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Abstract—In this paper, we consider the development of a
control strategy for path following of underactuated marine
surface vessels in the presence of ocean currents. The proposed
control strategy is based on a modified Line-of-Sight (LOS)
guidance law with integral action and a pair of adaptive
feedback controllers. Traditional LOS guidance has several nice
properties and is widely used in practice for path following
of marine vehicles. However, it has the drawback of being
susceptible to environmental disturbances. In this work, we
propose a modified LOS guidance law with integral action for
counteracting environmental disturbances. Paired with a set
of adaptive feedback controllers, we show that this approach
guarantees global asymptotic path following of straight-line
paths in the presence constant and irrotational ocean currents.

I. INTRODUCTION

In this paper, we consider the problem of path following of
underactuated marine surface vessels in the presence of ocean
currents. In particular, we consider the problem of following
a straight-line path with a desired speed in the presence of
constant, irrotational ocean currents.
Path following control methods based on the Line-of-Sight

(LOS) guidance principle are widely used (see e.g. [1–5]) and
LOS guidance has some nice properties. In particular, LOS
guidance is designed to mimic the actions of a helmsman,
which will typically steer the vessel towards a point lying
a constant distance, called the look-ahead distance, ahead
of the vessel, along the desired path. LOS guidance is
simple, intuitive and easy to tune and gives, in the case
of no environmental disturbances, nice path convergence
properties. However, path following control approaches based
on traditional LOS guidance are susceptible to environmental
disturbances such as ocean currents, waves and wind. In
particular, path deviation and convergence problems will
occur if the vessel is affected by environmental disturbances.
Moreover, this drawback cannot be fixed by simply adding
integral action to the heading controller, i.e. by using a PID
controller, since the source of the problem originates from
the heading reference generator, that is, the LOS guidance
law itself.
The main contribution of this paper is a new guidance

law with integral action. The proposed guidance law is based
on the LOS guidance principle, but includes integral action
to counteract environmental disturbances. The new guidance
law overcomes the above mentioned drawbacks of tradi-
tional LOS guidance, while preserving the intuition and the
simplicity of traditional LOS guidance. For this reason, the
guidance law presented in this paper is applicable to a wide
range of systems and not just marine surface vessels. In this

paper, however, we study the particular problem for marine
surface vessels. In particular, we pair the proposed guidance
law with a set of adaptive tracking controllers and prove
that the proposed control approach gives global asymptotic
path following in the presence of constant, irrotational ocean
currents. We study the problem both at the kinematic and
dynamic level and provide explicit bounds on the parameters
of the proposed guidance law.
This paper is organized as follows. In Section II, we present

the system model and state the control problem to be solved.
In Section III we review traditional LOS guidance and in
Section IV we present the controllers that solve the control
problem stated in Section II. In Section V we formulate the
main technical result of the paper and present the proof of this
result in Section VI. Conclusions are given in Section VII.

II. SYSTEM MODEL AND CONTROL OBJECTIVE

In this section, we present the mathematical model of
the class of vessels considered in this paper. Moreover,
we introduce notation to be used throughout the paper and
formulate the control problem to be solved.

A. Vessel Model

We consider the class of marine surface vessel that can be
described by the 3-DOF model ([6]):

ẋ = u cosψ − v sin ψ (1a)

ẏ = u sinψ + v cosψ (1b)

ψ̇ = r, (1c)

MRBν̇ + CRB(ν)ν = −MAν̇r − CA(νr)νr

− Dνr + Bf . (1d)

Here, (x, y, ψ) is the position and orientation of the vessel
with respect to an inertial reference frame i and ν � [u, v, r]T

is a vector of body-fixed velocities, where u is the surge
velocity, v is the sway velocity and r is the yaw angular
velocity, respectively. Moreover, νr � ν − νc is the relative
velocity of the vehicle, where νc = RT (ψ)vc � [uc, vc, 0]T

is the ocean current velocity expressed in body frame coor-
dinates and vc � [Vx, Vy, 0]T is the ocean current velocity
expressed in inertial coordinates. The inertial ocean current
vc is assumed to be constant and irrotational, i.e. v̇c = 0.
This gives that

ν̇c =
d

dt

(
RT (ψ)vc

)
= [rvc,−ruc, 0]T . (2)

The vector f ∈ R
2 is the control input vector. Notice

that the model (1d) is underactuated, since the dimension
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of the control input vector f is one less than the system
dimension. Furthermore, the matrix MRB = MT

RB > 0 is
the rigid-body mass and inertia matrix, CRB is the rigid-
body Coriolis and centripetal matrix, MA = MT

A > 0
is the hydrodynamic added mass matrix, CA is the added
mass Coriolis and centripetal matrix, D is the hydrodynamic
damping matrix and B ∈ R

3×2 is the actuator configuration
matrix.
The system matrices MRB , MA, D and B are assumed

to have the following structure:

Mx �

⎡
⎣ mx

11 0 0
0 mx

22 mx
23

0 mx
23 mx

33

⎤
⎦ , x ∈ {RB, A}, (3a)

D �

⎡
⎣ d11 0 0

0 d22 d23

0 d32 d33

⎤
⎦ , B �

⎡
⎣ b11 0

0 b22

0 b32

⎤
⎦ , (3b)

where Mx = MT
x > 0. To obtain the particular structure of

the system matrices given in (3), we have assumed that the
vessel is port-starboard symmetric (most vessels are) and that
the body-fixed coordinate system, which we can freely choose
the position and orientation of, is located along the centerline
of the vessel (see [6]). With the above given structure for
MRB and MA, the Coriolis and centripetal matrices CRB

and CA can be parameterized as (see [6]):

Cx(z) �

⎡
⎣ 0 0 c13(z2, z3)

0 0 c23(z1)
−c13(z2, z3) −c23(z1) 0

⎤
⎦ , (4)

where x ∈ {RB, A} and
c13(z2, z3) � −mx

22z2 − mx
23z3, c23(z1) � mx

11z1. (5)

Without loss of generality, we assume in the following
that the body-fixed coordinate system is located in a point
(x∗

g, 0) along the centerline of the vessel, where x∗

g is such
that M−1Bf = [τu, 0, τr]

T . Here, M � MRB + MA.
Note that if the body-fixed coordinate system is not originally
located in x∗

g , but in some other point xg along the center
line of the vessel, then the coordinate system can easily be
translated to the required location. The relevant coordinate
transformations are given in [5].
By inserting (2) in (1d) and multiplying from the left by

M−1, we obtain the following set of system equations:

u̇ = − d11

m11
u +

(m22v + m23r)r

m11
+ φT

u (ψ, r)θu + τu (6a)

v̇ = X(ur, uc)r + Y (ur)vr (6b)

ṙ = Fr(u, v, r) + φ
T
r (u, v, r, ψ)θr + τr. (6c)

Here, mij � mRB
ij + mA

ij , θu � [Vx, Vy ]T and
θr � [Vx, Vy, V 2

x , V 2
y , VxVy ]T . The expressions for φT

u (ψ, r),
X(ur, uc), Y (ur), Fr(u, v, r) and φT

r (u, v, r, ψ) are given in
Appendix A.
Remark: In many earlier works on control in the presence

of ocean currents, the current is assumed to be constant in the
body frame, i.e. ν̇c = 0. Note however that this assumption
is easily violated during turning, cf. Eq. (2). In this paper,

we instead make the assumption that the ocean current is
constant in the inertial frame, i.e. that v̇c = 0, which is a
more natural assumption.

B. Control Objective

The goal of this paper is to design a control system
for the vessel, which dynamics are described by (6), such
that starting from any location, the vessel converges to and
follows a given straight-line path P with a desired constant
speed Ud > 0. This statement should hold also in the
presence of an unknown, constant and irrotational inertial
ocean currents vc = [Vx, Vy, 0]T . To this end, we place
the inertial coordinate system i with the x-axis along the
desired path. With this choice, the desired path is given by
P � {(x, y) ∈ R

2 : y = 0} and the y-position of the vessel
can be seen as the cross-track error, i.e. the minimum distance
from the vessel to the desired path.With this notation, the
control objective can be formalized as

lim
t→∞

y(t) = 0, (7)

lim
t→∞

ψ(t) = ψss, ψss ∈ (−π/2, π/2) , (8)

lim
t→∞

U(t) = Ud. (9)

Here, U �
√

u(t)2 + v(t)2 is the total speed of the vessel
and ψss is a constant.
Remark: Note that we do not require that ψ(t) → 0 as

t → ∞, but rather that ψ converges to a constant value ψss,
where ψss ∈ (−π/2, π/2). In the presence of currents, the
vessel must be allowed to side-slip in order for a component
of the velocity to counteract the current. As a result of this,
the vessel will have a non-zero heading in steady-state. Our
control objective is to control the heading of the vessel such
that, in steady-state, the vessel counteracts the currents and
precisely follows the desired path (see Fig. 1).

III. TRADITIONAL LOS GUIDANCE

In this section, we briefly review traditional Line-Of-Sight
(LOS) guidance for path following and discuss some of its
nice features and some of its drawbacks.
In traditional LOS guidance, the desired heading of the

vessel is given by the guidance law

ψLOS � − tan−1
( y

Δ

)
, Δ > 0. (10)

The angle ψLOS is called the LOS angle and, geometrically,
it corresponds to the angle between the path y = 0 and
the line-of-sight from the vessel to a point lying a distance
Δ > 0 ahead of the vessel, along the path y = 0. By
making the yaw angle ψ of the vessel track the LOS angle
ψLOS and by maintaining a non-zero forward speed, one can
show, under certain assumptions, that the vessel (6) converges
to and follows the path y = 0 (see e.g. [5]). However,
this statement is only true if there are no ocean currents
or other environmental disturbances. The reason for this is
that ψLOS = 0 whenever y = 0. This means that the LOS
guidance law (10) wants the vessel to move along the path
y = 0 with zero heading, i.e. ψ = 0. However, if the ocean
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current has a component acting in the direction normal to
the path, an underactuated vessel such as (6) cannot stay
identically on the path y = 0 with zero heading. This is
a major drawback that results in deviation problems when
using LOS control in the presence of disturbances. Instead
the vessel must be allowed to side-slip such that a component
of the forward velocity of the vessel can counteract the effect
of the ocean current. In particular, this implies that the vessel
must have a non-zero heading in order to move along the
path, see Fig. 1. This is the motivation for this paper: to
develop an improved LOS design that handles ocean currents
by automatically creating the reference heading angle that
produces the necessary side-slip.

Uψ

P

�vc

Fig. 1. Path following in the presence of currents.

IV. CONTROL SYSTEM

In this section, we present the control system that solves
the control problem stated in Section II-B. The proposed
control strategy consists of three components: a modified
LOS guidance law with integral action, an adaptive yaw
tracking controller for tracking the desired heading provided
by the guidance law and an adaptive surge tracking controller
for tracking a desired surge speed profile. In this section, we
present the control laws and analyze the closed loop tracking
error dynamics. In Section V, we provide the conditions
under which the proposed control strategy meets the control
goals (7)-(9). Before we present the controllers, we state the
assumptions on which the controller design will be based.

A. Assumptions

The controller design presented and analyzed in the next
sections will be based on the following assumptions:
A.1: The ocean current is irrotational and constant in the

inertial frame, i.e. vc = [Vx, Vy, 0]T , where v̇c = 0.
A.2: The ocean current intensity has a known upper

bound Vmax > 0, i.e.

||vc||2 =
√

V 2
x + V 2

y ≤ Vmax < ∞.

A.3: The desired constant speed Ud is strictly greater
than the ocean current intensity, i.e. Ud > Vmax.

A.4: The function Y (ur) satisfies

Y (ur) ≤ −Ymin < 0, ∀ur ∈ [−Vmax, Ud+Vmax].

Assumption A.1 is a simplification of the real world situation.
Assumption A.2 will be used when deriving stability criteria
and Assumption A.3 is necessary to avoid that the vessel

looses control and drifts away with the current. Assumption
A.4 is a natural assumption for marine surface vessels, since
Y > 0 would imply that the vessel is open-loop unstable in
sway, which is not the case in practice.
Remark: Note that a marine surface vessel can be open-

loop unstable in sway-yaw, e.g. course unstable vessels.
However, a vessel cannot be open-loop unstable in the sense
that Y (ur) > 0, since this would imply that the system is not
passive. A small perturbation in sway would then result in an
accelerating sway velocity, which is not a realistic response
for a marine vessel.

B. Integrative LOS Guidance

As discussed in Section III, traditional LOS guidance is
simple and intuitive and has several nice properties. However,
traditional LOS guidance is not designed to handle ocean
currents or any other environmental disturbances such as wind
or waves. To this end, we propose a modified LOS guidance
law with integral action:

ψm
LOS � − tan−1

(
y + σyint

Δ

)
, Δ > 0. (11a)

ẏint =
Δy

(y + σyint)2 + Δ2
. (11b)

Here, σ > 0 is a design parameter, an integral gain, and
Δ has the same interpretation as in the case of traditional
LOS guidance, see Section III. The idea behind (11) is that
the integral of the cross-track error y will allow ψm

LOS to be
non-zero when y = 0, i.e. when the vessel is on the desired
path. In particular, in the presence of disturbances driving the
system away from its path, the integral of the cross-track error
y will build up to create a non-zero ψm

LOS . When the vessel
is on the desired path, the integral term will generate the
necessary side-slip angle to follow the path. These statements
will be made clear in Section V.

ψ
ψd

P

Δ

x

y
σyint

Fig. 2. Illustration of modified LOS guidance.

Remark: Note that Eq. (11b) has the property that ẏint →
0 as y → ∞. This means that the rate of integration
will decrease with large cross-track errors. In particular, the
integral term will be less dominant when the cross-track error
is large, i.e. when the vessel is far from the desired path. This
property will reduce the risk of integrator wind-up and reduce
performance limitations related to integrator wind-up.
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C. Yaw Control

To guide the vessel towards the desired path, we control
the yaw angle ψ of the vessel to the desired yaw angle ψd �

ψm
LOS , where ψm

LOS is given by the modified LOS guidance
law (11). This is done using the adaptive yaw controller

τr = −Fr(u, v, r) − φT
r (u, v, r, ψ)θ̂r + ψ̈d

− (kψ + λkr)(ψ − ψd) − (kr + λ)(r − ψ̇d), (12a)
˙̂
θr = γrφr(u, v, r, ψ)

[
(r − ψ̇d) + λ(ψ − ψd)

]
. (12b)

Here, λ, kψ , kr > 0 are constant controller gains and γr >
0 is a constant adaptation gain. As follows from Eq. (6c),
the controller (12) is an adaptive feedback linearizing PD-
controller. Note that the controller (12) does not depend on
the relative velocities, which are not available for feedback.
We define the errors ψ̃ � ψ − ψd, s �

˙̃ψ + λψ̃ and θ̃r �

θ̂r−θr. Taking the time-derivative of ψ̃, s and θ̃r, and using
(1c), (6c), (12a) and (12b), then gives[

˙̃
ψ
ṡ

]
=

[ −λ 1
−kψ −kr

] [
ψ̃
s

]
−

[
0

T

φT
r

]
θ̃r. (13a)

˙̃
θr = γrφr(u, v, r, ψ)s. (13b)

To analyze the stability properties of the interconnected
system (13), we consider the time-derivative of the positive
definite and radially unbounded Lyapunov function candidate

(LFC) Vψ � 1/2kψψ̃2 + 1/2s2 + 1/(2γr)θ̃
T

r θ̃r along the
solutions of system (13). This gives

V̇ψ = −λkψψ̃2 − krs
2 ≤ 0. (14)

From Eq. (14) is follows that V̇ψ is negative semi-definite
on Dψ = R

2 × R
5. It hence follows, from standard Lya-

punov arguments, that the origin (ψ̃, s, θ̃r) = (0, 0,0) is a
uniformly globally stable (UGS) equilibrium of the intercon-
nected system (13). Note that system (13) is non-autonomous.
Hence, LaSalle’s invariance principle is not applicable in this
case. However, it is straightforward to apply, for example
Barbalat’s Lemma, to conclude that (ψ̃, s) → (0, 0) asymptot-
ically as t → ∞ and that ψ̃(t), s(t) ∈ L2. Note that we cannot
hope to show that the equilibrium (ψ̃, s, θ̃r) = (0, 0,0) is
UGAS, since the regressor φr(u, v, r, ψ) is not persistently
exciting (PE). A persistently exciting regressor is a necessary
condition for UGAS of adaptive systems such as (13) (see
e.g. [7]). Finally, note that asymptotic convergence of ψ̃ and
s to zero also implies asymptotic convergence of r to ψ̇d,
since (r − ψ̇d) = s − λψ̃ by definition.

D. Surge Control

The control goal (9) is to control the total speed U of
the vessel to the desired constant value Ud. To this end, we
choose the desired surge speed as

ud � Ud cosψd, (15)

where ψd ∈ (−π/2, π/2) is the desired heading given by
Eq. (11a). The motivation behind (15) will become clear in
Section V.

To make u → ud, we propose the following adaptive surge
controller:

τu =

[
− 1

m11
(m22v + m23r)r +

d11

m11
ud

−φT
u (ψ, r)θ̂u + u̇d − ku(u − ud)

]
, (16a)

˙̂
θu = γuφu(ψ, r)(u − ud). (16b)

Here, ku > 0 is a constant controller gain and γu > 0
is a constant adaptation gain. As follows from Eq. (6a),
the controller (16) is an adaptive feedback linearizing P-
controller. Similar to the controller (12), the controller (16)
does not depend on the relative velocities, which are not
available for feedback.
We define the errors ũ � u − ud and θ̃u � θ̂u − θu.

Using (6a), (16a) and (16b), we then derive the closed loop
dynamics of the errors ũ and θ̃u:

˙̃u = −
(

d11

m11
+ ku

)
ũ − φT

u (ψ, r)θ̃u, (17a)

˙̃
θu = γuφu(ψ, r)ũ. (17b)

To analyze the stability properties of the interconnected
system (17), we consider the time-derivative of the posi-
tive definite and radially unbounded LFC Vu � 1/2ũ2 +

1/(2γu)θ̃
T

u θ̃u along the solutions of system (17). This gives

V̇u = −
(

d11

m11
+ ku

)
ũ2 ≤ 0. (18)

From Eq. (18) it follows that V̇u is negative semi-definite
on Du = R × R

2 and it hence follows, from standard
Lyapunov arguments, that the origin (ũ, θ̃u) = (0,0) is a
UGS equilibrium point of the interconnected system (17).
Moreover, it is again straightforward using, for example,
Barbalat’s Lemma, to conclude that ũ(t) → 0 asymptotically
as t → ∞ and that ũ(t) ∈ L2. Again, the equilibrium is not
UGAS, since the regressor φu(ψ, r) is not PE.

V. MAIN RESULT

In this section, we present the main technical result of the
paper. In particular, we state the conditions under which the
control goals (7)-(9) are achieved using the control strategy
presented in the previous section.
Before we state the main result, we introduce the following

notation:

X̄max � max
Ω

(|X(ur, uc) − uc|) , (19)

where X(ur, uc) is given by (52b) in Appendix A and

Ω = {−Vmax < ur < (Ud + Vmax), |uc| < Vmax}. (20)

With this notation, we now formulate the main technical
result of the paper.

Theorem 1. Consider an underactuated vessel described by
the dynamic system (6). If Assumptions A.1-A.4 hold, and if
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the look-ahead distance Δ of the guidance law (11) satisfies
the condition

Δ >
X̄max

Ymin

(
1 +

Ud + Vmax + σ

Ud − Vmax − σ
+

σ2

2

)
, (21)

where the integral gain σ satisfies the condition

Δ Y min

X̄max

1
(Ud+Vmax)2

1 + Δ Y min

X̄max

1
(Ud+Vmax)2

(Ud − Vmax) < σ < (Ud − Vmax),

(22)
then the controllers (12) and (16), where ψd is given by (11a)
and ud is given by (15), guarantees that the control goals (7)-
(9) are achieved. In particular, control goal (8) is achieved
with

ψss = − tan−1

(
Vy

Ud + Vx

)
� ψ∗

ss. (23)

Proof. The proof of this theorem is given in Section VI.

Remark: Note that it is always possible to satisfy condition
(22), since the left-hand side of the inequality is always
strictly less than the right-hand side.
Remark: It is interesting to note that in the case of no

currents and no integral action in the guidance law, i.e. setting
σ = 0 in (11a), then the condition on the look-ahead distance
Δ, given in Eq. (21), reduces to the condition found in [8],
where the traditional LOS guidance law (10) was used to
achieve path following of a straight-line path for the case of
no currents.
Remark: The proposed controllers (12) and (16) rely on

feedback linearization. If the model parameters have a high
degree of uncertainty, other control approaches may be bet-
ter suited. Handling uncertain parameters in the controllers
remain a topic for future work.

VI. PROOF OF THEOREM 1

We start the proof of Theorem 1 by considering the dynam-
ics of the cross-track error y and the relative sway velocity
vr. From the analysis presented in Sections IV-C and IV-D,
we know that u → ud, ψ → ψd, r → ψ̇d asymptotically
as t → ∞ and that the error variables ψ̃(t), s(t), ũ(t) ∈ L2.
Using Equations (2), (6b) and the expressions u = ud + ũ,
v = vr + vc, ψ = ψd + ψ̃ and r = ψ̇d + (s− λψ̃), the cross-
track error dynamics (1b) and the dynamics of the relative
sway velocity vr can then be written as

ẏ = −(ud + ũ) sin(ψd + ψ̃)

+ (vr + vc) cos(ψd + ψ̃) (24)

v̇r = v̇ − v̇c = X(ur, uc)r + Y (ur)vr − (−ucr)

= X̄(ur, uc)(ψ̇d + (s − λψ̃)) + Y (ur)vr. (25)

Here, X̄(ur, uc) � X(ur, uc)−uc. Substituting (11a) for ψd

in the above equations, extending the state space with (11b)
and factorizing the result with respect to the errors ũ, ψ̃ and

s, then gives

ẏint =
Δy

(y + σyint)2 + Δ2
(26)

ẏ = −ud
y + σyint√

(y + σyint)2 + Δ2
+ vr

Δ√
(y + σyint)2 + Δ2

+ vc
Δ√

(y + σyint)2 + Δ2

+ h
T
y (ud, vr, vc, ψd, ξ)ξ (27)

v̇r = X̄(ur, uc)ψ̇d + Y (ur)vr + hT
vr

(ur, uc, ξ)ξ. (28)

Here, ξ � [ũ, ψ̃, s]T is a vector of converging error signals
and hT

y (ud, vr, vc, ψd, ξ)ξ and hT
vr

(ur, uc, ξ)ξ contain all
terms vanishing at ξ = 0. The expressions of hy and hvr

are given in Appendix A.
Notice that the current component vc, expressed in body-

frame coordinates, can be expressed using the constant iner-
tial ocean current components Vx and Vy according to

vc = −Vx sinψ + Vy cosψ. (29)

Substituting this expression for vc in (27) and using Equations
(11a), (15) and the expression ψ = ψd + ψ̃, then gives

ẏint =
Δy

(y + σyint)2 + Δ2
(30a)

ẏ = −Δ(Ud + Vx)
y + σyint

(y + σyint)2 + Δ2

+ Vy
Δ2

(y + σyint)2 + Δ2

+ vr
Δ√

(y + σyint)2 + Δ2

+ ĥ
T

y (Ud, vr, vc, ψd, ξ)ξ (30b)

v̇r = X̄(ur, uc)ψ̇d + Y (ur)vr + hT
vr

(ur, uc, ξ)ξ. (30c)

The expression for ĥy � [ĥy1, ĥy2, ĥy3]
T are given in

Appendix A.
It is straightforward to verify that the equilibrium point of

system (30), on the manifold ξ = 0, is given by

yint =
Δ

σ

Vy

Ud + Vx
� yeq

int, y = 0, vr = 0. (31)

Hence, Vy can be written in terms of the equilibrium point
yeq
int according to

Vy =
σ

Δ
(Ud + Vx)yeq

int. (32)

To proceed, we define a new set of coordinates

z1 � yint − yeq
int (33a)

z2 � y + σz1. (33b)

Taking the time-derivative of (33a) and (33b) and using (30)
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and (32), we obtain the transformed dynamics

ż1 = Δ
z2 − σz1

(z2 + σyeq
int)

2 + Δ2
(34a)

ż2 = −Δ(Ud + Vx)
z2

(z2 + σyeq
int)

2 + Δ2

+ vr
Δ√

(z2 + σyeq
int)

2 + Δ2

+ σΔ
z2 − σz1

(z2 + σyeq
int)

2 + Δ2

+ ĥ
T

y (Ud, vr, vc, ψd, ξ)ξ (34b)

v̇r = X̄(ur, uc)ψ̇d + Y (ur)vr + h
T
vr

(ur, uc, ξ)ξ, (34c)

Now, substituting the expression

ψ̇d =
d

dt

(
− tan−1

(
z2 + σyeq

int

Δ

))

= − Δ

(z2 + σyeq
int)

2 + Δ2
ż2, (35)

in (34c), where ż2 is given by (34b), we finally obtain⎡
⎣ ż1

ż2

v̇r

⎤
⎦ = A(z2, ur, uc)

⎡
⎣ z1

z2

vr

⎤
⎦ + H(t, z2, vr, ξ)ξ, (36)

where A(z2, ur, uc) is given by Eq. (38) and

H(t, z2, vr, ξ) �

⎡
⎢⎣

0

ĥ
T

y

hT
vr

− ΔX(ur,uc)
(z2+σyeq

int
)2+Δ2 ĥ

T

y

⎤
⎥⎦ . (37)

The next lemma characterizes the stability properties of the
nominal system⎡

⎣ ż1

ż2

v̇r

⎤
⎦ = A(z2, ur, uc)

⎡
⎣ z1

z2

vr

⎤
⎦ . (39)

Lemma 1. Under the conditions of Theorem 1, the nominal
system (39) is UGAS and ULES.

Proof. To analyze the stability properties of the nominal
system (39), we consider the time-derivative of the positive
definite and radially unbounded LFC

V �
1

2
σ2|z1|2 +

1

2
|z2|2 +

1

2
κ|vr|2, κ > 0, (40)

along the solutions of system (39). This gives

V̇ ≤ −σ3 Δ|z1|2
(z2 + σyeq

int)
2 + Δ2

− Δ

(
(Ud − Vmax) − σ

(z2 + σyeq
int)

2 + Δ2

)
|z2|2

+
Δ√

(z2 + σyeq
int)

2 + Δ2
|z2||vr|

+ κ
σ2Δ2X̄max

((z2 + σyeq
int)

2 + Δ2)
2 |vr||z1|

+ κ
Δ2X̄max

(z2 + σyeq
int)

2 + Δ2

(Ud + Vmax) + σ

(z2 + σyeq
int)

2 + Δ2
|z2||vr|

− κ

(
Ymin − Δ2X̄max

((z2 + σyeq
int)

2 + Δ2)3/2

)
|vr|2, (41)

after using the notation (19) and Assumption
A.4. To simplify the above expressions, we
define z̄1 � |z1|/

√
(z2 + σyeq

int)
2 + Δ2 and z̄2 �

|z2|/
√

(z2 + σyeq
int)

2 + Δ2. With this notation, V̇ can
be bounded according to

V̇ ≤ −
(

Δσ3 − κ
σ2

2Δ2
X̄max

)
|z̄1|2

− Δ (Ud − Vmax − σ) |z̄2|2

+ Δ

(
1 + κ

X̄max

Δ2
(Ud + Vmax + σ)

)
|z̄2||vr|

− κ

(
Ymin − 1

Δ
X̄max − σ2

2Δ
X̄max

)
|vr|2. (42)

Furthermore, choosing κ equal to (we will show that κ > 0
in the following)

κ �
2α − 1

X̄max

Δ2 (Ud + Vmax + σ)
, (43)

where α is given by

α � (Ud − Vmax − σ)
ΔYmin − X̄max − σ2

2 X̄max

X̄max (Ud + Vmax + σ)
, (44)

gives the following bound for V̇ :

V̇ ≤ −
(

Δσ3 − κ
σ2

2Δ2
X̄max

)
|z̄1|2

− Δ (Ud − Vmax − σ) |z̄2|2 + 2Δα|z̄2||vr|
− Δ

α(2α − 1)

Ud − Vmax − σ
|vr|2. (45)

Defining β � Ud − Vmax − σ (we will show that β > 0 in
the following), we can finally bound V̇ according to

V̇ = −
(

Δσ3 − κ
σ2

2Δ2
X̄max

)
|z̄1|2

− [ |z̄2| |vr|
] [

Δβ −Δα

−Δα Δα(2α−1)
β

] [ |z̄2|
|vr|

]
(46)

� −W (|z̄1|, |z̄2|, |vr|). (47)

To guarantee that W (|z̄1|, |z̄2|, |vr|) is positive definite, or
equivalently that V̇ is negative definite, we must guarantee
that α > 1, β > 0 and σ > κ/(2Δ)X̄max. By simple
manipulation, one can easily check that condition (21) implies
that α > 1. Note that this also implies that κ > 0, as
required for V to be positive definite. Furthermore, β > 0
is guaranteed by Assumption A.3 and the upper bound on σ
from (22). To check that σ > κ/(2Δ)X̄max, notice that κ
can be upper bounded according to

κ <
2α

X̄max

Δ2 (Ud + Vmax)
< 2Δ3Ymin

Ud − Vmax − σ

X̄2
max(Ud + Vmax)2

.

Using this upper bound on κ and the lower bound on σ
from (22) one can easily check that σ > κ/(2Δ)X̄max.
Hence, V̇ is negative definite and it follows, from stan-
dard Lyapunov arguments, that the nominal system (39)
is UGAS. At the same time, note that the function W
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A(z)2 �

⎡
⎢⎢⎣

− σΔ
(z2+σyeq

int
)2+Δ2

Δ
(z2+σyeq

int
)2+Δ2 0

− σ2Δ
(z2+σyeq

int
)2+Δ2 −Δ (Ud+Vx)−σ

(z2+σyeq

int
)2+Δ2

Δ√
(z2+σyeq

int
)2+Δ2

σ2Δ2X̄(ur ,uc)
((z2+σyeq

int
)2+Δ2)2

Δ2X̄(ur ,uc)
(z2+σyeq

int
)2+Δ2

(Ud+Vx)−σ
(z2+σyeq

int
)2+Δ2

(
Y (ur) − Δ2X̄(ur ,uc)

((z2+σyeq

int
)2+Δ2)3/2

)
⎤
⎥⎥⎦ (38)

satisfies W (|z̄1|, |z̄2|, |vr|) ≤ λ̄1|z̄1|2 + λ̄2|z̄2|2 + λ3|vr|2,
for some constants λ̄1, λ̄2, λ3 > 0. Moreover, in any ball
Br{|z2| ≤ r}, r > 0, the function W (|z̄1|, |z̄2|, |vr|) can
be estimated as W ≤ λ1|z1|2 + λ2|z2|2 + λ3|vr|2, where
λi = λ̄i/((r + σyeq

int)
2 + Δ2), i = 1, 2. This, together with

the fact that V is a quadratic function of z1, z2 and vr, implies
that the nominal system (39) is uniformly exponentially stable
in any ball Br (see e.g. [9]). This concludes the proof of
Lemma 1.

We have thus proved that the nominal system (39) is UGAS
and ULES under the conditions of Theorem 1. It now remains
to analyze the interconnected system of (36) and the dynamics
of ξ, i.e. systems (13a), (17a) and to show that the control
goals (7)-(9) are achieved. The next lemma shows that the
solutions of system (36) are globally bounded under the
perturbation from the L2-signal ξ(t).

Lemma 2. Under the conditions of Theorem 1, the solutions
of system (36) are globally bounded.

Proof. The proof of this lemma is given in Appendix B.

According to Lemma 2, the solutions z1(t), z2(t) and vr(t)
of system (36) are globally bounded. Then, since ξ(t) → 0
asymptotically as t → ∞, it follows that z1(t) → 0, z2(t) →
0 and vr(t) → 0 asymptotically as t → ∞ (see [10]).
Since both z1 and z2 converges asymptotically to zero, it

follows from (33b) that y converges asymptotically to zero.
Hence, it follows that control goal (7) is achieved. Moreover,
using (31) in the expression

ψ = ψd + ψ̃ = − tan−1

(
z2 + σyeq

int

Δ

)
+ ψ̃, (48)

and using the fact that z2 → 0, ψ̃ → 0 asymptotically as
t → ∞, it follows that

lim
t→∞

ψ(t) = − tan−1

(
Vy

Ud + Vx

)
= ψ∗

ss. (49)

Hence, control goal (8) is achieved with ψss given by ψ∗

ss,
cf. Eq. (23).
Next we show that control goal (9) is achieved. Utilizing

the expression (29) for vc and using that ũ → 0, vr → 0 and
that ψ → ψ∗

ss, we have that

lim
t→∞

U(t) = lim
t→∞

√
(ud + ũ)2 + (vr + vc)2

=
√

(Ud cosψ∗

ss)
2 + (−Vx sinψ∗

ss + Vy cosψ∗

ss)
2.

(50)

Inserting the expression (23) for ψ∗

ss in the above equation
and rearranging then gives

lim
t→∞

U(t) =

√
U2

d (V 2
y + (Ud + Vx)2)

V 2
y + (Ud + Vx)2

= Ud. (51)

Hence, control goal (9) is also achieved. This concludes the
proof of Theorem 1.

VII. CONCLUSIONS

In this paper, we have considered the development of a
control strategy for path following of underactuated marine
surface vessels in the presence of constant, irrotational ocean
currents. In particular, we have proposed a control strategy
based on a modified LOS guidance law with integral action
and a pair of adaptive tracking controllers. This approach
preserved the simplicity and interpretation of traditional LOS
guidance, while ensuring sufficient countermeasures against
environmental disturbances. The closed-loop dynamics was
analyzed in detail and explicit conditions for global asymp-
totic path following were derived.

APPENDIX A

φu(ψ, r) =

[
d11

m11
cosψ − mA

11 − mA
22

m11
r sin ψ,

d11

m11
sinψ +

mA
11 − mA

22

m11
r cosψ

]T

, (52a)

X(ur, uc) �
1

Γ

[
m33(−d23 − m11ur − mRB

11 uc)

+m23d33 + m23(m23ur + mRB
23 uc + mA

22uc)
]
(52b)

Y (ur) �
1

Γ
[−m33d22 + m23d32

+m23(m
A
22 − mA

11)ur

]
, (52c)

Fr(u, v, r) �
m22

Γ
[−(m22v − m23r)u + m11uv

−d32v − d33r] − m23

Γ
[−m11ur − d22v − d23r] . (52d)

Here, Γ � m22m33 − m2
23 > 0. Furthermore, the function

φr(u, v, r, ψ) � [φr1, . . . , φr5]
T is defined by:[

φr1

φr2

]
=

[
cosψ − sin ψ
sin ψ cosψ

] [
a1

a2

]
(53)

φr3 = −m22

Γ
(mA

11 − mA
22) sin ψ cosψ, (54)

φr4 =
m22

Γ
(mA

11 − mA
22) sin ψ cosψ, (55)

φr5 =
m22

Γ
(mA

11 − mA
22)(1 − 2 sin2 ψ), (56)
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Here,

a1 = −m22

Γ

(
(mA

11 − mA
22)v + (mA

23 − mA
22)r

) − m23

Γ
mA

11r,

a2 =
m22

Γ

(
d32 − (mA

11 − mA
22)u

) − m23

Γ
d22.

Remark: In deriving the expression (52c) we have used
that mRB

11 − mRB
22 = 0, which follows from the fact that

mRB
11 = mRB

22 = m, where m is the mass of the vessel (see
[6]).
The functions hy � [hy1, hy2, hy3]

T and hvr �

[hvr1, hvr2, hvr3]
T are given by

hy1
= − sinψd, hy3

= 0, (57a)

hy2
=

cos ψ̃ − 1

ψ̃
(−(ũ + ud) sin ψd + (vr + vc) cosψd)

− sin ψ̃

ψ̃
((ũ + ud) cosψd + (vr + vc) sin ψd) , (57b)

hvr1
= 0, hvr2 = −λX̄(ur, uc), hvr3 = X̄(ur, uc). (57c)

The functions ĥy � [ĥy1, ĥy2, ĥy3]
T is given by

ĥy1 = hy1, ĥy3 = hy3, (58a)

ĥy2 = hy2 +
sin ψ̃

ψ̃
(−Vx cosψd − Vy sin ψd)

+
cos ψ̃ − 1

ψ̃
(−Vx cos sind +Vy cosψd) . (58b)

APPENDIX B: PROOF OF LEMMA 2

The perturbation ξ(t) is a vanishing perturbation to the
system (36). In particular, ξ(t) → 0 asymptotically as t → ∞
and ξ(t) ∈ L2, cf. Sections IV-C and IV-D. Hence, for any
ε > 0, there exists t∗ ≥ t0 + T , where T is not necessarily
independent of t0, such that ||ξ(t)|| ≤ ε, ∀t ≥ t∗. Moreover,
the time-derivative of the LFC (40) along the solutions of
(36) can then be upper bounded by

V̇ ≤ c2

c1
V ·||H ||·||ξ|| ≤ c2

c1ε
V ·||H ||·||ξ||2, t ∈ [t0, t

∗], (59)

where c1 ≤ 1/2 min{σ2, 1, κ} and c2 ≥ 1/2 max{σ2, 1, κ}.
Using Equations (57), (58) and (37), it is straightforward to
verify that the interconnection term H is globally bounded,
i.e. that ||H || ≤ bH , for some bH > 0. Using this, and
integrating both sides of (59) from t0 to t∗ gives

c1ε

c2bH
ln

(
V (t∗)

V (t0)

)
≤

∫ t∗

t0

||ξ(s)||2ds ≤
∫

∞

t0

||ξ(s)||2ds.

(60)
Now, since ξ(t) ∈ L2, the right hand side of (60) is bounded
and it follows that V (t) is bounded on the interval [t0, t

∗].
In particular, there exits a constant c ≥ 0 such that V (t∗) =
V (x(t∗)) ≤ c, where x � [z1, z2, vr]

T . Using Eq. (47), the
time-derivative of V can be see to satisfy

V̇ ≤ −W (|z̄1|, |z̄2|, |vr|) + 2c2||x||bHε, t ≥ t∗, (61)

≤ − W (x)

||x||2 + Δ2
+ 2c2||x||bHε, t ≥ t∗. (62)

Note that W (x) ≥ k1||x||2 for some k1 > 0, cf. Eq. (47).
Thus,

V̇ ≤ −1

2

W (x)

||x||2 + Δ2
− 1

2

k1||x||2
||x||2 + Δ2

+ 2c2||x||bHε (63)

≤ −1

2

W (x)

||x||2 + Δ2
, ∀ε ≤ k1

4c2bH
. (64)

Hence, V̇ is negative on V (x) = c, and the set {V (x) = c}
is positively invariant. Thus, for all x(t∗) ∈ {c2||x||2 ≤ c},
x(t) is bounded for all t ≥ t∗. Moreover, since c > 0 is
arbitrary, x(t) is globally bounded. This concludes the proof.
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