 ¼
1

N
; N 2 INþ:

ð25Þ

The weighted, directed graphG ¼ ðV ;EÞ is formed based on
agrid structure of thediscrete domain� ¼ �1 � �2, as shown
in Fig. 12. Each node vði; jÞ 2 V in the graph represents a
pointwise correspondence C1ði�s1Þ 	 C2ðj�s2Þ, where i 2
½0;M� � INþ and j 2 ½0; N� � INþ. The adjacency relation of
nodes is defined by an edge eðvði; jÞ; vðk; lÞÞ that represents a
directed relation vði; jÞ ! vðk; lÞ indicating the following
correspondence vðk; lÞ given the current correspondence
vði; jÞ.

The minimization of the energy functional eE is equiva-
lent to finding a shortest path p ¼< v0; v1; v2; . . . ; vL > that
gives a minimum weight from v0 ¼ vð0; 0Þ to vL ¼ vðM;NÞ,

wðpÞ ¼
XL�1

t¼0

wðvt; vtþ1Þ ð26Þ

based on a weighting function wðvt; vtþ1Þ adapted from (15),
defined by

wðvði; jÞ; vðk; lÞÞ ¼ kI1ðk�s1Þ � I2ðl�s2Þk2
ðh0

1 þ h0
2Þ

2

þ �
h0
2 � h0

1

h0
1 þ h0

2

����
����
2ðh0

1 þ h0
2Þ

2
:

ð27Þ

The regular nature of the graph allows us to simplify the
computations of h0

1;2:

h0
1
¼�s1

�s1
¼1; h0

2
¼ 0

�s2
¼0; if k¼mod ði;MÞþ1; l¼j;

h0
1
¼ 0

�s1
¼0; h0

2
¼�s2

�s2
¼1; if k¼i; l¼modðj;NÞþ1;

h0
1
¼ �s1ffiffiffiffiffiffiffiffiffiffiffi

�s2
1
þ�s2

2

p ; h0
2
¼ �s2ffiffiffiffiffiffiffiffiffiffiffi

�s2
1
þ�s2

2

p ; if k¼mod ði;MÞþ1; l¼mod ðj;NÞþ1:

ð28Þ
The direction of edges in the graph is constrained so that

the warping function hð�Þ is monotonic. The monotonicity of
the warping function prevents cross correspondence that
causesa topological change inmatching. (This is equivalent to
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Fig. 13. (a) Portions of two curves with possible pointwise correspondences shown (and labeled with graph notation, e.g., vði; jÞ , C1½i� 	 C2½j�).
(b) Typical portion of graph in Fig. 12 showing “current” correspondence node vði; jÞ and the three possible “next” nodes.

Fig. 14. Shape correspondence with increasing noise perturbation.
(a) Correspondence of Shape 24 to noisy instances of Shape 20
computed, (b) via integral invariants, and (c) via differential invariants.
Some salient points on the contour are labeled on Shape 24, and the
corresponding points are labeled on the remaining contours. Since the
integral invariant is more robust to noise than the differential one, it
consistently identifies the corresponding parts, even for contours which
are strongly perturbed by noise. For the differential invariant, on the
other hand, the algorithm fails to capture the correct correspondence
when � � 2:5.

6. The graph domain can also be considered to be embedded in a two-
dimensional torus.
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enforcing the constraint in Section 4 that �1 � dðsÞ � 1.)
Further, each point in each curve must have at least one
corresponding point in the other curve. These constraints are
implied by the existence of an edgebetweennodes vði; jÞÞ and
vðk; lÞ only if i 2 fmodðk;MÞ þ 1g and j 2 fl;modðl; NÞ þ 1g.

Dijkstra’s algorithm is used for finding a shortest path

from a single source node to a single destination node in a

graph. Let p be a sequence for the shortest path in the graph

G ¼ ðV ;EÞ such as

p ¼< v0; v1; v2; . . . ; vP >

¼< vði0; j0Þ; vði1; j1Þ; vði2; j2Þ; . . . ; vðiP ; jP Þ >;
ð29Þ

where P is the number of nodes in the path p, and v0 ¼ vP .

Then, the optimal warping function hð�Þ ¼ ðh1ð�Þ; h2ð�ÞÞ is

given by

h1ð�Þ ¼ ði0�s1; i1�s1; i2�s1; . . . ; iP�1�s1Þ
h2ð�Þ ¼ ðj0�s2; j1�s2; j2�s2; . . . ; jP�1�s2Þ:

ð30Þ

An example of the result of this algorithm is shown in Fig. 11.
Finally, the shape distance is computed via (26).

No fast algorithm exists to determine the best choice of the

initial correspondence. Previous implementations (cited

above) choose a fixed a point on the first curve and pair it

with all possible choices of points on the second curve,

calculating the path for each pair to determine the shortest.

(This process can be thought of as exhaustively searching

among all possible values of dð0Þ or h1ð0Þ.) Searching near an

initial point estimated as in [51] will obviate the need for an

exhaustive search. Alternately, the exhaustive search can be
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Fig. 18. Shapes used in matching experiments.

Fig. 17. Histograms of shape distance between Shape 24 and
1,000 perturbations of Shape 20 with noise at variance � ¼ 2:5. The
dark bars on the left represent shape distances computed with integral
invariants; the lighter bars on the right represent shape distances
computed via differential invariants. At a fixed noise variance, the
computed shape distance based on integral invariants remains
essentially constant over all trials, in contrast to the distance based on
differential invariants. (To scale the histograms for presentation, two
experiments were removed from the differential invariant trials, with
shape distances 2.8 and 9.7.)

Fig. 16. Shape correspondence for several perturbations (with noise of
scale � ¼ 2:5). (a) Correspondence of Shape 24 to noisy instances of
Shape 20 computed, (b) via integral invariants and (c) via differential
invariants. Some salient points on the contour are labeled on Shape 24,
and the corresponding points are labeled on the remaining contours. In
contrast to the distance based on differential invariants, the integral
invariant distance consistently provides the correct correspondence.

Fig. 15. Shape distance as a function of noise for the shapes in Fig. 14.

While the shape distance measure based on differential invariants

strongly varies with noise, the distance based on integral invariants is
much more insensitive to noise. (See text for details.)
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avoided by observing that strong features, such as corners or

convex/concave points, provide a heuristic way to propose

point correspondences. These points are easily classified in

the invariant space. For instance, for the local area invariant,

pointswith littleornocurvatureare inaballaroundI ¼ :5.We

find a subset of points outside this ball, fs jI1ðsÞ � :5j > Tj g,
where T is some threshold (typically T ¼ :1). These points,

with their nearest neighbors on I2, form a set of likely initial

correspondences. In this way, we can find an initial

correspondence and compute the warping function h and its

associateddistance for two curveswith 100points each in less

than 1 second using MATLAB on a computer with an Intel

800MHz processor.

6 EXPERIMENTAL RESULTS

This section presents experiments that show that the locality

and noise robustness properties of the integral invariant
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Fig. 19. Noisy shape recognition from a database of 24 shapes. The upper number in each cell is the distance computed via the local-area integral

invariant; the lower number is the distance computed via curvature invariant. The bold, italic number in each row represents the best match for the

noisy shape at the left of that row; the four remaining italic numbers represent the next four best matches. See text for more details.
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result in a shapedescription that is less sensitive to occlusions

or localized deformations, when compared to similarly

implemented differential invariant methods. We compute

the differential invariant using the method outlined in [13],

[8]. We will begin with experiments demonstrating the

computation of shape distance and correspondences be-

tween two shapes before demonstrating the retrieval of

matches for noisy shapes from a database [76].

In this section, we use a subset of shapes from the Kimia

silhouette database.7 The contours are extracted from the

silhouettes using the pixel coordinates as a reference frame.

The result is that the x and y-values of the contours are in

½0; 99�. Empirically, we sample the contours at 100 evenly

spaced points, and set r ¼ 15 and � ¼ :01.

Fig. 14 shows the shape matching induced via the local-

area integral invariant and via curvature between two

different bunnies8 despite increasing noise. Noise is added

byperturbingallpoints on the contour in thenormaldirection

by a distance drawn from a zero-mean Gaussian random

variable with specified �. We indicate the correspondence by

showing the mapping of the numbered landmarks onto the

noisy shape, although we emphasize that invariant values

from everywhere on the curve, and not just at feature points,

are used to compute shapematching and distance. Fig. 15 is a

plot of the shape distance for the matching, shown in Fig. 14.

Note that the distance computed via the integral invariant

increases as � increases, but, in general, added noise affects

the shape distance only slightly. Contrast this with the

distance computed via curvature,which increases drastically

as a function of � until the curves are so noisy that a

meaningful correspondence cannot consistently be com-

puted using differential invariants (e.g., the � ¼ 2:5 column

ofFig. 14). Thedrasticdecrease in shapedistance for values of�

beyond this “breakdown value” further demonstrates the

dangers of relying on differential invariants; even though the

distance value indicates that this correspondence is optimal,

the correspondence is subjectively incorrect.

Fig. 16 again shows the noise robustness of the integral

invariant, compared to differential invariants, when used for

shape matching. The variance of the noise is held constant at

� ¼ 2:5, however, the experiment is repeated 1,000 times.

Shape matching via the integral invariant provides a

consistent correspondence (as shown with the labeled

features in the second row) and a consistent shape distance

shown in the histogram in Fig. 17. Computation of shape

matching and shape distance via curvature results in a

correspondence that varies with the noise, as shown in the

third row, andamore erratic shapedistance, shown in Fig. 17.

In Fig. 19, the results of matching and retrieving noisy

shapes (shownon the left side) fromadatabase (shownacross

the top) are shown. (Large displays of the original and noisy

shapes are shown in Fig. 18.) We especially highlight several

pairs where representation by differential invariants leads to

mismatches, such as the third, fourth, and fifth fish (in the

first group). Due to the differential invariant’s sensitivity to
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Fig. 20. Shape distance between noisy shapes (across top) and original shapes (along left side) via integral invariant. Lighter shade indicates higher

distance. See text for more details.

7. Available at http://www.lems.brown.edu/vision/software/index.
html.

8. Although the two bunnies look similar, closer examination shows that
the noisy bunny has a thicker body and a longer snout, in addition to
differences in position.
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noise, these fish have a smaller shape distance to the rabbits,

where the shape distance based on integral invariants orders

the shapes correctly (fish are closer to themselves than to

rabbits). Examination of the data shows several such cases

where integral invariants are more robust than curvature on

noisy shapes.

Fig. 20 and Fig. 21 show this samedata in amore aggregate

way, using shades of gray to indicate distance. The distance

matrix computed using integral invariants (Fig. 20) has low

distances on thediagonal and theblock-diagonal structure, as

expected in a database with grouped classes. Contrast this

with the curvature-based distance matrix (Fig. 21) which

lacks clearly lower distance on the diagonal and has a

vertically banded structure opposed to the desired block-

diagonal structure, indicating that the added noise influ-

enced the shape distance more than the shape itself.

7 DISCUSSION AND CONCLUSIONS

In this paper, we address one of the key disadvantages of
differential invariants for shape matching—namely, their
inherent sensitivity to noise.We introduce a new distance for
2D shapes which is based on the notion of integral group-
invariant descriptions of shape. Both theoretically and
experimentally we relate these integral invariant shape
distances to previously proposed shape distances which are
based on differential invariants.

While integral invariants are employed for robustness to
high-frequency noise and small deformations, shape warp-
ing by the computation of an optimal reparameterization
allows us to account for large localized changes such as

occlusions and configuration changes. We embed both of

these concepts in a formulation of a shape distance, and

outline how distance and optimal correspondence are jointly

computed via efficient dynamic programming algorithms.
On an experimental level, we demonstrate robustness of

the integral invariant distances for shape matching and

identifying corresponding shape parts under perturbation in

increasing amounts of noise.
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