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Abstract

The ring-core technique allows for the determination of non-uniform residual stresses from the surface

up to relatively higher depths as compared to the hole-drilling technique. The integral method, which is

usually applied to the hole-drilling, can also be used for elaborating the results of the ring-core test since

these two experimental techniques share the axisymmetric geometry and the 0-45-90 degrees layout of

the strain gage rosette. The aim of this paper is at providing accurate coefficients which can be used for

evaluating the residual stress distribution by the ring-core integral method. The coefficients have been

obtained by elaborating the results of a very refined plane harmonic axisymmetric finite element model

and verified with an independent 3D model. The coefficients for small depth steps were initially provided,

then the values for multiple integer step depths were also derived by manipulating the high resolution

coefficient matrices, thus showing how the present results can be practically used for obtaining the

residual stresses according to different depth sequences, even non-uniform. This analysis also allowed

the evaluation of the eccentricity effect which turned out to be negligible due to the symmetry of the

problem. An applicative example was reported in which the input of the experimentally measured relaxed

strains were elaborated with different depth resolutions, and the obtained residual stress distributions

compared.
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Introduction

The hole-drilling and the ring-core are semi-destructive mechanical techniques used for determining residual

stresses at the surface and in the near surface regions, in components with a locally flat surface. Both

techniques are based on axisymmetric material removal. The hole-drilling is a well established procedure

defined by internationally accepted standards1;2. The ring-core was introduced more than 20 years ago3–6,

however it was deeply investigated and developed only recently, especially in terms of sensitivity and

uncertainty analysis7–10, and even applied at the microscale11;12. In the hole-drilling the material is removed

at the centre of a rosette thus the relaxed strains are measured at the periphery of the hole, whereas in the ring-

core the strains are measured in the central internal region, as shown in Figure 1. These two techniques can be

considered complementary. The hole-drilling is more popular being dedicated to measure the residual stresses

near the surface13–18 (typically in the layer up to 1 mm, or slightly larger) while the ring-core technique,

having a large groove diameter19, is usually suitable for larger size components where the residual stresses at

depths in the order of a few millimetres are of interest, such as rotor forging20 or thick welded plates21.

Figure 1. Ring-core technique, typical dimensions of the circular groove and strain gage grids.

Regarding the hole-drilling, the calculation of the residual stresses, after having produced a hole in incremental

depths and the relieved strains recorded, can be performed with the standard ASTM E837 – 13a1 that applies

the integral method. The same calculation procedure can be applied to elaborate the relaxed strains produced

by the ring-core8;10;22, since the axial-symmetry of the problem and the grid layout according to the 0-45-90

degrees scheme are the same. However, other numerical techniques for the residual stress determination have

been proposed, such as the incremental strain method21;23;24 or the influence function analytical technique as

proposed by Beghini et al.13;14 for the hole-drilling.
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Barsanti et al. 3

This paper presents an accurate Finite Element (FE) analysis, based on the plane harmonic axisymmetric

elements, by which the coefficients for applying the integral method to the ring-core were obtained. It is worth

noting that the use of a plane model with harmonic elements for solving this problem does not imply any

approximation as the element type captures exactly the angular dependence of the solution. This FE approach

is highly recommended for a parametric analysis of this type as dramatically reduces the number of nodes

and elements if compared to a 3D model with equivalent level of accuracy. Recently, Salvati et al.12 used an

axisymmetric model to interpret the equibiaxial component in a micro ring-core measurement. However, as

shown by Barsanti et al.25 for the hole-drilling method, the axisymmetric elements with the harmonic feature

allows to model the shear components too and consequently any in-plane stress condition. In other words,

the (simple) axisymmetric element type allows the determination of the equibiaxial matrix a, while with the

harmonic axisymmetric elements both matrices a and b can be obtained.

The ring-core geometrical parameters are shown in Figure 1 where the grid dimensions reproduce the HBM

RY51 rosette. The aim of this paper is to obtain and provide the coefficients for a sequence of small depth steps

(∆H = 0.1 mm) in order to give the possibility to derive, with simple calculations, the coefficients for larger

steps too. The consistency of the results was validated with a 3D FE model completely independent from the

reference axisymmetric model used for the calculation of the proposed coefficients. Finally, an applicative

example illustrates the practical use of the provided coefficients.

Outline of the integral method

For a plane problem under a uniform residual stress field and according to the hypothesis that the grid centre

belongs to the cylindrical groove axis, the relationship relating the measured relaxed strain εr to the principal

(residual) stresses, as introduced by Schajer26;27, is:

εr(ϑ) = A(σmax +σmin)+B(σmax −σmin)cos(2ϑ) (1)

where σmax and σmin are the maximum and minimum residual normal stresses, respectively, ϑ is the angle

between the principal direction of σmax and the axis of the grid, and A,B are two constants depending on the

geometry and on the elastic material properties E and ν . From equation (1), the following matrix relationship

is obtained:






(A+B) (A−B) 0

A A 2B

(A−B) (A+B) 0










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σ1

σ3

τ13






=







ε1

ε2

ε3






(2)

in which the subscripts 1, 2, 3 are related to the three grid directions according to the 0-45-90 degrees scheme

and then 1 and 3 are two orthogonal directions which can be taken as the local reference frame, Figure 1.

As the directions 1 and 3 are in general not coincident with the residual stress principal directions, the shear

stress component τ13 can be nonzero. The form of equation 2 suggests that three scalar relationships can

be written in a decoupled form, after introducing three strains and three stresses new variables which are

linear combinations of the reference frame strain and stress components. The definitions of these variables
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can be retrieved in the standard ASTM E837, and the following quantities are needed to be introduced for the

measured strains:

p =
ε3 + ε1

2
q =

ε3 − ε1

2
t =

2ε2 − (ε3 + ε1)

2
= ε2 − p (3)

in which p is the equibiaxial and q and t are the shear components, and the sign of t is discussed below. The

residual stresses can be similarly combined, thus defining an equibiaxial P and two shear components Q,T :

P =
σ3 +σ1

2
Q =

σ3 −σ1

2
T = τ13 (4)

After defining the combined strains p,q, t and combined stresses P,Q,T , equation 2 can be rewritten as three

decoupled relations:






2A 0 0

0 2B 0

0 0 2B
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q

t






(5)

By introducing the material Young’s modulus and the Poisson’s ratio, the relationship available in the ASTM

standard1 can be obtained:

−
1

E


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a(1+ν) 0 0

0 b 0

0 0 b
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q

t






(6)

where the dimensionless positive coefficients a and b only depend on the ratios between the groove diameters

and the grid dimensions. In principle, a and b are unaffected by the Poisson’s ratio ν only for a plane stress

model, i.e. for a through-thickness hole geometry, while this is not true in a general three-dimensional problem.

The Poisson’s ratio dependence in equation (6) is therefore only approximate. In fact, the coefficients are

functions of the Poisson’s ratio, a(ν) and b(ν), however in the range 0.25 < ν < 0.35 the differences are in

the order of a few percent, thus it is usually assumed: a = a(0.3) and b = b(0.3).

When the residual stresses vary along the depth direction, the same approach can be followed but a vectorial

form is required. If the circular groove is performed in n steps, usually each with the same depth ∆H, the

scalars p,q, t and P,Q,T are replaced by n-dimensional vectors:

p = (p(1), p(2), . . . , p(n))T

q = (q(1),q(2), . . . ,q(n))T

t = (t(1), t(2), . . . , t(n))T

(7)

and

P = (P(1),P(2), . . . ,P(n))T

Q = (Q(1),Q(2), . . . ,Q(n))T

T = (T (1),T (2), . . . ,T (n))T

(8)

which represent the combined strains and stresses, respectively, at each i-th depth step: i= 1, . . . ,n. The general

p(i) term represents the combined relaxed strain (equation 3) measured when the groove depth is i×∆H, while

P(i) represents the combined stress that is assumed to be uniform from the depth (i−1)×∆H to i×∆H. Similar
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definitions are valid for q(i), t(i) and shear stresses Q(i),T (i). Consequently, the scalars a and b in equation 6

have to be replaced by n×n lower triangular matrices a and b. By combining the definitions and the relations

introduced above, the matrix form of the integral method is:

−
1+ν

E
a P = p −

1

E
b Q = q −

1

E
b T = t (9)

When the matrices a,b are available, the residual stress distribution of any experimental case can be deduced

from the measured strains by solving the linear systems 9. The elements ai j,bi j of the just defined calibration

matrices for the ring-core are calculated and provided in the next section.

A discussion about the sign of the combined strain t has been already provided by Barsanti et al.25 for the hole-

drilling, and it is reconsidered here for the ring-core as it can be a source of formal errors in the elaboration.

After introducing the orientations of the directions 1 and 3, if the second grid is along the bisector of a quadrant

where the coordinates have same sign (1st or 3rd quadrant), Figure 2, and the residual shear τ13 is positive, a

negative (contraction) strain is measured by the second grid after introducing the groove. Assuming no equi-

biaxial strain component, the combined strain t is equal to ε2, equation (3), thus it is negative too. According

to equation (9), the combined stress T , that is equal to the shear stress τ13, and the combined strain t have

opposite sign, thus confirming the accurate definition of the last of equation (3). On the contrary, if the second

grid is aligned with the bisector of a quadrant with opposite sign coordinates (2nd or 4th quadrant) the second

grid strain and the shear stress have the same sign, and then the opposite definition of the last of equation

(3) is required, in agreement with the ASTM standard. However, the scheme with the second grid along the

bisector of the 1st or the 3rd quadrant is preferred in the present work, thus the sign of the last of equations 3

is confirmed.

Figure 2. Scheme for deducing the sign of the second grid strain with respect to its angular position.
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Axisymmetric harmonic FE model

A refined plane FE model was generated with 5 nested regions having different nodal density. The element size

was reduced by a factor of two when passing from one region to the internal one, in order to have the innermost

zone, where the material removal is simulated, with 0.1 mm square-shaped elements, and this element edge

was 70 times smaller than the internal radius of the groove, Figure 3(a). The FE model height and width were

chosen much larger than the groove internal radius, Figure 3(a), to reproduce the condition of a virtually semi-

infinite body. The far field boundary conditions influenced the simulated displacements within the groove, and

the calculated coefficients, with an estimated effect in the order of 10−3. Approximately 126000 axisymmetric

harmonic elements were used, and the element type was ANSYS® Plane25.

In agreement with equation (9), the general state of residual stress was represented by superimposing an

equibiaxial stress and two pure shears. The equibiaxial and the pure shear stress components were applied

as two independent load steps, Figure 3(b). Only a single shear stress component was actually required to be

modelled, as the matrix to be determined is just b for both shears. The equibiaxial load was modelled with a

zero order harmonic analysis, i.e. a radial pressure constant in the angular direction, applied on the cylindrical

surfaces of the groove. Whereas, the shear load was obtained by superimposing a normal and a tangential

traction distributions, both as second order harmonics with 2ϑ variation, relatively shifted by an angle of 45◦,

Figure 3(b).

Figure 3. (a) Harmonic plane axisymmetric FE model. (b) Scheme of the basis loading conditions applied to the FE

model.

Similarly to the simulations for the hole-drilling technique25, the FE model is residual stress free, the material

at the groove is preliminarily removed and the proper tractions are applied to both the inner and outer

cylindrical surfaces. Actually, the physical problem is the opposite. Residual stresses are pre-existing, so the

material removal relaxes to zero the tractions at the surfaces of the groove. In order to take into account this
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alternative way of modelling, a minus sign has to be introduced in the relation between stresses and strains. In

fact, by applying the traction at the free surfaces, the opposite strain is obtained with respect to the theoretical

removal of the material.

The same resolution of the model geometry was applied to the integral method load step, thus ∆H = 0.1 mm.

For example, when the groove had depth H = 4.2 mm, 42 load positions were analysed, the first with

the load from 0.0 to 0.1 mm, then from 0.1 to 0.2 mm, and so on. Since the maximum considered

groove depth was Hmax = 5.0 mm, the total number of single simulations (equibiaxial and pure shear) was:

2× (50× (50+1)/2) = 2550.

Coefficients for the integral method

Coefficient derivation from the displacement fields

The coefficients of the matrices a,b can be derived by imposing a single unitary traction at each depth

position, as described in the previous section, and calculating with the FE results the combined strains

virtually measured by the rosette. For instance, to calculate the ai j element, the stress components P( j) = 1,

P(k,k �= j) = 0 were imposed, and the strain component pi calculated. The simulated strain measured by the grids

was evaluated by computing the average displacement (in the grid direction) at the extreme edge segments,

and dividing the averaged displacement differences by the grid length, without retrieving any displacement

information at the intermediate positions of the grids. With reference to Figure 4, the whole procedure is

summarized in detail hereafter:

1. Define the vertices A,B,C,D of each grid and a large enough number of integration points (about 100)

on the sides AB and CD, both in cartesian and polar coordinates;

2. Introduce the components of the unit vectors transverse t̂ and normal n̂ (external to the grid) to the

segments AB and CD, at each integration point;

3. Calculate the displacements along the radial and the tangential directions by local linear interpolation

of the FE element results, at each integration point on sides AB and CD;

4. Evaluate the displacement components along the transverse and normal directions at the integration

points;

5. Being the grid mainly sensitive to the extensional strain in the normal direction (transverse sensitivity,

though not zero, is quite small and usually neglected) only the displacements along the n̂ direction at the

integration points were considered. However, t̂ direction displacements could also be taken into account

on the lateral sides BC and AD if the transversal strain sensitivity were significant.

6. Average the normal displacements on the active sides AB and CD.

7. Compute the difference between AB and CD averaged displacements and divide it by the grid length to

obtain the simulated measured strains ε1, ε3.

8. Evaluate ε1,ε3 to calculate the combined strains p and q, while ε2 is unnecessary since the shear applied

according to the load scheme of Figure 3 (b) is not along the 45 degrees direction.

9. Deduce the matrix coefficients by multiplying pi by −E/(1+ν) for ai j, and qi by −E for bi j.

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 4. Displacement fields on the strain gage areas: (a) equibiaxial, and (b) pure shear load cases.

This calculation was repeated for all the 2550 simulated groove depths, load depths and load type combinations

to obtain the coefficients ai j,bi j, with i ≥ j (coefficients with i < j are zero). The a,b matrices obtained for

the Poisson’s ratio ν = 0.3 are reported in Tables 1 and 2, split in blocks to fit the paper page, and also

electronically available on the online Appendix (http://sdj.sagepub.com).

Integer multiple step coefficient determination

Lower resolution coefficients can be derived for any m multiple depth step of ∆H = 0.1 mm, for instance

m= 2,5,10 in order to be applied to measurements with higher depth steps. By implementing the superposition

principle, the lower resolution coefficients can be obtained as simple summations of the original coefficients:

one every m rows must be taken into account, corresponding to m× 0.1 mm groove depth. For each of these

rows, elements must be collected in blocks of size m (starting from the leftmost one), and all the elements in

the same block must be summed. At the end of this procedure, two smaller lower triangular matrices of size

(50/m)× (50/m) are obtained.

For example, in order to obtain ai j and bi j for 1 mm depth step (m = 10), only the row indices 10, 20, 30, 40,

50 must be considered. In the row with i = 10 of the matrix ā, a single block of 10 values is built, whose sum

is 0.1145. In the row with i = 20 two blocks of 10 values are built, whose sums are 0.1966 and 0.1139, and so

on up to the row with i = 50 in which 5 values are obtained by summing the elements contained in each of the

5 blocks. The same procedure is to be repeated for the matrix b̄.

Non-uniform steps, for example as initially proposed by Zuccarello6, and recently re-proposed by Menda

et al.8;9 and Zuccarello et al.10, can be also obtained from the large matrices introduced above. However, the

depths need to be approximated with the 0.1 mm resolution. At the beginning, the depth 0.6 mm is equivalent to

6 steps of the the high resolution matrices, while 1.05 mm needs to be approximated as 1.1 mm, corresponding

to 11 steps. According to this scheme, as graphically shown in Figure 5, the coefficient a11(b11) is the sum

of all the six elements of the sixth row, then the coefficient a21(b21) is the sum of the first six elements of the

eleventh row, a22(b22) is the sum of the coefficients from the seventh to the eleventh elements, and so on.
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Table 1. ai j coefficients (×103) for DI = 14 mm,DE = 18 mm,GL = 5.0 mm,GW = 2.5 mm, maximum depth

Hmax = 5.0 mm and depth resolution ∆H = 0.1 mm.

Validation of the calibration coefficients

A 3D model was implemented for validating the plane FE analysis and the proposed calculation procedure.

Though coarser than the axisymmetric model, Figure 6, the load application and the relaxed strain calculation

were completely different in this 3D analysis, thus it was unlikely to replicate the same error on both models.

The successful comparison, even if verified for a few residual stress cases, gave high confidence about the

proper application of the integral method and then the correctness of the coefficients. In principle, the same

Prepared using sagej.cls



10 Journal Title XX(X)

Table 2. bi j coefficients (×103) for DI = 14 mm,DE = 18 mm,GL = 5.0 mm,GW = 2.5 mm, maximum depth

Hmax = 5.0 mm and depth resolution ∆H = 0.1 mm.

level of accuracy would have been obtained with a 3D model just by replicating the discretization in the

section plane and then introducing a large number of divisions, for example 100, along the angular direction.

However, such a higher number of elements would require huge computing performances, basically without

any significant advantage.

In the 3D analyses, the external load was applied as far field along the two principal directions x and y and

the material removal simulated with no traction applied to the groove surfaces. The relaxed strains were then
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Figure 5. Calculation scheme with non-uniform depths for deriving the lower resolution coefficients of matrices ai j

(a) and bi j (b).

Figure 6. FE model for validation, (a) load scheme, (b) 3D mesh grid side points.

obtained as the difference between the final grooved geometry and the load uniformly applied before the

material removal, which could be computed with the Hooke’s law. The problem features two symmetry planes

which were considered to reduce the modelled volume by a factor of 4. The grid side points were simulated

as any angle with respect to the first principal direction x and those points outside the quarter volume were

computed by exploiting the symmetries of the problem. The matrices for the integral method according to 0.5
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mm resolution of the 3D model, were obtained by applying the procedure introduced in the previous section,

and reported in Table 3. Equations (9) were inverted to obtain the stresses, assuming as input the strains of the

3D FE analysis which was treated as a virtual residual stress experiment.

Table 3. Calibration coefficients with resolution ∆H = 0.5 mm for the validation analysis.

ai j coefficients (×103)

38.75 0 0 0 0 0 0 0 0 0

67.64 46.89 0 0 0 0 0 0 0 0

89.84 72.73 47.66 0 0 0 0 0 0 0

106.4 90.14 70.30 43.64 0 0 0 0 0 0

118.1 102.2 83.90 62.71 36.92 0 0 0 0 0

125.9 110.3 92.68 73.15 52.35 29.17 0 0 0 0

130.8 115.4 98.21 79.45 60.16 41.14 21.54 0 0 0

133.8 118.5 101.5 83.20 64.60 46.80 30.43 14.71 0 0

135.4 120.3 103.4 85.32 67.07 49.82 34.35 20.97 9.004 0

136.3 121.2 104.4 86.43 68.37 51.38 36.29 23.52 13.12 4.485

bi j coefficients (×103)

46.68 0 0 0 0 0 0 0 0 0

81.41 56.78 0 0 0 0 0 0 0 0

114.6 90.99 60.67 0 0 0 0 0 0 0

146.2 120.6 93.39 59.51 0 0 0 0 0 0

175.2 147.2 119.2 89.35 54.59 0 0 0 0 0

200.7 170.4 140.9 111.0 80.65 47.29 0 0 0 0

222.3 190.0 159.0 128.4 98.37 69.24 38.90 0 0 0

240.1 206.0 173.7 142.2 111.9 83.35 56.81 30.39 0 0

254.4 218.8 185.3 153.0 122.3 93.71 67.79 44.58 22.43 0

265.7 228.8 194.4 161.4 130.2 101.5 75.61 52.96 33.34 15.37

The calculated stress components were finally compared with the stresses imposed to the 3D model, after

applying a tensor rotation to obtain the components according to the 1,3 grid rosette frame. Indeed, a

misalignment angle was introduced between the principal stress directions and the rosette frame to have a

nonzero shear stress τ13 which also allowed to verify the sign definition of the strain component t (equation

3). Five load and angle combinations were considered and the average stress over the depth of 5 mm of each

component was compared to the reference value, then the differences were evaluated. This comparison is

shown in Table 4 in which differences not larger than 1% are shown, and in Figure 7 where the three stress

components of the last case of Table 4 are plotted. The back-calculated stress distributions resulted quite

uniform with just small variations at the extremes where the method is more sensitive to the disturbance, and

the slight different results of the two FE models produced a detectable effect. It is worth noting that these

differences are mainly to be imputed to the coarseness of the 3D analysis, as the plane axisymmetric model

features a finer mesh and an exact angular dependence.
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Table 4. Validation cases with different combinations of loads and rosette angles, and obtained small average

stress differences.

σx, MPa σy, MPa σy/σx Grid 1 ϑ σ1 diff. σ3 diff. τ13 diff.

100 0 0.0 0◦ 0.1% − −

100 100 1.0 0◦ −0.2% −0.2% −

100 −100 −1.0 0◦ 0.3% 0.3% −

75 −30 −0.4 −45◦ −0.2% −0.2% 0.3%

75 −30 −0.4 20◦ 0.2% 1.0% 0.3%

Figure 7. Comparison between the imposed and the back-calculated stresses of a validation case.

Sensitivity to eccentricity

The eccentricity between the hole and the rosette is an important issue in the hole-drilling method. The

generalization of the integral method proposed by Barsanti et al.25, for taking into account of the eccentricity

in the hole-drilling, was adapted to the ring-core too. According to that general approach, the p,q, t and P,Q,T

decomposition can be no more applied as the axisymmetry of the problem is lost. A more general (still linear)

relationship between all the components of stress and strain is consequently introduced:

−
1

E
AS = e (10)

In equation (10), S = (σ
(1)
1 ,σ

(1)
3 ,τ

(1)
13 , . . . ,σ

(n)
1 ,σ

(n)
3 ,τ

(n)
13 )T is the vector collecting all the components

of residual stresses in blocks of three elements (one block for each drilling depth) and e =

(ε
(1)
1 ,ε

(1)
2 ,ε

(1)
3 , . . . ,ε

(n)
1 ,ε

(n)
2 ,ε

(n)
3 )T is the vector collecting the relaxed strains, again in blocks of three
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elements. The lower triangular 3×3 block matrix A is defined in equation (11):

A =












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21 A
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22 A

(32)
23 A

(33)
21 A

(33)
22 A

(33)
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A
(31)
31 A

(31)
32 A

(31)
33 A

(32)
31 A

(32)
32 A

(32)
33 A

(33)
31 A

(33)
32 A

(33)
33







































(11)

The elements A
(i j)
hk have indices h,k = 1, . . . ,3, i = 1, . . . ,n and j = 1, . . . , i, where n is the number of drilling

steps. Each coefficient of this matrix depends on the eccentricity components e1 and e3 defined in the frame

of the grid with axes in the directions 1 and 3 as shown in Figure 8. A power series expansion can be used to

represent the dependence of these coefficients to the eccentricity, as shown in equation (12):

A
(i j)
hk = A

(i j)
0,hk +

∂A
(i j)
hk

∂e1
e1 +

∂A
(i j)
hk

∂e3
e3 +

1

2

∂ 2A
(i j)
hk

∂e2
1

e2
1 +

1

2

∂ 2A
(i j)
hk

∂e2
3

e2
3 +

∂ 2A
(i j)
hk

∂e1∂e3
e1e3 + . . . . (12)

If the eccentricity is small, as it is expected in a correctly applied procedure, only the constant and the linear

terms of these expansions are sufficient to approximate the effect. For the hole-drilling, both the two first

order derivatives are nonzero, while these terms are zero for the ring core. The physical reason of this result

is the symmetry property of the geometry. As the grids are located at the centre, a displacement of the groove

either parallel or orthogonal with respect to the grid direction, produces a higher sensitivity at one side and

a lower sensitivity at the opposite side, as schematically shown in Figure 8, thus inducing a compensating

effect. In fact, a displacement of the grid along a direction produces the same layout as the opposite direction

plus a rotation of 180 degrees, which this latter is equivalent from the stress point of view. On the contrary

for the hole-drilling technique, a first order net effect results unless special compensating grids are used, as

investigated by Beghini et al.28 and used by Iurea et al.29, featuring an opposite grid, connected in series, for

each of the three directions.

Numerical evaluation of the elements A
(i j)
hk for different eccentricities performed with the proposed model,

numerically confirmed that the ring-core method does not experience sensitivity to eccentricity at the first

order. Two examples of this analysis are reported in Figure 9 in which it is evident that the tangent plane of

the functions A
(i j)
hk (e1,e3) at the origin is horizontal, with typical local shapes which are either an ellipsoidal

surface, Figure 9(a), or a saddle surface, Figure 9(b). For this reason, it was considered not necessary to

introduce the form of equation (10) which is more cumbersome, and then the procedure based on p,q, t was

assumed accurate enough even with a moderate eccentricity. Indeed, as evident in Figure 9 for the examined

geometry, the coefficients A
(i j)
hk vary less than 1% when the eccentricity vector components (e1,e3) are in the
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range ±0.2 mm. The effects of the second order terms in equation 12 are significant only for eccentricities

which are relatively large and uncommon in typical experimental applications.

Figure 8. Self compensated eccentricity sensitivity of the ring-core, comparison with the hole-drilling.

Figure 9. Eccentricity sensitivity of the general form matrix coefficients: (a) A21
21, (b) A33

11 examples, and zero first

partial derivatives at the origin.

Experimental application

The mechanical system for automatically drilling the groove and performing the strain gage measurement,

manufactured by SINT Technology30, is shown in Figure 10 along with the HBM RY51 rosette. The drilling

spindle of the device is hollow thus allowing the strain gage cables to pass through. The rosette requires a

special preparation to protect the grids during the drilling. The overall dimensions of the system are 310 mm

long, 160 mm wide, 230 mm maximum height. The centring is performed with two independent mechanical

micrometric guides and a control webcam, connected with Ethernet TCP/IP. By this system a positioning

accuracy in the order of ±0.15 mm can be obtained. The vertical feed motion is driven by a stepping motor,

and the machining of the annular groove around the strain gage rosette is operated with a DC motor to have
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the tool rotational speed at approximately 200 rpm.

Figure 10. Equipment by SINT Technology for the ring-core automatic testing and HBM rosette.

The application introduced here is not intended to represent a validation, but an experimental example in which

the residual stresses are effectively evaluated with different resolutions by means of the proposed coefficients.

The ring-core rosette was applied on the lateral surface of a tubular square bar made by ASTM A500 Grade

B steel carrying a longitudinal weld. The centre of the measurement region was at 40 mm from the weld,

and the grid 1 direction perpendicular to the weld bead. The measured relaxed strains with 0.1 mm milling

tool incremental step are plotted in Figure 11 (a). Initially, the residual stresses were calculated with two

resolutions, Figure 11 (b): 1.0 mm (dashed lines) and 0.5 mm (solid lines). Higher resolution residual stress

distributions, such as 0.2 mm or even 0.1 mm, can also be calculated with the proposed calibration matrices.

However, for these small step values, the application of a filtering technique when solving equations 9 is

recommended to reduce the effect of the noise. In particular the Tikhonov regularization proposed in the

standard ASTM E837, which can be applied to the integral method for the ring core in the same way as for the

hole-drilling, was demonstrated by Barsanti et al.31 to mitigate the effect of the measurement noise. Finally,

the non-uniform step sequence, proposed by Zuccarello6 for this arrangement, with 8 depth increments and

optimized strain measurement sensitivity, was implemented by means of the coefficients derived with the

calculation scheme of Figure 5. The obtained residual stress distribution is reported in Figure 11 (c), where

it is evident that the trends of the components are quite similar to the solution obtained with 0.5 mm step. In

fact, the optimized step sizes range between 0.4 mm and 0.7 mm up to 3.5 mm depth.

Conclusions

The paper provides the calibration coefficients to apply the integral method in the ring-core technique for

measuring non-uniform in depth residual stress distributions. The harmonic plane axisymmetric finite element

model used for the numerical simulation was described along with the procedure to deduce the numerically

simulated measured strains. The use of a 2D FE model produced results with high resolution and accuracy.

Similar results could be obtained with a more intuitive 3D model but with 2 orders of magnitude more
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Figure 11. Ring-core experimental example, (a) relaxed strains with 0.1 mm incremental step, (b) residual stresses

obtained with different depth steps: 0.5 mm and 1.0 mm, (c) residual stresses obtained with the optimized steps.

elements. In order to make the procedure suitable for processing experimentally obtained relaxed strains, a

method for deriving lower resolution coefficients was proposed by which coarser and also non-uniform step

sequences can be analysed. A more general form of the integral method, and the related coefficient analysis,

confirmed that first order expansions of the relaxed strains, as a function of groove eccentricity with respect

to the rosette centre, are zero. As a consequence, the integral method with the combined strains and stresses

can be considered accurate enough even if the ring-core is produced with an eccentricity entity typical of

the correct experimental implementation of the technique, hence still by using the proposed high resolution

coefficient matrices. An example of practical application of the obtained coefficients was finally presented.

The residual stress distributions obtained with different depth steps, and in particular with an optimized

non-uniform step sequence, were calculated and compared, thus demonstrating the applicability of the lower

resolution coefficient determination procedure.
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Appendix I

Notation

DI,DE Internal and external diameter of the ring-core groove.

GL,GW Grid length and width of the strain gage rosette.

∆H Groove depth incremental step.

H Groove depth at a specific drilling step.

Hmax Maximum groove depth.

n Number of the step increments at the final depth.

σmax,σmin Principal maximum and minimum residual stresses.

ϑ Generic grid orientation with respect to the maximum principal stress direction.

εr Relaxed strain measured by a generic grid.

A,B General elastic constants relating the residual stresses to the relaxed strains.

σ1,σ3,τ13 Residual stress components according to the rosette reference frame.

ε1,ε2,ε3 Relaxed strains measured by the 0-45-90 degrees grids.

P,Q,T Equibiaxial and shear combined stresses.

p,q, t Combined relaxed strains according to the P,Q,T stresses.

E,ν Young’s modulus and Poisson’s ratio material properties.

a,b Calibration coefficients relating the P,Q,T residual stresses to the p,q, t relaxed strains.

P,Q,T Vectors containing the combined stresses along the depth.

p,q, t Vectors containing the combined strains along the depth.

ā, b̄ Calibration coefficient matrices.

ai j,bi j Calibration coefficient elements.

t̂, n̂ Transverse and normal unit vectors along the directions of the grid.

m Integer multiple for lower resolution calibration matrices.

σx,σy Stress components introduced as input for the FE 3D model validation.

S Vectors containing the blocks of the three uncoupled residual stress components.

e Vectors containing the blocks of the three grid relaxed strains.

Ā Calibration coefficient 3×3 block matrix.

i, j Calibration matrix depth indices, i = 1, . . . ,n and j = 1, . . . , i.
h,k Block indexes, for the matrix Ā, ranging from 1 to 3.

e1,e3 Eccentricity components along the grid directions 1 and 3.
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4.4061

5.7715 4.1753

6.6083 5.4863 3.9446

7.2959 6.2859 5.2007 3.7152

7.8597 6.9413 5.9634 4.9164 3.4881

8.3429 7.4769 6.5870 5.6424 4.6344 3.2642

8.7613 7.9348 7.0950 6.2346 5.3243 4.3560 3.0442

9.1276 8.3302 7.5282 6.7156 5.8857 5.0102 4.0821 2.8290

9.4500 8.6755 7.9012 7.1246 6.3402 5.5414 4.7014 3.8137 2.6191

9.7349 8.9786 8.2261 7.4760 6.7258 5.9701 5.2030 4.3986 3.5514 2.4149

9.9874 9.2459 8.5107 7.7813 7.0561 6.3329 5.6066 4.8714 4.1028 3.2959 2.2170

10.211 9.4821 8.7610 8.0480 7.3424 6.6430 5.9473 5.2507 4.5475 3.8146 3.0478 2.0257

10.410 9.6913 8.9817 8.2820 7.5919 6.9110 6.2377 5.5700 4.9032 4.2321 3.5347 2.8074 1.8412

10.587 9.8765 9.1765 8.4878 7.8103 7.1440 6.4881 5.8415 5.2018 4.5649 3.9257 3.2634 2.5751 1.6637

10.744 10.041 9.3487 8.6690 8.0018 7.3473 6.7052 6.0749 5.4551 4.8436 4.2364 3.6288 3.0013 2.3513 1.4934

10.883 10.186 9.5008 8.8287 8.1701 7.5252 6.8943 6.2768 5.6722 5.0793 4.4959 3.9182 3.3420 2.7485 2.1360 1.3303

11.006 10.314 9.6350 8.9694 8.3179 7.6811 7.0592 6.4521 5.8595 5.2809 4.7147 4.1593 3.6109 3.0654 2.5054 1.9295 1.1746

11.115 10.428 9.7535 9.0932 8.4478 7.8177 7.2032 6.6046 6.0217 5.4542 4.9014 4.3620 3.8342 3.3145 2.7993 2.2720 1.7319 1.0262

11.211 10.528 9.8577 9.2022 8.5618 7.9373 7.3291 6.7374 6.1624 5.6038 5.0614 4.5343 4.0213 3.5208 3.0295 2.5438 2.0484 1.5430 0.88503

11.296 10.616 9.9493 9.2977 8.6617 8.0419 7.4389 6.8531 6.2845 5.7332 5.1990 4.6815 4.1799 3.6932 3.2195 2.7559 2.2991 1.8348 1.3629 0.75111

11.370 10.693 10.030 9.3814 8.7491 8.1334 7.5348 6.9537 6.3905 5.8451 5.3177 4.8078 4.3151 3.8387 3.3777 2.9304 2.4938 2.0652 1.6310 1.1917 0.62427

11.435 10.760 10.100 9.4545 8.8254 8.2130 7.6181 7.0411 6.4824 5.9419 5.4200 4.9162 4.4305 3.9623 3.5108 3.0750 2.6534 2.2433 1.8420 1.4369 1.0290 0.50445

11.492 10.819 10.161 9.5182 8.8917 8.2823 7.6905 7.1169 6.5619 6.0256 5.5081 5.0094 4.5292 4.0674 3.6233 3.1962 2.7852 2.3887 2.0042 1.6294 1.2526 0.87490 0.39144

11.541 10.870 10.214 9.5733 8.9491 8.3422 7.7531 7.1824 6.6305 6.0976 5.5838 5.0892 4.6137 4.1569 3.7186 3.2983 2.8951 2.5082 2.1361 1.7766 1.4274 1.0777 0.72920 0.28509

11.583 10.914 10.260 9.6209 8.9987 8.3939 7.8071 7.2388 6.6895 6.1595 5.6488 5.1576 4.6857 4.2331 3.7994 3.3843 2.9872 2.6074 2.2439 1.8956 1.5602 1.2357 0.91223 0.59162 0.18524

a1

a2 a3

a =

a1

a2

a3
7.0449

8.9966 6.8150

10.282 8.7196 6.5774

11.402 9.9687 8.4330 6.3336

12.373 11.054 9.6445 8.1384 6.0849

13.254 11.992 10.695 9.3117 7.8374 5.8326

14.060 12.840 11.600 10.326 8.9720 7.5317 5.5777

14.807 13.616 12.416 11.198 9.9512 8.6273 7.2226 5.3216

15.503 14.333 13.161 11.983 10.790 9.5709 8.2790 6.9116 5.0651

16.155 14.999 13.848 12.698 11.544 10.377 9.1872 7.9288 6.5998 4.8092

16.768 15.623 14.486 13.356 12.229 11.100 9.9612 8.8017 7.5779 6.2884 4.5547

17.344 16.207 15.081 13.965 12.858 11.755 10.654 9.5437 8.4159 7.2277 5.9785 4.3026

17.888 16.757 15.638 14.533 13.440 12.357 11.280 10.206 9.1264 8.0312 6.8794 5.6710 4.0534

18.402 17.274 16.161 15.064 13.981 12.912 11.854 10.805 9.7599 8.7107 7.6487 6.5338 5.3669 3.8078

18.887 17.762 16.653 15.561 14.486 13.427 12.383 11.352 10.331 9.3155 8.2979 7.2697 6.1922 5.0668 3.5664

19.346 18.222 17.116 16.029 14.959 13.908 12.873 11.855 10.852 9.8595 8.8746 7.8890 6.8951 5.8552 4.7715 3.3296

19.780 18.657 17.553 16.468 15.402 14.357 13.330 12.322 11.331 10.355 9.3925 8.4384 7.4854 6.5258 5.5236 4.4816 3.0980

20.191 19.068 17.964 16.881 15.819 14.777 13.756 12.755 11.774 10.811 9.8640 8.9311 8.0081 7.0877 6.1627 5.1981 4.1977 2.8717

20.580 19.456 18.353 17.271 16.210 15.172 14.155 13.159 12.185 11.231 10.296 9.3787 8.4762 7.5845 6.6969 5.8064 4.8794 3.9201 2.6514

20.947 19.823 18.719 17.638 16.579 15.542 14.528 13.537 12.568 11.621 10.695 9.7886 8.9009 8.0286 7.1685 6.3136 5.4575 4.5678 3.6493 2.4370

21.295 20.169 19.066 17.984 16.926 15.890 14.878 13.890 12.925 11.983 11.064 10.166 9.2891 8.4312 7.5895 6.7609 5.9386 5.1166 4.2639 3.3856 2.2289

21.623 20.497 19.392 18.311 17.252 16.218 15.207 14.221 13.259 12.321 11.406 10.515 9.6464 8.7987 7.9705 7.1594 6.3621 5.5723 4.7841 3.9679 3.1294 2.0273

21.934 20.806 19.701 18.619 17.560 16.526 15.516 14.531 13.571 12.636 11.725 10.839 9.9763 9.1364 8.3181 7.5198 6.7391 5.9729 5.2151 4.4605 3.6802 2.8808 1.8323

22.228 21.099 19.992 18.909 17.850 16.816 15.807 14.823 13.864 12.931 12.023 11.140 10.282 9.4481 8.6370 7.8481 7.0794 6.3290 5.5936 4.8676 4.1459 3.4011 2.6399 1.6439

22.505 21.375 20.267 19.183 18.123 17.089 16.080 15.096 14.139 13.207 12.301 11.421 10.566 9.7366 8.9311 8.1490 7.3891 6.6501 5.9295 5.2246 4.5300 3.8407 3.1306 2.4070 1.4623

38.501 37.267 36.077 34.919 33.782 32.658 31.542 30.427 29.310 28.189 27.060 25.921 24.773 23.613 22.441 21.256 20.057 18.842 17.608 16.351 15.065 13.739 12.359 10.870 9.2620

39.595 38.338 37.126 35.947 34.790 33.647 32.513 31.382 30.250 29.115 27.974 26.826 25.670 24.505 23.330 22.146 20.950 19.742 18.521 17.285 16.028 14.746 13.426 12.057 10.583

40.659 39.379 38.146 36.946 35.769 34.608 33.456 32.309 31.162 30.013 28.861 27.702 26.538 25.366 24.187 23.000 21.805 20.602 19.390 18.167 16.930 15.678 14.402 13.093 11.737

41.691 40.390 39.136 37.915 36.719 35.540 34.370 33.207 32.045 30.883 29.718 28.549 27.375 26.196 25.011 23.821 22.626 21.424 20.217 19.003 17.781 16.549 15.303 14.037 12.741

42.692 41.370 40.095 38.854 37.639 36.442 35.256 34.076 32.900 31.724 30.546 29.367 28.183 26.996 25.805 24.611 23.412 22.211 21.006 19.798 18.585 17.368 16.142 14.906 13.653

43.661 42.318 41.023 39.763 38.530 37.314 36.112 34.916 33.725 32.536 31.346 30.155 28.962 27.767 26.569 25.369 24.167 22.964 21.760 20.555 19.349 18.141 16.930 15.715 14.491

44.598 43.234 41.919 40.641 39.390 38.157 36.938 35.728 34.522 33.319 32.118 30.915 29.712 28.508 27.303 26.097 24.891 23.685 22.480 21.276 20.074 18.872 17.672 16.472 15.269

45.503 44.119 42.785 41.488 40.219 38.970 37.735 36.510 35.290 34.074 32.860 31.647 30.434 29.221 28.008 26.796 25.585 24.375 23.168 21.964 20.763 19.566 18.373 17.183 15.995

46.375 44.972 43.620 42.305 41.019 39.754 38.503 37.263 36.030 34.801 33.575 32.351 31.128 29.906 28.685 27.466 26.249 25.036 23.826 22.620 21.420 20.225 19.037 17.854 16.676

47.216 45.794 44.423 43.091 41.789 40.507 39.242 37.987 36.741 35.500 34.262 33.027 31.794 30.563 29.335 28.109 26.886 25.667 24.454 23.246 22.045 20.851 19.665 18.488 17.318

48.024 46.584 45.196 43.847 42.528 41.232 39.952 38.684 37.424 36.171 34.922 33.676 32.433 31.194 29.957 28.724 27.495 26.271 25.054 23.843 22.641 21.447 20.262 19.087 17.922

48.801 47.343 45.938 44.573 43.239 41.928 40.633 39.352 38.080 36.814 35.554 34.298 33.046 31.797 30.553 29.312 28.077 26.849 25.627 24.413 23.208 22.013 20.828 19.655 18.494

49.547 48.072 46.650 45.270 43.921 42.595 41.287 39.992 38.708 37.431 36.160 34.894 33.632 32.375 31.123 29.875 28.634 27.400 26.173 24.955 23.748 22.551 21.366 20.193 19.034

50.262 48.770 47.333 45.938 44.574 43.234 41.913 40.606 39.310 38.021 36.740 35.464 34.193 32.928 31.667 30.413 29.166 27.926 26.694 25.473 24.262 23.063 21.876 20.704 19.545

50.947 49.439 47.987 46.577 45.199 43.846 42.512 41.193 39.885 38.586 37.295 36.009 34.730 33.456 32.188 30.927 29.673 28.427 27.191 25.965 24.751 23.549 22.361 21.188 20.029

51.603 50.079 48.612 47.188 45.797 44.431 43.085 41.754 40.435 39.126 37.824 36.530 35.242 33.960 32.684 31.416 30.156 28.905 27.664 26.434 25.216 24.012 22.821 21.647 20.488

52.229 50.691 49.210 47.772 46.368 44.990 43.632 42.290 40.960 39.641 38.330 37.027 35.730 34.440 33.158 31.883 30.617 29.361 28.115 26.880 25.659 24.451 23.258 22.082 20.922

52.828 51.276 49.781 48.330 46.913 45.523 44.154 42.801 41.462 40.132 38.812 37.500 36.196 34.898 33.609 32.328 31.056 29.794 28.543 27.304 26.079 24.868 23.673 22.495 21.334

53.399 51.833 50.325 48.862 47.433 46.032 44.652 43.289 41.939 40.601 39.272 37.951 36.639 35.335 34.038 32.751 31.473 30.206 28.950 27.707 26.478 25.264 24.066 22.886 21.723

53.944 52.365 50.844 49.369 47.929 46.516 45.126 43.753 42.394 41.046 39.709 38.381 37.061 35.749 34.447 33.153 31.870 30.598 29.337 28.090 26.857 25.640 24.439 23.256 22.092

54.462 52.871 51.338 49.851 48.400 46.977 45.577 44.194 42.826 41.470 40.125 38.789 37.462 36.144 34.835 33.536 32.247 30.970 29.705 28.454 27.217 25.996 24.793 23.607 22.441

54.956 53.352 51.808 50.310 48.849 47.416 46.006 44.614 43.238 41.874 40.520 39.177 37.843 36.519 35.204 33.899 32.605 31.323 30.054 28.798 27.558 26.334 25.128 23.940 22.771

55.426 53.810 52.255 50.747 49.275 47.833 46.414 45.013 43.628 42.257 40.896 39.546 38.205 36.874 35.554 34.243 32.944 31.658 30.384 29.125 27.881 26.654 25.445 24.254 23.084

55.872 54.246 52.680 51.162 49.680 48.229 46.801 45.392 43.999 42.620 41.252 39.895 38.549 37.212 35.886 34.570 33.266 31.975 30.697 29.434 28.187 26.957 25.745 24.552 23.379

56.296 54.659 53.083 51.555 50.065 48.604 47.168 45.751 44.351 42.965 41.590 40.227 38.874 37.532 36.200 34.880 33.571 32.276 30.994 29.727 28.477 27.244 26.029 24.834 23.659

5.2582

6.7987 5.9027

8.2099 7.5041 6.4355

9.6160 8.8915 8.1143 6.8750

11.007 10.277 9.5120 8.6368 7.2450

12.396 11.644 10.894 10.059 9.0867 7.5592

13.784 13.009 12.248 11.449 10.538 9.4742 7.8252

15.171 14.373 13.597 12.799 11.941 10.954 9.8063 8.0481

16.558 15.736 14.940 14.137 13.291 12.370 11.312 10.087 8.2314

17.944 17.097 16.280 15.464 14.621 13.722 12.741 11.616 10.321 8.3776

19.327 18.456 17.617 16.785 15.935 15.046 14.093 13.054 11.868 10.509 8.4888

20.706 19.810 18.948 18.098 17.237 16.347 15.411 14.407 13.313 12.071 10.655 8.5666

22.078 21.158 20.273 19.403 18.528 17.632 16.700 15.717 14.663 13.520 12.226 10.760 8.6126

23.443 22.499 21.590 20.699 19.807 18.901 17.967 16.992 15.964 14.865 13.675 12.336 10.826 8.6285

24.799 23.830 22.897 21.984 21.074 20.155 19.213 18.240 17.224 16.154 15.012 13.782 12.403 10.854 8.6157

26.142 25.148 24.192 23.256 22.327 21.393 20.441 19.464 18.453 17.398 16.288 15.109 13.842 12.428 10.847 8.5758

27.471 26.453 25.473 24.515 23.566 22.614 21.651 20.666 19.654 18.606 17.514 16.369 15.155 13.857 12.413 10.807 8.5104

28.785 27.742 26.738 25.757 24.788 23.818 22.840 21.846 20.828 19.781 18.699 17.574 16.397 15.154 13.829 12.361 10.735 8.4210

30.080 29.013 27.985 26.981 25.991 25.003 24.010 23.003 21.978 20.928 19.849 18.736 17.581 16.376 15.108 13.761 12.274 10.633 8.3094

31.356 30.264 29.212 28.186 27.175 26.168 25.158 24.138 23.102 22.047 20.968 19.859 18.718 17.537 16.309 15.020 13.654 12.154 10.504 8.1771

32.610 31.494 30.418 29.370 28.337 27.311 26.284 25.249 24.202 23.139 22.055 20.948 19.813 18.647 17.444 16.196 14.891 13.512 12.003 10.349 8.0259

33.840 32.700 31.601 30.530 29.476 28.431 27.386 26.336 25.277 24.203 23.114 22.004 20.872 19.714 18.527 17.305 16.042 14.724 13.338 11.824 10.170 7.8575

35.046 33.882 32.760 31.667 30.592 29.527 28.464 27.398 26.325 25.241 24.143 23.028 21.895 20.741 19.564 18.359 17.123 15.849 14.523 13.132 11.619 9.9701 7.6736

36.226 35.038 33.893 32.778 31.682 30.597 29.516 28.435 27.347 26.251 25.144 24.023 22.886 21.733 20.560 19.366 18.148 16.902 15.620 14.290 12.899 11.390 9.7507 7.4757

37.378 36.167 34.999 33.862 32.745 31.641 30.543 29.444 28.343 27.234 26.116 24.987 23.845 22.689 21.519 20.331 19.125 17.897 16.643 15.358 14.028 12.640 11.139 9.5140 7.2656

b1

b2

b3

b1

b2 b3

b =
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Integral method coefficients for the ring-core technique to evaluate non-uniform residual stresses
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Coefficients for DI = 14 mm, DE = 18 mm, GL = 5.0 mm, GW = 2.5 mm, maximum depth Hmax = 5.0 mm and depth resolution ΔH = 0.1 mm

aij ×103 bij ×103
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