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Abstract

Object attention maps generated by image classifiers are

usually used as priors for weakly-supervised segmentation

approaches. However, normal image classifiers produce at-

tention only at the most discriminative object parts, which

limits the performance of weakly-supervised segmentation

task. Therefore, how to effectively identify entire object re-

gions in a weakly-supervised manner has always been a

challenging and meaningful problem. We observe that the

attention maps produced by a classification network contin-

uously focus on different object parts during training. In

order to accumulate the discovered different object parts,

we propose an online attention accumulation (OAA) strat-

egy which maintains a cumulative attention map for each

target category in each training image so that the integral

object regions can be gradually promoted as the training

goes. These cumulative attention maps, in turn, serve as the

pixel-level supervision, which can further assist the network

in discovering more integral object regions. Our method

(OAA) can be plugged into any classification network and

progressively accumulate the discriminative regions into

integral objects as the training process goes. Despite its

simplicity, when applying the resulting attention maps to

the weakly-supervised semantic segmentation task, our ap-

proach improves the existing state-of-the-art methods on the

PASCAL VOC 2012 segmentation benchmark, achieving a

mIoU score of 66.4% on the test set. Code is available at

https://mmcheng.net/oaa/.

1. Introduction

Benefiting from the large-scale pixel-level training data

and advanced convolutional neural network (CNN) architec-

tures, fully-supervised semantic segmentation approaches,

such as [4, 20, 22, 42, 38], have made great progress re-

cently. However, constructing a large-scale pixel-accurate

dataset is fairly expensive and requires considerable human
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Figure 1. Observation of our proposed approach. (a) Source im-

ages; (b-d) Intermediate attention maps produced by a classification

network at different training stages; (e) Cumulative attention maps

produced by combining attention maps in (b), (c), and (d) through a

simple element-wise maximum operation. It can be easily observed

that the discriminative regions continuously shift over different

parts of the semantic objects. The fused attention maps in (e) can

record most of semantic regions compared to (b), (c), and (d). Best

viewed in color.

efforts and time cost. In order to economize human labors,

researchers propose to learn semantic segmentation using

weak supervision, such as bounding boxes [27], points [2],

and even image-level annotations [26]. Among these weak

supervisions, image-level annotations can be more easily ob-

tained than other annotations. Thus, in this paper, we focus

on semantic segmentation under image-level supervision.

Because of the ability to discover discriminative atten-

tion regions, classification models [43, 29] have been widely

used in the weakly-supervised semantic segmentation task

for generating initial class-specific seeds. However, the dis-

covered regions often focus on small parts of the semantic

objects, which limits the capability of segmentation networks

to learn rich pixel-level semantic knowledge. Later methods

consider leveraging the adversarial erasing strategy [35, 40]
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to mine more semantic regions. Unfortunately, as the train-

ing process continues, the discriminative regions expand,

and thus some undesired background stuff is also predicted

as foreground. In [37], dilated convolution is revisited for

attention generation. However, the convolution layers with

larger dilation rates often lead to the appearance of noisy

regions.

One common point shared by the above approaches is

that they all utilize the final classification models to generate

attention maps. In this paper, we consider the attention gen-

eration process from a new perspective. We observe that the

discriminative regions discovered at different training stages

constantly shift over different parts of the semantic objects

before the classification network reaches convergence. The

main reasons can be briefly summarized as follows:

• First, a powerful classification network usually seeks

robust common patterns for a specific category so that

all the images from such a category can be well recog-

nized. Therefore, those training samples that are hard

to be correctly classified will drive the network to make

changes in choosing common patterns, leading to the

continuous shift of attention regions until the network

reaches convergence.

• Second, in the training phase, attention maps produced

by the current attention model are mostly influenced

by the previous input images. Therefore, images with

different content and the input order of the training im-

ages will both lead to the variation of the discriminative

regions in the intermediate attention maps.

More interestingly, we also observe that the discriminative

regions discovered at different training phases are often com-

plementary, which reflects the importance of leveraging the

intermediate attention maps for detecting integral objects.

Fig. 1(b-d) gives a clear illustration of this phenomenon,

which shows the variation of attention regions as the train-

ing process continues. If these discriminative regions in

the intermediate attention maps can be recorded, we may

successfully promote the capability of detecting complete

semantic objects with only image-level supervision.

Based on the above observation, we introduce a simple yet

effective approach for attention generation, which is capable

of taking the intermediate states of classification networks

into account. Specifically, we present an online attention

accumulation (OAA) strategy, in which a cumulative atten-

tion map for each category in each image is maintained to

sequentially accumulate the discriminative regions produced

by the classification network at different training phases. The

complementarity of the intermediate attention maps enables

discovering integral semantic objects to be possible (see

Fig. 1e). Despite the relatively complete attention regions

by OAA compared to CAM [43], some attention valuses in

object regions are still not strong enough. To improve this

situation, we further design a hybrid loss function (the com-

bination of an enhanced loss and a constraint loss) to train an

integral attention model by taking the cumulative attention

maps as soft labels. In this way, the new attention model

advances the OAA strategy and can generate more integral

object regions. To evaluate the quality of the attention maps

by our approach, we conduct a series of ablation experiments

and apply them to the weakly-supervised semantic segmen-

tation task. We show significant improvements over existing

methods on the popular PASCAL VOC 2012 segmentation

benchmark [8] (a mean IoU score of 66.4% on the test set).

We hope the thought of OAA could promote the develop-

ment of attention models or even other research areas in the

future.

2. Related Work

In this section, we briefly review the history of atten-

tion models and describe the weakly-supervised semantic

segmentation methods that are strongly related to our work.

2.1. Visual Attention

To date, some outstanding work has been proposed in

order to get high-quality attentions. As an early attempt, Si-

monyan et al. [31] used the error back-propagation strategy

to visualize semantic regions. Later, CAM [43] shows the

ability of the global average pooling (GAP) layer by using

it to convolutional neural networks to detect the class acti-

vation maps. Based on CAM, Grad-CAM [29] proposes a

technique for producing visual explanations for any target

concept such as image classification, VQA, and image cap-

tioning by flowing the gradients into the final convolutional

layer to produce coarse attention maps. Moreover, some

researchers were inspired by the top-down human visual

attention system and proposed a new method called Exci-

tation Backprop [39], which hierarchically propagated the

top-down signals downwards in the network via a proba-

bilistic Winner-Take-All process. Recently, different from

the above methods for explaining the networks, some work

[40, 19, 37, 14, 41] produced attention maps by localizing

large and integral relevant regions of the semantic objects

for weakly-supervised semantic segmentation. All the above

methods utilize the final classification models to generate at-

tention. Besides top-down visual attention, recent researches

[34, 13, 37] also found that bottom-up salient objects cues

[12, 33, 6] are very useful for extracting background cues.

2.2. Weakly-Supervised Semantic Segmentation

Weakly-supervised semantic segmentation has also expe-

rienced great progress as a variety of methods were pro-

posed. Among these methods, we only introduce some

segmentation approaches with image-level supervision that

are strongly related to our work. The mainstream methods

[18, 34, 15, 37, 1] use the attention maps as initial seeds.
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Figure 2. Illustration of our online attention accumulation (OAA) process. The attention maps are generated online from the class-aware

convolutional layer. Our OAA utilizes these discriminative regions of attention maps at the different training phases and integrates them into

the cumulative attention maps with a simple attention fusion strategy progressively.

Typically, SEC [18] introduced three loss functions called

seeding, expansion and boundary constrain losses to expand

the initial seeds and meanwhile train the segmentation model.

However, the performance of these methods is limited in that

the object-related seeds only cover small and sparse semantic

regions.

More recently, researchers proposed a variety of methods

to mine integral object regions based on classification net-

works. In [35], Wei et al. proposed an approach which uses

an adversarial erasing (AE-PSL) strategy to mine different

regions of the objects progressively in order to obtain dense

maps. However, the procedures of AE-PSL are complicated,

which requires repetitive training procedures and learns mul-

tiple classification models to obtain different object regions.

GAIN [19] improved the adversarial erasing strategy by us-

ing attention maps to provide a self-guidance that forces the

network to focus attention on the objects holistically.

3. Methodology

In this section, we describe the pipeline of our proposed

approach and exhaustively explain the working mechanism

of each component in our framework. Fig. 3 illustrates the

whole framework of our method.

3.1. Attention Generation

In this paper, we adopt CAM [43] as our default discrim-

inative region generator. In order to obtain attention maps

at the training stage, we use the class-specific feature maps

outputted by the last convolutional layer to generate atten-

tion maps, which is proven by [40] identical to the attention

generation process in CAM.

The basic architecture can be found on the top of Fig. 2.

Like most previous work [40, 37], we also adopt the VGG-

16 [32] as our backbone. First, three convolutional layers

are added on the top of the fully-convolutional backbone,

each of which is followed by a ReLU layer for nonlinear

transformation. A class-aware convolutional layer of C

channels with kernel size 1× 1 is then added for capturing

the attention. Here C is the number of categories. Let F be

the output of the class-aware convolutional layer. Regarding

the fact that some images may have more than one category,

we treat the whole training process as C binary classification

problems. The probability of predicting the target category c

can be computed by

pc = σ
(

GAP(F c)
)

, (1)

where GAP is the global average pooling operation, and σ(·)
is the sigmoid function. The cross-entropy loss is used to

optimize the whole network. To get the attention maps given

an image I , the feature map F is first fed into a ReLU layer,

and then a simple normalization operation is performed to

make sure the values in each attention map range from 0 to

1:

Ac =
ReLU(F c)

max(F c)
. (2)

We then apply the attention maps generated at different train-

ing stages into the OAA process.

3.2. Online Attention Accumulation

To effectively implement our observation, we propose an

online attention accumulation (OAA) strategy. When the

training images are fed into the network at different training

epochs, OAA combines the generated attention maps from

the classification models. In particular, as shown in Fig. 2,

for each target class c in a given training image I , we estab-

lish a cumulative attention map M c which is used to preserve
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Figure 3. Pipeline of our OAA+ approach. The attention maps generated by the classification network during different training time are

fused into the cumulative attention maps to mine the object regions as entire as possible. Then the obtained cumulative attention maps are

utilized as pixel-level supervision to train the integral attention model, which further advances the quality of the attention maps.

the discovered discriminative regions. Our OAA first uses

the attention map A1
1 of class c at the first epoch (i.e., A1

is obtained when the training image is inputted to network

for the first time) to initialize the cumulative attention map

M1. Then, when the image is inputted to the network for the

second time, the OAA updates the cumulative attention map

by combining M1 and the newly generated attention map

A2 according to the following fusion strategy:

M2 = AF
(

M1, A2

)

, (3)

where AF(·) represents the attention fusion strategy. Simi-

larly, at the t-th epoch, the OAA uses the attention map At

to update the cumulative attention map Mt−1, yielding

Mt = AF
(

Mt−1, At

)

. (4)

The OAA repeats the above updating process continuously,

and we can obtain the final cumulative attention maps un-

til the classification model converges. In the above updat-

ing process, the attention fusion strategy is responsible for

preserving the discriminative regions of these intermediate

attention maps to constitute more complete object regions.

Regarding the fusion strategy, we propose an effective but

simple one, which is the element-wise maximum operation.

It takes the maximum attention values between the attention

maps At and the current cumulative attention maps Mt−1,

which is formulated as follows:

Mt = AF
(

Mt−1, At

)

= max
(

Mt−1, At

)

. (5)

The OAA with maximum fusion strategy can effectively

save the different discriminative object regions into the cu-

mulative attention maps. As shown in Fig. 5, the cumulative

attention maps generated by OAA have more entire regions

than the attention maps generated by CAM [43]. We also

1Here, we omit the class c for convenience.

explore the averaging fusion strategy for OAA. However,

the performance drops 1.6% of the mIoU scores compared

to the maximum fusion strategy. In Sec. 4.3, we perform

ablation experiments to show the differences between these

two fusion strategies.

It is worth mentioning that as the classification model

is weak and may focus on noisy regions at the beginning

of the training process, we use the predicted probability

of the target classes to decide whether we accumulate the

corresponding attention maps. In particular, if the classifi-

cation score of the target category is higher than those of

all non-target categories, we accumulate the attention map

of the target category in OAA. Otherwise, we abandon this

attention map to avoid noise.

3.3. Towards Integral Attention Learning

The OAA integrates the attention maps at different epochs

in the training phase to produce more integral object regions.

However, the weakness of OAA is that some object regions

with lower attention values cannot be enhanced by the clas-

sification model itself. Taking this situation into account,

we introduce a new loss function by regarding the cumula-

tive attention maps as supervision to train an integral atten-

tion model to further improve our OAA, which is named as

OAA+.

To be specific, we use the cumulative attention maps as

soft labels as done in [36]. Each attention value is viewed

as the probability of the location belonging to the corre-

sponding target class. We adopt the classification network

shown in Fig. 2 without the global average pooling layer

and classification loss as our integral attention model. Given

the score map F̂ produced by the class-aware convolutional

layer, the probability of location j being some category c can

be denoted by qcj = σ(F̂ c
j ), where σ is the sigmoid function.

Thus, the multi-label cross-entropy loss for class c used in
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[36] can be written as:

−
1

|N |

∑

j∈N

(

pcj log(q
c
j) + (1− pcj) log(1− qcj)

)

, (6)

where pcj denotes the values in the normalized cumulative

attention maps. After optimization, the enhanced attention

maps can be obtained directly from the class-aware convo-

lutional layer. However, with the above multi-label cross

entropy loss function, the produced attention maps tend to

cover the semantic object regions partially. The reason is

that the loss function in Eq. (6) prefers classifying pixels

with low class-specific attention values (pcj < 1− pcj) to be

the background for category c.

In consideration of the above discussion, we propose an

improved hybrid loss. Given the cumulative attention map

ranging from 0 to 1 for class c, we firstly divide it to soft

enhance regions N c
+ and soft constraint regions N c

−
, where

N c
−

includes pixels with pcj = 0 and N c
+ contains other

pixels. For pixel set N c
+, we remove the last term of Eq. (6)

in order to further promote the attention regions but not

suppress the regions with low attention values. Formally, we

have the loss function for N c
+ as

Lc
+ = −

1

|N c
+|

∑

j∈Nc

+

pcj log(q
c
j). (7)

As only image-level labels are given here, the attention re-

gions in the cumulative attention maps often contain non-

target pixels because of the irregular shapes of semantic

objects. Therefore, in Eq. (7), we use pcj as the ground-truth

label instead of 1 such that lower attention values in the cu-

mulative attention maps over non-semantic areas have nearly

no negative effect on the network. For N c
−

where pcj = 0,

the loss function in Eq. (6) collapses to the following form:

Lc
−
= −

1

|N c
−
|

∑

j∈Nc

−

log(1− qcj). (8)

As a result, the total hybrid loss function for our integral

attention model can be computed by:

L =
∑

c∈C

(Lc
+ + Lc

−
). (9)

In this way, the lower values in soft enhanced regions also

contribute to optimization according to the loss function in

Eq. (7). Eq. (8) constrains the excess expansion of attention

areas to the background.

Based on the proposed loss function, we can train an

integral attention model to further strengthen the lower at-

tention values of target object regions. At the inference time,

the improved attention maps can be directly obtained from

the class-aware convolutional layer of the integral attention

model. Additionally, Fig. 5 shows some visual results of our

attention maps, and more quantitative analysis is conducted

in Sec. 4.3.

4. Experiments

In order to demonstrate the effectiveness of our approach,

we apply our attention maps produced by OAA and OAA+

as heuristic cues to the weakly-supervised semantic segmen-

tation task. We use the attention maps to extract object cues

and saliency maps [12] to extract background cues. These

cues are then utilized to generate the pseudo segmentation

annotations. We assign the category tag corresponding to

the maximum value to the pixels in proxy segmentation la-

bels. All the conflicted pixels are ignored for training. The

proxy ground-truths generated from the above method are

used to train segmentation models. In the following subsec-

tions, we provide a series of ablation studies and compare

our approach with the previous state-of-the-art approaches.

4.1. Dataset and Settings.

Dataset and Evaluation Metrics We evaluate our approach

on the PASCAL VOC 2012 segmentation benchmark [8],

which contains 20 semantic categories and the background.

As done in most previous work, we also use the augmented

training set [9] for model training. Therefore, we have

10,582 training images in total. During the test phase, we

compare our approach with previous methods on both the

validation and test sets in terms of the mean intersection-over-

union (mIoU) evaluation metric. Because the segmentation

annotations for the test set are not publicly available, we

submit the predicted results to the official PASCAL VOC

evaluation server to obtain the scores.

Network Settings. For the classification network, the

hyper-parameters are set as follows: mini-batch size (5),

weight decay (0.0002), and momentum (0.9). The initial

learning rate is set to 1e-3, which is divided by 10 after 20000

iterations. We run the classification network for 30000 it-

erations in total. We use the classification network without

the global average pooling layer and classification loss as

our integral attention model. The hyper-parameters of the

integral attention model is the same as that of the classifica-

tion network. We use the DeepLab-LargeFOV model [5] as

done in most previous work as our segmentation network.

The segmentation network is trained with a mini-batch of

10 images and terminated at 15, 000 iterations. All the other

hyper-parameters are the same as [5]. We report results

based on both VGG16 [32] and ResNet-101 [10] backbones.

4.2. Comparisons to the State-of-the-arts

In this subsection, we compare our approach with pre-

vious weakly-supervised semantic segmentation methods

relying on only image-level labels. Tab. 1 lists all the results

of these approaches and ours on the validation and test sets.

It can be easily observed that the mIoU scores of our ap-

proach improve all the previous state-of-the-art methods, no

matter which backbone is used. Among the previous state-
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Image Ground Truth OAA OAA+ Image Ground Truth OAA OAA+

Figure 4. Qualitative segmentation results on the PASCAL VOC 2012 validation set using attention maps generated by our OAA and OAA+,

respectively. We also show several failure cases on the bottom row.

of-the-art methods, MIL [26] and WebS-i2 [16] use more

training images (700K and 19K, respectively). Furthermore,

Hong et al. [11] utilizes rich information of the temporal

dynamics provided by additional video data, which helps

easily find out the integral semantic objects from video data.

Although only 10K images are used, the results of our OAA+

approach improve the above three approaches on the valida-

tion set by 21.1%, 9.7% and 5.0%, respectively. This fact

well demonstrates that the attention maps produced by our

integral attention model can effectively detect more integral

semantic regions towards all parts of the target objects.

Comparing to AE-PSL [35], our OAA achieves a better

mIoU score (61.6% v.s. 55.0%) with no need to train multi-

ple classification models. Furthermore, GAIN [19] adopts

a self-guidance erasing strategy in an end-to-end manner

but our segmentation results improve GAIN by more than

7% mIOU score (63.1% v.s. 55.3%). The comparisons to

those erasing-based methods reveal that collecting the inter-

mediate attention maps is more effective. In [37], Wei et

al. exploited the power of dilated convolutions to discover

integral objects. However, it usually introduces some irrele-

vant pixels because the convolutions with large dilation rates

often focus on the outside of the target regions. Differently,

our approach does not utilize convolutions with large dilation

rates and hence can weaken the effects of irreverent pixels.

As shown in Tab. 1, our approach improves the method of

[37] by nearly 2% on both the validation set and the test

set. Additionally, we also show the segmentation results

based on ResNet [10] backbone. Obviously, our proposed

approach achieves the best result on the PASCAL VOC 2012

segmentation benchmark.

4.3. Ablation Analysis

In this section, we perform a series of ablation experi-

ments and give detailed analysis to demonstrate the effec-

tiveness of the proposed strategies. Furthermore, we demon-

strate how the produced attention maps can benefit the se-

mantic segmentation task. Note that we use the VGGNet

version DeepLab-LargeFOV model in this subsection.

Accumulation Strategies. The attention fusion strategy is

used in OAA to accumulate the discovered discriminative re-

gions in the intermediate attention maps at different epochs.

In addition to the maximum fusion strategy, we also inves-

tigate an average fusion strategy, which can be formulated

as:

Mt =
1

t

(

(t− 1)Mt−1 +At

)

. (10)

As shown in Tab. 2, using attentions by CAM [43] without

OAA gives a mIoU score of 53.9% on the validation set.

When adding OAA with the average fusion strategy, the re-

sult can be improved to 57.0%. When replacing the average

fusion strategy with the maximum fusion strategy, we have

a mIoU score of 58.6%, which greatly improves the results

based on CAM [43]. In addition, we observe that OAA with

the maximum fusion strategy is more effective than that with

the average fusion strategy. This is because the averaging
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Methods Supervision Val Test

Backbone: VGGNet [32]

CCNN [25] 10K 35.3% -

EM-Adapt [24] 10K 38.2% 39.6%

MIL [26] 700K 42.0% -

DCSM [30] 10K 44.1% 45.1%

SEC [18] 10K 50.7% 51.7%

AugFeed [27] 10K 54.3% 55.5%

STC [36] 50K 49.8% 51.2%

Roy et al. [28] 10K 52.8% 53.7%

Oh et al. [23] 10K 55.7% 56.7%

AE-PSL [35] 10K 55.0% 55.7%

Hong et al. [11] 970K 58.1% 58.7%

WebS-i2 [16] 19K 53.4% 55.3%

DCSP [3] 10K 58.6% 59.2%

TPL [17] 10K 53.1% 53.8%

GAIN [19] 10K 55.3% 56.8%

DSRG [15] 10K 59.0% 60.4%

MCOF [34] 10K 56.2% 57.6%

Ahn et al [1] 10K 58.4% 60.5%

Wei et al [37] 10K 60.4% 60.8%

SeeNet [14] 10K 61.1% 60.7%

OAA (Ours) 10K 61.6% 61.9%

OAA+ (Ours) 10K 63.1% 62.8%

Backbone: ResNet [10]

DCSP [3] 10K 60.8% 61.9%

DSRG [15] 10K 61.4% 63.2%

MCOF [34] 10K 60.3% 61.2%

Ahn et al [1] 10K 61.7% 63.7%

SeeNet [14] 10K 63.1% 62.8%

OAA (Ours) 10K 63.9% 65.6%

OAA+ (Ours) 10K 65.2% 66.4%

Table 1. Quantitative comparisons to previous state-of-the-art ap-

proaches on both the validation and test sets. OAA+ denotes that

the attention maps are generated from the integral attention model

described in Sec. 3.3.

fusion strategy averages all the attention values across the

intermediate attention maps, which decreases the attention

values in the final cumulative attention maps. Therefore, in

the following, we view the maximum fusion strategy as our

default fusion strategy for OAA. Note that the goal of this

paper is to demonstrate the effectiveness of OAA and hence

we simply choose the element-wise maximum fusion strat-

egy for OAA. Designing more complicated fusion strategy

is beyond the scope of this paper but we encourage readers

to further explore more effective ones.

Loss Function in OAA+. As stated in Sec. 3.3, the cu-

mulative attention maps are then used as soft labels to train

the integral attention model to produce attention maps with

more integral and accurate object regions. In Tab. 2, we

show quantitative results using different loss functions. It

can be observed that the performance is improved by 8.4%

when replacing the standard multi-label cross-entropy loss

(MCE) [36] with the proposed hybrid loss (HL). When ap-

plying the multi-label cross entropy loss, the output attention

maps always cover small object regions. On the contrary,

the proposed hybrid loss can further improve the quality of

the cumulative attention maps by our OAA.

No. AVE MAX MCE HL mIoU (val)

1 53.9%

2 ✓ 57.0%

3 ✓ 58.6%

4 ✓ ✓ 51.2%

5 ✓ ✓ 59.6%

Table 2. Comparisons of mIoU scores on the PASCAL VOC 2012

validation set when using different settings. AVE: OAA with the

average fusion strategy. MAX: OAA with the maximum fusion

strategy. MCE: OAA+ using the multi-label cross entropy loss in

Eq. (6). HL: OAA+ using the proposed hybrid loss in Eq. (9).

Results with Different Strategies. Other than visual com-

parisons, we also perform a series of ablation experiments

on the PASCAL VOC 2012 dataset. As shown in Tab. 2,

we show that the mIoU scores of using attention maps with

different strategies for training segmentation networks. In

the third and the last rows of Tab. 2, it can be seen that

using OAA+ can further improve the results by OAA by

1.0% on the validation set, which indicates our integral atten-

tion model with the proposed loss function can help further

improve the quality of the cumulative attention maps.

Visual Comparisons. In this paragraph, we show some

qualitative results on the PASCAL VOC 2012 dataset [8] and

give the corresponding attention maps produced by CAM

[43], OAA, and OAA+, respectively, for visual compar-

isons. As shown in Fig. 5, the images include different

kinds of scenes, such as images with objects of different

scales, crowded objects, and multiple categories. From all

shown examples, our cumulative attention maps can discover

nearly complete target objects at different scales, when com-

paring to the attention maps produced by CAM [43]. On

the fifth row, the images with multiple objects are shown. It

can be found that in this case our cumulative attention maps

can still cover most of the semantic regions. On the last

row, we show some examples containing multiple classes.

Obviously, our cumulative attention maps can successfully

distinguish different classes and detect the target objects

densely. In addition, the attention maps produced by OAA+

can discover more integral object regions than the cumula-

tive attention maps from OAA. Additionally, we also show

some segmentation results in Fig. 4.
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Figure 5. Visual comparisons among different attention maps produced by CAM [43], OAA, OAA+ and OAA+-MCE. OAA+ and OAA+-

MCE denote the integral attention model learned with the proposed hybrid loss in Eq. (9) and the multi-label cross entropy loss in Eq. (6)

respectively.

No. #Training Images Proportion mIoU(val)

1 2, 116 20% 54.6%

2 5, 291 50% 57.3%

3 8, 466 80% 58.9%

4 10, 582 100% 59.6%

Table 3. Comparisons of mIoU scores on PASCAL VOC 2012

validation set when using different number of training images. Note

that images are selected randomly. Proportion: the percentage of

the images used for training. #Training Images: the number of

training images.

Number of Training Images. To further investigate the

quality of the attention maps, we attempt to use different

numbers of training images to train the segmentation net-

work. We use the attention maps produced by OAA+ to

produce the proxy segmentation annotations. As shown in

Tab. 3, the mIoU scores are improved gradually as more

images are used for training. More interestingly, when using

only 2116 training images, our segmentation network can

still achieve a performance score of 54.6%, which is better

than the segmentation results based on CAM [43]. This indi-

rectly suggests that our attention maps are with high quality

and facilitate the segmentation task.

5. Conclusion

In this paper, we explore a simple but effective framework

called OAA to discover more integral object regions. We

maintain a series of cumulative attention maps to preserve

the different discriminative regions in attention maps gen-

erated by the classification network during training stages.

Additionally, we utilize the cumulative attention maps as

soft labels to train an integral attention model to enhance

the attention maps by OAA. Our approach is easy to follow

and can be simply plugged into any classification networks

to discover the target object regions holistically. Thorough

experiments show that when applying our attention maps to

the weakly-supervised segmentation task, our segmentation

network works better than the previous state-of-the-arts. In

the future, we plan to conduct experiments on large-scale

datasets, such as MS COCO [21] and ImageNet [7].
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