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A. Abstraot

In de aruijn's theory of generalized functions and Wigner distributions

there are a few points where generalization to the case of more than one va

riable presents an essential difficulty:

i) The integral transforms (possibly degenerated) corresponding to fractio

nal linear transforms (see [a], section 27.3) and the induced transforma

tions of the phase plane (see raJ, section 27.12.2).

ii) The description of the classical limit of quantum mechanics by means of

the Wigner distribution.

In both cases the 2 x 2 matrices with determinant 1 have to be replaced

by 2n x 2n symplectic matrices. The various difficulties that arise are solved

in this report. As to point ii), this enables us to deal with the canonical

transformations of linearized Hamilton systems.

AMS Subject Classifications: lSA21, 15A57, 46FOS, 46Fl0.
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B. Notation

We use Church's lambda calculus notation, but instead of his A we have

r, as suggested by Freudenthal: if S is a set, then putting r S in front of
XE

an expression (usually c o n ~ a i n i n g x) means to indicate the function with

domain S and with the function values given by the expression. We write r
x

instead of r S' if it is clear from the context which set S is meant.
XE

In this paper the s Y m b o l ~ is used for the set of all real numbers,

and we use the sYmbol ~ for the set of all complex numbers. We use the sym

bol MnxmOR) (Mnxm(~» to indicate the set of all matrices with n rows and

m columns (n and m are positive integers) which have real (complex) entries.

If z E ~ then Re z (Im z) denotes the real (imaginary) part of z. If

T E M (~), we define Re(T) and Im(T) as the real matrices with
nxm

T = Re(T) + i Im(T) •

The overhead bar is used for complex conjugates for elements of ~ as well

for elements of M (~). We shall write ~ f o r the set of all positive inte
nxm

gers.

If n E :N, and if x and yare elements of ~ n with components xl' .• · ,x
n

and Yl' ••• 'Yn' we define

n

(x,y) := I XiYi.
i=l

Note that this is a bilinear form in x and y.

In general, we shall denote matrices by capitals. For instance, if

n E :N, we shall denote the unit matrix in M (~) by I • When dealing how-
nxn n

ever with elements of M lOR) (or M l(~» we use lower case characters,
nx nx

and we shall identify elements o f ~ n (or ~ n ) with the corresponding elements

of M lOR) (or M 1 (~) ) •nx nx

We shall indicate the transpose of a matrix A E M (~) (n E ]N, m E ]N)

AT
nxm

A
H

•by and the complex conjugate of this transpose matrix by If A sa-

tisfies A = AT, then A will be called sYmmetric, and if A satisfies A = A
H,

it will be called hermitian.
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X E M lOR». We express this by saying that A
nx

B belongs to M (G::) too, then the formula A > B in-
nxn

BH and A - B > O. The formulas A ~ 0 (positive semi-

nonzero x E M 1(G::). (If A is real, it suffices to require that A
T nX

x Ax > 0 for every nonzero

is positive definite. If

dicates that A = A
H

, B =

If n E IN and A E M (G:), then the formula A > 0 indicates that A=A
H

nXn
and that A is a matrix of a positive definite form, i.e. xHAx > 0 for every

= AT and

definite) and A ~ B indicate the obvious analogy of the formulas A > 0 and

A > B.

If n E:IN, m E:IN and Z E M (G::),
nXm

nents A E M (G::), B E M (C), C
n

1
xm

1
n

1
xm

2
n

1
+ n

2
= n, m

1
+ m

2
= m, and if

we shall say that Z has block compo-

E M (c) and 0 E M ((;), if
n

2
xm

1
. n

2
xn

2

z = [: :].

If n
1

= n
2

, then (A,B) and (C,O) will be called the first and the second ma

trix row of Z respectively. In case that B = 0 and C = 0, and n 1 = m
l

,

n
2

= m
2

, we shall call Z block diagonal with blocks A and 0, and this will

be denoted by Z - diag(A,D). These notations (with the proper modifications)

will be used in case of more than two blocks.
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O. Introduction

0.1. We give a short survey of the fundamental notions and theorems of de

Bruijn's theory of generalized functions as far as relevant for this report.

A detailed treatment can be found in [B].

0.2.

note

plex

that

If A and B are positive numbers and if n is a positive integer we de
n

by S B the class of everywhere defined analytic functions f of n com
A,

variables zl, ••• ,zn for which there exists a positive number M such

If(z) I $ M exp(-TIA(Re z,Re z) + TIB(Im z,Im z»

0.3.

for every z E ~n. The set sn of smooth functions of n complex variables is

defined by

n
U U SA,B

A>O B>O

(see [B], 2.1).

n
In S we take the usual inner product and norm:

[f,g]n:= f f(x)g(x)dx

JRn

n n
(f E S , g E S ) ,

IIfli := ([f,f] ) ~
n n

n
(f E S ) •

0.4. Let n E~. We consider a semigroup (N ) of linear operators of Sn
o.,n 0.>0

(the smoothing operators). The N 's satisfy
o.,n

N = N N
o.+S,n o.,n S,n

(a. > 0, S > 0) ,

where the product is the usual composition of mappings. These operators are

defined as integral operators:

N
o.,n J K (z,t)f(t)dt,

o.,n

where the kernel K is given by
o.,n
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n

K .= IjJ sinhct
2
exp(-

ct n' Inn
, (z,t)~«: x«:

7T ((z,z) + (t,t) )cosha. - 2(z,t)}).
sihhct

(See [B], sectton 3,4,5 and 6 ~ )

0.5.

i)

We summarize a number

N f = N(l) N(2) N(3)
ct,n ct,l ct,l ct,l

of properties of the (N ) o'
ct,n ct>

N(n)l f (ct > 0, f ~ Sn), where
ct,

N(i)g denotes
ct,l

f N 1 (~ g (z 1 ' ••• , z . 1 ' z . , z . +1 ' ••• , z »n ct, z. 1- 1 1 n
(zl, ••• ,zn)EC 1

n
(1 ~ i ~ n, ct > 0, g E S ).

ii) N is symmetric, i.e.
ct,n

[N f,g] = [f,N g]
ct,n n ct,n n

n n
(ct > 0, f E S , g E S ) •

n
atmost one g E S such that f =N g.

ct,n
n

then there exists an ct > 0 and agE S such

See [B], 6.5.

iii) If f E Sn and ct > 0, then there is

n
In addition, if f E S ,

that f =N g. This is a modification for the more dimensional case of
ct,n

[B], 10.1.

0.6.
n

We give a number of examples of linear operators, of S .

i)

ii)

The smoothing operators N (ct > 0).
ct,n

The Fourier transform F defined by
n

f exp(-27Ti(z,t»f(t)dt •

iii) The shift operators T
a

and ~ (a E en, b E Cn) defined by

T
a

.= IjJ IjJ fez + a)
• I n I n

fES ZEC

and

~ := f r exp(-27Ti(z,b»f(z).
fES

n
ZEC

n

iv) The operators p. and Q. (1 ~ i ~ n) defined by
1 1
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r r 1 a
p. := 2 ~ i ( ~ f ) (zl,···,zn)
~

fES
n n

(zl,z2,···,zn)E~ ~

and

Q
i

:= r r z.f(zl'···'z) .
fES

n
(zl""'z ) E ~ n ~ n

n

For properties of these operators, see [BJ, section 8, 9 and 11, as far

as the case n = 1 is concerned (in the general case we have similar proper

ties) .

0.7. A generalized function F of n variables (n E ~ ) is a mapping of the

set of positive numbers into Sn such that

N FUn
et,n

F(et + S) (et > 0, S > 0)

n*
(We also write N F instead of F(et) for F E Sand et > 0).

et,n

The set of all generalized functions of n variables is denoted

f E sn, then its standard embedding in Sn* is defined by

n*
by S • If

emb(f) := ljJ 0 N f.
let> et,n

(See [BJ, section 17).

define the inner product [F,gJ :
n

sn (see 0.5 iii». Now [F,gJ
n

[BJ, section 18).

n* n
If F E Sand g E S , then we can

write g = N h with some et > 0 and h E
et,n

:= [F(et),hJ (this depends only on F and g: see
n

0.8. LetT be a linear operator on sn and assume that there exists a family

n* n
(Y) 0 of linear mappings of N (S ) into S such that

et et> et,n

i) Y N F
et+S et+S,n

N Y N F
S,n et et,n

11) Y N f = N Tf
et et,n et,n

for every et > 0, S > 0, F ~ sn*, f E Sn .

We call T

is possible to

= emb(Tf) (f E

extendable by means of (Y) 0 "(see [BJ, 19.3 and 19.4): It
et et>
~ n* ~

define a linear operator T on S such that T emb(f) =

Sn). This T is defined by
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T := ~ ~ Y N F
I n* la>o a a,n
FE:S

(see [BJ, 19.2).

There is another way to describe the extension of linear operators of

n n* [ ] [ JS to linear operators of S , as was investigated in J (see J, appen-
n

dix 1, section 3). The main result there is that a linear operator T of S

is extendable to a linear operator T of sn* such that T(emb(f» = emb(Tf)

for f E sn, if T has an adjoint. (In many cases this extension coincides

with the one given above.) Although it may be proved that all operators in

vestigated in the second chapter have an adjoint, we shall not use the theo

rem mentioned, since it seems to be more convenient in this report to have

explicit formulas (given by the Y IS) for the extended operators.
a

n
then we write f S+ 0 (m + 00)

m

0.9.
n

Convergence in S (n E :N) •

If (f) IN is a sequence in sn,
m ~

positive numbers A and B such that

if there are

f (z)exp(~A(Re z,Re z) - ~(Im z,Im z» + 0
m

uniformly in z E a:n . If f E sn, then f + f (m + 00) indicates that
m

f - f + 0 (m + 00). For more details see [BJ, section 23.
m

0.10. Consider the set GO of matrices Z E M
3x3

(C) which have the form

where a,b,c,d,e and f are complex numbers such that ad - cb

that the mapping

1, and such

0.10.1. r at + b
tE~,Re(t»O ct + d

is well defined and maps the right-half plane into itself (see [BJ, 27.3.1).

It is not hard to see that GO is a semigroup under maLrix multiplication.

If Z E GO' we define an operator fof S related to Z as follows:

i) if c 'I 0

2 ... ~ . . . .. 2

c-~exp(-~ az - 2 z t + d t · + 2 ( c e ~ a f ) z + 2 f t + a f -cef)g(t)dt,
c

+00

J
-00
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-~
where c is a (properly chosen) complex number the square of which

-1
equals c

ii) if c = a

2 2r ltJ ltJ ...;.~ z - f bz + 2 (ed - bf) z + bf - def)
= IgES I z d g(-d-) exp(-1f d

-~
where d denotes a complex number the square of which equals d.

( ~ e r e is a slight inconvenience caused by multivaluedness of square

roots.) (See [B], 27.3.8 and 27.3.9.)

An important property of these operators is multiplicativity: if we

compose two operators related to Z1 E GO and Z2 E GO respectively, we ob

tain an operator related to the product of Z1 and Z2'

Note that the operators Na,l' T
a

, ~ and F
1

are obtained by suitable

choices of the matrix Z E GO (a > 0, a E (, b E ~). See [B], 27.3.

Several notions and theorems which are discussed in [B], 27.3 for the

one dimensional case are generalized in this report to the more dimensional

case. In chapter one we shall generalize the notion of fractional linear

transform of 0.10.1, and in chapter two we shall be concerned with the ge

neralization of the operators mentioned above.
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1. Higher dimensional fractional linear transforms

1.0. Introduction

1.0.1.

1.0.2.

1.0.3.

In this chapter we intend to develop a theory of higher dimensional frac

tional linear transforms of the right-half plane (higher dimensional means

here that we consider square matrices instead of complex numbers). For the

one dimensional case (i.e. if we take one-by-one matrices), such a theory

is available (we refer to [B], 27.3). We wish to generalize the results of

this theory to the higher dimensional case.

A non-trivial fractional linear transform is usually described by a matrix

z = [: :].

where a,b,c and d are complex numbers such that ad - bc :F O. If ct + d :F 0

for every t € ~ with Re(t) > 0, we can relate a fractional linear transform

to Z, viz. the mapping

r at + b
t,Re(t»O ct + d

It is not hard to see that it suffices to consider matrices Z € M2X2(~) with

det(Z) = 1.

One of our aims is to generalize the notion of right half-plane as well

as the notion of fractional linear transform to the case that a,b,c,d and t

are square matrices A,B,C,D and T instead of complex numbers. It will become

clear that in this case we have to take symplectic matrices

z = [: :]

where A,B,C and D are elements of M (~) and that T is a symmetric matrix
nxn

with positive definite real part. (See [M], § 4 and [sJ, chapter II).

1.0.4. We introduce the sets GO(n), G
1

(n) and G
2

(n) (n E ~ ) in a way similar

to the definitions of the sets GO' G
1

and G
2

in [B] (see [B], 27.3). Many

results obtained in [B] can be generalized to the case of more dimensions.

We mention in particular that higher dimensional fractional linear trans

form related to elements of G
1

(n) map the generalized right h a l f ~ p l a n e onto
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itself, and that hiqher dimensional fractional linear transforms related

to elements of'G
2

(n) have a unique fixed point.

1.0.5. In the one dimensional case our theory coincides for a great deal with

that of [BJ, 27.3, but in this case our theory gives a more unified approach

for the cases that where treated seperatedly in [BJ.

1.0.6. The set G
1

(n) (n E ~ ) was discussed before (although in a different

form) in [MJ an [SJ.The authors used the generalized upper half-plane and

the set of all symplectic matrices with real entries.

1.1. Preliminaries

In this section we shall give some introductory remarks and definitions

that will be used throughout the whole report.

1.1.1. Definition. A matrix A is called symplectic of order n (n E ~), if

Z E M2nx2n(~) and if Z satisfies

1.1.1.1.

where

(See [MJ, p. 31).

1.1.2.

1.1.2.1.

Let Z be symplectic of order n (n E ~ ) and let A,B,C,D E M (~) denote
nxn

the block components of Z, i.e.

z = [: :].

Then it follows from 1.1.1.1 that

Since J is non-singular, we obtain from 1.1.1.1 that Z is non-singular and
n

that
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-1 -1
hence Z is symplectic. Furthermore, from J = -J we see by using 1.1.2.2

n n

that

ZJ zT = J
n n

T T
so Z is also symplectic. If we apply 1.1.1.1 to Z we obtain

1.1.2.3.

1.1.2.4.

Using 1.1.2.1 and 1.1.2.3 we easily see that

1.1.2.5. For later references we mention the following property. If C is n o n ~

. 1 th 1 d f f T d T t' th ts1ngu ar, en we conc u e rom the act that A C an CD are sYmme r1C a

-1 -1
AC and C D are also sYmmetric.

We shall denote the set of symplectic matrices of order n (n E ~ ) by

Sp(n). Clearly Sp(n) is a group under matrix multiplication. In case n = 1,

Sp(n) equals SL(2) (the special linear group of order two, i.e. the set of

all matrices in M 2 X 2 ( ~ ) with determinant one).

Let e denote the set of all sYmmetric matrices in M (~) (n E ~ ) and
n nxn

let H denote the subset of e consisting of all TEe such that
n n n

Re(T) > a .

Note that we consider symmetric (instead of hermitian) matrices with

complex entries.

We can consider e as a generalization of the complex plane to dimen
n

sion n. From this point of view, H is the generalization of the right half
n

1 e b d
~n(n+1). b . d

pane. can e mappe one-to-one onto q: 1n an 0 V10US wayan so
n

en is endowed with a topology which is equivalent with the ordinary topology

. ~~n(n+l)
1n ~ •
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1.1.3. For every T E H (n E ~ ) we have
n

T = Re(T) + i Im(T)

where Re(T) is positive definite and Im(T) is symmetric. Let T E H . If we
n

abbreviate X = Re(T) , Y = Im(T) , then

is positive definite, hence

1.1.3.1.
-1 . -1 -1

W := (I - iX Y) (X + YX Y)
n

for

andTW = I • So every T E H is non-singular
n n

E H . (Compare 1.1.3.1 with the expression
n

iy E «:: (x E JR., Y E JR.) satisfying x > 0) •the inverse of a number x +

is well defined and satisfies
-1

since Re(W) > 0 we have T

1.1.4. Let Z E Sp(n) (n E ~ ) and let A,B,C,D denote the block components of Z

(according to 1.1.2). If CT + D is non-singular for every T E H , we can
n

relate a mapping lz to Z defined by

l
Z

~ -1
:= ITEH (AT + B) (CT + D) •

n

We shall call this mapping the ( ~ - d i m e n s i o n a l ) fractional linear transform

related to Z. In the following, the phrase "l is well defined" will mean
Z

that CT + D is non-singular on H .
n

If S E H
n

, then we have lz(S) = (lz(S»T, for we have by 1.1.2.1

(SC
T

+ D
T

) (AS + B) = (SAT + B
T

) (CS + D) •

This means that l.z (S) E en.

1.1.4.1. Let Z E Sp (n) and assume that l Z is well defined. If T1 E H
n

and

T2 E H
n

satisfy

then, from

we have
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and, using the relations of 1.1.2.1, we infer that T
1

= T
2

, hence £z is one

to-one.

1.1.4.2. Let Z E Sp(n) (n E ~ ) and assume that £z is well defined.

one-to-one (see 1.1.4.1), £z has an inverse defined on the set

sume that A,B,C and D E M (C) denote the block components of
nxn -

Since £z is

£ (H ). As
Z n

Z, then

is well defined and this mapping is the inverse of £ on £ (H ). This can
Z Z n

easily be seen as follows: Let S ( £ (H ), then there exists exactly one
Z n

T E H (see 1.4.1.1) such that
n

-1
S = (AT + B) (CT + D) •

Using 1.1.2.1, we have

T T T T -1 -1
-C S + A = (A D - C B) (CT + D) = (CT + D)

so _cTs + AT is non-singular for every S E £z(H
n
). Using 1.1.2.1 and 1.1.2.3

it is easily seen that the mapping

1.1.4.3. If Zl ( Sp(n) and Z2 ( Sp (n) (n E ~) are such that £ and £ are well
Zl Z2

defined, and if furthermore £ (T) ( H for every T ( H , then £ is well
Zl n n ZZZl

defined and

(T (. H) •
n

1.1.4.4.

This is easily seen by a matrix computation and by using the general proper

ties of symplectic matrices (see 1.1.1 and 1.1.2).

We are now able to motivate why we consider symplectic matrices to de

fine more dimensional fractional linear transforms.
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Since we intend to define a mapping of the kind of £z that maps H
n

in

to C , the image of every S E H under this mapping has to be symmetric, so
n n

for every S E H . Therefore we have
n

for every S E H , and it is easily seen that this implies eTA = ATC,
n

BTD = DTB, and that ATD - eTB is a diagonal matrix. Considering a one di-

mensional fractional linear transform ~ t (at + b) (ct + d), we see that we can

restrict ourselves to complex numbers a,b,c and d with ad - bc = 1. The re

lation ATD - CTB = I can be seen as a generalization of the relation
n

ad - bc = 1.

There is another reason why we consider symplectic matrices. A linear

transformation of lR
2n

(n E:JN") given by

(q,q' ,p,p' E M
nx1

OR»

where Z denotes an element of M
2

2 OR), is a canonical transformation (sec
n x n

[TH], p. 98) if and only if Z is symplectic. More details are given in sec-

tion 2.6.

1.1.5. Definition. A pair (C,D) of matrices C E M (~) and D E M (~) (n E:JN")
nxn nxn

will be called admissible if it occurs as the second matrix row of a sym-

plectic matrix of order n, and if furthermore CT + D is non-singular for

every T E H •
n

We conclude this section with an example that will be used extensively

in the next sections.

1.1.6. Let M (a) (n E:JN", a > 0) be defined by
n

M (a)
n

:= (COSha In

sinha I
n

sinha In] •

cosha I
n

Obviously M (a) is symplectic of order n. Furthermore,
n

T + cotha I E H
n n
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for every T E H , so, by using 1.1.3, we see that
n

sinha T + cosha I
n

is non-singular for every T E H
n

. This implies that £M (a) is well defined
n

(a > 0). It is not hard to see that

-2 -1
£M (a) (T) = coth aI

n
- sinh a(T + coth a) (T E H

n
) ,

n

so application of 1.1.3 leads to

Re(£M (a)(T»
n

cotha I
n

-2
- sinh a[Re(T) + cotha I +

n

-1 -1
+ Im(T) (Re(T) + cotha I) Im(T)]

n

~ cotha I
n

= tanha I
n

-2 -1
- sinh a(cotha I )

n

(T E H ) •
n

Therefore £M (a) maps H
n

into H
n

for every a > O. Evidently we have
n

£ M (a) ($..M (8) (T» = £ M (a+(3) (T)
n n n

(See 1. 1. 4 • 2 . )

1.2. D e c o m ~ o s i t i o n of a s~lectic matrix

(a > 0, (3 > 0, T E H) •
n

We shall discuss a result on the decomposition of symplectic matrices

which plays an important role in the remainder of this report. The notations

introduced in this section will be used in many of the subsequent sections.

Let Z € Sp(n) (n E ~ ) and let A,B,C,D denote the block components of Z

(according to 1.1.2). Furthermore, let r denote the rank of C and assume

o < r < n. A general theorem in matrix theory states that there exist permu

tation matrices P,Q E M OR), matrices X E M ( ) (G:) and Y E M( ) (<1:),
nxn r x n-r n-r xr

and a non-singular matrix C
11

E M (<1:) such that
rxr

1.2.1.

[

, C

c=p 11

YC
ll
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So

C [ell 0] T= V1 o U2 '
0

where ,

p[Ir :nJ ['r 0']V := U
2

:= Q T1 . y
X I

n
_

r

If we write

-1
= [Dll D12

] ,V
1

DU
2

D
21

D
22

where D
11

E M (G:), D
12

E M ( ) (G:), D
21

E M( ) (G:) and
rxr rx n-r n-r xr

D
22

E M( ) ( ) (G:), then we deduce from CDT = DCT (see 1.1.2.3) that
n-r x n,..r

Since C
11

is non-singular we have D
21

= O.

The rank of the matrix (C,D) E M 2 (G:) is n (it occurs as the second matrix
n x n

row of a non-singular matrix), hence

[

C
ll

rank V1 0

o

o

and this implies that D
22

is non-singular.

If we define U
1

by

then U
1

is non-singular and we have

1.2.2. C

where

In addition, if we write
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A1 := UTAU-
T

= r11
A

12
] ,

1 2 A A
2221

B
1

T

~ rll B
12

] ,:= U
1

BU
2

B
21

B
22

where All ,Bll E Mrxr(~)' A12 ,B12 E Mrx(n-r) ( ~ ) , A21 ,B21 E M(n-r)xr(~)' and

A22 ,B22 E M(n-r)x(n-r) ( ~ ) , then we have

and since all matrices on the right-hand side are symplectic, we have

Application of 1.1.2 to Zl and using the fact that C
1l

is non-singular gives

1.2.4.

and furthermore that the matrix Z11 E M2rx2r(~) defined by

1.2.5.

1.2.6.

is symplectic.

If we assume that £ z is well defined (see 1.1.4) and if furthermore

T .=£ (T)
l' Z

(T E H) ,
n

then we easily infer from 1.2.3 that

1.3., Admissibility

The aim of this section is to derive necessary and sufficient conditions

for a pair of matrices C,D E M (~) (n E W) to be admissible.
nxn
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First of all we want to characterize the pairs of matrices e (M (G:) ,
nxn

o ~ M x (C) (n E ~ ) that occur as the second matrix row of a symplectic ma
n n

trix. We have the following lemma (see [M], p. 155).

1.3.1. Lemma. Let e and 0 be elements of M (C) (n Em). Then (e,o) occurs as the
nxn

second matrix row of a symplectic matrix of order n if and only if

COT = OCT, rank[C,O] = n •

Proof. The "only if" part of our assertion is a trivial consequence of 1.1.2 •

. Assume now COT is symmetric and rank[e,O] = n. By elementary devisor theory

(see [G], chapter II) we can choose non-singular matrices U
1

E Mnxn(c) and

U2 E M2nx2n(C) such that

hence

If we define X and Y E M (C) by
nxn

then

ex + OY = I
n

Now let

then

and

I
n

hence

[: :r
is symplectic (see 1.1.2.3), and thus (C,D) occurs as the second matrix of
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a symplectic matrix. Note that A and B are by no means uniquely determined:

for every symmetric matrix S E M (t) the matrix
nxn

is symplectic.

Let C E Mx (t), D E Mx (t) (n E ~ ) be a pair of matrices such that
n n n n

(C,D) is the second matric row of a symplectic matrix of order n. We now

want to investigate under which circumstances CT + D is non-singular for

every T E H •
n

o

1.3.2. In case C is n o n ~ s i n g u l a r , we have that CT + D is non-singular for

every T E H if and only if Re(C-
1

D} ~ O. This is an easy consequence of the
n -1

symmetry of C D (see 1.3.1 and 1.1.2.5) and of the following lemma.

1.3.2.1. Lemma. Let P E M (t) (n E ~ ) be a symmetric matrix. Then T + P is non-sin
nxn

gular for every T E H if and only if Re(P} ~ o.
n

Proof. If Re(P} ~ 0, then T + P E H for every T E H , hence T + P is non-
n n

singular (see 1.1.3). Now suppose that Re(P} has a negative eigenvalue -A

(A > 0). If we define

T := AI - i Im(P) ,
n

then T E Hand T + P is singular, since 0 is an eigenvalue of T + P. 0
n

The case discussed in 1.3.2 may seem a very special one: if (C,D) de

notes the second matrix-row of a symplectic matrix, then, in general, C is

singular. We shall see however that 1.3.2 in fact covers all cases. Before

we deal with the general case we need an auxiliary result.

1.3.3. Lemma. If T E H (n E ~), then there exists an a > 0 and a T' E H such
n n

that

.eM (a) (T') T.
n
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Proof. We have to determine a > 0 and T' E H such that
n

1.3.3.1.
-2 -1

T = cotha [ - sinh a(T' + cotha I )
n n

(see 1.1.6) • Let a
O

> 0 be such that

Re(cotha I - T) > 0
n

Then for every 0 < a < a
O

we can define

-2
T' := sinh a[(cosha I

a n

and obviously

-1
- sinha T) - cosha I ] ,

n

(0 < a < a
O

) •

From an easy matrix computation we obtain that Re(T') > 0 if
a

tanha I + sinha Im(T) (cosha I
n n

-1
- sinha Re(T» Im(T) < Re(T) ,

and this is obviously true for a sufficiently small since the matrix on the

left-hand side tends to the all zero matrix if a tends to zero. o

with second matrix row (C,D) (C E M (~),
nxn

express the admissibility of (C,D) in terms of

1.3.4.

D E

the

Let Z E Sp(n) (n E :IN)

M (~». We intend to
nXn

admissibility of the second matrix row of the matrices ZM (a) (a > 0).
n

1.3.4.1. Let C and D be defined by
a a

C := C cosha. + D sinha.
a

(a > 0)

D := D sinha. + C cosha.
a

We have the following lemma.

1.3.4.2. Lemma. If the conditions of 1.3.4. are satisfied, then (C,D) is admissible

if and only if (C ,D ) is admissible for every a > O.
a a .

Proof. From an easy matrix computation we infer that for every a > 0 and

every T E H
n

1.3.4.3. C T + D
a a (C£M (a) (T) + D) (sinm. T + cosln In) •

n
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there exists an a > 0 and a T' E H
n

every a > O. If T E H ,
n

such

is admissible.

H and every a > O.
n

cl
M

(a) (T) + n is non
n

the second matrix row ofsingular for every T E H , and since (C ,D ) is
n a a

the symplectic matrix ZM (a), we see that (C ,D )
n a a

Conversely, assume that CC ,D ) is admissible for
a a

then (according to lemma 1.3.3)

Clearly sinha T + cosha I is non-singular for every T E
n

Assume that (C,D) is admissible and that a > O. Then

that

.eM (a) (T') T,

n

so, from 1.3.4.3, we obtain that

':"1
CT + D = (C T' + D ) (sinha T' + cosha I) ,

a u n

hence CT + D is non-singular. Since by assumption (C,D) is the second matrix

row of a symplectic matrix, we see that (C,D) is admissible. o

1.3.5. We shall now explain why we consider the matrices C and D (defined
a a

in 1.3.4) for studying the admissibility of (C,D).

1.3.5.1. Let C E M (~), D E M (~) (n E ~ ) and assume that (C,D) is admissi-
nxn nxn

ble. Since cotha I E H , we easily see that C (defined in 1.3.4) is non-
n n a

singular (a > 0). Using lemma 1.3.2.1 and lemma 1.3.4.2 we obtain that

for every a > O.

Conversely, if (C,D) denotes the second matrix row of a symplectic matrix

(defined in 1.3.4) are such that C is non-sin
o.

every a > 0, then (C ,D ) is admissible for
a a

1.3.2.1), so, according to lemma 1.3.4.2 (C,D) is ad-

of order n and if C and D
-1 a a

gUlar and Re(C D) ~ 0 for
a a

every a > 0 (see lemma

missible. We have thus proved the following lemma.

1.3.5.2. Lemma. If (C,D) denotes the second matrix row of a symplectic matrix of or

der n (n E ~), then (C,D) is admissible if and only if C is non-singular
a

and Re(C -lD ) ~ 0 for every a > 0, where C and D are defined in 1.3.4.
a a a a
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1. 3.5.3. Let C c M (G:;), D < M (G:;) (n ~ IN) and assume that (C ,0) is admissi-
nxn nxn

ble and that C is non-singular. If C and D are defined as in 1.3.4, then
Ct a

C is non-singular and
a

-1
C D

a a
-1 -1 -1

= (I + tanha C D) (tanha I + C D)
n n

-1 -1 -1 . -1
(I + tanha C D) (tanh a(tanha C D + I ) +

n n

-1
+ (tanha - tanh a) I )

n

= catha I - (tanha
n

- catha) (I
n

-1 -1
+ tanha C D) (a > 0) •

-1
By using 1.1.3 and Re(C D) ~ 0 (see lemma 1.3.2.1), we have

-1
tanho. Re (C D)

a a

-2 -1 -1
I - cosh aRe(I + tanha C D)

n n

:? I
n

-2 -1 -1
- cosh 0.(1 + tanha Re(C D»

n

-1
so Re(C D) > 0 (a > 0).

a a

-2
~ I (1 - cosh a) > 0 /

n

1.3.5.4. Let (C/D) be admissible, then (C
13

,D
13

) is admissible and C
13

is non-sin

gular for every 13 > 0 (see 1.3.5.2). Since

and

D
213

= C
13

sinhl3 + D13cosh13

-1
we infer from 1.3.5.3 that Re(C

213
D

213
) > 0 for every 13 > 0, hence

Re(C-
1

D ) > 0
a a

for every a > O.

Summarizing now the results of 1.3.1, 1.3.4 and 1.3.5 we have the fol

lowing theorem.

1.3.6. Theorem. Let C E M (G:;), D E M «(;) (n E IN) and let C and D be defined
nxn nxn a a

as in 1.3.4. Then (C/D) is admissible if and only if i), ii) and iii) hold,

where



i) CD
T

= DC
T

,

ii) rank (C,D) = n,

iii) for every a > 0
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C is non-singular and Re(C-
1c ) > o.

a a a

In this report the decomposition of section 1.2 will be used frequent

ly. Therefore we want to express the admissibility of a pair (C,C) of matri

ces in terms of this decomposition of C and D. We shall prove the following

theorem.

1.3.7. Theorem. Let C E M (~), 0 E M (~) (n E ~ ) and assume (C/O) is second ma-
nxn nxn

trix row of a symplectic matrix. Let furthermore 0 < r < n, where r denotes

the rank of C. Let us use the notation of section 1.2. Then CT + D is non
-1

singular for every T E H
n

if and only if X is real and Re(C
11

D
11

) ~ o.

Proof. Suppose X is real. Using the notation of section 1.2, we have

1.3.7.1.

Since U
2

is real and non-singular, the mapping Y
SEH

n
one onto H • Therefore CT+D is non-singular for every T E H if and only if

n n
C

l1
T

1
+ D

11
is non-singular for every T

1
E H

r
and this is true if and only

if R e ( C ~ ~ D 1 1 ) ~ 0 (see 1.3.2). (Note that cliDl1 is sYmmetric for (C
11

,D
1l

)

is the second matrix row of a symplectic matrix of order r).

It only remains to prove now that Im(X) ~ 0 implies the existence of a

T E H such that CT + D is singular. We first prove an auxiliary result.
n

1.3.7.2. Lemma. Let R be a symmetric matrix in M
nxn

OR) . (n E:N) and let S E M
kxn

OR)

(k E:N) such that S is not the all zero matrix. Then there exists a

K E M
nxk

OR) such that

is singular.

Proof. Let s denote the rank of S, then we have s > O. Assume s < min(k,n) .

(In case s min(k,n), we only need a slight change of the notation.) By ele-

mentary devisor theory (see [G], chapter VI), there are non-singular

P1 E M
kxk

OR) and Pz E M
nxn

OR) such that
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It is easily seen that we only have to prove that there exists a K' E M kOR)
nx

such that

is singular. Let us write

where R
11

E M OR), R
12

E M ( ) OR), R
22

E M( ) ( ) OR), and
sxs sx n-s n-s x n-s

where K
11

E M OR), K
12

E M (k ) OR), K
21

E M( ) OR) and
sxs sx -s n-s xs

K22 E M(n-s)x(k-s) OR). We now take K11 := ~ R 1 1 ' K12 = R12 , K22 := 0 and

K
12

:= O. IJ

We now are able to finish the proof of theorem 1.3.7. Suppose X is not

real, then there exist matrices V E M( ) OR) and W E M( ) OR) such
n-r xr n-r xr

that

xT
V + iW, W ~ a .

If we write

U
2

= Q(R,S)

(see section 1.2), where

then, according to 1.3.7.1, we only have to prove the existence of aTE H
n

such that

is singular.
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Let

According to lemma 1.3.7.2, there exists a matrix Y12 E Mrx(n-r) OR) such

that the real part of this expression is singular since, by assumption, W

is not the all zero matrix. In addition, it is easy to see that there exists

a symmetric Y
11

E M OR) such that the imaginary part of this expression is
rxr

the all zero matrix. We have therefore proved the existence of aTE H such
n

that CT + D is singular.

1.4. Fractional linear transforms with range in H
n

IJ

In this section we are concerned with the question what conditions have

to be imposed on the matrix Z ~ Sp(n) (n E ~ ) in order to guarantee that L
Z

is well defined (see 1.1.4) and maps H
n

into H
n

.

We restrict ourselves to matrices Z E Sp(n) (n E ~ ) such that the se

cond matrix row of Z is admissible. Then, of course, the mapping £Z is well

defined.

Let Z E Sp(n) (n E ~ ) with block components A,B,C,D E M (£), and as
nxn

sume that (C,D) is admissible and that C is non-singular. Using 1.1.4 and

1.1.2.1, we can write

1.4.1. L
Z = ~SEH

n

-1 -T -1 -1-1
AC - C (5 + C D) C

-1 -1
So, in this case, Im(C D) and Im(AC ) do not play any role in the question

whether the image of H under L is contained in H .
n Z n

1.4.2. Definition. GO(n) (n ~ ~ ) denotes the set of all Z E Sp(n) such that the se

cond matrix row of Z is an admissible pair of elements of M (~) and such
nxn

that the mapping L
Z

maps H
n

into H
n

.
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Obviously GO(n) is a semigroup under matrix multiplication (see

1.1.4.2). In particular, since Mn(a) E GO(n) for every a > 0 (see 1.1.6),

we see that ZMn(a) E GO(n) (a > 0), where Z denotes an arbitrary element

of GO(n). The converse of this statement is also true as we shall see in the

following theorem.

1.4.3. Theorem. Let Z E Sp(n) (n. E ~ ) and assume that ZMn(a) E GO(n) for every

a > O. Then Z E GO(n).

Proof. Let A,B,C,D E M (~) denote the block components of Z (according
nxn

to 1.1.2). Let furthermore T E H • According to lemma 1.3.3, there exists
n

an a > 0 and a T' E H such that. n

£ (T') = T
M (a) •

n

T was an arbitrary element of H , we see that (C,D) is ad
n

and D (elements of M (e» are defined by 1.3.4.1, then obvious-
a nxn

the second matrix row of ZM(a) and C T' + D is non-singular
n a a

is admissible. Using 1.3.4.2, we infer that CT + D is non-sin-

Now if C
a

ly (C ,D ) is
a a

since (C ,D )
a a

gular, and since

missible. Furthermore, from 1.1.4.2 we infer

£ZM (a) (T')
n

o

1.4.4. Let Z E GO(n). The reason why we consider the set (ZM (a» 0 lies in
n a>

the fact that ZM (a) has some nice properties: If (C,D) denotes the second
n

matrix row of Z, where C E M (lr), D E M (~), and if C and Dare de-
nxn nxn a a

fined by 1.3.4.1,/then (C ,D ) is the second matrix row of ZM (a) and from
a a -1 n

theorem 1.3.6 we see that C is non-singular and Re(C D) > 0 (a > 0).
a a a

1.4.5. Let Z E Sp(n) (n E ~ ) with block components A,B,C,D E M (~) (accord-
_l nxn

ing to 1.1.2). Assume that C is non-singular and that Re(C D) > O.

In this case a direct derivation of conditions for Z to be an element of

-1
GO(n) will be possible. Note that (C,D) is admissible since Re(C D) > 0

(see 1. 3 . 2) .
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Let U,V,L,M E M OR) be defined by
nxn

-1 -1-1
U := Re(C D), V := Re(AC ), C = L + iM .

Obviously U > O. According to 1.4.1, we only have to deal with the mapping

Now let S E H and let X E M OR) and Y E M OR) be defined by S := X + iY.
n nxn nxn

Then, using 1.1.3, we see that image of S under the mapping given in 1.4.5.1

equals

T T -1 -1 -1
V - (L + iM ) (I - i (X + U) Y) (X + u + Y(X + U) Y) (L + iM) .

n

1 -1 -1
If we abbreviate P = (X+U)- , Q = «X+U) + Y(X+U) Y) , then we see

that the real part of 1.4.5.2 equals

and since

-1 -1
P - Q = P(Q - P ) Q = PYPYQ, PYQ = QYP

we see that the real part of 1.4.5.2 equals E(X,Y), where E(X,Y) is defined

by

1.4.5.3. E (X, Y)
T -1 -1 T -1 -1

:= V-L (X+U) L + (Y(X+U) L-M) (X+U+Y(X+U) Y)

(Y (X + U) -1 L - M) •

Obviously Z E GO(n) if and only if

E(X,Y) > 0

for every positive definite X E M OR) and every symmetric Y E M OR) .
nxn nxn

It is clear from 1.4.5.3 and from the fact that

-1 -1
Y(X + U) Y:::; YU Y,

T -1
that E(X,Y) ~ V - L U L for every X > 0 and every symmetric Y.

Now suppose that there exist an X > 0, X E M OR), and a symmetric
nxn

Y E M (~) and a vector x E M lOR) such that
nxn nx

T T T -1
x E(X,Y)x = x (V-L U L)x.
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Then we have

+ (Y(X+U)-lLX - MX)T((x+U) +y(x+U)-ly)-l(y(x+U)-lLX-MX) = 0 ,

and since

-1 -1 -1 -1
U > (x+U) , (x+u+y(x+U) Y) > 0

we, obtain

Lx = 0, Mx = 0 ,

-1
so C x = O. Eute is non-singular and therefore x O. This implies that

for every positive definite X E M OR) and every symmetric Y E M OR). SO
nxn 1 nxn

we have proved that Z E GO (n) if V - LTU- L ~ O. We next show that the conver-

se is also true.

Assume that Z E GO(n) and that Z satisfies the conditions of 1.4.5. Let

x E M lOR).
nx

i) If Lx 0, then

so

T -1
xE(aI,a I)x>O

_n n
(a > 0) ,

T -1o ~ lim x E(aI,a I)x
a ~ O n n

T T -1
x (V - L U L)}{.

ii) If Lx # 0, then there exists a symmetric Y _E M OR) such that
a nxn

-1
Y (aI + U) Lx = Mx

a n

Therefore

T 'o ~ lim x E(aI ,Y )x
ai-O n a

From i) and ii) we see that

T -1
V-LU L ~ O ,

(a > 0) •

T T -1
x (V - L U L) x •

and it is not hard to prove that this is equivalent with



- 29 -

(note that U > 0).

Summarizing, we have proved the following lemma.

1.4.6. Lemma. Let Z E Sp(n) (n E:IN) with block-components A,B,C,D E M (~) (ac
nxn

cording to 1.1.2). Assume that C is non-singular and that Re(C-1 D) > O.

Then Z E GO(n) if and only if

[ -1 -T ]AC

:-ID
Re c- 1

~ o .

It may seem that this lemma deals with a rather special case. However,

if we combine this lemma with theorem 1.3.6 and 1.4.3, we see that we can

handle all cases, as expressed in the following theorem.

1.4.7. Theorem. Let Z E Sp(n) (n E:IN) and let A ,B ,C,D E M (4':) denote the
a a a a nxn

block components of ZMn(a) (a > 0), according to 1.1.2. Then Z E GO(n) if

and only if for every a > 0 we have that C is non-singular and
a

Re

-1
A C

a a
-1

C
a

o .

We shall see in section 1.5 that we can replace n ~ n by n>n.

1.5. The case that C.is non-singular

The condition of theorem 1.4.7 may seem very complicated: for every

a > 0 we have to check whether a given matrix is positive definite. The rea-

der must be aware however of the fact

volved are rational functions of ~ la>O

the condition of theorem 1.4.7 can be

see in this section.

that the elements of the matrices in

cosha and Ya>o sinha. In some cases

reduced to an easier one, as we shall

1.5.1. Lemma. Let Z E Sp(n) (n E:IN) with block components A,B,C,D E M (4':). Assume
nxn

that C is non-singular and that

[

AC- 1

Re -1
C

C-
T

]
~

-1
C D

o .

Then K(a) > 0 for every a > 0, where K(a) is defined by



(a > 0) •K(a) '~Re[ ::~:1
Here A ,B,C and D E M (II::)

a a a a nxn
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-1
C D
a a

denote the block components of ZM (a).
n

Proof. First of all we remark that (C,D) is the second matrix row of a sym

-1
plectic matrix and Re(C D) ~ o. So (C,D) is admissible and this implies

that C is non-singular (see 1.3.4.1). The proof of this lemma requires a
a

tedious but straightforward matrix computation. We omit some of the details.

i) Assume 0.
0

> 0 is such that K(a
O

) ~ O. Let x E: M
2

n><1C!R) be such that

If we decompose

-1
C D

a a
-1

= U + iP , C
a a a

-1
:= Re (A C ) (a > 0) ,

a a

1.5.1.1.

then we have

L x + U x = 0 ,
0.

0
1 0.

0
2

V xl
T

0+ L x
2 = .

0.
0

0.
0

Clearly Ya>o K(a) is differentiable, and with the standard rules of dif

ferentiation we infer by using 1.5.1.1

1.5.1.2.
d T
[~d x K(a) xJ

a 0.=0.
o

If x ~ 0, then we have

d T
[~d x K(a)xJ > 0 ,

a 0.=0.
0

for if 1.5.1.2 equals zero, then x
2

we see that L xl = 0, hence
0.

0

o and M xl = O. Using 1.5.1.1
0.

0

is non-singular we have xl = O. Contradiction.
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ii) Let U,V,L,M,P E Mx OR) be defined by
n n

iP =
-1

iM = -1 -1
U + C D, L + C , V = Re(AC )

It is not hard to expand Ua'Va
and L in power series:

a

tanha[I
2

u
2

J
2

(a i- 0)U = U + '+ P - + O(tanh a)
a n

T T 2
(a i- 0)V = V - tanha[L L - M M] + 0 (tanh a)

a

L + tanha[PM - UL]
2

(a i- 0)= L + o(tanh a) .
a

If x E M
nx1

OR), y E M
nx1

OR), then we have

T T T T T T T T
x V x + 2x L Y + Y U Y x Vx + 2x L z + z Uz +

a a a a a a

T T T T T 2 2
tanha[x M Mx + 2x M Py + Y (I + P - U )y

n

T T T T T 2 2
(a i- 0)+ 2x L Uy + x L Lx + 2y U yJ + O(tanh a) ,

where z is defined by
a

z := y - Lx - tanha Uy
a

(a > 0) .

Using the fact that

[:
:T] ~ o ,

we see that

[:: ::]
M™ T

+ L L

~ tanha

UL + PM

2
+ O(tanh a) (a -} 0) ,

and it is not hard to see that the matrix on the right-hand side is po

sitive definite.

Combining i) and ii), we easily see that K(a) > 0 for every a > O. 0

This lemma enables us to prove the following theorem.
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1.5.2. Theorem. Let Z E Sp(n), and assume that A,B,C,D E M (<<::) are the block com
nxn

ponents of Z and that C is n o n ~ s i n g u l a r . Then Z E GO(n) if and only if

[

AC- 1

Re -1
C

Proof. This is an easy consequence of 1.4.7 and 1.5.1.

1.5.3. Corollary. Let Z E GO(n) (n E ~ ) and let A ,B ,C and D E M (<<::) denote
- a a a a nxn

the block components of ZM (a) (a > 0). Then
n

o

[

A c-l

R
a a

e -1
C

a

> 0

for every a > O.

This is easily seen as follows:

From theorem 1.4.7 we have

[A C-
1

c:
T

]R a a o ,e -1 -1
~

C D D
a a a

and since

ZM (a)M (a) = ZM (2a)
n n n

we have by lemma 1.5.1 that

-1
-T ]

Re
A

2a
C

2a
C

2a
> 0

-1 -1
C

2a
C

2a
D

2a

for every a > O.

In this section we shall discuss an important subset of GO(n) (n E ~ ) .

1.6.1. Definition. G
1

(n) denotes the set of matrices Z E Sp(n) such that A and

D are real, Band C are purely imaginary, where A,B,C,D E M (<<::) denote the
nxn

block components of Z (according to 1.1.2).

It is easily seen that G
1

(n) is a group (see 1.1.2.4).
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In the following theorem we shall prove that G
1

(n) is a subset of GO(n).

1.6.2. Theorem. If Z E G
1

(n) (n E IN), then £z is well defined (see 1.1.4) and £z
-1

maps H
n

one-to-one onto H
n

• If we denote the inverse of £z by £z ' then we

have

Proof. Let A,B,C,D E M (C) denote the block components of Z (according to
. nxn

1 . 1 . 2 ) ~ Note that A and D are real, Band C are purely imaginary. We consi-

der the three possible cases.

i) Assume that C is non-singular. Then

[Ac-1
-T ]

:-lD
Re -1 = o ,

C

so, according to 1.5.2, we have that Z E GO(n).

ii) Assume that C is the all zero matrix. Then C = sinha D (see 1.3.4.1)
a

and obviously this matrix is non-singular (see lemma 1.3.1). Further
-T

more, from 1.1.2.1 we have A = D , so

[

A c-1

R
a a

e -1
C

a

-1 -T]sinh aD,

cotha I
. n

and it is not hard to check that this matrix is positive definite. So,

according to theorem 1.4.7, Z E GO(n).

iii) Now assume 0 < r < n, where r denotes the rank of C. Let us use the

decomposition and notations of section 1.2. From the fact that C is

purely imaginary we see that C
11

is purely imaginary and X is real. If

C is defined by 1.3.4.1 (a > 0), then it is not hard to see that
a

so C is non-singular if and only if
a

-1
is non-singular. Since X is real and Re(C

11
D

11
) = 0 this matrix is an

element of H
r

, hence it is non-singular (see 1.1.3). Since U
1

and Q
2
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we see that £z is well defined and maps H
n

has this property (see section 1.2, in par-

D
11

E M (C) denote the
a rxr

non-singular and we have

1.6.2.1. (a > 0) •

This can easily, be seen by combining the results of i), 1.4.7 and 1.5.3.

If Ala,Bla'Cla and D
1a

E Mnxn(C) denote the block components of ZlMn(a)

(a. > 0), then

-T ]C1a.

-1 -

C1a.Dla.

-T -1
diag(C

11
,sinh a I )

a n-r
-1

diag(C
11

D
11

,cotha. I )
a a. n-r

and using 1.6.2.1 we see that this matrix is positive definite. So, ac

cording to theorem 1 . 4 ~ 7 , zl E Go(n) , hence Z E GO(n).

Since G
1

(n) is a group, £ -1
ZFrom 1.1.4.3 we see that

is well defined and maps H
n

into Hn •

£ (£ (T» = T
Z -1

Z

(T E H ) ,
n

so £ maps H one-to-one onto H with inverse £
Z n n -1·

Z

In 1.6.1 we have described the set G
1

(n) (n E ~ ) algebraicly. We can

also describe the set from a geometric point of view, as we shall show in

the next theorem.'

o

1.6.3. Theorem. Let Z E Sp(n) (n E IN). If £Z is well defined (see 1.1.4) and if £z

maps H
n

onto H
n

, then Z E G
1

(n) .

Proof. Let A,B,C and D E M (C) denote the block components of Z (according
nxn

to 1.1.2). We consider the three possible cases.
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i) Assume that C is non-singular. Since Z E GO(n) we have

1.6.3.1.
[

AC- 1

Re -1
C

(see 1.5.2). Using 1.1.4.1 and 1.1.4.2, we see that L
z

-1 is well defined

and maps H onto H , so
n n

[

T-T
-D C

Re -T
-c

- c ~ : T] ~ 0
-C A

(see 1.1.2.4 and 1.5.2). Combining this with 1.6.3.1 and using the sym-

-1 -1
metry of AC and C D, we easily infer that A and D are real and that

C is purely imaginary. Since

-T T -T
B=C AD-C

ii)

(see 1.1.2.3) the matrix B clearly is purely imaginary.

-T
Assume that C = O. Then A is non-singular and D = A (see 1.1.2). From

theorem 1.4.7 we obtain

[

AATcothU + BAT

Re
sinh-lei AT

-1
sinh a A

cotha I
n

~ 0

for every a > 0, so, by multiplying with sinha and taking the limit for

a tends to zero, we obtain

x
~ 0 ,

I
n

defined by A = X + iY. It is easi

are real. The mapping L
Z

equals

maps H one-to-one onto H we
n n

E M OR) are
nxn

0, hence A and D

• t.J T
Slnce I H ATA

SE
n

(see lemma 1.3.2 and note that BAT is symmetric (see

-1 T -T
1.1.2». Using the same argument for Z we obtain Re(-B A ) ~ 0, so

AB
T

is purely imaginary, hence B is purely imaginary.

where X E M OR) and Y
nxn

ly seen now that Y =

~ ASA
T

+ BAT and
SEH

n T
have Re(BA ) ~ 0
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iii) Assume that 0 < r < n, where r denotes the rank of C. Let us use the

decomposition and the notation of section 1.2. If we define for every

a > 0 the matrix W(a) by

W(a) :=

I
n

[

0 0 ] TU
2

U
2o iaI

n-r

a

I
n

then, using the fact that U
2

is real (see lemma 1.3.7), we see that

W(a) E G
1

(n), hence £ () is well defined and maps H onto H (see
ZWann

1.1.4.3 and theorem 1.6.2) for every a > O. If A ,B,C and Dare
a a a a

the block components of ZW (a) , then we have

All iaB
12

u
T

B B,
-T

D = D, A U
1a a a 2

A
21

I + iaB
22n-r

C
ll

a
T

C = U
1

U
2a

a iaI
n-r

so C is non-singular. According to i) A and D are
a a a

are purely imaginary. Since the entries of ZW(a) are

tions of a and ZW(a) tends to Z if a tends to zero

Dare real and that C and B are purely imaginary.

real and C and B
a a

continuous func-

we infer that A and

o

1. 7. The semigroup G2!El.

From the correspondence between C and q: ~n (n+1) (n E IN) we already know
n

the notion of bounded set in C . The following lemma will be useful.
n

1.7.1. Lemma. A subset F of C (n E IN) is bounded if there exists a 8 > a such that
n

1.7.1.1.

for every W in F.

The lemma is obvious: 1.7.1.1 means that the inner product norm of W

is less than 8.
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Note that Ww is hermitian if W (C and that 1.7.1.1 can be considered
n

as a generalization of the circle with centre 0 and radius S. Obviously if

F is a bounded subset of C , so are the following sets:
n

{QTWQ I W E F} (Q E fA (G:) )
nxn

and

{Q + W I W E F} (Q E C ) .
n

We now consider a special subset of GO(n) (n E ~ ) denoted by G
2

(n).

Z E GO (n) (n E IN) such :that the

of H which is entirely contained
n

for some positive number ~ .

1.7.2. Definition. G
2

(n) denotes the set of all

image of H under £ is a bounded subset
n Z

in {T I T E H , Re(T) ~ ~ I }
n n

Obviously G
2

(n) is a semigroup under matrix multiplication.

For n = 1, G
2

(n) consists of those elements of SL(2) (see 1.1.2.5) such

that the corresponding fractional linear transform maps the right half-plane

into an open circular disc such that the closure of this disc is entirely

contained in the right half-plane.

We want to derive conditions for Z E GO(n) to be an element of G
2

(n).

We first proof a lemma.

1.7.3. Lemma. Let Z E G
2

(n) (n E ~ ) with block components A,B,C,D E M (G:) (ac-
-1 nxn

cording to 1.1.2). Then C is non-singular and Re(C D) > O.

Proof. Suppose C is the all zero matrix. Then, from 1.1.1, we easily infer

that

£ = Y H ASAT + BAT ,
Z SE

n

so the image of H
n

under £Z is not bounded. Therefore C is not the all zero

matrix.

Suppose 0 < r < n, where r denotes the rank of C. Using the notation of sec

tion 1.2, in particular 1.2.6, we infer
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where T
1

E H
r

and T
2

E H
n

_
r

, and this implies that the image of H
n

under £z

is not bounded.

Summarizing we see that C is non-singular.

From 1.4.1 we obtain

so the image of H under the map
n

is bounded. It is not hard to see that this implies

-1
Re(C D) > 0 .

The result of this lemma enables us to prove the following theorem.

1.7.5. Theorem. Let Z E Sp(n) (n E lli) with block components A,B,C,D E M (~).
nxn

Then Z E G
2

(n) if and only if C is non-singular and

o

Re

-1
AC

-1
C

-T
C

-1
C D

> 0 .

Proof. The proof of this theorem is similar to that of 1.4.7. Instead of

E(X,Y) > 0 we have to consider nowE(X,Y) > aI for some a > 0 and for every
n

positive definite X E M OR) and every symmetric Y E M OR) (see the proof
nxn nxn

of theorem 1.4.7).

1.8. Some additional properties of G
2

(n)

In this section we shall discuss some additional properties of G
2

(n)

elements.

o

First of all we shall show that if Z E G
2

(n) (n E lli),the image of H
n

under £Z can be denoted in a way that generalizes the nice circular disc we

have in the case n = 1.
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1.8.1. Let Z E G
2

(n) (n E :IN)

ponents of Z (according to

and that U > 0, where U :=

deal with the mapping

and let A,B,C,D E M (~) denote the block com-
nxn

1.1.2). From 1.7.3 we see that C is non-singular

-1
Re(C D). According to 1.4.1, we only have to

i) We consider the mapping

1.8.1.1. ~ S E H
n

-1
(S + U) •

This mapping maps H
n

one-to-one into the set K
1

defined by

C I U
-l -1 -1

K
1

:= {W E n - (2W - U )U(2W - U ) > O} ,

for

-1 -1 -1 -1-1
U -(2(S+U) -U )U(2(S+U) -U)=

- -1 -- -1
(S+U) [(S+U)U (S+U)

(S+U)-1(8+8)(S+U)-1 > 0

---- -1 -1 -1
(2In -(S+U)U )U(2I

n
-U (S+U»J(S+U)

(S E H ) •
n

Furthermore, if W E K
1

and if x E M
nx1

( ~ ) such that Wx 0, then

-1 -1 H -1 H -1
U ) U(2W - U ) Jx = x U x - x U x o ,

so x O. Therefore W is non-singular.

Now

so if we define S by

-1
S := W - U ,

then 8 E Hand
n

-1
(S + U) = W •

- -1
2W(Re(W - U»W > 0 ,

This implies that the mapping 1.8.1.1 maps H
n

onto K
1

.

,ii) The mapping

lJ -T-l
I e we
WEK

1



- 40 -

maps K
1

one-to-one onto the set K
2

defined by

I
-H -1 -T -1 -1 -T - -1 -1 -T -1 -1

K
2

: = {W E en C uc - (2W - C U C ) (C uc ) (2W - C U C ) > a} .

and finally

iii) the mapping

1.8.1.3. - W

maps K
2

one-to-one onto the set

1.8.1.4.

where

{W E C
n

-- --1
R - (W - M) R (W - M) > a} 1

and

Note that R is hermitian and positive definite and that M E C . The
n

set 1.8.1.4 is the image of H
n

under the mapping L
Z

and tnis set can be

considered as the generalization of the open circular disc with centre

M and radius R.

1.8.2. Note that if Z E Sp(n) (n E::IN) with block components A,B,C and DE M (~)
nxn

such that C is non-singular and Re(C-
1

D) > 0, then L is well defined (see
Z

lemma 1.3.2.1) and the image of H
n

under L
Z

is bounded and can be represented

in the same way as was done for Z c G
2

(n) in 1.8.1.

Assume that REM ( ~ ) is positive definite and that M E C . Then there
nxn n

exists a non-singular P E M (~) such that pHp = R. Now the fractional li-
nxn

near transform related to the symplectic matrix

T -1
P +MP

1

12 -1
p

-1
p

clearly is well defined (see lemma 1.3.2.1) and maps H one-to-one onto the
n

set

(see 1.8.1). So every generalized open circular disc (see 1.8.1.4) is the

image of H under a fractional linear transform.
n
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From 1.1.6 we obtain that Mn(a) E G
2

(n) (a > 0, n Em). Application of

1.8.1.4 with Z = M (a) gives
n

.eM (a) (H
n

) = {W E en I R
2

(a) In - (W - N(a) In) (W - N(a) In) > a} ,

n

where

and

R(a)
-1

:= (2 sinha cosha)

N(a) := (cosh
2
a + sinh

2
a) (2 sinha cosha)-l •

Expression 1.8.3.1 enables us to prove the following theorem.

1.8.4. Theorem. If Z E G
2

(n) (n Em), then there exists as> a and a Z' E G
2

(n)

such that Z M (13) Z I •

n

Proof. The mapping.e
M

(13) (13 > 0) maps H
n

one-to-one onto.eM (8) (H
n

) and its
. ., b n n
~nverse ~s g~ven y

YSE.e
M

(8) (H
n

) (cosha S - sinhS In) (-sinhS S + coshS I n)-l

n

(see 1.1.4.2). From 1.7.1 and 1.7.2 we infer that there exist positive num

bers a and y such that

W + W ;::: yI
n

and such that

-
- WW > 0

for every W E .ez(H
n
). So if W E .e (H ), we have

. Z n

R
2

(S)I - (W - N(S)I ) (W - N(S)I ) =
n n n

> 0

for 13 sufficiently small (0 < S < 0 say) since in that case
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So !z(H
n

) is entirely contained in!M (8) (0 < 8 < 0) and therefore the
n

mapping

~ S € H
n

is well defined and maps H into H . Since this mapping corresponds with
-1 n n

the matrix M (8)Z we have
n

If we take S := ~ o and Z'

Z' € G
2

(n) and

(0 < 8 < 0) •

-1 0
:= M

n
("2)Z, then Z'

Z M (2.)z· E G
2

(n) •
n 2

o

If Z E G
2

(n) (n E ~ ) with block components A,B,C,D E M (~) ,then B
nxn

and C playa symmetric role.

T
1.8.5. Theorem. If Z E G

2
(n) (n E ~ ) , then Z E G

2
(n).

Z (according to
-1

Re(C D) > 0,

Proof. Let A,B,C,D E M (~) denote the block components of
nxn

1.1.2). From 1.7.5 we infer that C is non-singular and that
-1 -1-1

Re(AC ) > O. Since C D and AC are symmetric (see 1.1.2.5) we obtain

hence A and D are non-singular (see 1.1.3).

Suppose now there is an x € M 1 (~) such that Bx
nx

then we have

T
A Y + x = a

y + Dx = a

(see 1.1. 2 .1) I so

O. If we define y := -Dx,

-T T
C A

-1
C

Using the symmetry of AC-
1

, 1.7.5 and 1.1.3, we see that x

non-singular.

-

0, hence B is
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Furthermore, from 1.1.2.1 we have

AC-1
-T ] [ -1

C DB

-1 -1 -1
C C D -B

and since the first matrix

trix also is an element of

-T
-B

-1
B A

is an element of H
2n

(see 1.7.5) the second ma

H
2n

and therefore

Re

-1
DB

-1
B

-T
B

-1
B A

> 0 .

From the symmetry of DB-
1

and B-
1
A and from 1.7.5 we easily see now that

ZT E G
2

(n) • 0

1.8.6. Corollary 1. If Z E G
2

(n) (n E ~ ) with block components A,B,C,D E M (~),
nxn

then A,B,C and D are non-singular.

1.8.7. Corollary 2. If Z E G
2

(n) (n E ~ ) , then there exists an a > 0 and a

Z' E G
2

(n) such that

Z = Z'M (a) •
n

This is an easy consequence of theorem 1.8.4, theorem 1.8.5 and the symme

try of M (a) (a > 0).
n

1.8.8. Corollary 3. If Z E G
2

(n), V E GO(n), W E GO(n) (n E ~ ) , then the matrix Zl

defined by Zl := VZW belongs to G
2

(n).

This can be seen as follows.

According to theorem 1.8.4 there exists an a > 0 and a Z' E G
2

(n) such that

Z = Mn(a)Z'. According to corollary 1.5.3 and theorem 1.7.5, VMn(a) E G
2

(n),

so by using 1.8.4 we infer the existence of a B > 0 and a V' E G
2

(n) such

that

Z = M (S)[V'Z'W]
1 n '

and since V'Z'W E GO(n) we obviously have that Zl E G
2

(n).
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1.9. Fixed point of the fractional linear transform

1.9.1.

1.9.1.1.

In this section we shall prove that the fractional linear transform

related to a matrix Z E G
2

(n) (n E ~ ) has a unique fixed point, i.e. there

exists exactly one T E H such that
n

We first prove a lemma.

1.9.2. Lemma. Let Z E G
2

(n) (n E ~) • Then the closure of .c
z

(H
n

) is homeomorphic to

the set E
n'

where E (n E ~) is defined by
n

E := {W E C I - Ww ~ O} .
n n n

Proof. From 1.8.1 we obtain the existence of a non-singular P E M (~) and
nxn

an M E C such that
n

H ---- --1 -T
P P - (W - M) P P (W - M) ~ O} •

so

Conversely, if VEE and W
n

that the mapping

T
:= P VP + M, then W E .cZ(H

n
). Therefore we see

maps E one-to-one onto.cz(H ) and it is easily seen that this mapping and
n n

its inverse are continuous, thus we have established a homeomorphism. IJ

1.9.3. The set E of lemma 1.9.2 can be considered as a compact subset of
n

~~n(n+1). If furthermore x E M 1(~) and if WEE, then, using the symmetry
nX . n

of W, we have

so
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II wxll ~ II xii ,

where II • II denotes the usual norm in <en:

(x E M l{C))
nx

Now assume that W
1

and W
2

are elements of En and that 0 ~ A $ 1. Then

which can easily be seen by using 1.9.3.1. So E is convex.
n

~n (n+l)
Summarizing we see that E is a convex compact subset of ~ , and

n

since the mapping lz maps l (H ) continuously into itself and lz{H ) is ho-
Z n n

meomorphic to E we infer from a theorem of Schauder (see [OS], page 456)
n

that lz has a fixed point. We have thus proved the following lemma.

1.9.4. Lemma. If Z E G
2

{n) (n Em), then there exists aTE H
n

such

that

Next we shall show the uniqueness of the fixed point of lemma 1.9.4.

We first prove three lemmas.

1.9.5. Lemma. If U E M (C)
nxn

(n E m) is a unitary matrix (i.e. uHu = I ), then
n

[

Re(U)

i Im(U)

i 1m. (U)]
E G

1
(n) .

Re{U)

Proof. If we abbreviate L

that

Re{U), M Im{U), we easily obtain from uHu I
n

so the matrix
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[

LiM]

iM L

is symplectic. Furthermore Land M both are real. o

1.9.6. Lemma. If T E H (n E ~ ) , then the matrix M(T) defined by
n

Im(T)p-1 .pT
-1

M(T) : =
'p-1

-1 o

where p E M
nxn

(R) is such that Re(T) = pTp , belongs to G
1

(n) and £M(T) (In) =T.

The proof of this lemma is obvious.

1.9.7. Lemma. Let Z E G
2

(n) (n E ~ ) with block components A,B,C and D E M (4::).
nxn

Assume that

A + B = C + D A,

where A

Proof. From A + B C + D A and the relations of 1.1.2 we infer

T T T
I = (A + B) D - B D - C B = A(D - B) ,

n

so

D - B
-1

A •

Therefore

is non-singular (see lemma 1.7.3) and

A - A ]

1 .
A + A -A

A - A- l
Since Z E G

2
(n) we infer that

that the matrix K defined by

K :=

-1
I + A U

n

u

where U denotes Re ( (A - A-1) -1), is positive definite (see theorem 1.7.5).

Hence the quadratic form corresponding to K is positive definite: for every

nonzero x E M l(R) we have
nx
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x

T T-1
(x , -x fI ) K

-1
-A x

> 0 ,

and since UA is symmetric (note that K is symmetric) we obtain

T -2
x (I - A )x > 0

n

whenever x E M
nx1

OR), x ~ O. It follows that A > In. D

1.9.8. Let Z E G
2

(n) (n E ~ ) with block components A,B,C and D E M (~) and
nxn

let T c H denote a fixed point of.c (see theorem 1.9.4). Then there exists
n Z

a non-singular P E M OR) such that
nxn

T = pTp + i Im(T) •

If we define Zl := M(T)ZM-
1

(T), then Zl E G
1

(n) (see lemma 1.9.6 and corol

lary 1.8.8) and we have

(see 1.4.3, lemma 1.9.6 and theorem 1.6.2). So if A
1

,B
1

'C
1

and D
1

E Mnxn(~)

denote the block components of Zl' we have

Since C
1

+ D
1

is non-singular there exist matrices L
1

,L
2

,M
1

and M
2

E MnxnOR)

such that L
1

+ iM
1

and L
2

+ iM
2

are unitary and such that

where A diag(A
1

, ••• ,A
n

) with positive numbers A
1

, •.• ,A
n

• If we define

S. := [L j iM j]
J iM L

j j

( j 1,2) ,

then, according to lemma 1.9.5, Sj E G
1

(n) (j = 1,2) and Z2 defined by

Z2 := Sl Z1S2 belongs to G
2

(n) (see 1.8.8). We easily see that In is a fixed

point of .cz . An easy computation furthermore leads to A
2

+ B
2

= C
2

+ D
2

= /\,

2

where A
2

,B
2

'C
2

and D
2

denote the block components of Z2. Application of lemma

1.9.7 gives the following lemma.
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1.9.9. Lemma. If the conditions of 1.9.8 are satisfied, then

P[CT + D]P- 1

is equivalent to a real diagonal matrix A under the group of unitary ma

trices, and we have A > I •
n

We shall use this lemma to prove the uniqueness of the fixed point of

theorem 1.9.4.

1.9.10. Theorem. If Z E G
2

(n) (n ElN) , then the fractional linear transform £Z has

exactly one fixed point in H •
n

Proof. Lemma 1.9.4 establishes the existence of atleast one fixed point.

DE M (4':». According to lemma 1.9.9
nxn

U1'V1 'U2 'V
2

E Mnxn(~) and real diagonal matrices A
1

,A2 E Mnxn(IR) such that

Suppose there are two fixed points T
1

and T
2

in H
n

, T
1

f T
2

• There e X i s ~

non-singular matrices P1 E M
nxn

(IR) and P2 E M
nxn

(IR) such that Re (T j) = P l j

(j = 1,2). Let (C,D) denote the second matrix row of Z (C E M (~),_ nxn

there exist unitary matrices

A. > I , CT. + D
] n ]

(j = 1,2) .

We now have

(see 1.1.2.1 and 1.1.4.3), so if we define Q EM. (4':) by
nxn

then we have

where W
1

and W
2

are unitary matrices. Using the submultiplicativity of the

matrixnorm

~ H ~
II 11 2 :=1 AEM (4':) [max a (A A) J ,

nxn

where a(B) denotes the set of eigenvalues of B (B E M (C», we obtain
nxn
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where a < p < 1, hence Q = 0 and therefore T
1

= T
2

" o
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2. Function space transforms related to symplectic matrices

2.0. Introduction

f K(z,t)g(t)dt ,

2.0.1.

2.0.1.1.

In this chapter we intend to apply the theory about fractional linear

transforms d e v e l o p p e ~ in chapter one in order to study certain linear trans

forms of both the space of smooth functions and the space of generalized

functions of n variables. The class of operators that we consider consists

of integral operators related to symplectic matrices and a vector in the

phase space: if n E ID and if Z is a symplectic matrix of order n with block

components A,B,C,D (with non-singular C) and if (:) E M(n+n)xl ( ~ ) is a vec

tor in the 2n-dimensional phase space, then we consider the integral operator

Y n Y n
gES ZEd':

lR
n

where

-1
+ (AC f - e,f)])

n n
(z E G:: , t E ~ ) ,

2.0.1.2.

and ( d e t ( C » - ~ is a complex number which square equals (det(c»-l and which

sign is explained in 2.1. Compare [B], 27.3.9.

In the general case, where C might be singular, we are still able to

study operators of this type, but then we consider

where F is a generalized function of n variables for every Z E ~n which is
z

(apart from its sign) uniquely determined by Z and (:). This F
z

equals

Y K(z,t) for every z E G::
n

if C is non-singular.
tEen

2.0.2. We mention one result in particular: if Z E G
1

(n) (n E ID) and if r de-

notes the rank of C, then the operator of type 2.0.1.2 can (after suitable

transformations) be reduced to an integral operator of the type 2.0.1.1, in

which only r integrations occur.



2.0.3.

2.0.4.

- 51 -

We shall show that it is possible to extend the operators of 2.0.1.2

to linear operators of the class of generalized functions of n variables such

that the extended operator and the original one coincide on sn.

Furthermore we shall devote some attention to applications of our theo

ry in quantum mechanics. In particular we study the classical limit in quan

tum mechanics in relation with the Wigner distribution (this was already dis

cussed in [B], 27.26.3, but here we consider the case that more p a r t i c l ~ s

are involved).

2.1. Analytic square-root of determinant functions

In this section the notion of analytic functions of several variables

will be used. For the definition of analytic functions of several variables

we refer to [0], chapter IX. Furthermore we use a theorem of Hartogs ([BT],

III, satz 15) which states that a function of several variables is analytic

in all variables if and only if it is analytic in every variable separately.

2.1.1. Let X be a mapping on H (n E ~ ) that maps H into ~ such that X is an
n n

analytic function of ~ n ( n + 1 ) complex variables (see section 1.1), and assume

that X is nonzero on H •
n

2.1.1.1. An example of such a function is

~ T E H det(CT + D) ,
n

where (C,O) is an admissible pair of matrices of M (~) .
nxn

One of the aims of this section is to define an analytic function ~ .on

H
n

such that

2
~ = X .

2.1.2. Let X be as in 2.1.1 and let TO E H . It is easily seen that H may be
n n

considered as an open subset of ~ ~ n ( n + 1 ) and combining this with the conti-

nuity of the function X, we see that there exists a polydisc P with center

TO (see [0], IX, section 1) such that P is entirely contained in H
n

and such

that

for every T E P.
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Now we easily infer the existence of exactly two analytic function ~ 1

and ~ 2 on P satisfying

2.1.2.1.

2.1.2.2.

2
~1 = -~2' ~1 = X .

If T E H
n

, we define ~ 1 (T) as follows: ~ 1 (T) is the analytic continuation

of ~ 1 along the curve

~ td0,1 J X( (l - t) TO + tT) •

Note that (l-t)T
O

+ tT E H
n

for every t E [O,lJ. We shall define ~ 2 ( T ) si

milarly.

It is not hard to see that ~ 1 and ~ 2 are analytic functions on H
n

and

that

2.1.2.3. X

on H .
n

2
Next suppose ~ is an analytic function on H such that ~ = X. Then ~

n

is analytic on the polydisc P, hence ~ equals ~ 1 or ~ 2 on P and thus ~ equals

~ 1 or ~ 2 on Hno

So we have proved the following theorem.

2.1.3. Theorem. If X is a mapping on H satisfying the conditions of 2.1.1, then
n

there exist exactly two analytic functions ~ 1 and ~ 2 defined on H
n

such that

2.1.2.3 holds.

2.1.4. Let C E M (~) and D E M (~) (n E ~ ) be such that (C,D) is an admis-
nxn nXn

sible pair. Combining 2.1.1.1 and theorem 2.1.3, we infer the existence of

exactly two analytic functions ~ 1 and ~ 2 defined on H
n

such that

~ 1 = -~2' ~~ = Y
TEH

det(CT + D) •

n

2.1.5. Applying theorem 2.1.3 to

X = ~TEH det(T) ,
n

we see that there exists exactly one analytic function ~ such that
n

2.1.5.1.
2

CPn = det(T), ~ (I )
n n

1 .
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2.1.6. We shall use this function ~ for evaluating the integral
n

2.1.6.1. F(T) := J exp(-w(Tx,x»dx

JRn

(T E H) •
n

Let T E H • Since Re(T) > 0 there exists a non-singular P E M OR) such
n T -T -1 nxn

that Re(T) = P P. From the symmetry of P Im(T)P we infer the existence

of a matrix S E MnxnOR) and a diagonal matrix A = diag(A
1

, ••. ,A
n

) (Ai E JR,

1 ~ i ~ n) such that STS = I and p-
T

Im(T)p-
1

= STAs . This implies that
n

2.1.6.2. T = (SP)T(I + iA) (SP) •
n

If we transform variables according to y = SPx, 2.1.6.1 becomes

F (T)

n
II

j=l

(1 + iA.)-~
J

where z ~ (z E ~) denotes the principal value of the square-root. Therefore

we have

2.1.6.3. det(T)-l (T E H ) •
n

Since F is obviously a continuous function on Hand F
2

= ~2 (see
n n

2.1.5.1) F is an analytic function on H . Using 2.1.5 and 2.1.6.3 we infer
n

from F(I ) > 0 that
n

2.1.6.4.
-1

F ::: <P •
n

and 1/1
2

defined

= deteCT + D) ,

With every Z E GO(n) (n E ID) we can associate two analytic functions

on H
n

(according to 2.1.4) satisfying 1/1
1

= -1/1
2

,

where (C,D) denotes the second matrix row of Z (C E Mx (~),
n n

These functions will be used frequently in this report.

1/1
1

1/12
1

D E M x (<c».
n n

2.1. 7. Definition. xo(n) (n E ID) denotes the set of all pairs ( Z(e, f),1/i ) such that

i) Z(e,f) -=

Z

a

A

C

a

B

D

a

where Z E GO(n) with block components A,B,C and D E Mx (~) and
n n

e,f E Mnx1(~)'



2.1.8.

2.1.9.

- 54 -

ii) W is an analytic function defined on H such that
n

w
2 = ~ H det(CT + D) •

TE
n

The vectors e E M 1(~) and f E M 1(~) will often be called the vector
nx nx

components of Z(e,f). If e f = 0, then the matrix Z(O,O) will often be de-

noted by Z, and ( Z(e,f),~ ) by ( Z,w ).

Definition 2.1.7 is based on the set GO(n). We have a similar defini

tion of X
2

(n) (based on the set G
2
(n». The set Xl (n) is defined similarly

(based on the set G
1
(n», but here we have one extra condition: if e E M

nx1
( ~ )

and f E M
nx1

( ~ ) denote the vector components, we require that e is purely

imaginary and that f is real.

It is possible to define a product in XO(n) (n E ~ ) such that XO(n) be

comes a semigroup. We shall denote this product by 0.

Let ( Zl (e
1
,f

1
),W

1
) and ( Z2(e

2
,f

2
) '~2) be elements of xO(n). Then

where

and

Note that

Obviously Z3 E GO(n) since GO(n) is a semigroup (see 1.4.2). It is ea

sily seen that W3 is well defined and that W
3

is an analytic function defin

ed on H satisfying
n

where (C
3

,D
3

) denotes the second matrix row of Z3' Furthermore, using 1.1.4.3,

we easily infer that 0 is associative.
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With every ( Z(e,f),w ) E XO(n) (n Em) we can associate the number

The existence of this limit is easily proved in case the C component of Z

(see 2.1.7) is non-singular or the all zero matrix. In all other cases we

can use 1.3.7.1.

This p satisfies Ipl = 1. Now to every ( Z(e,f),w ) E XO(n) we make

correspond the 4n
2

+ 2n + 1-dimensional complex vector consisting of all non

trivial entries of Z(e,f) and the number p, and this gives an injection of

Xo(n) into the 4n
2

+ 2n + 1-dimensional complex space. The ordinary topology

of this space induces a topology on xO(n). With this topology xO(n) is a

topological semigroup (in the sense that the product 0 is a continuous func

tion of the factors). It is not hard to see that x
2

(n) is also a topological

semigroup and that Xl (n) is a topological group (the inverse of an element

is a continuous function of that element): If ( Z(e,f),w ) E Xl (n), then the

inverse is given by:

-1 -1 ~
( Z(e,f),w) = (Z(e,f) ,ITEH

n

[w (£ -1 (T» J-
1

Z

-1
(see section 1.6), where Z(e,f) denotes the inverse of the matrix Z(e,f)

(which is an element of M(2n+l)x(2n+l) ( ~ » . Note that

-1 -1
Z(e,f) = Z (el,f') J

where e' E M
nx1

( ~ ) and f' E M
nx1

( ~ ) are defined by

2.1.11. Let ( Z(e,f),w ) E x
2

(n) and let (C,D) denote the second matrix row of

Z (C E M (e), D E M (e». According to lemma 1.7.3, C is non-singular.
~ I1Xn nxn

It is possible to define the square-root of det(C) in a natural way, based

on the function W:
n

2.1.11.1. d e t ( C ) ~ lim 1/J(tI )t
2

:=

n
t~

We denote
~ -1 - ~

(det(C» as usually by det (e) •
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2.1.12. The set Xo(n) describes a double covering of the set of all Z(e,f)

(Z E GO(n) , e E M 1 (G::), f E M 1 (G::» • We have to answer the question whe-
nx nx

ther this double covering is really necessary. It is indeed, since the set

xo(n) is a connected topological space. This depends essentially on the

fact that GO(n) is connected (in the sense of the topology induced by the
4n2

ordinary topology of C ,(see 2.1.10); we omit the proof) and that GO(n)

contains closed curves such that the C component is non-singular for all

points of the curve and such that d e t ( C ) ~ changes sign after a full revolu-

tion: If we define

2cI -1 ]
Z

n (2c - c ) In ,

ljJc ~TEH c~qJ (I +T):= :=
c n n

cI cI nn n

(see 2.1.5), where c denotes an arbitrary element of the unit circle in C,

we infer from

[

21
Re _ ~

c I. n

c -lIn] 2
> 0, ljJ = ~ H detecT + cI )

I c TE n n
n

2.1.13.

2.1.13.1.

2.1.13.2.

that (Z (O,O),ljJ ) E xO(n) (see theorem 1.7.5).. c c

Now if c runs through the unit circle, then after a full revolution we have

the same Z , but ljJ has changed sign.
c c

We conclude this section with a property that will be used in the next

section.

Let (zl(e
1
,f1),1/!1 )., (z2(e

2
,f

2
),1/J2) and (z3(e

3
,f3),1/J3 ) be elements

of x
2

(n). Let (C
1

,D
1
), (C

2
,D

2
) and (C

3
,D

3
) denote the second matrix row of

Zl' Z2 and z3,and assume that

We shall prove that

(see 2.1.11) does not depend on the choice of 1/J
1

and 1/J
2

(see 2.1.7) and

equals

(see 2.1.5).
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It is not hard to check that

so 2.1.13.2 is well defined. Furthermore, using 2.1.11.1 and 2.1.9, we see

that 2.1.13.1 equals

and indeed this does not depend on the choice of ~ 1 and ~ 2 · If we define

2.1.13.4. 6 := Y
TEH

~1 (.c
Z

(T» ~1 (T)-l ,
n 2

then obviously 6 is an analytic function defined on H and
n

2.1.13.5~ 6
2

= YTEH
det( (C

1
T

-1
+ D

3
) (C

2
T

-1
+ C

1
) (C

3
T + D

2
) ) .

n

As a result of a matrix computation we have

2.1.13.6.

2.1.13.7.

(T E H ).
n

From theorem 1.9.10 we infer the existence of a TO E H
n

such that .c
Z2

(TO) = TO'

so, according to 2.1.13.4, we have 6(T
O

) = 1. Since

is analytic on H
n

we infer from 2.1.3, using 2.1.13.5,2.1.13.6 and 6(T
O

) = 1,

that 6 equals 2.1.13.7 and therefore

lim 6 (tI ) t
n

/
2

n
t-+<><>

It is not hard to check that this equals 2.1.13.2.

2.2. Operators related to elements of x ~

In this section we shall relate to every element of xO(n) (n E lli) an

operator of Sn. Before dealing with xO(n) however, we restrict ourselves to

x
2

(n) •
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2.2.1. Definition. Let ( Z(e,f),$ ) ~ x
2

(n) and let A,B,C.and D c M (C) denote
nxn

the block components of Z (according to 1.1.2). Then we define

V(Z,ti( Z(e,f),$» := d e t ( C ) - ~ e x p ( - 1 T [ ( A C - l z , z )

-1 -1 -1
- 2(C z,t) + (C Dt,t) + 2(C f,t)

+ 2 (e - AC-1 f , z) + (AC-1 f - e , f) J) (z E a::
n

; t E a::n) •

-~
Note that C is non-singular (see 1.7.3) and that det(C) is defined in

2.1.11. Obviously ( Z(e, f) ,-$ ) E X
2

(n), and we have

V(z,t; ( Z(e,f) ,-$ » = -V(Z,ti ( Z(e,f),$ »

2.2.2. Let ( Z(e,f),$ ) E x
2

(n) and assume Z has block components A,B,C and

D E M (e) (according to 1.1.2). From lemma 1.7.3 we infer that C is non
nxn

-1
singular and that Re(C D) > O. Therefore

V(Z,ti( Z(e,f),$ »
n

tEC

is a smooth function of n variables for every fixed z E en. Furthermore, for

every g E Sn

J V(Z,ti( Z(e,f),$ »g(t)dt~ n
ZEC

JRn

is also an element of sn: the analiticity can be shown by routine methods

and the inequality of 0.2 by using theorem 1.7.5.

2.2.3. An important property of the integral transformation with kernel

~ V (z, t i ( Z (e, f) , $ » ,
n n

(Z,t)EC xC

where ( Z(e,f),$ ) E x
2

(n), is multiplicativity: If ( Zl (e
1
,f

1
) ,$1 ),

Z2(e
2
,f

2
),$2) and ( Z3(e

3
,f

3
) ,$3 ) are elements of x

2
(n) such that

then

J V(z,n;( Zl(e
1
,f

1
),$1 »V(n,ti( Z2(e

2
,f2),1/J2 »dn

JRn

for every z E Cn and every tEen.
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The proof of this property is tedious but straightforward: it follows by

evaluating the integral and by using 1.1.2 and 2.1.13.

2.2.4. As an example of 2.2.1 we consider ( M (a) (0,0),q> ) (a > 0, n E IN),
n ex

where Mn(ex) is defined in 1.1.6 and q>a is the (unique) analytic function

defined on H such that
n

det(sinha T + coshex I ), q>(I ) > a
nan

(see 2. 1. 3 and 2. 1. 4) •

From 1.1.6 and 2.1.7 we infer that ( M (ex),q>
n a

using 2.1.9 and the fact that £ () (I ) = I
M ex n n

n

) is an element of x
2

(n), and

for every ex > a leads to

(a> 0, (3),0) •

Furthermore, as a consequence of 2.2.1 and 0.4, we see that

is the kernel of the integral operator N (ex > 0). Combining this with the
a,n

multiplicativity property (see 2.2.3) and the fact that

V(z,t; ( M (a) ,q»)
n a

V(t,z; ( M (a),Ql »
n a

(z E lC
n

, t E lC
n

)

2.2.4.1.

n
we see that for every fixed z E lC and for every ( Z(e,f),~ ) E x

2
(n)

N (~ V (z, t; ( Z (e, f) , ~ ») =
ex,n n

tE<C

~ V(Z,ti ( Z(e,f),ljI ) ~ ( M (ex),q> ) •
tE<cn n a

If ( Z(e,f),~ ) E xO(n), then it is easily seen from 1.4.7 and 1.5.1 that

( Z(e,f),~ ) ~ ( M (a),q> ) E X2 (n) for every a > O. Summarizing we see that
n a

for every ( Z(e,f),~ ) E xO(n)

y oy V(z,t;(Z(e,f),~)~(M(ex),q»)
ex> n n a

tEC

is a generalized function of n variables (z E C
n
).

Using the generalized function of 2.2.4.1, we are able to generalize

the operators described in [B], 27.3.8 and 27.3.9 to the higher dimensional

case.
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2.2.5. Definition. If ( Z(e,f),~ ) E xO(n) (n E ~ ) , then we define the operator

f' ) of Sn by
( Z(e,f),~

f( Z ( e , f ) , ~ :=

n
For the definition of the inner product of an element of S and a ge-

n
neralized function of n variables we refer to 0.7. If g E S , then there

exists an a > 0 and an h € Sn such that N h = g, so if ( Z(e,f),~ ) EXO(n),
a,n

we have

f ( Z (e, f) , ~ ) g = ~ n J V(Z,ti(
ZEC

JRn

Z ( e , f ) , ~ ) ~ (M, (a),ep ) )h(t)dt,
·n a

n
and from 2.2.2 we know that this is an element of S . So r ( Z(e,f),~ ) maps

Sn (linearly) into sn.

2.2.6. Theorem. Let ( Zl (el,f
l
) '~l ), ( Z2(e

2
,f

2
) '~2 ) and ( Z3(e

3
,f3) '~3 ) be ele

ments of Xo(n) (n E ~ ) . If

then

f( Z l ( e l , f l ) ' ~ l ) f( Z 2 ( e 2 , f 2 ) ' ~ 2 )=exp(1T[(e 3,f1)-(f3 ,e l )]) x

f
x (Z3(e

3
,f

3
) '~3 ) •

This will be called the multiplicativity property.

Proof. Let ~ E sn. If a > 0 and k E Sn are such that g =

then we have

N k (see 0.5 iii»,
a,n

h =

where

Using theorem 1.8.4 we easily see that there exists as> 0 and a Z I E G2 (n)

such that M (S)Z' = Z2M (a), so
n n

( Mn(S) ,epS ) ~ ( Z' (e' ,f') , ~ '
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where

(It is not hard to check that ( Z' (e' ,f') ,Iji' ) E x
2

(n)).

Application of 2.2.3 gives

h = Y
n

ZEC
J [ JV(Z,n; ( M

n
(S) '<Jle ) )V(n,t;"( Z' (e' ,f') ,Iji' ) )dnJk(t)dt,

and changing the order of integration in an absolutely convergent repeated

integral we get

JV(z,t; ( Z' (e' ,fl) ,Iji' ) )k(t)dt) ,h = N (Y
S,n cn

ZE

lR
n

so

J V(z,n;( Z1(e
1
,f

1
),1ji1) 0 (

[J V(n,t;( Z'(e',f'),1/I' ))k(t)dtJdn,

lR
n

and again changing the order of integration and applying 2.2.3 and the fact

that 0 is associative (see 2.1.9) we obtain

o

For the sake of completeness we mention another property of the opera

tors defined in 2.2.5. We shall not prove it however, for it does not play

a rOle in this report.

2.2.7. Theorem. Let ( Z(e,f),1/I ) E xO(n) (n E ~ ) and let ( Z ,e ,f ),1/1 ) _'T be a
m m m m mtwl

sequence in xO(n) such that

Z ( e , f ), Iji ) -+ ( Z ( e , f) , Iji )
m m m m

(m -+ 00)

n
in the sense of the topology ofXO(n). Let furthermore g E S and let

(g) IN be a sequence in sn such that
mm
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(m -+ (0)

(see 0.9). Then

Sn

r( Z (e,f ),ljJ ) gm -+ f( Z(e,f);ljJ)q
m m m m

(m-+ (0) •

2.2.10. If ( Z(e,f),ljJ ) E x
2

(n), then the operator f ( Z(e,f),ljJ ) may be consi-

dered as a smoothing operator (compare 1.8.4 ~nd -[ B], theorem 3. 1). The

smoothing effect depends on the fact that in this case the real part of

-1 -1 -1
(AC z,z) - 2(C z,t) + (C Dt,t)

is a positive definite quadratic form (see L 7.5), where A,B,C and DE M x (<I:)
n n

denote the block components of Z (according to 1.1.2).

2.2.11. We conclude this section with two examples.

i) Let for every T E H , h
T

be defined by
n

h
T

:= Y exp(-n(Tz,z»
ZE(:n

and let ( Z(O,O),ljJ ) E xO(n). Since Re(T) > 0 we obviously have :that

h
T

E Sn. If T E H , then there exists an d > 0 and a T' E H such that
n n

£M (~) (T') = T (see lemma 1.3.3). From an easy computation we now infer
n

that

T T'
h = N (~(sinha T' + cosha I)h )

a,n n n

(see 2. 1 .6 and 1. 1 .6), hence (see 2. 2 .5)

r
( z,ljJ J

T'
V ( z , t; ( Z, ljJ ) ~ ( M (a), ~ ) ) h ( t) dt x

n a

x ~ (sinha T' + cosha I ) .
n n

ind

~ CT' +
n

ql (sinha T'
n

=

Evaluating this integral and using 2.1.6.1 and 2.1.6.4

'!i1tf"1i\

+ cosha In) sinha-d'{f.h£z (T)

C-
1
D )ljJ(cotha I )

a a n

;. ,.

where (C ,D ) denotes th,e second matrix row· of ZM (a) (see 1. 7.3) (a> 0) •
a a n

It is not hard to show now that
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.£ (T)
= 1jJ(T)-lh Z

1Compare [BJ, 4.1 and 4.2.)

ii) The operator N has been defined for a»O only. We shall now define
a,n

Nc for every I; E ~, Re(l;) ~ O.
""n

Let I; E ~, Re(l;) ~ 0, be fixed and define

,= [COSh< I sinhl;

::]M (I;)
n .

n
sinhl; coshl;I

n

Obviously M (I;) E GO (n) since
n

coth(a + 1;)]
-1

+ I;)Isinh (a
n n

Re > a
-1

+ I;)I coth(a + I;)Isinh (a
n n

for every a > a (see 1.4.7). Evidently Mn(l;) is an element of G
2

(n) if

Re(l;) > a and it is an element of G
1

(n) if Re(l;) = O.

Now let ~ I ; (see 2.1.4 and 2.2.4) be the analytic function defined on

H satisfying
n

Then clearly ( Mn(l;) '~I; ) E xO(n) and this definition coincides with the

one given in 2.2.4 in case I; is real and positive. Furthermore we have

for 1;1 E C, 1;2 E C, Re(l;l) ~ 0, Re(1;2) ~ a

hence the set of operators (N c ) (C) a defined by
""n Re '" ~

N "= r
I;,n· ( M n ( I ; ) ' ~ 1 ;

(I; E ~, Re(l;) ~ 0)

n
is a semigroup of operators of S (see 2.2.6).
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2.3. Some special cases

Definition 2.2.5 is not always easy to handle. If the generalized func

tion of 2.2.4.1 is the embedding of a function of the class sn+ (n E ~ ; the

definition of sn+ is similar to the one of s+ given in [BJ, section 20), then

there is an nicer way to represent the operator of 2.2.5, We have the follow

ing theorem.

2.3.1. Theorem. Let ( Z(e,f),~ ) E XO(n) (n E ~ ) and assume that the C component of

Z (see 1.1.2) is non-singular. Then

~ z Y
t

V(z,t;( Z ( e , f ) , ~ ) )

is well defined by 2.2.1 and

r( Z ( e , f ) , ~ ) = Y n
gES

J V(z,t;( Z ( e , f ) , ~ »)g(t)dt .

Proof. From 1.5.2 we easily infer that for every fixed z E ~n

~ n+
I V (z, t; ( Z (e, f) , ~ )) E S ,

tE~n

and from 1.3.6 and an easy extension of the multiplicativity property (see

2.2.3) we see that for every fixed z E ~n

Ya>O ~ n V(z,t;( Z ( e , f ) , ~ ) @ ( Mn(a) ' ~ a ))
t E ~

emb (Y V (z , t; ( Z ( e , f) , ~ ») .
tEen

The proof now follows from [BJ, 20.3. (The property mentioned there is also

valid for functions of several variables.) o

We now give a survey of some other special cases. The results are esta

blished by application of definition 2.2.5 and except for the first case we

omit proofs.

2.3.2. Theorem. Let ( Z(e,f),~ ) E xO(n) (n E ~ ) and let A,B,C and D E M (~) de-
nxn

note the block components of Z. If C is the all zero matrix, then

r( Z ( e , f ) , ~ )

-1 -1-1
x exp(-1T[(BD z,z) + 2(e-BD f,z) + (BD f-e,f)J) .
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Proof. Since $2 = ~ H det(D) we infer from the analyticity of ~ that ~ is
. TE

n
n

constant (note that D is non-singular (see theorem 1.3.5 ii»). Let g E S .

Then there exists a h E Sn and an a > 0 such that g = N h (see 0.5 iii».
a,n

If furthermore X is defined by

then

lim X (tIn) t-
n

/
2

t-+oo
~(I )sinha

n
/

2
n

From definition 2.2.5 and some computational work (see 2.2.1) we infer

lJ lJ -1 -1 -1
f( =1 I n~(In) exp(-1f[(BD z,z)+2(e-BD f,z)

Z(e,f),$) gESn ZEG::

+ (BD-
1
f-e,f)]) JV(D-

1
(Z-f),t;(

iR
n

OUr assertion now follows from 2.2.4.

M (a),q> »h(t)dt.
n a

o

2.3.3. Theorem. Let ( Z(e,f),$ ) E xO(n) (n E lli) and assume that Z(e,f) is of the

form

Z(e,f} =

o o

where AI' B
1

, C
1

and D
1

are elements of

ments

[

Ai Bi]
Z .=i .

C. D.
~ ~

(i 1,2) ,

such that

then there exist analytic functions ~ 1 defined on Hand $2 defined on H
n

1
n

2
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Furthermore we have

r
( Z(e,f),1/J )

=

(n
1

)

(If T is a linear operator of sn, then'!' := ~ Y T (Y f)
( ) f

n n (Zt.···,z)
n

2
ES Z E ~ n

1
and T is similarly defined} ,.

This theorem can be generalized to the case of more than two blocks.

2.3.4. Theorem. Let ( Z(e,f),1/J ) E XO(n) (n E IN) and assume that Z(e,f) is of the

form

[All :J [B ll BI2] [::]A
21

B
21

B
22

Z(e, f)

[:11 :] [:11 :nJ [::]
0 0 1

where 0 < r < n, Al1,Bll'Cll and D
11

E Mrxr(~) such that C11 is non-singular,

A21 and B21 E M(n-r)xr(~)' B12 E Mrx(n-r) ( ~ ) and B22 E M(n_r) x (n-r) ( ~ ) (see

section 1.2, in particular 1.2.2 and 1.2.4), e
t
,f

1
E M

rx1
( ~ ) and

e 2,f2 € M(n-r)xt ( ~ ) . Let 1/J 1 and 1/J 2 be defined by

I
n-r

and

:12 ]
n-r
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r
( Z(e,f),ljJ ) Y n Y n

gES Z E ~

r n-r
E((:'Z2 E ((: ».(Here z or::] (ZI

Note that theorem 2.3.1 can be applied to r ) and that theorem
( Zl (e

1
,f1) ,ljJl

2.3.2 can be used for r( Z2(e
2
,f

2
) ,ljJ2 ). Therefore r( Z(e,f),ljJ ) can be re

duced to an integral operator in which only r integrations occur.

2.3.5. The latter theorem seems to deal with a rather special case, but com

paring section 1.2, in particular 1.2.3, and using the multiplicativity pro

perty (see theorem 2.2.6) we see it does not.

If ( Z(e,f),ljJ ) E Xl (n) such that the C component of Z has rank r

(0 < r < ni see 1.1.2), then both U
1

and U
2

are real and non-singular (nota

tion of section 1.2), so there exist analytic functions v
l

'V
2

(both constant)

and ljJ1 defined on H
n

such that

-T T -1
( diag (U

1
,U

1
)(e,f),v

1
) E XO(n), (diag(U

2
,U

2
),v

2
) E XO(n) ,

( Z1 ' ljJ 1 ) E Xo (n)

(the matrix Z1 is defined in section 1.2), and

2.3.5.1.

(see 1.2.3). It is easily seen (see theorem 2.3.2) that

2.3.5.2. y
n

gES

2.3.5.3.

x exp(-1T[2(e,z) - (e,f) J) •

Using the multiplicativity property (theorem 2.2.6) and theorem 2.3.4 we see

that (after suitable transformations of coordinates according to 2.3.5.2 and

2 • 3 .5 • 3) r ( Z ( f) ,I.
e, ,'"

can be reduced to an integral operator in which only

r integrations occur:
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= Y n Y n k (z)

gES ZE(:

f V(Z,ti( Zl1,1/!l1 »g(t,z2- f 2)dt,

nir

where Z11 is defined in section 1.2, 1/J
11

is an analytic function defined on

~ : ( : ~ ~ h ~ , : a : o : Z : l : . ~ ~ : : u : ~ : : m : : : : : s ( : ~ ] a : : : Y : i : r ~ U : : ~ O : n : : ~ : : : i : g ~ [ : ~ ]
(f1 E Mrx1 «(:), f 2 E M(n_r) xl «(:» •

In case ( Z(e,f),1jI ) E XO(n), the matrix U
1

(see section 1.2, in parti

cular 1.2.3) in general is not real, 60 we. can not repeat the arguments used

above. It is possible .however to prove that in this case the operator

r( Z(e,f),1/J ) can also be reduced to an integral operator in which only r

integrations occur (where r denotes the rank of the C component of Z (see

1.1.2». We omit the proof.

2.4. Operators related to elements of the group Xl (n)

In this section we shall discuss operators of type 2.2.5 related to ele

ments of Xl (n) (n E ]N). We already mentioned that Xl (n) is a group (see

2.1.10). The fact that the fractional linear transforms related to elements

of G
1

(n) is a group of transformations of H
n

has an important Qonsequence,

as we shall see in the following theorem.

2.4.1. Theorem. If ( Z(e,f),1/J

. r- 1
an l.nverse

( Z (e, f) ,1/J

-1
r

( Z(e, f) ,1/J

Furthermore

n
) E Xl (n), then the operator r( Z(e,f),1/J ) of S has

)' and

= r( Z(e,f),1/J )-1 •

n n
for every g E S and every h E S •

Before we prove this theorem we need a lemma.



- 69 -

2.4.1.1. Lemma. Let ( Z(e,f),~ ) E x
2

(n) and ~ s s u m e that A,B,C,D E Mnxn(~) denote the

block components of Z (according to ,1.1.2). If we define

W :=

then We:: G
2

(n) and if Ql is the (unique) analytic function defined on H
n

satisfy

ing

Ql2 =

lim Ql (tIn) t -n/2

t-?<X>

= lim ~ ( t I )t-
n

/
2

n
t-?<X>

then ( W(e' ,f'),Ql ) E x
2

(n) and

[r ( Z(e,f),~ ;g,hJn = [g,r ( W(e' ,f'),q>. )h Jn '

where

Proof. Since C is non-singular (see lemma 1.7.3) and

. [DHC-
H

Re

--T
.. C

Re

-1
C D

-T
C

> 0

(see 1.1.2.5 and 1.7.5), we infer by using 1.7.5 that W E G
2

(n),hence
n

W(e',f'),Ql) E x
2

(n). It is easily seen that for every z E ~ and every

t E ~n

V(Z,ti( Z ( e , f ) , ~ ) ) =V(t,z;( W(e',f'),Ql)) •

The remainder of the proof is just a matter of changing the order of integra-

tion in an absolutely convergent repeated integral.

Proof of theorem 2.4.1. It is a result of the multiplicativity property

.( 2 • 2 •6 ) that

o

r ( Z(e,f),~ ) r ( Z(e,f),~ )-l
g

= g
n

(g E S ) •
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(The factor e x p ( ~ [ ( e 3 , f l ) - (f
3

,e
1
)J) of 2.2.6 drops out since e

3
= f 3 0).

n n n n
Let g E S , h E S • There exists an a > 0 and k E S , t E S such that

N k = g and N t =h (see 0.5 iii». From the symmetry of N (see 0.5
a,n a,n a,n

ii» and from 2.2.3 and 2.2.4 we obtain

[r .1. )f,gJ
n( Z (e, f) , 'I'

= f [ f V(Z,ti ( Mn(a) ,qJa ) 0 ( Z(e,f),$ ) 0 ( Mn(a) ,qJa »k(t)dtJR.(z)dz.

JRn JRn

Applying lemma 2.4.1.1 to

and using again the symmetry of N , 2.2.3 and 2.2.4 we finally obtain
a,n

o

2.4.2. Corollary. Operators of type 2.2.5 related to elements of Xl (n) are unitary:

if ( Z(e,f),$ ) E Xl (n) and g,h E sn, we have

[r ( Z(e,f),1JJ )g, r ( Z(e,f),1jJ )hJ n = [g,hJ n •

2.5. Extension to Sn*

2.5.1. Let ( Z(e,f),1jJ E XO(n) (n E:IN). In this section we shall show that it

n*
is possible to extend r( Z(e,f),1jJ ) to a linear operator of S (which is

again denoted by r( Z(e,f),1jJ » such that

2.5.1.1.
r( Z(e,f),1jJ ) (emb(g» = emb(r( Z(e,f),ijJ )g)

(See 0.7).

n
(g E S ) •

2.5.2.

2.5.2.1.

Let a > O. Using theorem 1.8.4 and corollary 1.8.7 we easily see that

for every sufficiently small B > 0 there exists a Za,S E GO(n) and an analy

tic function IjJ B defined on H such that (z S(e,f),1jJ S E XO(n) and
a, n a, a a a,

(M (a),qJ ) 0 (Z(e,f),IjJ) = (Z B(e,f ),1jJ Q) 0 (Mn(B),qJQ) ,
n a a, a a a,~ ~

where
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Let g E N (Sn*). If a > 0 is sufficiently small (we can restrict S to the
a,n

set 0 < S ~ a), we define

Y g := r )h ,
a (Z a(e,f),1/I Q

a,.., a a a,..,

n*where h E S is such that g N Q.- h. Note that since g E N (Sn*) and
a-.."n a,n

n
O<y<a

(see [BJ, theorem 19.1) such a function h E sn always exists if we restrict

13 to the set 0 < 8 ~ a. It is now a matter of routine to show that the defi

nition of Y (a > 0) does not depend on the particular choice of 13 and that
a

the following identities are satisfied.

Y N g= N Y g
0.+13 S,n l3,n a

n*
(g E N (S ), a > 0, 13 > 0) ,

a,n

N r g = Y N g
a,n ( Z(e,f),1/I ) a a

n
(g E S , a > 0) •

So, according to 0.8, r( Z(e,f),1/I

the extension is given by

is extendable by means of (y) 0 and
a a>

2.5.2.2.
n*

(F E S ) •

2.5.3. We conclude this section with two examples.

i) Consider the shift operators T and R (q E M 1(~)' P E M 1(~» (see
q p nx nx

0.6 iii»). Using theorem 2.3.2 it is easily seen that

T =
r(I2n(0,-q) ' ~ T E H 1

,
q )

n

R =
r(I2n(iP,0) ' ~ T E H 1p ) .

n

Note that both (I
2
--(O,-q), ~ H 1 ) and (I

2
(d.p,O), Y H 1 ) are elements

n TE n TE
n n

of X
1

(I}) if q E M lOR) and p E M lOR). Equation 2.5.2.1 (with
nx nx

(I
2n

(0,-q) ' ~ T E H 1 ) substituted for ( Z(e,f),1/I » has a solution in XO(n)
n

for 8 = a (a > 0) :

( Z a(e ~ f ),1/1 ael,,,,, a a a,,,,,
= (I

2n
(-sinha q,-cosha q) ' ~ T E H 1 ) •

n
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So from 2.5.2.2 and the multiplicativity property we obtain

T F = ~ 0 R, '00 T h F(a) x exp(1T sinha cosha(q,q» (F E sn ) .
q a> ~ s~ a q cos a q

This result coincides with [B], section 19, example (v) in case n = 1.

ii) Consider the Fourier transform F of sn (see 0.6 iii». Using theorem
n

2.3.1 we easily obtain

1Tin

F 4 rn = e (Z,1/.I ) ,

where

iI
n

o
, 1/.1

1Tin
4

e ql (T)
n

(see 2.1.5). In a similar way as in example i) we find

F F = ~ 0 F F (a)
n a> n

n*
(F E S ) •

2.6. AERlication in quantum mechanics

In this section we shall discuss applications of our theorems in quan

tum mechanics. We start with a short survey of some notions in classical and

quantum mechanics. For more details we refer to [B] and [p].

2.6.1. In classical mechanics a system of n moving points (degree n) can be

described by the Hamilton E;lquations

2.6.1.1.
oH

qj = op. ' Pj =
J

oH- --oq.
]

(j = 1, ..• , n) ,

the position vector q E M lOR) and
nx

over q. and p. denotes differentia-
J J

function of q and p, also called

p. denote the components of
J

vector p E M 1 OR) (the dot
nX

tion with respect to the time) and H is a

where q. and
]

the momentum

the Hamiltonian. At any time t the system is totally described by q and p.

The q - p-space (IRn x lR
n

) is usually called the phase space.

A transformation u = ~(p,q), v = 1/.I(p,q) of coordinates in phase space

is a canonical transformation if the equations of 2.6.1.1 expressed in the

new coordinates have the form

*oH
- --oU

j

(j = 1, •.. , n) ,
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*where H is the Hamiltonian of 2.6.1.1 expressed in u and v (see [TH], p.98).

Let us consider a linear transformation of coordinates in phase space.

where A,B,C,D E M OR) •
nxn

The equations 2.6.1.1 can be written as

oH oH
where oq and op denote the vectors

oH oH

oql oPl

and
I
I

I I

oH oH
oq op

n n

respectively. So

2.6.1.3.

where

ZJ
n

oH

ZJ ZT oU
n oH

ov

2.6.2.

and J is defined in 1.1.1.1. Therefore 2.6.1.2 is a canonical transforma
n

tion if and only if Z is symplectic (see 1.1.2.2).

Before we discuss the quantum mechanical approach we need some defini

tions.

n n
If f E S , g E S , we define

2.6.2.1. W(q,Pif,g) :=

(see [B], 12. 1. )

r - n n
exp(-21Ti(p,t» f(q + l.:lt)g(q-l.:lt)dt (q E <r , p E <r)

J
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Considered as a function of the variables q E ~n and p ~ ~n it is called the

mixed Wigner distribution of f and gi if f = g, it is called the Wigner dis

tribution of f. From an easy generalization of [B], 13.1 we have

Y w 2n
n I n W(q,Pif,g) E S .

qE<C PE~

This function will often be denoted by W(f,g) •

Generalization of [B], theorem 26.1 gives the following theorem.

2n*
Theorem. If H is a generalized function of 2n variables (i.e. H E S ) ,

n n*then there exists a unique linear mapping w
H

of S into S such that

for every f E sn and every g E sn (see 0.7). The correspondence between H

and w
H

is called Weyl's correspondence.

In quantum mechanics a system of n moving particles with Hamiltonian H

is described by a wave function

(t > 0)

that satisfies the Schrodinger equation

where w
H

is the operator related to H by Weyl's correspondence. (Scalings

are assumed to have been made such that Planck: s constant disappears from

the formulas).

We now discuss a theorem on Wigner distributions.

2.6.4. Theorem. Let A,B,C,D E M OR) be such that
nxn

[
A

C

BD] E Sp (n) (n E:IN) •

Let e,f E M OR) and consider the transformation
nxn
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(q E M lOR), P E: M 1(lR» •nx nx[::1= [: : ][:) + [:1

Z := [D -icl, and

iB A
Now Z E: G

1
(n), where

2.6.4.1.

W(q',p'i r ( Z(-if,e),1jJ )g, r( Z(-if,e),1jJ )h)

W(q,Pig,h)

for every g E: sn and every h E: Sn. (Here 1jJ denotes one of the square-roots

corresponding with Z (see 2.1.4».

Proof. From 1.1.2 and 1.6.1 we infer that Z E: G
1

(n). Let g E: sn and h E Sn.

According to a generalization of [BJ, 12.3, the Wigner distribution can be

written as an inner product:

2.6.4.2. W(a,big,h)

Note

(q E:

that F
2 = i n r ( l.J . • n)
n -I I 1. 2n' TEH

n
n

S ) (see theorem 2.3.2).

(see 2.5.3 ii), so F ~ g Y n g( -z)

ZE:Ci":

Using 2.5.3 i), 2.6.4.2 and the multiplicativity property (see 2.2.6), we

have for every q ElR
n arid p E:]Rn (q' and p' defined in 2.6.4.1)

2.6.4.3. W( q I , P I i r ( g r )h)
Z(-if,e),1jJ )' (Z(-if,e),1jJ

2
n

[T R r g F
2

T R r )hJ nq' p' ( Z(-if,e),l/J ) , n q' p' ( Z(-if,e),1jJ

where

( V(k,l),X) := o ( 1
2n

(ip' ,0), ~ T E : H 1
n

o ( Z(-if,e),1jJ ) •

(Note that the factor exp (w[(e
3
,f

1
) - (f

3
,e

1
)J) of 2.2.6 drops out in this

case since it is an element of the unit circle and it occurs on both sides

of the inner product). Using theorem 2.4.1 we infer that 2.6.4.3 equals

2
n
[g,i

n
r( V(k,l),X )-1 r( -I

2n
'Y

T
E:H in)r( V(k,l),X )hJ n .

n
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k = iCq + iOPt 1 = -Aq 

that 2.6.4.3 equals
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simple c o m p : : a [ ~ ] i o n

Bp. Since Z 1 =

to see that V = Z and that

[ ~ ] we easily obtain from 2.2.6

2.6.4.5. 2
n

[g,R T F
2
T R h] = W(q,Pig,h)

-p -q n q p n
n n

(q E lR , P E lR ) ,

2.6.5.

2.6.5.1.

and since both function are analytic (see 2.6.2) the equality also holds

for every q E C
n

and p E C
n

• 0

Assume now H E s2n and consider the transformation

K := ~ n n H(Aq + Bp + e, cq + Op + f) ,
(q,p)EC XC

where A,B,C,D E M OR) such that
nxn

l: :] € SpIn)

and where e E M
nx1

OR), f E M
nx1

OR). We want to express w
K

in terms of wHo

It is easily seen that for every g E Sn and h E Sn

[W(g,h) , K ~ n = [~ n n W(OT (q - e) - B
T

(p - f),

(q,p) EQ:: XC

T T-c (q - e) + A (p - f) ig,h) ,H] ,
2n

and using theorem 2.6.4 gives

[W(g,h),Kl = [~ W(q,Pif( )g,
-'2n n n Z ( - if, e) ,1/J

(q,p)ElC xc

f ( Z (-if, e) , t/J ) h) , H]2n '

where

[

0 -iC]
Z :=

iB A

and 1/J is one of the square-roots related to Z by 2.1.4. So we obtain (see

2.6.2.2 and 2.4.1)
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hence

sult however in case H E

We have restricted ourselves to the case H E S2n We have the same re

2n*
S , but in that case we have to replace the trans-

2.6.6.

formation 2.6.5.1 by the extension of the operator

Y n n Y 2n H(Aq + Bp + e, Cq + Dp + f)
(q,p)EC xC HES

2n 2n*
of S to S • (Using [JJ, appendix 1, theorem 3.2, we easily see that this

2n*
operator indeed is extendable to S ) .

We shall say a few things about the role of the Wigner distribution in

quantum mechanics. As said before scalings are assumed to have been made

such that Planck I s constant disappears from the formulas.

The general idea (see [BJ, 27.26.3) is that for any fixed t we consider

the Wigner distribution W ( ~ t ' ~ t ) ' where ( ~ t ) t > O denotes the solution of the

Schr6dinger equation (see 2.6.3). This distribution can be seen as a kind of

cloud that moves if t runs though the real numbers. Seen from afar, the

cloud may often be idealized as a point in the phase space, and then it can

be said that this point moves according to the Hamilton equations.

We shall give an example.

Let a E M 1(IR), b E M 1(IR) and c EJR be fixed. If H=Y( ) c + (a,q) +
nx nx q,p

+ (b,p) (this of course will be the case if we linearize), then

n

cI + I
i=l

q.Q. + b.P.
1 1 1 1

(see 0.6 iv», where a. and b. are the components of a and b (1 ~ i ~ n) and
1 1

I denotes the identity (see [BJ, 27.26.3). Schr6dinger's equation (see 2.6.3)

is now linear, and can be solved explicitly:

~ t exp(-2wict)R T b ~O(q)
n at - t

qE€

(t > 0)
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where ~ O is an arbitrary element of Sn,say ( ~ O describes the initial posi

tion of the system). (See [BJ, 27.26.3). By means of theorem 2.6.4 it is

easily shown that

n n
(q E: tC , P E: tC ) •

This means that the entire cloud is just shifted if time proceeds. If the

cloud can be considered as a point, that point moves according to the Hamil

ton equations (see 2.6.1.1). By this procedure the situation of classical

physics appears as a limit of the quantum mechanical description. Thus we

get a nice insight in what is usually called the classical limit.

As a further example ~ e take the two-dimensional harmonic oscillator.

As in the case of the linear function H we shall find a moving cloud (in

this case it rotates) that does not change its shape.

~ 2 2 2 2
We take H = I( ) ~(q + q2 + P1 + P2 + c), where c is a constant.

q,p 1 2 2 2 2 '
Now (see [BJ, 27.27.4) w

H
= ~(Q1 + Q

2
+ Pi + P

2
+ cI) (see 0.6 iv», where

1 again denotes the identity. The Schr6dinger equation can be solved in

terms of Hermite expansions (similar to the case n = 1 (see [BJ, 27.26.4);

we omit details) :

f = -~ictN 0/
t e it,2 0

(t > 0) ,

2
where ~ O is an arbitrary element ofS , say ( ~ O describes the initial posi-

tion of the system). The operator N, 2 was discussed in 2.2.11 ii). Since
lt,

N
it

,2 = r (see 2.2.11 ii» we infer from theorem 2.6.4 that
( M

2
(it) , q>it)

where

[

q(t)] = [cost 1 2

P (t) sint 1
2

-sint 12] [q]

cost 1
2

p
(q E: M

2x1
OR), p E: M

2x1
OR), t> 0).

This shows that the cloud moves according to the Hamilton equations.
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