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In this article, we establish several integral majorization type and generalized Favard’s inequalities for the class of strongly convex
functions. Our results generalize and improve the previous known results.

1. Introduction

It is well known that convex functions are a class of important
functions in the 	elds of mathematics and other natural
sciences; they have been studied for more than one hun-
dred years. In recent years there is a growing interest in
generalized convex functions (such as quasi-convex function
[1], strongly convex function [2–4], �-convex function [5],
approximately convex function [6], logarithmically convex
function [7, 8], midconvex function [9], pseudo-convex
function [10], �-convex function [11], �-convex function [12],ℎ-convex function [13], delta-convex function [14], Schur
convex function [15–21], and other convex functions [22–
29]) among the researchers of applied mathematics due to
the fact that mathematical models with these functions are
more suitable to describe problems of the real world than
models using conventional convex functions. Recently, a
large number of remarkable results and applications for the
generalized convex functions can be found in the literature
[30–49].

In the article, our focus is on the integral majorization
type inequalities for the strongly convex functions.

De�nition 1. Let � be a real-valued function de	ned on the
interval [�1, �1] and � a positive real number. �en � is said
to be strongly convex with modulus � if the inequality

� (
�1 + (1 − 
) V1) ≤ 
� (�1) + (1 − 
) � (V1)
− �
 (1 − 
) (�1 − V1)2 (1)

holds for all�1, V1 ∈ [�1, �1] and 
 ∈ [0, 1]. From (1)we clearly
see that

� (�1) − � (V1) ≥ ��+ (V1) (�1 − V1) + � (�1 − V1)2 . (2)

�e following Lemma 2 for strongly convex function is
given in [2] (see also [50, Proposition 1.1.2]).

Lemma 2. A real-valued function � : [�1, �1] �→ R is
a strongly convex function with modulus � if and only if the

function � : [�1, �1] �→ R de�ned by �(�) = �(�) − ��2 is a
convex function.

Every strongly convex function is convex, but the con-
verse is not true in general. Strongly convex functions have
been utilized for showing the convergence of a gradient type
algorithm for minimizing a function. �ey play a signi	cant
role in mathematical economics, approximation theory, and
optimization theory; many applications and properties for
strongly functions can be found in [2–4, 13, 30].

Next we are going to present some basic theories of
majorization.
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�ere is a natural description of the inde	nite notion that
the entries of �-tuple � are more nearly equal, or less spread
out than, to the entries of �-tuple �. �e applicable assertion
is that �majorizes �; it means that the sum of ℓ largest entries
of � does not exceed the sum of ℓ largest entries of � for allℓ = 1, 2, . . . , � − 1 with equality for ℓ = �. �at is, let � =(�1, �2, . . . , ��) and � = (�1, �2, . . . , ��) be two real �−tuples
and let �↓1 ≥ �↓2 ≥ ⋅ ⋅ ⋅ ≥ �↓� ,�↓1 ≥ �↓2 ≥ ⋅ ⋅ ⋅ ≥ �↓� (3)

be their ordered entries.�en the �−tuple � is said tomajorize
� (or � is said to be majorized by �), in symbol � ≻ �, if

ℓ∑
�=1
�↓� ≥ ℓ∑
�=1
�↓� (4)

holds for ℓ = 1, 2, . . . , � − 1 and
�∑
�=1
�� = �∑
�=1
��. (5)

�e theory of majorization is a very signi	cant topic in
mathematics; a remarkable and complete reference on the
majorization subject is the book by Olkin and Marshall [51].
For example, the theory of majorization is an essential tool
that permits us to transform nonconvex complicated con-
strained optimization problems that involve matrix valued
variables into simple problems with scalar variables that can
be easily solved [52–55].

�e de	nition of majorization for integrable functions
can be stated as follows (see [7]).

De�nition 3. Let f and g be two decreasing real-valued
integrable functions on the interval [�1, �1]. �en f is said to
majorize g (or g is said to bemajorized by f), in symbol, f ≻ g,
if the inequality

∫�
�1
g (�) �� ≤ ∫�

�1
f (�) �� (6)

holds for all � ∈ [�1, �1) and
∫	1
�1

g (�) �� = ∫	1
�1

f (�) ��. (7)

�eorem 4 (See [56]). Let f and g be two continuous and
increasing real-valued functions de�ned on [�1, �1], and letΩ : [�1, �1] �→ R be a bounded variation function. 	en the
following statements are true.

(a) If

∫�
�1
f (�) �Ω (�) ≤ ∫�

�1
g (�) �Ω (�) (8)

for all � ∈ [�1, �1] and
∫	1
�1

f (�) �Ω (�) = ∫	1
�1

g (�) �Ω (�) , (9)

then

∫	1
�1
Ψ {f (�)} �Ω (�) ≤ ∫	1

�1
Ψ {g (�)} �Ω (�) (10)

holds for every continuous convex function Ψ.
(b) If (8) and (9) hold, then (10) holds for every continuous

increasing convex function Ψ.
�eorem 5 (See [57]). Let Ψ : [0,∞) �→ R be a convex
function, f, g and Ω be three positive and integrable functions
de�ned on [�1, �1] such that

∫�
�1
f (�) Ω (�) �� ≤ ∫�

�1
g (�) Ω (�) �� (11)

for all � ∈ [�1, �1] and
∫	1
�1

f (�)Ω (�) �� = ∫	1
�1

g (�)Ω (�) ��. (12)

	en the following statements are true:

(a) If f is decreasing on [�1, �1], then
∫	1
�1
Ψ {f (�)}Ω (�) �� ≤ ∫	1

�1
Ψ {g (�)} Ω (�) ��. (13)

(b) If g is increasing on [�1, �1], then
∫	1
�1
Ψ {g (�)}Ω (�) �� ≤ ∫	1

�1
Ψ {f (�)} Ω (�) ��. (14)

Let > 1, f be a positive and continuous concave function
de	ned on [�1, �1], and letΨ be a convex function de	ned on[0, 2f1] with

f1 = 1�1 − �1 ∫
	1

�1
f (�) ��. (15)

�en Favard [58] proved that the inequalities

∫1
0
Ψ(2�f1) = 12f1 ∫

2f1

0
Ψ (#) �#

≥ 1�1 − �1 ∫
	1

�1
Ψ {f (�)} �� (16)

and

1�1 − �1 ∫
	1

�1
f

 (�) �� ≤ 2
 + 1 ( 1�1 − �1 ∫

	1

�1
f (�) ��)
 (17)

hold.
�emain purpose of the article is to establish several inte-

gral majorization type and generalized Favard’s inequalities
for strongly convex functions.
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2. Main Results

�eorem 6. Let � > 0, Ψ : [0,∞) �→ R be a continuous
strongly convex function with modulus �, and let f, g, andΩ be
three positive and integrable functions de�ned on [�1, �1] such
that

∫�
�1
f (�)Ω (�) �� ≤ ∫�

�1
g (�) Ω (�) �� (18)

for all � ∈ [�1, �1] and
∫	1
�1

f (�) Ω (�) �� = ∫	1
�1

g (�) Ω (�) ��. (19)

	en the following statements are true.

(a) If f is decreasing on [�1, �1], then we have

∫	1
�1
Ψ {g (�)}Ω (�) ��
≥ ∫	1
�1
Ψ {f (�)}Ω (�) ��

+ � ∫	1
�1
{f (�) − g (�)}2Ω (�) ��.

(20)

(b) If g is increasing on [�1, �1], then one has

∫	1
�1
Ψ {f (�)} Ω (�) ��
≥ ∫	1
�1
Ψ {g (�)} Ω (�) ��

+ � ∫	1
�1
{f (�) − g (�)}2Ω (�) ��.

(21)

Proof. (a) Let V1 = f and �1 = g. �en it follows from (2) and
the proof of Lemma 2 given in [57] that

Ψ (f (�)) Ω (�) + Ψ�+ (f (�)) (g (�) − f (�))Ω (�)
+ � (g (�) − f (�))2Ω(�) ≤ Ψ (g (�)) Ω (�) . (22)

LetF(�) = ∫��1{f(�) − g(�)}Ω(�)��. �en (18) and (19) lead to

F(�) ≤ 0 for all � ∈ [�1, �1],F(�1) = F(�1) = 0, and
∫	1
�1
[Ψ {f (�)} − Ψ {g (�)}]Ω (�) ��
+ �∫	1
�1
{f (�) − g (�)}2Ω (�) ��

≤ ∫	1
�1
Ψ�+ {f (�)} {f (�) − g (�)} Ω (�) ��

= ∫	1
�1
Ψ�+ {f (�)} �F (�) = Ψ�+ {f (�)} F (�)|	1�1

− ∫	1
�1

F (�) � {Ψ�+ {f (�)}}
= −∫	1
�1

F (�) � {Ψ�+ {f (�)}} ≤ 0.
(23)

Since f is decreasing on [�1, �1], therefore inequality (20) can
be deduced easily from the above inequality. Similarly, we can
prove part (b) for increasing function g de	ned on [�1, �1].
�eorem 7. Suppose that all the assumptions of 	eorem 6
hold. 	en the following statements are true.

(a) If f is decreasing on [�1, �1], then
∫	1
�1
Ψ {g (�)} Ω (�) ��
≥ ∫	1
�1
Ψ {f (�)} Ω (�) ��

+ �∫	1
�1
{g2 (�) − f

2 (�)}Ω (�) ��.
(24)

(b) If g is increasing on [�1, �1], then
∫	1
�1
Ψ {g (�)} Ω (�) ��
≤ ∫	1
�1
Ψ {f (�)} Ω (�) ��

+ �∫	1
�1
{g2 (�) − f

2 (�)}Ω (�) ��.
(25)

Proof. Since Ψ is a strongly convex function with modulus�, therefore Ψ(�) − ��2 is a convex function, and inequalities
(24) and (25) follow easily from the convexity of the functionΨ(�) − ��2 and Lemma 2 given in [57].

Remark 8. Inequalities (13) and (14) can be obtained by (24)
and (25) immediately.

Remark 9. Generally, the assumptions of both the functions
f and g are monotonic in majorization theorem, but in
�eorems 6 and 7 we only need one of the functions f and
g to be monotonic.

�eorem 10. Suppose that Ψ : [�1, �1] �→ R is a continuous
strongly convex function with modulus �, and f, g, and Ω
are three integrable functions on [�1, �1]. If g and f − g
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are nondecreasing (nonincreasing) functions on [�1, �1] and∫	1�1 f(�)Ω(�)�� = ∫	1�1 g(�)Ω(�)��, then
∫	1
�1
Ψ {f (�)} Ω (�) ��
≥ ∫	1
�1
Ψ {g (�)} Ω (�) ��

+ � ∫	1
�1
{f (�) − g (�)}2Ω (�) ��.

(26)

Proof. Since Ψ is a strongly convex function, therefore using
(2) for �1 = f and V1 = g, we have

∫	1
�1
[Ψ (f (�)) − Ψ (g (�))]Ω (�) ��
− � ∫	1
�1
(f (�) − g (�))2Ω (�) ��

≥ ∫	1
�1
Ψ�+ (g (�)) (f (�) − g (�))Ω (�) ��.

(27)

It follows from the Čebyšev inequality [59] that

1∫	1�1 Ω(�) �� ∫
	1

�1
Ψ�+ (g (�)) (f (�) − g (�)) Ω (�) ��

≥ 1∫	1�1 Ω(�) �� ∫
	1

�1
Ψ�+ (g (�)) Ω (�) �� 1∫	1�1 Ω(�) ��

⋅ ∫	1
�1
(f (�) − g (�))Ω (�) �� ≥ 0.

(28)

�erefore, inequality (26) follows from (27) and (28).

Making use of the similar idea as in the proof of �eo-
rem 10, we can obtain the following �eorem 11 immediately.

�eorem 11. Suppose that Ψ : [�1, �1] �→ R is a continuous
strongly convex function with modulus �, and f, g, and Ω
are three integrable functions on [�1, �1]. If g and f − g

are nondecreasing (nonincreasing) functions on [�1, �1], and∫	1�1 f(�)Ω(�)�� ≥ ∫	1�1 g(�)Ω(�)��, then inequality (26) holds.

�eorem 12. 	e inequality

∫	1
�1
Ψ {f (�)}Ω (�) ��
≥ ∫	1
�1
Ψ {g (�)} Ω (�) ��

+ �∫	1
�1
(f2 (�) − g

2 (�))Ω (�) ��
(29)

holds if all the assumptions of 	eorem 10 are satis�ed.

Proof. Since Ψ is a strongly convex function with modulus �,
therefore Ψ(�) − ��2 is a convex function and inequality (29)
can be deduced by applying this convex function in�eorem
6 of [59].

Using strongly convex function we can give an extension
of [60, �eorem 2] in the following form.

�eorem 13. Let �, Ψ : [0,∞) �→ R be two functions such

that � is a strictly increasing and Ψ∘�−1 is strongly convex
with modulus �, f, g, andΩ being three positive and integrable
functions on [�1, �1] such that

∫�
�1
� (f (�)) Ω (�) �� ≤ ∫�

�1
� (g (�)) Ω (�) �� (30)

for all � ∈ [�1, �1] and
∫	1
�1
� (f (�))Ω (�) �� = ∫	1

�1
� (g (�)) Ω (�) ��. (31)

	en the following statements are true.

(a) If f is decreasing on [�1, �1], then inequality (20) holds.

(b) If g is increasing on [�1, �1], then inequality (21) holds.

Proof. We clearly see that it is su�cient to prove the case of�(�) = �, but this case is already proved in�eorem 6.

Similarly, we have �eorem 14 as follows.

�eorem 14. Suppose that all the assumptions of 	eorem 13
are satis�ed. 	en the following statements are true.

(a) If f is decreasing on [�1, �1], then inequality (24) holds.

(b) If g is increasing on [�1, �1], then inequality (25) holds.

�e following Lemma 15 was given in [57].

Lemma 15. Let - be a positive integrable function and let ℏ be
an increasing function on (�1, �1); then

∫�
�1
ℏ (�) - (�) ��∫	1

�1
- (�) ��

≤ ∫	1
�1
ℏ (�) - (�) �� ∫�

�1
- (�) ��. (32)

If ℏ is a decreasing function on (�1, �1), then inequality (32)
holds in reverse directions.

Lemma 16. Let f be a real-valued function de�ned on [�1, �1].
	en the following statements are true.

(i) If f is a strongly concave function with modulus �, then
(a) the function ℏ1(�) = f(�)/(�−�1)−�� is decreasing

on (�1, �1];
(b) the function ℏ2(�) = f(�)/(�1−�)+�� is increasing

on [�1, �1).
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(ii) If f is a strongly convex function with modulus �, then
(c) the function ℏ1(�) = f(�)/(�−�1)−�� is increasing

on (�1, �1] if f(�1) = 0;
(d) the function ℏ2(�) = f(�)/(�1−�)+�� is decreasing

on [�1, �1) if f(�1) = 0.
Proof. (i) Suppose that f is a strongly concave function with
modulus �.

(a) To show that the function ℏ1(�) = f(�)/(� − �1) − �� is
decreasing on (�1, �1], in fact, for �1 < �1 ≤ �2 ≤ �1 we have

f (�1) = f(�1 − �1�2 − �1 �2 + �2 − �1 − (�1 − �1)�2 − �1 �1)
≥ �1 − �1�2 − �1 f (�2) + (1 − �1 − �1�2 − �1) f (�1)
− � (�1 − �1�2 − �1)(1 − �1 − �1�2 − �1) (�2 − �1)2

≥ �1 − �1�2 − �1 f (�2) − � (�1 − �1) (�2 − �1) ,
(33)

which shows that the function ℏ1(�) = f(�)/(� − �1) − �� is
decreasing on (�1, �1].

(b) To show that the function ℏ2(�) = f(�)/(�1 − �) + �� is
increasing on [�1, �1), in fact, for �1 ≤ �1 ≤ �2 < �1 we have

f (�2) = f(�1 − �2�1 − �1 �1 + �1 − �1 − (�1 − �2)�1 − �1 �1)
≥ �1 − �2�1 − �1 f (�1) + (1 − �1 − �2�1 − �1) f (�1)
− �1 (�1 − �2�1 − �1)(1 − �1 − �2�1 − �1) (�1 − �1)2

≥ �1 − �2�1 − �1 f (�1) − �1 (�1 − �2) (�2 − �1) ,
(34)

which shows that the function ℏ2(�) = f(�)/(�1 − �) + �� is
increasing on [�1, �1).

(ii) Suppose that f is a strongly convex function with
modulus �.

(c) Since f(�1) = 0, by similar method of (a) we can easily
prove that the function ℏ1(�) = f(�)/(�−�1) − �� is increasing
on (�1, �1].

(d) Since f(�1) = 0, by similar method of (b) we can prove
that the function ℏ2(�) = f(�)/(�1 − �) + �� is decreasing on(�1, �1].

Next, we establish several Favard type inequalities for
strongly convex functions.

�eorem 17. (a) Let f be a strongly concave function with
modulus �1 on [�1, �1] such that g(�) = f(�) − �1�(� − �1) is a

positive increasing function, letΨ be a strongly convex function

with modulus �2 on [0, 2f1], 61 = �1(1 − �) + �1�, and
f1 = (�1 − �1) ∫	1�1 g (�) Ω (�) ��

2 ∫	1�1 (� − �1)Ω (�) �� . (35)

	en 1�1 − �1 ∫
	1

�1
Ψ {g (�)} Ω (�) �� ≤ ∫1

0
Ψ(2�f1)

⋅ Ω (61) ��
− �2 ∫1
0
{[f (61) − �161 (��1 − ��1)] − 2�f1}2

⋅ Ω (61) ��.
(36)

If f is a strongly convex function withmodulus �1 on [�1, �1]
such that g(�) = f(�) − �1�(� − �1) is a positive increasing
function and f(�1) = 0, then the reverse inequality in (36)
holds.(b) Let f be a strongly concave function with modulus �1 on[�1, �1] such that g(�) = f(�)+�1�(�1−�) is a positive decreasing
function, let Ψ be a strongly convex function with modulus �2
on [0, 2f2], 62 = �1� + �1(1 − �), and

f2 = (�1 − �1) ∫	1�1 g (�) Ω (�) ��
2 ∫	1�1 (�1 − �)Ω (�) �� . (37)

	en 1�1 − �1 ∫	1�1 Ψ {g (�)} Ω (�) �� ≤ ∫1
0
Ψ(2�f2)

⋅ Ω (62) ��
− �2 ∫1
0
{[f (62) + �162 (��1 − ��1)] − 2�f2}2

⋅ Ω (62) ��.
(38)

If f is a strongly convex function withmodulus �1 on [�1, �1]
such that g(�) = f(�) + �1�(�1 − �) is a positive decreasing
function and f(�1) = 0, then the reverse inequality in (38) holds.
Proof. (a) From Lemma 16(a) we know that the functionℏ1(�) = f(�)/(�−�1) − �1� is decreasing; then using Lemma 15
to the functions -(�) = (� − �1)Ω(�) and ℏ1(�), we obtain

∫	1
�1

g (�)Ω (�) �� ∫�
�1
(� − �1)Ω (�) ��

≤ ∫�
�1
g (�) Ω (�) ��∫	1

�1
(� − �1)Ω (�) ��. (39)

It follows from (35) that inequality (39) can be rewritten as

∫�
�1

(� − �1)�1 − �1 2f1Ω (�) �� ≤ ∫�
�1
g (�)Ω (�) �� (40)

for all � ∈ [�1, �1].
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As g is an increasing function, and by use of �eo-
rem 6(b), we have

∫	1
�1
Ψ {g (�)}Ω (�) ��
≤ ∫	1
�1
Ψ{(� − �1)�1 − �1 2f1}Ω (�) ��

− �2 ∫	1
�1
{g (�) − (� − �1)�1 − �1 2f1}

2Ω (�) ��.
(41)

Note that

1�1 − �1 ∫
	1

�1
Ψ{(� − �1)�1 − �1 2f1}Ω(�) �� − �2�1 − �1

⋅ ∫	1
�1
{g (�) − (� − �1)�1 − �1 2f1}

2Ω (�) �� = 12f1
⋅ ∫2f1
0

Ψ (#)Ω(�1 + #�1 − �12f1 )�# − �22f1
⋅ ∫2f1
0

{[f(�1 + #�1 − �12f1 )
− �1 (�1 + #�1 − �12f1 )(#�1 − �12f1 )] − #}2
× Ω(�1 + #�1 − �12f1 )�# = ∫1

0
Ψ(2�f1)

⋅ Ω [�1 (1 − �) + �1�] ��
− �2 ∫1
0
{[f (�1 (1 − �) + �1�)

− �1 (�1 (1 − �) + �1�) (��1 − ��1)] − 2�f1}2× Ω [�1 (1 − �) + �1�] ��.

(42)

�erefore, we get

1�1 − �1 ∫
	1

�1
Ψ {g (�)}Ω (�) �� ≤ ∫1

0
Ψ(2�f1)

⋅ Ω (61) ��
− �2 ∫1
0
{[f (61) − �1 (61) (��1 − ��1)] − 2�f1}2

⋅ Ω (61) ��.
(43)

If f is a strongly convex function with modulus �1 on[�1, �1] such that g(�) = f(�) − �1�(� − �1) is a positive
increasing function and f(�1) = 0, then the reverse inequality
in (36) can be proved by using a similarmethod as in the proof
of part (a) and Lemma 16(c).

(b) From Lemma 16(b) we know that the function ℏ2(�) =
f(�)/(�1 − �) + �1� is increasing; then using Lemma 15 to the
functions -(�) = (�1 − �)Ω(�) and ℏ2(�), we obtain

∫�
�1
g (�) Ω (�) ��∫	1

�1
(�1 − �)Ω (�) ��

≤ ∫	1
�1

g (�) Ω (�) ��∫�
�1
(�1 − �)Ω (�) ��. (44)

From (37) we clearly see that inequality (44) can be rewritten
as

∫�
�1
g (�) Ω (�) �� ≤ ∫�

�1

(�1 − �)�1 − �1 2f2Ω (�) �� (45)

for all � ∈ [�1, �1].
As g is decreasing function, and by using �eorem 6(a)

we have

∫	1
�1
Ψ {g (�)} Ω (�) ��
≤ ∫	1
�1
Ψ{(�1 − �)�1 − �1 2f2}Ω (�) ��

− �2 ∫	1
�1
{g (�) − (�1 − �)�1 − �1 2f2}

2Ω (�) ��.
(46)

Note that

1�1 − �1 ∫
	1

�1
Ψ{(�1 − �)�1 − �1 2f2}Ω (�) �� − �2�1 − �1

⋅ ∫	1
�1
{g (�) − (�1 − �)�1 − �1 2f2}

2Ω(�) �� = 12f2
⋅ ∫2f2
0

Ψ (#)Ω(�1 − #�1 − �12f2 )�# − �22f2
⋅ ∫2f2
0

{[f(�1 − #�1 − �12f2 )
+ �1 (�1 − #�1 − �12f2 )(#�1 − �12f2 )] − #}2
× Ω(�1 − #�1 − �12f2 )�# = ∫1

0
Ψ(2�f2)Ω [�1�

+ �1 (1 − �)] �� − �2 ∫1
0
{[f (�1� + �1 (1 − �))

+ �1 (�1� + �1 (1 − �)) (��1 − ��1)] − 2�f2}2× Ω [�1� + �1 (1 − �)] ��.

(47)
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�erefore,

1�1 − �1 ∫
	1

�1
Ψ {g (�)}Ω (�) �� ≤ ∫1

0
Ψ(2�f2)

⋅ Ω (62) ��
− �2 ∫1
0
{[f (62) + �162 (��1 − ��1)] − 2�f2}2

⋅ Ω (62) ��.
(48)

If f is a strongly convex function with modulus �1 on[�1, �1] such that g(�) = f(�) + �1�(�1 − �) is a positive
decreasing function and f(�1) = 0, then the reverse inequality
in (38) can be proved by using a similarmethod as in the proof
of part (b) and Lemma 16(d).

�eorem 18. 	e following statements are true under the
assumptions of 	eorem 17.

(a) If g is a positive increasing function, then

1�1 − �1 ∫	1�1 Ψ {g (�)}Ω (�) �� ≤ ∫1
0
Ψ(2�f1)

⋅ Ω (61) ��
+ �2 ∫1
0
{[f (61) − �161 (��1 − ��1)]2 − (2�f1)2}

⋅ Ω (61) ��.
(49)

(b) If g is a positive decreasing function, then

1�1 − �1 ∫
	1

�1
Ψ {g (�)} Ω (�) �� ≤ ∫1

0
Ψ(2�f2)

⋅ Ω (62) ��
+ �2 ∫1
0
{[f (62) + �162 (��1 − ��1)]2 − (2�f2)2}

⋅ Ω (62) ��.
(50)

Proof. (a) We clearly see that Ψ(�) − �2�2 is convex function
due to Ψ being a strongly convex function with modulus �2.
�erefore, inequality (49) follows easily from [57, �eorem

1(i)] and the strong convexity ofΨ(�) − �2�2 together with the
fact that f is a strongly concave function with modulus �1 on[�1, �1] such that g(�) = f(�)−�1�(�−�1) is positive increasing
function.

(b) Similarly, inequality (50) follows easily from [57,

�eorem 1(ii)] and the strong convexity ofΨ(�)−�2�2 together
with the fact that f is a strongly concave function with
modulus �1 on [�1, �1] such that g(�) = f(�) + �1�(�1 − �) is
positive decreasing function.

�eorem 19. Let g(�) = f(�) − �1�(� − �1) be an increasing
function on (0, 1), let g/ℎ be a decreasing function on (0, 1), let

g, ℎ, andΩ be three positive functions on (0, 1), and let gΩ andℎΩ be integrable on (0, 1) such that
� = ∫10 g (�) Ω (�) ��∫10 ℎ (�) Ω (�) �� ≥ 0. (51)

And let Ψ be a strongly convex function with modulus �2. 	en
the inequality holds

∫1
0
Ψ {D�ℎ (�)}Ω (�) ��
≥ ∫1
0
Ψ {Dg (�)} Ω (�) ��

+ �2D2 ∫1
0
{g (�) − �ℎ (�)}2Ω (�) ��

(52)

for all D > 0.
Proof. From ℎ > 0 and (51), applying Lemma 15 to the
function -(�) = ℎ(�)Ω(�) and the decreasing function ℏ(�) =
g(�)/ℎ(�) we get

∫�
0
D�ℎ (�) Ω (�) �� ≤ ∫�

0
Dg (�)Ω (�) ��. (53)

Since g is increasing, therefore by using �eorem 6 we have

∫1
0
Ψ {D�ℎ (�)}Ω (�) ��
≥ ∫1
0
Ψ {Dg (�)} Ω (�) ��

+ �2D2 ∫1
0
{g (�) − �ℎ (�)}2Ω (�) ��.

(54)

�eorem 20. Let Ψ be a strongly convex function with
modulus �2. 	en the inequality

∫1
0
Ψ {D�ℎ (�)}Ω (�) ��
≥ ∫1
0
Ψ {Dg (�)}Ω (�) ��

+ �2D2 ∫1
0
[(�ℎ (�))2 − (g (�))2]Ω (�) ��.

(55)

holds for all D > 0 if all the assumptions of 	eorem 19 are
satis�ed.

Proof. We clearly see that Ψ(�) − �2�2 is a convex function
due to Ψ being a strongly convex function with modulus �2.
�erefore, inequality (55) follows easily from [60,�eorem 3]

and the convexity of the function Ψ(�) − �2�2.



8 Journal of Function Spaces

Remark 21. Clearly, [60, �eorem 3] can be deduced from
(52) due to

∫1
0
{g (�) − �ℎ (�)}2Ω (�) �� ≥ 0 (56)

or from (55) due to

∫1
0
[(�ℎ (�))2 − (g (�))2]Ω (�) �� ≥ 0 (57)

for convex function Ψ(�) = �2.
�e following �eorem 22 is an extension of �eorem 19.

�eorem 22. Let Ψ : [0,∞) �→ R be a continuous strongly
convex function with modulus �2, g(�) = f(�)−�1�(�−�1) (�1 is
a nonnegative real number), ℎ and Ω two positive integrable

functions on [�1, �1], 61(�) = g(�)/ ∫	1�1 g(�)Ω(�)��, and62(�) = ℎ(�)/ ∫	1�1 ℎ(�)Ω(�)��. 	en the following statements

are true.

(a) If g is increasing on [�1, �1] and g/ℎ is decreasing on[�1, �1], then
∫	1
�1
Ψ(62 (�))Ω (�) ��
≥ ∫	1
�1
Ψ(61 (�))Ω (�) ��

+ �2 ∫	1
�1
(61 (�) − 62 (�))2Ω(�) ��.

(58)

(b) If ℎ is increasing on [�1, �1] and g/ℎ is increasing on[�1, �1], then
∫	1
�1
Ψ(61 (�))Ω (�) ��
≥ ∫	1
�1
Ψ(62 (�))Ω (�) ��

+ �2 ∫	1
�1
(61 (�) − 62 (�))2Ω(�) ��.

(59)

Proof. (a) Let ℎ > 0; then applying Lemma 15 to the
function -(�) = ℎ(�)Ω(�) and the decreasing function ℏ(�) =
g(�)/ℎ(�), we have

∫�
�1
62 (�) Ω (�) �� ≤ ∫�

�1
61 (�) Ω (�) ��. (60)

�erefore, inequality (58) follows from �eorem 6 and the
fact that g is an increasing function on [�1, �1].

(b) Let ℎ > 0; then applying Lemma 15 to the function-(�) = ℎ(�)Ω(�) and the increasing function ℏ(�) = g(�)/ℎ(�),
we get

∫�
�1
61 (�) Ω (�) �� ≤ ∫�

�1
62 (�) Ω (�) ��. (61)

�erefore, inequality (59) follows from �eorem 6 and the
fact that ℎ is an increasing function on [�1, �1].
�eorem 23. 	e following statements are true under the
assumptions of 	eorem 22.

(a) If g is an increasing function on [�1, �1] and g/ℎ is a
decreasing function on [�1, �1], then

∫	1
�1
Ψ(61 (�))Ω (�) ��
≤ ∫	1
�1
Ψ(62 (�))Ω (�) ��

+ �2 ∫	1
�1
(621 (�) − 622 (�))Ω (�) ��.

(62)

(b) If ℎ is increasing on [�1, �1] and g/ℎ is an increasing
function on [�1, �1], then

∫	1
�1
Ψ(62 (�))Ω (�) ��
≤ ∫	1
�1
Ψ(61 (�))Ω (�) ��

+ �2 ∫	1
�1
(622 (�) − 621 (�))Ω (�) ��.

(63)

Proof. We clearly see that Ψ(�) − �2�2 is a convex function
due to Ψ being a strongly convex function with modulus�2. �erefore, inequalities (62) and (63) follow from [61,
�eorem 2.3] and the convexity of the function Ψ(�) −�2�2.
Remark 24. Clearly, �eorem 2.3(1) and �eorem 2.3(2)
given in [57] can be deduced by (62) and (63), respectively.

Remark 25. �eorem 22 is an extension of Favard’s inequality
given in �eorem 17. Indeed, let Ψ(�) be a strongly convex
functionwithmodulus �2 , thenΨ(D�) is also a strongly convex
functionwithmodulus D2�2 for any D ∈ R. Substituting ℎ(�) =� − �1 in (58), one has

∫	1
�1
Ψ [f (�) − �1� (� − �1)]Ω (�) ��
≤ ∫	1
�1
Ψ(∫	1�1 [f (�) − �1� (� − �1)]Ω (�) ��

∫	1�1 (� − �1)Ω (�) �� (�
− �1))Ω(�) �� − D2�2 ∫	1

�1
([f (�)
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− �1� (� − �1)]
− ∫	1�1 [f (�) − �1� (� − �1)]Ω (�) ��

∫	1�1 (� − �1)Ω (�) �� (� − �1))
2

⋅ Ω (�) ��.
(64)

Since f is a strongly concave function with modulus �1 on[�1, �1] such that g(�) = f(�) − �1�(� − �1) is a positive
increasing function, taking D = 1 and using (35) and 61 in
(64), we obtain the Favard’s inequalities given in�eorem 17.

Remark 26. From (64) we can easily obtain Remark 2.4 given
in [61] due to

∫	1
�1
([f (�) − �1� (� − �1)]
− ∫	1�1 [f (�) − �1� (� − �1)]Ω (�) ��

∫	1�1 (� − �1)Ω (�) �� (� − �1))
2

⋅ Ω (�) �� ≥ 0.
(65)

For an application of �eorem 22, we get Corollary 27 as
follows.

Corollary 27. Let � > 1,  ∈ (−∞, 0) ∪ (1,∞), Ψ(�) = �
,
and Ω, g, ℎ, 61, and 62 be stated as in 	eorem 22. 	en the
following statements are true.

(a) If g is increasing on [�1, �1] and g/ℎ is decreasing on[�1, �1], then
(∫	1�1 g (�)Ω (�) ��
∫	1�1 ℎ (�) Ω (�) ��)




≥ ∫	1�1 g
 (�) Ω (�) ��
∫	1�1 ℎ
 (�) Ω (�) �� + �2

⋅ (∫	1�1 g (�)Ω (�) ��)

∫	1�1 ℎ
 (�) Ω (�) ��

⋅ ∫	1
�1
(61 (�) − 62 (�))2Ω(�) ��.

(66)

(b) If ℎ is increasing on [�1, �1] and g/ℎ is an increasing
function on [�1, �1], then

∫	1�1 g
 (�) Ω (�) ��
∫	1�1 ℎ
 (�) Ω (�) �� ≥ (

∫	1�1 g (�) Ω (�) ��
∫	1�1 ℎ (�) Ω (�) ��)




+ �2
⋅ (∫	1�1 g (�) Ω (�) ��)

∫	1�1 ℎ
 (�) Ω (�) ��

⋅ ∫	1
�1
(61 (�) − 62 (�))2Ω (�) ��.

(67)

Proof. (a) Since g is increasing on [�1, �1] and g/ℎ is a
decreasing function on [�1, �1], using (58) given in �eo-
rem 22 and substituting Ψ(�) = �
, we get

∫	1
�1
6
2 (�) Ω (�) ��
≥ ∫	1
�1
6
1 (�) Ω (�) ��

+ �2 ∫	1
�1
(61 (�) − 62 (�))2Ω (�) ��,

∫	1
�1
( ℎ(�)∫	1�1 ℎ (�) Ω (�) ��)




Ω (�) ��

≥ ∫	1
�1
( g (�)∫	1�1 g (�)Ω (�) ��)




Ω(�) ��
+ �2 ∫	1
�1
(61 (�) − 62 (�))2Ω (�) ��.

(68)

�erefore, inequality (66) follows from (68).
(b) Since ℎ is increasing on [�1, �1] and g/ℎ is an increas-

ing function on [�1, �1], using (59) given in �eorem 22 and
substituting Ψ(�) = �
 we get inequality (67).
Remark 28. Let ℎ(�) = � − �1, Ω(�) = 1, and f be a
strongly concave function with modulus �1 on [�1, �1] such
that g(�) = f(�) − �1�(� − �1) is a positive increasing function.
�en inequality (66) leads to the classical Favard’s inequality
for strongly convex functions with modulus �2:2
 + 1 ( 1�1 − �1 ∫

	1

�1
g (�) ��)
 ≥ 1�1 − �1

⋅ ∫	1
�1

g

 (�) �� + �2�1 − �1 (∫	1�1 g (�) ��)




⋅ ∫	1
�1
( g (�)∫	1�1 g (�) �� −

2 (� − �1)(�1 − �1)2)
2

��.
(69)

Remark 29. From (69) we get the classical Favard’s inequality
given in [58] due to

(∫	1
�1

g (�) ��)


⋅ ∫	1
�1
( g (�)∫	1�1 g (�) �� −

2 (� − �1)(�1 − �1)2)
2

�� ≥ 0. (70)
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Mathématiques, vol. 57, pp. 54–64, 1933.

[59] N. S. Barnett, P. Cerone, and S. S. Dragomir, “Majorisation
inequalities for Stieltjes integrals,” Applied Mathematics Letters,
vol. 22, no. 3, pp. 416–421, 2009.
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