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ABSTRACT In this study, a new integral non-singular terminal sliding mode control method for nonlinear
systems is introduced. The proposed controller is designed by defining a new sliding surface with an
additional integral part. This newmanifold is first introduced into the second-order system and then expanded
to nth-order systems. The stability of the control system is demonstrated for both second-order and nth-order
systems by using the Lyapunov stability theory. The proposed controller is applied to a robotic manipulator as
a case study for second-order systems, and a servo-hydraulic system as a case study for third-order systems.
The results are presented and discussed.

INDEX TERMS Integral non-singular terminal sliding mode controller, Lyapunov stability, robotic manip-
ulator, servo-hydraulic system, trajectory tracking.

I. INTRODUCTION

In recent years, sliding mode control (SMC) has become
one of the most intensive fields of research in the automatic
control community because various advantages make this
method suitable for different types of systems. Among the
methods which tries to reduce final positioning errors due
to input constraints, parametric uncertainties, and unmodeled
dynamics by using different approaches such as neural net-
works or robust integral terms in the control law [1], [2],
SMC is one of the well-known methods which has different
advantages such as robust behavior in the presence of distur-
bances, finite time convergence and simple implementation.
The main principle of the SMC method involves the use of
a predetermined hyperplane called a sliding surface. SMC
drags the nonlinear path to this sliding surface and after
confining the system to this surface, the path slides along
it to reach the origin. Different types of SMCs have been
developed where they mainly differ in terms of their sliding
surfaces [3]. The sliding surface selected for the basic ver-
sions of SMC is a linear surface. Themain disadvantage of the
basic method is the asymptotic stability problem, which can-
not be considered a strong property for practical applications.
Various studies have tried to address this disadvantage but it
remains in the conventional sliding mode controllers [4]–[6].
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Among the different sliding methods developed to overcome
this issue, the terminal SMC method guarantees finite time
convergence when tracking the error to the origin [7]. This
controller is designed by changing the sliding surface of
the conventional SMC method in order to solve the stabil-
ity problem. In addition, an adaptive global terminal SMC
method was investigated by [8], where the proposed con-
troller was developed to control uncertain nonlinear systems
and guarantee the robustness property. However, this method
is affected by a new problem because the singularity results in
an unbounded control signal magnitude. Thus, new methods
are required to solve this problem, such as the non-singular
terminal sliding mode method [9], which has a wide range
of application. For example, a non-singular terminal sliding
mode method was employed to control a robotic manipula-
tor [10]. This controller was applied to a system where the
states were estimated using a nonlinear version of a Kalman
filter and the performance of the controller was demonstrated
in the presence of external disturbance. A new adaptive non-
singular integral sliding mode controller was also proposed
by [11] for controlling an autonomous underwater vehicle.
It was demonstrated that the system could converge to the
origin in finite time in the presence of uncertainties when the
sliding surface was reached.

Various types of sliding mode controllers can be applied
to different linear and nonlinear systems. Robotic systems
and hydraulic systems are the two most common applications
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of these control methods. Robotic systems comprise well-
known second-order systems for testing the proficiency of
controllers and various studies have investigated appropriate
controllers for robotic systems [?], [?]. For instance, a PD
controller was combined with a sliding mode controller for
trajectory tracking in a robotic system [14], where this new
control method aimed to exploit the advantages of both meth-
ods. In addition, a hydraulic system can be selected as an
appropriate testbed for various reasons. First, this type of sys-
tem exhibits third-order dynamics, which is challenging for
the controller. Second, different types of model uncertainties
make it difficult to stabilize the system. Thus, several types of
controllers have been introduced for these systems. In partic-
ular, a new disturbance rejection method was employed and
implemented based on a hydraulic system by [15]. Several
versions of SMC approaches have been applied to robotic
and hydraulic systems [16], [17]. An integral SMC method
was developed by [18] for a robotic system, which made the
tracking error tend to zero in finite timewhile also eliminating
the chattering problem phenomenon. A discrete time SMC
approach was developed for a hydraulic system by [19] and
applied to a hydraulic system, where it obtained appropriate
behavior without involving a switching-type reaching law.
The main drawbacks of these previously proposed methods
can be summarized as follows.

• System diversity: most previously proposed methods are
suitable only for second-order systems. The develop-
ment of these methods for higher order systems was not
discussed or it was too complex to implement.

• Excessive amounts of tunable parameters: several meth-
ods combined an SMC method with other types of tra-
ditional methods such as PD or PID controllers, thereby
leading to new problems because many parameters must
be tuned when optimizing the controller,

• Singularity: some of the previously introduced versions
of SMC lead to an unbounded control signal magnitude
known as singularity, which is an unsolved problem
according to reviews.

In order to address the need for new methods to solve the
problems of previously proposed methods, a new nonlinear
sliding surface method is introduced called an integral non-
singular terminal sliding mode controller (INTSMC). The
main contributions of this study are as follows.

• Sliding surface: a new integral part is added to the sliding
surface of the controller, which improves the robustness
of the controller

• System diversity: the controller is designed for second-
order and nth-order systems, which makes the controller
suitable for various practical systems

• Singularity problem: different conditions are considered
in the design procedure to solve the singularity problem.

The proposed controller is tested with two types of sys-
tems: a robotic manipulator and a servo-hydraulic system.
The former system was considered as a case study of second-
order systems and the latter as a case study of third-order
systems.

The remainder of this paper is organized are follows.
Section II describes the controller designed for second- and
nth-order systems as well as presenting the stability analysis.
Section III presents the simulation results obtained for the
controller of a robotic system as a study case of second-
order systems, and for a hydraulic system as a study case
of third-order systems. Finally, conclusions are given in
Section IV.

II. INTSMC

In this section, a new version of SMCwith a nonlinear sliding
surface is presented. In order to validate the effectiveness of
this controller, INTSMC strategies are proposed for second-
and nth-order systems in the following.

A. INTSMC FOR SECOND-ORDER SYSTEMS

Consider a second-order nonlinear system:

ẋ1 = x2

ẋ2 = f (x) + b(x)u+ d(x), (1)

where the system states are represented by x = [x1 x2]T ∈
Rn vector, f (x) and b(x) 6= 0 are nonlinear functions, and
d(x) indicates the disturbance and uncertainties, which satisfy
‖ d(x) ‖6 ζd , where ζd > 0 has a constant value.

Consider a twice differentiable desired trajectory,
xd (t) ∈ Rn, with respect to time. In terms of the definitions
of the tracking error vector and its derivative given as e =
x1 − x1d , ė = ẋ1 − ẋ1d , respectively, as well as the model
given in Eq.(1), the error dynamics can be written as:

ë = f (x) + b(x)u+ d(x) − ẍ1d . (2)

For the error vectors given above, the sliding surface can be
written as:

s = e+
∫ t

0

(

c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

dt, (3)

where c1 and c2 are positive constants. It is also supposed
that 1 < α1 < 2 and α2 = α1/(2 − α1). To guarantee
the convergence of s to zero in finite time and to eliminate
the chattering problem, the following INTSMC surface is
proposed:

σ = ṡ+ λs

= ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2 + . . .

λ

(

e+
∫ t

0

(

c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

dt

)

,

(4)

where λ is a positive tuning constant.
For the system given in (1) with the sliding variable in

Eq.(3), the controller can be obtained as follows.

σ̇ = s̈+ λṡ

=
(

ë+ c1α1ë|ė|α1−1 + c2α2ė|e|α2−1
)

+ . . .

λ
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)
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Eq.(2)−−−→ =
[

f (x) + b(x)u+ d(x) − ẍd + c2α2ė|e|α2−1 . . .

c1α1 (f (x) + b(x)u+ d(x) − ẍd ) |ė|α1−1
]

+ . . .

λ
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

σ̇=0−−→ u = −b−1(x)

[

−ẍd + f (x) +
λ

1 + c1α1|ė|α1−1

×
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

+ . . .

1

1 + c1α1|ė|α1−1

(

c2α2ė|e|α2−1
)

]

− . . .

b−1(x) {(ζd + η) sgn(σ )} (5)

The controller comprises an equivalent control part, ueq, and
a switching control part, usw, which is defined as follows.

ueq = −b−1(x)

[

−ẍd + f (x) +
λ

1 + c1α1|ė|α1−1

×
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

+ . . .

1

1 + c1α1|ė|α1−1

(

c2α2ė|e|α2−1
)

]

usw = −b−1(x) (ζd + η) sgn(σ ) (6)

Theorem 1: The origin of the second-order system given in

Eq.(1) converges to zero in finite time by using the controlling
law given in Eq.(5).

Proof: Consider the Lyapunov function V = 1/2σ 2 that
should satisfy V̇ = 1/2 d

dt
σ 2 ≤ −η|σ | in which η > 0:

σ σ̇ = σ

[

(

ë+ c1α1ë|ė|α1−1 + c2α2ė|e|α2−1
)

+ . . .

λ
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)

]

Eq.(2)−−−→ = σ

[(

f (x) + b(x)u+ d(x) − ẍd + . . .

c1α1 (f (x) + b(x)u+ d(x) − ẍd ) |ė|α1−1 + . . .

c2α2ė|e|α2−1
)]

+ . . .

σ
[

λ
(

ė+ c1sgn(ė)|ė|α1 + c2sgn(e)|e|α2
)]

Eq.(5)−−−→ = σ

{(

1 + c1α1|ė|α1−1
)

(d(x) − (ζd + η)sgn(σ ))
}

,

(7)

which is:

V̇ 6 −5 | σ |< 0, (8)

where

η>0−−−−→
1<α1<2

5 =
(

1 + c1α1|ė|α1−1
)

η > 0. (9)

Therefore, based on the Lyapunov stability criteria,
the integral non-singular terminal sliding mode (INTSM)
surface in (4) converges to zero in finite time. This completes
the proof.

B. INTSMC FOR NTH -ORDER SYSTEMS

Consider an nth-order nonlinear system:

ẋ1 = x2

ẋ2 = x3
...

ẋn = f (x) + b(x)u+ d(x), (10)

where the system states are represented by x = [x1, x2,

. . . , xn]T ∈ Rn vector, and f (x), b(x) 6= 0, and d(x) are
the same as those given in Eq.(1). By defining the tracking
error vectors and their derivatives, the error dynamics can be
written as follows.

e = x1 − x1d

ė = ẋ1 − ẋ1d
...

e(n) = f (x) + b(x)u+ d(x) − x
(n)
1d (11)

An INTSMmanifold is selected for system (10) as follows:

s = e+
∫ t

0

(

n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

dt, (12)

where ci are positive constants, which are selected such that
the real polynomial p, p(r) = rn+c1r

n−1+· · ·+cn−1r+cn,

r ∈ R satisfies Hurwitz stability criteria, and 1 < αi < 2 for
i = 1, αi = αi−1/(2 − αi−1) for i = 2, . . . , n.

Given the following surface:

σ = ṡ+ λs

= ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi + . . .

λ

(

e+
∫ t

0

(

n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

dt

)

,

(13)

the convergence of s to zero in finite time is satisfied, where
λ is a positive tuning constant.

For the system given in Eq.(10) and the sliding surface
in (13), the controller can be obtained as follows.

σ̇ = s̈+ λṡ

= ë+
n
∑

i=1

αici|e(n−i)|αi−1e(n−i+1) + . . .

λ

(

ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

= ë+ λ

(

ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

+ . . .

n
∑

i=2

αici|e(n−i)|αi−1e(n−i+1) + . . .

α1c1|e(n−1)|α1−1e(n)
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Eq.(11)−−−−→ = ë+ λ

(

ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

+ . . .

n
∑

i=2

αici|e(n−i)|αi−1e(n−i+1) + . . .

α1c1|e(n−1)|α1−1
(

f (x)+b(x)u+d(x)−x(n)1d

)

σ̇=0−−→ u = −b−1(x)

[

f (x) − x
(n)
1d +

1

c1α1
|e(n−1)|1−α1

[

ë+ . . .

λ

(

ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

+ . . .

n
∑

i=2

αici|e(n−i)|αi−1e(n−i+1)
]

+(ζd+η)sgn(σ )
]

(14)

Theorem 2: The origin of the nth-order system given in

Eq.(10) converges to zero in finite time by using the control-
ling law in Eq.(14).

Proof: Consider the Lyapunov function V = 1/2σ 2 that
should satisfy V̇ = 1/2 d

dt
σ 2 ≤ −η|σ | in which η > 0:

V̇ = σ σ̇

= σ

[

α1c1|e(n−1)|α1−1
(

f (x) + b(x)u+ d(x) − x
(n)
1d

)

+ ë+ λ

(

ė+
n
∑

i=1

cisgn(e
(n−i))|e(n−i)|αi

)

+ . . .

n
∑

i=2

αici|e(n−i)|αi−1e(n−i+1)
]

Eq.(14)−−−−→
Eq.(11)

= σ

{

α1c1|e(n−1)|α1−1 (d(x) − (ζd + η)sgn(σ ))
}

H⇒ V̇ 6 −α1c1|e(n−1)|α1−1η | σ |, (15)

and since ηα1c1|e(n−1)|α1−1 > 0, then based on the Lyapunov
stability criteria, the INTSM surface in (13) converges to zero
in finite time. This completes the proof.
This should be noted that the sign function used in the

switching part of the control low can cause a chattering
phenomenon. To have a chattering-free control signal, this
discontinuous sign function is replaced with a continuous
hyperbolic tangent function.

III. SIMULATION RESULTS

In the following, the results obtained from studies of a two
degrees of freedom (2-DoF) robot manipulator and an appli-
cation to a servo-hydraulic system are presented. In order to
evaluate the effectiveness of the proposed INTSM controller,
a simulationwas conducted of a 2-DoF robot as an example of
a second-order system. The capacity of the controller was also
investigated based on a servo-hydraulic system as an example
of a third-order system model.

A. 2-DOF ROBOT MANIPULATOR

In order to test the performance of the proposed controller in
second-order systems, it was applied to a robotic manipulator

FIGURE 1. 2-DoF robot manipulator model.

TABLE 1. Values of the parameters in Fig.1.

as a well-known example of a second-order system. A two-
link rigidmanipulator was selected for this simulation. A gen-
eral schematic of the two-link rigid robot is shown in Fig. 1
The dynamic equations for the rigid manipulator can be

written as:

D(θ)θ̈ + C(θ, θ̇ )θ̇ + g(θ) = τ, (16)

where D(θ) ∈ Rn×n is the inertia matrix, C(θ, θ̇ )θ̇ ∈ Rn are
centripetal and Coriolis forces, g(θ ) ∈ Rn is the gravitational
force, and τ is the exerted joint input. The dynamic equation
of the robot is given in Eq.(17) where the abbreviations si =
sin(θi) and ci = cos(θi) are used. The parameters used in
Eq.(17) are shown in Table 1.
[

(m1 + m2)L21 + m2L
2
2 + 2m2L1L2cos(θ2)

m2L
2
2 + m2L1L2cos(θ2)

m2L
2
2 + m2L1L2cos(θ2)

m2L
2
2

] [

θ̈1
θ̈2

]

+
[

−m2L1L2sin(θ2)θ̇1
2 − 2m2L1L2sin(θ2)θ̇1θ̇2

m2L1L2sin(θ2)θ̇2
2

]

+
[

((m1 + m2)L1cos(θ2) + m2L2cos(θ1 + θ2)) g
(m2L2cos(θ1 + θ2)) g

]

=
[

τ1
τ2

]

(17)

where g = 9.81(kgm/s2). In order to have a feasible model
as Eq. (1), the state space representation of robot manipulator
can be obtained as, f = −D (θ)−1

(

C
(

θ, θ̇
)

θ̇ + g (θ)
)

, and
b = D (θ)−1.
The initial state conditions were set to x0 = [θ1 θ2

θ̇1 θ̇2] = [1(rad), 1.5(rad), 0(rad/s), 0(rad/s)]T and
the desired trajectories are as follows.

θd1 = −pi/2 + 0.92 · (1 − cos(1.26 − t/2))

θd2 = −pi/5 + 0.92 · (1 − cos(1.26 − t)) (18)
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TABLE 2. Parameter values used in the INTSMC for the robot manipulator.

FIGURE 2. 2-DoF performance based on proposed INTSMC in comparison
to NTSMC [20].

The tuning parameters, which are selected based on the
designers experience, are shown in Table 2 for the INTSM
manifold in Eq.(3). It should be noted that in cases that the
real system might face an external disturbance, the design-
ers choose the upper bound based on previous experiments.
In order to compare the proposed controller with other previ-
ously proposed controllers, the non-singular terminal sliding
mode (NTSM) controller proposed by [20] is considered.

In the sliding manifold proposed by [20], s = e +
1

β
ėp/q,

where p and q are selected such that 1 < p/q < 2.
It also assumed that from t = 10s to t = 15s, the exter-
nal disturbance of d(x) = 10sin(3t) affects the robot.
Using the same values for 1/β = c1 and p/q = α3,
the INTSMC and non-singular terminal sliding mode con-
troller (NTSMC) are compared in Fig.2, which indicates that
the desired reference signals were tracked correctly after a
transient phase of 4 − 5 s. However, within the time period
when an external disturbance affected the system, the pro-
posed INTSMC was more capable of handling the distur-
bance than the NTSMC, as shown clearly by the tracking
error for each link using INTSMC and NTSMC in Fig.3.
Thus, the proposed INTSMC performed better rather than the
NTSMC. The root mean square error (RMSE) for each link
is calculated to demonstrate the superior performance of the
INTSMC compared with the conventional NTSMC, as shown
in Table 3,

FIGURE 3. Reference signals tracking error based on INTSMC and
NTSMC [20] for the robot manipulator.

TABLE 3. Root mean square errors calculated for the proposed INTSMC
and NTSMC [20].

The sliding surface and the control signal for the proposed
INTSMC are shown in Fig. 4 and Fig. 5, respectively. The
reason for a high value of control signal at the beginning
is due to the attempt that the controller made to have faster
convergence rate. The changes in the control signals during
t = 10 − 15s are clearly visible in these figures, but the
conventional NTSMCwas not capable of tracking the desired
path correctly even with this change.

B. HYDRAULIC SYSTEM

The application of the proposed controller to a higher
order system is considered to validate the proposed
approach. A servo-hydraulic system is selected as an example
of a third-order system for validating and testing the pro-
posed controller. A schematic of the selected servo-hydraulic
system is shown in Fig. 6. In the following, the model of
the servo-hydraulic system and the simulation results are
presented.

Newton’s equation is applied to the mass to model the
cylinder part, so the movement equation can be written as:

MẍP = −bẋP + A1p1 − A2p2 − Fe, (19)

where xP denotes the piston position. The pressure and area
of the cylinder are represented by p1,2 and A1,2, respectively.
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FIGURE 4. Control signals of INTSMC and NTSMC [20] for the robot
manipulator.

FIGURE 5. Sliding surfaces of INTSMC and NTSMC [20] for the robot
manipulator.

The parametersM ,Fe, and b represent the loadmass, external
force, and friction, respectively [21]. In (19), in order to
calculate the position xP of the piston, it is necessary to
determine values of the pressures p1,2 on the two sides of the
cylinder. By applying basic hydraulic rules [22], the pressures

FIGURE 6. The schematic of servo-hydraulic system.

TABLE 4. Parameter values used in the INTSMC for the servo-hydraulic
system.

on the two sides of the cylinder can be obtained using the
following equations:

Ṗ1 =
βe

V1
(Q1 − A1ẋP + QI − QE1)

Ṗ2 =
βe

V2
(Q2 − A2ẋP − QI − QE2) , (20)

where the flows on each side of the cylinder are represented
by Q1 and Q2. The parameters βe, V1, and V2 represent the
bulk modulus and the volumes of each side of the cylinder,
respectively. The internal leakage and the external leakage on
each side are given by QI ,QE1, and QE2, respectively. The
different flows in the hydraulic circuit can be formulated as:

Q1 =
{

Csu
√
ps − p1 u ≥ 0

Csu
√
p1 − pa u < 0

Q2 =
{

Csu
√
p2 − pa u ≥ 0

Csu
√
ps − p2 u < 0

QI = Ki (p2 − p1) ,

QE1 = KE1 (p1 − pa) ,

QE2 = KE2 (p2 − pa) , (21)

where Cs represents the flow coefficient. The internal and
external leakage flow coefficients for each side of cylinder
are given by Ki,KE1, and KE2, respectively. In Eq. (20), it is
necessary to determine the volumesV1 andV2 on the different
sides of the cylinder, which are calculated as:

V1 = A1xP + v01

V2 = A2 (L − xP)+ v02, (22)

where the pipeline volumes for each side of the cylinder
are given by v0i, i = 1, 2 [23]. The parameter L represents
the maximum value of the piston position. In order to apply
SMC, the proposed model of the system should be defined
as a model with Eq. (10). According to Eqs. (19)–(21),

VOLUME 7, 2019 102797
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TABLE 5. Parameter values for the servo-hydraulic system in SI units.

FIGURE 7. The comparison of INTSMC and NTSMC [20] for values of the
states of the controlled system.

the hydraulic model is not appropriate for the application of
the proposed sliding mode controller. Thus, in order to obtain
a feasible model of the designed controller, the derivative of
the movement equation of the piston position is taken and it
is concluded:

d

dt
(MẍP) =

d

dt
(−bẋP + A1p1 − A2p2 − Fe)

= −bẍP + A1ṗ1 − A2ṗ2 − Ḟe. (23)

FIGURE 8. The comparison of the control signal of INTSMC and
NTSMC [20].

FIGURE 9. The pressure values of the hydraulic circuit.

Now, a new parameter is defined as PL = p1 − A2
A1
p2, which

is the load pressure. In previous studies [24], [25], the load
flow was defined as QL = Q1+Q2

2 , which can be expressed as
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FIGURE 10. The comparison of INTSMC and NTSMC [20] for values of
states of the controlled servo-hydraulic system.

follows.

QL =











CsxP

2

(√
ps − p1 + √

p2 − pa
)

u ≥ 0

CsxP

2

(√
p1 − pa + √

ps − p2
)

u < 0
(24)

Given the new definitions and the equations above, the servo-
hydraulic system can be defined as a function of three
variables (xP, ẋP,PL):

M
...
x P = −bẍP + A1ṖL − Ḟe. (25)

According to Eq. (25), the state space of the system can be
represented as follows:

ẋ1 = x2

ẋ2 = x3

ẋ3 =
1

M

(

−bx2 + A1ṖL − Ḟe
)

, (26)

FIGURE 11. The comparison of tracking error of INTSMC and NTSMC [20]
for states of the controlled servo-hydraulic system.

where the new state variables are defined as X =
[x1, x2, x3]T = [xP, ẋP, ẍP]T . By using the definition of the
load pressure and substituting the values for the different
sides of cylinder from Eq. (20) into the equation for the third
state of the hydraulic system (Eq. (26)), it can be obtained:

ẋ3 =
1

M

(

−bx2 + ϕ(PL)u+ ψ(PL) − Ḟe
)

, (27)

where the functions ϕ(.), andψ(.) are nonlinear functions that
denote the uncertainties in the model. The final state space
model for the servo-hydraulic system used by the proposed
controller can be expressed as follows.

ẋ1 = x2

ẋ2 = x3

ẋ3 =
1

M

(

−bx2 + ϕ(PL)u+ ψ(PL) − Ḟe
)

(28)
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TABLE 6. Root mean square errors with the proposed INTSMC and
NTSMC [20] when tracking the error based on a servo-hydraulic system.

FIGURE 12. The comparison of the control signal and the sliding surface
of INTSMC and NTSMC [20] for tracking a desired path.

The results obtained after applying the proposed controller
to this model are presented in the following. Two scenarios
are considered for the simulation: reaching the origin and
tracking a desired path. For both scenarios, the parameters
of the controller are set as Table 4. Simulation results are
obtained with the proposed controller based on the servo-
hydraulic system defined by Eq.(28). The parameters used
in the simulation are given in Table 5 [21]. In order to
demonstrate the performance and robustness of the designed
approach with a third-order system, the simulation was con-
ducted in the presence of uncertainties in the servo-hydraulic
system, which were modeled in terms of the load mass. This
assumption can be formulated as follows:

ẋ1 = x2

ẋ2 = x3

ẋ3 =
1

M + δ

(

−bx2 + ϕ(PL)u+ ψ(PL) − Ḟe
)

, (29)

where δ is the uncertainty in themodel, which can be bounded
as 0 ≤ δ ≤ 60. According to these definitions and the
uncertainties in the system model, the proposed method was
applied to the system. The initial values for the starting points
were X0 = [x10, x20, x30]T = [0.4, 0.005, 0]T . The results

FIGURE 13. Values of the pressures of different part of the hydraulic
circuit.

shown in Fig. 7 demonstrate that the controller obtained good
performance and the states of the system reached the origin
in a finite time. The proposed method is compared with an
NTSMC introduced by [20]. The comparison between results
demonstrates that the proposed approach converged more
rapidly to zero. Clearly, the aim of the new method is to
reach the position more rapidly and the results showed that
the proposed controller performed better compared with the
previous method. The RMSE for the controlled piston was
employed as a feature for comparing the performance of the
two controllers. The RMSE values were RMSEINTSMC =
0.08 and RMSENTSMC = 0.11, thereby showing that the
proposed controller obtained better performance than the
NTSMC. The performances of the controllers using vari-
ous parameters in the two methods are compared in Fig. 8.
In order to confirm the feasibility of the method for actual
implementation, the pressures in the different parts of the
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hydraulic system are compared in Fig. 9. The pressure in the
hydraulic systems was limited by a relief valve on the pump
controller. Thus, the chamber pressures remained within an
acceptable range under all conditions and independently of
the controller.
To further analyze the controller, its capacity is investi-

gated for tracking a desired trajectory, which was defined as
follows.

xd = 0.15 sin(2t) + 0.3

ẋd = −0.3 cos(2t)

ẍd = −0.6 sin(2t) (30)

The results obtained using these functions as the desired
trajectory of the hydraulic system are presented in Fig. 10.
The proposed system is compared with the NTSM control
approach presented by [20], where our proposed method per-
formed better for the third-order system compared with the
previous method. Both methods allowed the system states to
track the desired trajectory but our proposed method reached
the path and continued tracking it within a shorter time.
To clearly illustrate the superior performance of the proposed
method, the tracking errors with both methods are compared
in Fig. 11. These results indicate that the tracking error was
lower with the INTSMC method than the NTSMC method.
The RMSE values for the tracking error using both methods
are presented in Table 6. The development of the control
signal and the sliding surface are also important factors that
needed to be considered when evaluating the performance of
the proposed controller, and the results for the control signal
value and the sliding surface are presented in Fig. 12. The
results in terms of the pressures on different sides of the
cylinder and the load pressure are presented in Fig. 13.

IV. CONCLUSION

In this study, a new SMC method for nonlinear systems
was proposed. An integral non-singular terminal surface was
defined, and the proposed method was introduced for second-
order systems. After considering the stability criteria, the new
INTSMCcontroller was developed and expanded to nth-order
systems. The stability of the controller was demonstrated and
proven using Lyapunov theory by representing a global slid-
ing surface for nth-order nonlinear systems. The application
of an integral surface allows the system states to converge
to the equivalent point more rapidly than the conventional
non-singular terminal SMC. In addition, the proposed con-
troller is not affected by the singularity phenomena found in
previously introduced terminal SMC methods. The INTSMC
method also performs well in the presence of external dis-
turbances and uncertainties. The superior performance of the
proposed controller was demonstrated based on its applica-
tion to a 2-DoF robot manipulator as an example of a second-
order system and to a third-order hydraulic system as an
example of an nth-order system.

Owing to the superior performance of the INTSMC com-
pared with conventional sliding mode controllers and its

capacity to handle model uncertainties, it is planned to apply
this controller to an experimental servo-hydraulic system
setup in the Laboratory of Intelligent Machines at Lappeen-
ranta University of Technology in future research. The overall
model of this system is quite similar to the hydraulic model
introduced in the present study, but small changes will be
required.
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