
Integral points of bounded height on toric varieties

Antoine Chambert-Loir
Université de Rennes 1, IRMAR–UMR 6625 du CNRS, Campus de Beaulieu, 35042 Rennes Cedex,
France
Institut universitaire de France
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
E-mail : antoine.chambert-loir@univ-rennes1.fr

Yuri Tschinkel
Courant Institute, NYU, 251 Mercer St. New York, NY 10012, USA
E-mail : tschinkel@cims.nyu.edu

Abstract. — We establish asymptotic formulas for the number of integral points of bounded height
on toric varieties.

Résumé. — Nous établissons un développement asymptotique du nombre de points entiers de hauteur
bornée dans les variétés toriques.

2000 Mathematics Subject Classification. — 11G50 (11G35, 14G05).

Key words and phrases. — Heights, Poisson formula, Manin’s conjecture, Tamagawa measure.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Algebraic numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Algebraic tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Description of the adelic group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5. Toric varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6. Quasi-projective toric varieties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7. Metrized line bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8. Volume forms and measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Integral points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Fourier transforms at finite places. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3. The product of local Fourier transforms at finite places. . . . . . . . . . . . . . . . . . 11
3.4. Fourier transforms at archimedean places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5. Integrating Fourier transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6. Restriction to a log-anticanonical line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7. Poles on the boundary of the convergence domain. . . . . . . . . . . . . . . . . . . . . . . 18
3.8. Characters giving rise to the pole of maximal order. . . . . . . . . . . . . . . . . . . . . 19



2 ANTOINE CHAMBERT-LOIR & YURI TSCHINKEL

3.9. The leading term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10. Leading term and equidistribution for rational points. . . . . . . . . . . . . . . . . . 21
3.11. Leading term and equidistribution for integral points. . . . . . . . . . . . . . . . . . . 23

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1. Introduction

In this paper we study the distribution of integral points of bounded height on toric
varieties, i.e., quasi-projective algebraic varieties defined over number fields, equipped
with an action of an algebraic torus T and containing T as an open dense orbit.

The case of projective compactifications has been the subject of intense study. It has
been treated completely over number fields via adelic harmonic analysis by Batyrev and
the second author in a series of papers, see e.g., [2, 3, 4]. Subsequently, Salberger [30]
and de la Bretèche [10] provided an alternative proof which relies on the parametrization
of rational points by integral points on certain descent varieties called universal torsors.
These papers use a canonical height on toric varieties which reduces to the standard Weil
height (maximum of absolute values of coordinates) in the case when X is a projective
space. Some other choices of heights have also been considered, at least for projective
spaces, e.g., [32, 20]. Both methods, harmonic analysis and passage to universal torsors,
have been applied in the function field case by Bourqui [8, 9].

These results were motivated by conjectures of Batyrev, Manin, Peyre and others con-
cerning the asymptotic behavior of the number of points of bounded height in algebraic
varieties over number fields [21, 1, 28, 5]. They stimulated the study of height zeta
functions of equivariant compactifications of other algebraic groups and homogeneous
spaces [34, 13, 33], as well as the study of universal torsors over Del Pezzo surfaces.

A related, classical, problem in number theory is the study of integral points on al-
gebraic varieties, for example complete intersections of low degree (circle method, [6]),
algebraic groups or homogeneous spaces of semisimple groups (via ergodic theory or spec-
tral methods, [17, 18, 19, 7]).

In this paper, as well as in [15], we apply the geometric and analytic framework proposed
in [14] to “interpolate” between these two counting problems. Precisely, let X be a smooth
projective toric variety over a number field F , let T be the underlying torus, and let
U ⊆ X be the complement of a T -stable divisor D in X. We establish an asymptotic
formula for the number of integral points of bounded height on U . The notion of integral
points depends on the choice of a model of U over the ring oF of integers of F , while the
normalization of the height is given by the log-anticanonical divisor −(KX + D) of the
pair (X, D); we assume that this log-anticanonical divisor belongs to the interior of the
effective cone of X. The asymptotic formula that we establish in Theorem 3.10.3 takes
the form

N(B) ∼ ΘB(log B)b−1, B → ∞,
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where b is a positive integer and Θ is a positive real number. To define these numbers we
need the notion of the analytic Clemens complex C an

v (D), for a place v of F , introduced
in [14]. It is a simplicial complex which encodes the incidence properties of the v-adic
manifolds given by the irreducible components of D. In this language, the integer b is
given by

b = rank(Pic(U)) +
∑

v|∞

(1 + dim C
an
v (D));

The definition of Θ (see Theorem 3.11.3) involves the following analytic and geometric
constants:

– volumes of adelic subsets with respect to suitable Tamagawa measures;
– local volumes (at archimedean places) of minimal strata of boundary components

of D;
– characteristic functions of certain variants of the effective cones of X attached to

these strata and to the Picard group of U ;
– orders of Galois cohomology groups.

Moreover, we establish an equidistribution theorem for integral points of U of bounded
height. This is already new for U = X where we obtain that rational points of bounded
height in T (F ) equidistribute to Peyre’s Tamagawa measure on X(AF )Br, the subset
of X(AF ) where the Brauer–Manin obstruction vanishes. This refines the classical result
that rational points are dense in this subset.

In a series of papers, [23, 22, 24, 25], Moroz proved similar, though less precise, results
for certain affine toric varieties over Q.

Here is the roadmap of the paper. In Section 2, we recall basic facts concerning algebraic
tori, toric varieties, heights, and Tamagawa measures. The proof of Theorem 3.10.3 is
presented in Section 3. It relies on the Poisson summation formula on the adelic torus
attached to T , and follows the strategy of [2]. As was already the case for equivariant
compactifications of additive groups in [15], new technical complications arise from the
presence of poles of the local Fourier transforms at archimedean places, which contribute
to the main term in the asymptotic formula.

Acknowledgments. — During the final stages of preparation of this work, we have
benefited from conversations with E. Kowalski. We also thank N. Katz for his interest
and stimulating comments.

The first author was supported by the Institut universitaire de France, as well as by
the National Science Foundation under agreement No. DMS-0635607. He would also like
to thank the Institute for Advanced Study in Princeton for its warm hospitality which
permitted the completion of this paper. The second author was partially supported by
NSF grants DMS-0739380 and 0901777.

2. Toolbox

We now recall basic facts concerning algebraic tori, toric varieties, heights and measures.
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2.1. Algebraic numbers

Let F be a number field and F a fixed algebraic closure of F . Let Val(F ) be the set
of normalized absolute values of F . For v ∈ Val(F ), we write |·|v for the corresponding
absolute value, Fv for the completion of F at v. If v is ultrametric, we also put ov, ̟v,
kv for the ring of integers, a chosen local uniformizing element and the residue field at v,
respectively; we write pv for the characteristic of the field kv and qv for its cardinality.

For any v ∈ Val(F ), we fix a decomposition group Γv at v and write Γ0
v for its inertia

subgroup. If v is finite, we fix a geometric Frobenius element Frv ∈ Γv/Γ0
v.

Let R be a ring, let M be an R[Γ]-module which is free of finite rank as an R-module.
The Artin L-function of M is defined as the Euler product

L(s, M) =
∏

v∤∞

Lv(s, M), Lv(s, M) = det
(

1 − q−s
v Frv

∣

∣M
Γ0

v
)−1

.

We normalize the Haar measure of a local field E as in [35] (p. 310) so that the unit
ball has measure

– 2 if E = R;
– 2π if E = C;

– |disc(E/Qp)|
−1/2 if E is a finite extension of Qp.

We also define a real number cE by the following formula:

– cR = 2;
– cC = 2π;

– cE = |disc(E/Qp)|
−1/2 (1 − q−1)/ log(q)) if E is a finite extension of Qp and q is the

norm of a uniformizer.

2.2. Algebraic tori

Let T be an algebraic torus of dimension d over F , i.e., an algebraic F -group scheme
such that TF ≃ Gd

m. A character of T is a morphism of algebraic groups T → Gm; and a
cocharacter a morphism of algebraic groups Gm → T . Let E be a finite Galois extension
of F such that TE ≃ Gd

m and Γ its Galois group. Let M = X∗(TF ) be the group of
F -rational characters of T , it is a torsion-free Z-module of rank d endowed with an action
of Γ. The group N dual to M is the group of cocharacters of TF .

The group M = M
Γ

is the group of F -rational characters. The group N
Γ

of F -rational
cocharacters maps naturally into the space of coinvariants N = NΓ which identifies with

the dual of M . The map N
Γ
→ N is not an isomorphism in general.

For any place v ∈ Val(F ), we put

Mv =

{

M
Γv

for v ∤ ∞

M
Γv

⊗R for v | ∞
,

and define Nv similarly. For v | ∞, the perfect duality between M and N induces a
perfect duality Mv × Nv → R. If v is nonarchimedean, there is a natural bilinear map
Mv × Nv → Z which, however, is not a perfect pairing in general.
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For any nonarchimedean v ∈ Val(F ), the bilinear map

T (Fv) × Mv → Z, (t, m) 7→ − log(|m(t)|)/ log(qv)

induces a homomorphism logv : T (Fv) → Nv whose kernel Kv is the maximal compact
subgroup of T (Fv) and whose image has finite index. Moreover, logv is surjective for all
ultrametric places v which are unramified in the splitting field E (see, e.g., [16, p. 449]).
Similarly, for any archimedean v ∈ Val(F ), the bilinear map

T (Fv) × M
Γv

→ R, (t, m) 7→ log(|m(t)|)

induces a surjective homomorphism logv : T (Fv) → Nv whose kernel Kv is the maximal
compact subgroup of T (Fv).

2.3. Description of the adelic group

Let AF be the ring of adeles of F . The bilinear map

T (AF ) × MR → R, ((tv), m) 7→
∑

v∈Val(F )

log(|m(tv)|)

induces a surjective continuous morphism T (AF ) → NR. This morphism admits a section,
e.g., given by n 7→ (tv(n)), where tv(n) = 1 if v is finite, tv(n) = exp(n/[F : Q]) if v is
real, and tv(n) = exp(2n/[F : Q]) if v is complex.

Let T (AF )1 be its kernel. By the product formula, T (F ) ⊂ T (AF )1 as a discrete
subgroup; moreover, the quotient T (AF )1/T (F ) is compact. This induces a decomposition

T (AF )/T (F ) ≃ NR × (T (AF )1/T (F ))

of T (AF )/T (F ). The group KT =
∏

v∈Val(F ) Kv is the maximal compact subgroup

of T (AF ); it is contained in T (AF )1.
Let S ⊂ Val(F ) be a finite subset containing the archimedean places. The map

T (AF ) →
∏

v∈S

T (Fv) →
∏

v∈S

Nv

induces an isomorphism

T (AF )/T (F )KT ≃
∏

v∈S

Nv/T (oF,S),

where T (oF,S) = T (F ) ∩
⋂

v 6∈S Kv. The map T (oF,S) →
∏

v∈S Nv has finite kernel. Its

image is a cocompact lattice in the subspace of
∏

v∈S Nv consisting of tuples (nv)v∈S such
that

∑

v∈S〈nv, m〉 = 0 for any m ∈ M .

2.4. Characters

Recall that the characters of a topological group G are the continuous homomorphisms
to the group S1 of complex numbers of absolute value 1. They form a topological group G∗.
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A character χ of T (AF ) is the product (χv) of its local components: for any v ∈ Val(F ),
χv is a character of T (Fv). A local character χv is called unramified if it is trivial on Kv;
then there exists a unique element m(χv) ∈ Mv such that

χv(t) = exp(i〈m(χv), logv(t)〉), for all t ∈ T (Fv).

A global character χ is called unramified if all of its local components are unramified,
equivalently if it is trivial on KT ; it is called automorphic if it is trivial on T (F ).

The description of T (AF )/T (F )KT in Section 2.3 identifies an automorphic unrami-
fied character of T (AF ) as a character of

∏

v∈S Nv/T (oF,S). Then, (T (AF )/T (F )KT )∗ is
the product of the continuous group MR and the dual Hom(T (oF,S),Z) of the discrete
group T (oF,S)/torsion.

2.5. Toric varieties

Let X be a smooth projective equivariant compactification of T , i.e., a smooth projec-
tive variety X over F endowed with an action of T , and containing T as a dense open orbit.
The boundary divisor is the complementary closed subset X \ T ; it is the opposite −KX

of a canonical divisor.
By the general theory of toric varieties over algebraically closed fields, the boundary

divisor XF \TF is reduced, its irreducible components are smooth and meet transversally.
Let A be the set of these irreducible boundary components. Since XF \ TF is defined
over F , the set A admits a natural action of the Galois group Γ, as well as of its sub-
groups Γv, for v ∈ Val(F ). We write A , resp. Av for the sets of orbits; the corresponding
elements label F -irreducible, respectively Fv-irreducible, boundary components of X \ T .

For any α ∈ A , we write Fα for the subfield of E fixed by the stabilizer of Dα in Γ,
and ∆α for the sum of all irreducible components Dα′ , for α′ ∈ Γα. If α and α′ belong to
the same orbit, the fields Fα and Fα′ are conjugate. For any finite place v ∈ Val(F ), the
choice of a decomposition subgroup Γv induces a specific place of Fα, still denoted v, and
we write fα for the degree of Fα,v over Fv.

The closed cone of effective divisors Λeff(XF ) ⊂ Pic(XF )R on XF is spanned by the
classes of boundary components Dα, for α ∈ A . Similarly, the closed cone of effective
divisors Λeff(X) ⊂ Pic(X)R on X is spanned by the classes of the divisors ∆α.

Viewing a character of TF as a rational function on XF and taking its divisor defines a
canonical exact sequence of torsion-free Γ-modules

(2.5.1) 0 → M → PicT (XF )
π

−→ Pic(XF ) → 0,

where PicT (XF ) ≃ ZA is the group of equivalence classes of TF -linearized line bundles on
XF . (Linearized line bundles are in canonical correspondence with TF -invariant divisors
in XF , that is, linear combinations of boundary components.) The injectivity on the left
follows from the fact that XF is normal and projective: if a character of TF has neither
zeroes nor poles, then it is a regular invertible function on XF , hence a constant. Taking
Galois cohomology and using the fact that PicT (XF ) is a permutation module, we obtain
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the following exact sequences:

0 → M → PicT (X) → Pic(X) → H1(Γ, M) → 0(2.5.2)

0 → Mv → PicT (XFv
) → Pic(XFv

) → H1(Γv, M) → 0.(2.5.3)

Moreover, the isomorphism PicT (XF ) ≃ ZA induces similar isomorphisms

PicT (X) ≃ ZA , PicT (XFv
) ≃ ZAv .

By duality, the map M → ZA gives rise to a morphism of tori
∏

α∈A
Tα → T , where,

for α ∈ A , Tα = ResFα/F Gm is the Weil restriction of scalars of the multiplicative group
from Fα to F . Using this morphism, any automorphic character χ ∈ (T (AF )/T (F ))∗

induces an automorphic character of Tα(AF ), i.e., a Hecke character χα of Fα.

2.6. Quasi-projective toric varieties

Let D be a reduced divisor in X disjoint from T and let U = X \ D. It is a (non-
projective for D 6= ∅) toric variety. Let A D ⊂ A be the set of irreducible components
of DF . The irreducible components of the divisor UF \TF are indexed by the traces on UF

of the Dα, for α ∈ A \ A D. There is a similar Γ-equivariant exact sequence

(2.6.1) 0 → H0(UF , O×
U )/F

×
→ M → ZA \A D

π
−→ Pic(UF ) → 0.

Let ρ = (ρα) with ρα = 0 if α ∈ AD and 1 otherwise. Throughout we shall assume
that ρ ∈ Λeff(X)◦, i.e., is contained in interior of the image under π of the simplicial cone
RA

>0. In more geometric terms, this means that the line bundle −(KX + D) on X is big;
this includes the particular case where (X, D) is log-Fano, i.e., −(KX + D) is ample.

2.7. Metrized line bundles

Each boundary divisor Dα, α ∈ A , defines a TE-linearized line bundle on XE . We fix
smooth adelic metrics on these line bundles: by definition these are collections of metrics,
at all places w of E, almost all of which come from a model of XE defined over the ring
of integers of E; the smoothness condition means locally constant at finite places, and
C ∞ at archimedean places. We assume that these metrics are invariant under the natural
action the Galois group Γ.

For each α ∈ A , let fα be the canonical section of the line bundle O(Dα) with divisor Dα.
Then the resulting height pairing is defined by

H : T (AE) × PicT (XE)C → C∗, ((xw);
∑

sαDα)) 7→
∏

α∈A

∏

w∈Val(E)

‖fα(xw)‖sα/[E:F ] .

It is Γ-equivariant, smooth in the first variable and linear in the second variable. (If

s ∈ CA , we simply write H(x; s) for H(x;
∑

sαDα).)
We shall also restrict the height pairing to line bundles defined over F and points in

T (AF ). This is compatible with a corresponding theory of adelic metrics over F . Indeed,
a component of X \T decomposes over E as a sum of some divisors Dα and this furnishes
a canonical adelic metric on every line bundle on X.
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2.8. Volume forms and measures

Our analysis of the number of points of bounded height makes use of certain Radon
measures on local analytic manifolds and on adelic spaces. Here we recall the main
definitions, referring to [14] for a detailed account of the constructions of these measures
in a general geometric context.

Let v be a place of F . We fix a Haar measure on each completion Fv of F , in such a
way that µv(ov) = 1 for almost all finite places v. Recall that the divisor on X of the
invariant n-form dx on T (which is well-defined up to sign) is given by

div(dx) = −
∑

α∈A

Dα.

We now define several measures on X(Fv). The first is a Haar measure for the torus
T (Fv). It is defined “à la Weil” by

µ′
T,v = |dx|v ,

considering the invariant form dx as a gauge form on T . Let τv(T ) = µ′
T,v(Kv) be the

measure of the maximal compact subgroup Kv of T (Fv). If v is unramified in E, then T
has good reduction at v and

τv(T ) = #T (ov)/q
dimT
v = Lv(1, M)−1

(see [26], 3.3), where we extend T as a torus group scheme over Spec(ov). We shall use
the renormalized measure

µT,v = τv(T )−1 |dx|v .

The local Peyre-Tamagawa measure on X(Fv) is defined by

µ′
X,v = |dx|v / ‖dx‖v .

Since Pic(XF ) is a free Z-module of finite rank, two other normalizations are possible:

µX,v = Lv(1, Pic(XF ))−1µ′
X,v,

µU,v = Lv(1, EP(U))µ′
X,v,

where EP(U) is the virtual Galois module
[

H0(U, O∗
X)/F

∗
]

−
[

H1(U, O∗
X)/torsion

]

.

With these normalizations, the products of local measures converge and define measures
on suitable adelic spaces:

∏

v µT,v is a Haar measure on T (AF ),
∏

v µX,v and
∏

v µU,v are
Radon measures on X(AF ) and U(AF ), respectively ([14], Theorem 2.4.7). For any finite
S ⊂ Val(F ), we define Radon measures on T (AS

F ), X(AS
F ), and U(AS

F ), by

µT = LS
∗ (1, M)−1

∏

v 6∈S

µT,v, µX = LS
∗ (1, Pic XF )

∏

v 6∈S

µX,v, µU = LS
∗ (1, EP(U))−1

∏

v 6∈S

µU,v,

where LS
∗ (1, ·) denotes the principal value of the Artin L-function at 1, with the finite

Euler factors in S removed.
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In [14], we have also introduced residue measures which are Radon measures on X(Fv)
with support on D(Fv). Recall that the Fv-analytic Clemens complex C an

v (X, D) is a
poset whose faces are pairs (A, Z) where A is a nonempty subset of Av and Z is an Fv-
irreducible component of DA =

⋂

α∈A Dα such that Z(Fv) 6= ∅. Its order relation is the
one opposite to inclusion.

For each α ∈ Av, we let AFα,v
be the Weil restriction of scalars of the affine line from Fα,v

to Fv; it is an affine space of dimension [Fα,v : Fα] = |α|. The norm map N: Fα,v → Fv

induces a polynomial function N on AFα,v
which defines the origin on the level of Fv-

rational points. By abuse of notation, we write dxα for the top differential form on AFα,v

deduced from the one-form dx on A1.
Let x ∈ X(Fv) and let Ax be the set of α ∈ Av such that x ∈ Dα. There exists a

neighborhood Ux of x in X(Fv) and a smooth map (xα)α∈A : Ux →
∏

α∈A AFα,v
which

defines DA(Fv) in a neighborhood of x.
Fix a pair (A, Z) in C an

v (X, D). The description above shows that Z(Fv) is a smooth
v-adic submanifold of X(Fv) of codimension

∑

α∈Av
|α|. Moreover, its canonical bundle

admits a metric, defined inductively via the adjunction formula, in such a way that for
any local top differential form ω on Z(Fv),

‖ω‖ =

∥

∥

∥

∥

∥

ω̃ ∧
∧

α∈A

dxα

∥

∥

∥

∥

∥

∏

α∈Av

lim
x

‖fα‖

|N(xα)|
,

where ω̃ is any local differential form on X(Fv) which extends ω. This gives rise to a
measure τ(A,Z) on Z(Fv). As in [14], we normalize this measure further, multiplying it by
the finite product

∏

α∈A cFα
of constants defined as in Section 2.1.

3. Integral points

3.1. Setup

Let F be a number field, T an algebraic torus defined over F , and X a smooth projective
equivariant compactification of T . Let D be a reduced effective divisor in X \ T and let
U = X \ D. We assume that the divisor −(KX + D) on X is big.

Let U be a fixed flat oF -scheme of finite type with generic fiber U . A rational point
x ∈ T (F ) will be called oF -integral if there exists a section εx : Spec oF → U which
extends x. Similarly, for any finite place v ∈ Val(F ), a point x ∈ T (Fv) will be called
ov-integral if it extends to a section Spec ov → U . For any finite place v, we write δv for
the set-theoretic characteristic function of the set of ov-integral points in T (Fv). It is a
locally constant function on T (Fv) whose support is relatively compact in U(Fv). For any
archimedean place v, we put δv = 1 and write

δ =
∏

v∈Val(F )

δv.
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The generating Dirichlet series of integral points is called the height zeta function; it
takes the form

Z(s) =
∑

x∈T (F )∩U (oF )

H(x; s)−1 =
∑

x∈T (F )

H(x; s)−1δ(x).

This series converges absolutely and uniformly when all coordinates of s have a sufficiently
large real part, and defines a holomorphic function in that domain. Formally, we have
the Poisson formula

Z(s) =

∫

Ĥ(χ; s)dχ,

where the integral is over the locally compact abelian group of characters of T (AF )/T (F )
with respect to an appropriate Haar measure dχ, and

Ĥ(χ; s) =

∫

T (AF )

H(x; s)−1δ(x)χ(x)d×x

is the corresponding Fourier transform of the height function with respect to the fixed
Haar measure d×x. As in the study of rational points in [2, 3, 4], we investigate the
height zeta function by proving first that the Poisson formula applies; its right-hand-side
provides a meromorphic continuation for the height zeta function. A Tauberian theorem
will then imply an asymptotic expansion for the number of integral points of bounded
height.

3.2. Fourier transforms at finite places

Lemma 3.2.1. — For any finite place v of F and any character χv ∈ T (Fv)
∗ the local

Fourier transform Ĥv(χv; s) converges absolutely if Re(sα) > 0 for all α 6∈ AU and defines
a holomorphic function of s in the tube domain defined by these inequalities.

Moreover, there exists a compact open subgroup Kv of T (Fv), equal to the maximal

compact subgroup for almost all v, such that Ĥv(χv; s) = 0 for any character χv which is
nontrivial on Kv.

Proof. — The first part is a special case of our results concerning geometric Igusa func-
tions. For the second, observe that we assumed the metrics to be locally constant at finite
places, and the same holds for the characteristic function of the set of local integral points.
As a consequence, there exists a compact open subgroup Kv ot T (Fv) such that the height
function Hv(s; ·) is Kv-invariant. It follows that the Fourier transform vanishes at any
character which is not trivial on Kv. Moreover, the adelic condition on the metrics, and
the fact that the chosen integral model of the toric varieties U and X are toric schemes
over a dense open subset of Spec oF , imply that for almost all v, one can take Kv to be
the maximal compact subgroup of T (Fv).
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Lemma 3.2.2. — For almost all finite places v, and all s such that Re(sα) > 0 for all
α 6∈ AU , one has

Ĥv(1; s) = τv(T )−1q−dimX
v

∑

A⊂AU

#D◦
A(kv)

∏

α∈A

q
fα,v
v − 1

q
fα,vsα
v − 1

.

Proof. — Let X be a flat projective oF -scheme with generic fiber X and D the Zariski
closure of D in X . There exists a finite set of places S in Val(F ) such that, after restriction
to oF,S, X is a smooth toric scheme, X \D is equal to U , and all local metrics are defined
by the given model.

For v 6∈ S, one may compute Ĥv(1; s) using Denef’s formula. Using the good reduction
hypothesis, the set of integral points in T (Fv) is equal to T (Fv) ∩ U (ov). Moreover,
U(ov)∩ (U \T ) has measure zero with respect to the measure µX,v. We thus can split the
integral over the residue classes and write

Ĥv(1; s) =

∫

T (Fv)

Hv(x; s)−1δv(x)dµT,v

= τv(T )−1

∫

U (ov)

Hv(x; 1 − s)dµX,v

= τv(T )−1
∑

A⊂AU

#D◦
A(kv)q

|A|−dim(X)
v

∏

α∈A

∫

mα,v

∣

∣NFα,v/Fα
(xα)

∣

∣

sα−1
dxα

= τv(T )−1q−dim(X)
v

∑

A⊂AU

#D◦
A(kv)

∏

α∈A

q
fα,v
v − 1

q
fα,vsα
v − 1

.

(See [14], 4.1.6, for more details.)

3.3. The product of local Fourier transforms at finite places

Let KH,fin =
∏

v∤∞ Kv be the product of compact open subgroups from by Lemma 3.2.1

and T (AF )∗K ⊂ T (AF )∗ the subgroup of characters whose restriction to KH,fin is trivial.
Let S be the finite set of those finite places v such that either Kv is distinct from the
maximal compact subgroup of T (Fv) or Lemma 3.2.2 fails for v.

For any character χ ∈ T (AF )∗K and s ∈ CA such that Re(sα) > 0 for α 6∈ AU , define

Ĥfin(χ; s) =
∏

v∤∞

Ĥv(χv; s) =
∏

v∤∞

∫

T (Fv)

Hv(xv; s)
−1δv(xv)χv(xv)d

×xv.

In this section, we study the convergence of this infinite product and its analytic properties
with respect to s and χ.

Lemma 3.3.1. — Let Ω ⊂ CA be the tube domain of all s ∈ CA such that Re(sα) > 1/2

for α ∈ AU . The infinite product Ĥfin(χ; s) converges whenever Re(sα) > 1 for all α ∈ AU

and extends to a meromorphic function of s ∈ Ω.
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More precisely, for each χ ∈ T (AF )∗K , there exists a holomorphic function ϕ(χ; ·) on Ω
such that

Ĥfin(χ; s) = ϕ(χ; s)
∏

α∈AU

L(sα, χα).

Moreover, for any positive real number ε, there exists C(ε) such that |ϕ(χ; s)| 6 C(ε) for
any character χ and any s ∈ Ω such that Re(sα) > 1

2
+ ε for all α ∈ AU .

(In that formula, χα is the Hecke character of Fα deduced from χ, as in Section 2.5.)

Proof. — This is a slight modification of the proof provided in [2], in the projective case.
For any finite place v ∈ Val(F ), let us define a function ϕv on Ω by the formula

Ĥv(χv; s) = ϕv(χv; s)
∏

α∈AU

Lv(sα, χα),

where χv is the local component at v of a character χ ∈ T (AF )∗K .
For v 6∈ S, χv is unramified and hence takes the form

χv(x) = Hv(x;−im(χv)),

for some m(χv) ∈ Mv, where we used the injection (2.5.3) to embed Mv into ZAv . Con-
sequently, for any such v, one has

Ĥv(χv; s) =

∫

T (Fv)

Hv(x; s)−1χv(x)δv(x) dx

=

∫

T (Fv)

Hv(x; s + im(χv))
−1δv(x) dx

= Ĥv(1; s + im(χv)).

Observe that

Lv(sα, χα) = Lv(sα + im(χα), 1) = ζFα,v(sα + im(χα)).

Lemma 3.2.2 implies that ϕv is holomorphic on its domain. Moreover, for any positive
real number ε, there is an upper bound of the form

|ϕv(χ; s) − 1| ≪ q−min(1+2ε,3/2)
v

for all s such that Re(sα) > 1
2

+ ε for α ∈ AU .

For v ∈ S, Lemma 3.2.1 implies that Ĥv(χv; ·) is holomorphic and uniformly bounded
in this domain, independently of χ; the same holds for ϕv(χv; ·).

These estimates imply the uniform and absolute convergence of the infinite product
∏

ϕv(χ; ·) on the tube domain Ω; it defines a holomorphic function ϕ(χ; ·) on this domain.
Moreover, for any positive real number ε, there exists a constant C(ε) such that

|ϕ(χ; s)| ≪ C(ε)

whenever Re(sα) > 1
2

+ ε for α ∈ AU .
Since Hecke L-functions converge when their parameter has real part > 1, the infinite

product Ĥfin(χ; s) converges absolutely on the subset Ω1 of the tube domain Ω defined by
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the inequalities Re(sα) > 1 for all α ∈ AU and defines a holomorphic function on Ω1 such
that

Ĥfin(χ; s) = ϕ(χ; s)
∏

α∈AU

L(sα, χα).

This provides the asserted meromorphic continuation of Ĥfin.

3.4. Fourier transforms at archimedean places

To establish analytic properties of Fourier-transforms at archimedean places, we will
extend the technique of geometric Igusa integrals developed in [14].

Fix an archimedean place v of F . Since the F -rational divisors Dα may decompose
over Fv, it is natural to consider the local height function Hv and its Fourier transform as
functions of the complex parameter s ∈ CAv . This generalization will in fact be required
in the following sections.

Fix a splitting of the exact sequence

0 → T (Fv)
1 → T (Fv) → Mv → 0.

Each character of T (Fv) can now be viewed as a pair (χ1, m) of a character of the compact
torus T (Fv)

1 and an element m ∈ Mv. Similarly, for each α ∈ Av, let Fα,1 be the subgroup
of F×

α consisting of elements of absolute value 1. We decompose the field F×
α = R×

+×Fα,1

and decompose the character χα accordingly, writing

χα(xα) = |xα|
−imα χα,1(xα),

where χα,1 is a character of Fα,1.

Lemma 3.4.1. — Let v be an archimedean place of F . Then, for each face A of the
analytic Clemens complex C an

v (X, D), there exists a function ϕv,A(s, χv) holomorphic on
the tube domain of CAv defined by Re(sα) > −1/2 for all α ∈ Av, such that

Ĥv(χv; s) =
∑

A∈C an
v (X,D)

ϕv,A(χv; s)
∏

α∈A

1

sα + imα
.

Moreover, each function ϕv,A is rapidly decreasing in vertical strips; namely, for any
positive κ, one has

|ϕv,A(χv; s)| ≪ (1 + ‖Im(s)‖ + ‖m(χv)‖ + ‖χv,1‖)
−κ,

provided Re(sα) > −1
2

for all α ∈ Av.
Assume that sα = 0 for α ∈ A. If there exists an α ∈ A such that χα is ramified, then

ϕv,A(χv; s) = 0.

Proof. — The proof is a variant of the analysis conducted in our paper [14]. Let us con-
sider a partition of unity (hA), indexed by the faces A ⊂ Av of the analytic Clemens
complex C an

v (X, D) at v such that the only divisors Dα which intersect the support of hA

are those with index α ∈ A. Up to refining this partition of unity, we also assume that on
the support of hA, there is a smooth map (xα) to

∏

α∈A Fα such that for each α ∈ A, xα = 0
is a local equation of Dα. By the theory of toric varieties, we can moreover assume that



14 ANTOINE CHAMBERT-LOIR & YURI TSCHINKEL

the restriction of the map x 7→ xα to T (F ) is an algebraic character. Considering a com-
plement torus, we obtain a system of local analytic coordinates (x,y) = (xα)α∈A, (yβ)β∈B.
In these coordinates, the character χv can be expressed as

χv(x) =
∏

α∈A

χα(xα) × χA(y),

where χA is a character of T (F ).
After the corresponding change of variables, the integral, localized around the stra-

tum DA(Fv), takes the form

IA(χv; s) =

∫

∏

α∈A

χα(xα) |xα|
sα−1 θ(s,x,y)χA(y)dxdy,

where θ is a smooth function with compact support around the origin in
∏

α∈A Fα × F B
v .

The local integral IA takes the form

IA(χv; s) =

∫

∏

α∈A

|xα|
sα+imα−1

(

∫

θ(s,x,y)χA(y)
∏

α∈A

χα,1(xα,1)
∏

α∈A

dxα,1dy

)

∏

d |xα| .

In the inner integral, the variables xα,1 run over Fα,1, i.e., {±1} or S1, according to
whether Fα = R or Fα = C. In the latter case, we first perform integration by parts to
establish the rapid decay of the inner integral with respect to the discrete part χα,1 of
the character χα. Observe also that this inner integral tends to 0 when |xα| → 0 if the
character χα,1 is nontrivial, i.e., the character χα is unramified.

The stated meromorphic continuation can then be established, e.g., iteratively inte-
grating by parts with respect to the variables |xα| and writing

ts+im =
1

s + im

∂

∂t

(

ts+im
)

.

This gives a formula as indicated, except for the rapid decay in s. To obtain this, it suffices
to perform integration by parts with respect to invariant vector fields in the definition
of Ĥv. The point is that for any element d of Lie(T (Fv)), there exists a vector field dX

on X(Fv) whose restriction to T (Fv) is invariant; moreover, dX(H(x; s))H(x; s)−1 is a
linear form in s times a regular function on X(Fv) (see [13], Proposition 2.2).

3.5. Integrating Fourier transforms

We now have to integrate the Fourier transform of the height function over the group
of automorphic characters. For the analysis, it will be necessary to first enlarge the set
of variables and then restrict to a suitable subspace. We thus consider a variant of the
height zeta function depending on a variable

s̃ = (s, (sv)v|∞) ∈ VC,

where V is the real vector space

V = PicT (X)R ⊕
⊕

v|∞

PicT (Xv)R.
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For s̃ ∈ VC such that the series converges, we set:

Z̃(s̃) =
∑

x∈T (F )∩U (oF )

∏

v∤∞

Hv(s, x)−1 ×
∏

v|∞

Hv(sv, x)−1.

Formally, we again have the Poisson formula

Z̃(s̃) = cT

∫

Ĥ(s̃; χ)dχ,

the integral over the locally compact abelian group of characters of T (AF )/T (F ) with
respect to a chosen Haar measure dχ on (T (AF )/T (F ))∗, here, for s̃ = (s, (sv)),

Ĥ(s̃; χ) = Ĥfin(s; χ)
∏

v|∞

Ĥv(sv; χv)

is the corresponding Fourier transform of the height function. The constant cT depends
on the actual choice of measures, which we now make explicit.

Fix a section of the surjective homomorphism T (AF ) → M∨
R

, whose kernel T (AF )1 con-
tains T (F ). If M∨

R
is endowed with the Lebesgue measure normalized by the lattice M∨,

this gives rise to a Haar measure on T (AF )1. The section decomposes the group of au-
tomorphic characters as MR ⊕ UT . Let U K

T = T (AF )∗K ∩ UT be the subgroup of UT

consisting of characters whose restriction to the compact open subgroup KH,fin is trivial.
By Lemma 3.2.1 (see also the beginning of Section 3.3), the Fourier transform vanishes
at any character χ ∈ UT such that χ 6∈ U K

T . We normalize the Haar measure dm on MR

by the lattice M and define a Haar measure on (T (AF )/T (F ))∗ as the product of dm by
the counting measure on UT . Provided the expression in the right hand side converges
absolutely, one can apply the Poisson summation formula and obtain

Z̃(s̃) =
cT

(2π)rank M

∑

χ∈UT

∫

MR

Ĥ(s̃ + im; χ) dm,

with

cT = vol(T (AF )1/T (F ))−1.

In the domain of s̃ defined by the inequalities Re(sα) > 1 for α ∈ AU and Re(sv,α) > 0
for α ∈ A , Lemmas 3.3.1, 3.4.1, and the moderate growth of Hecke L-functions in vertical
strips imply that the integrand decays rapidly, hence the validity of the Poisson formula.
For any χ ∈ U K

T we set

Z̃(s̃; χ) =
1

(2π)rank M

∫

MR

Ĥ(s̃ + im; χ) dm,

so that

Z̃(s̃) = cT

∑

χ∈U K
T

Z̃(s̃; χ).
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We first analyze individually the functions Z̃(s̃; χ), for a fixed χ. By Lemmas 3.4.1
and 3.3.1, one can write

Ĥ(s̃ + im; χ)

= ϕ(s + im; χfin)
∏

α∈AU

L(sα + imα; χα)
∏

v|∞

∑

A∈C
an,max
v (X,D)

ϕv,A(sv + im + im(χv); χv,1)
∏

α∈Av
(sv,α + im + im(χv,α))

.

Let
C

an,max
∞ (X, D) =

∏

v|∞

C
an,max
v (X, D).

For any A = (Av) ∈ C an,max
∞ (X, D), set

ĤA(s̃; χ) = ϕ(s; χfin)
∏

α∈AU

L(sα; χα)
∏

v|∞

ϕv,Av
(sv + im(χv); χv,1)

∏

α∈Av
(sv,α + im(χv,α))

so that
Ĥ(s̃; χ) =

∑

(Av)∈C
an,max
∞ (X,D)

ĤA(s̃; χ).

For each A ∈ C an,max
∞ (X, D), the function ĤA(s̃; χ) is a meromorphic function on a tube

domain, with poles given by affine linear forms whose vector parts are real and linearly
independent. Now we apply a straightforward generalization of the integration theo-
rem 3.1.14 from [11], where we only assume that the linear forms describing the poles are
linearly independent, rather than a basis of the dual vector space. The convergence is
guaranteed by the rapid decay of the functions ϕ and ϕv,Av

in vertical strips.
Let us set

PicT (U ; A) = PicT (U) ⊕
⊕

v|∞

ZAv .

There is a natural homomorphism M → PicT (U ; A) and we define Pic(U ; A) as the
quotient PicT (U ; A)/M .

Lemma 3.5.1. — The abelian group Pic(U ; A) is torsion-free.

Proof. — (1) If n(D, Dv) = m, then nD = m in PicT (U), so D = m′ in PicT (U) since
Pic(U) is torsion-free (Fulton, p. 63). So we may assume that D = 0. Then nDv = m
for all v. Pick up a maximal stratum of C an

v (X \ T ) which contains Av; necessarily, all
components outside Av belong to U . This shows that the character m is nm′ on the open
chart corresponding to the stratum, hence everywhere because no nontrivial character is
invertible on an affine space...

Note that for A = ∅, one has PicT (U ; ∅) = PicT (U) but Pic(U ; ∅) is a sublattice in
Pic(U) of index |H1(ΓF , M)|.(2)

(1)AMELIORER LA REDACTION
(2)Trouver une meilleure structure entière sur Pic(U ; A)R qui coïncide avec Pic(U) lorsque A = ∅.
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Let VA be the real vector space VA = PicT (U ; A)R, and endowed with the measure
normalized by the lattice PicT (U ; A). We consider VA as a quotient of V and let rA : V →
VA be the map which forgets the missing components. Let ΛA be the open simplicial cone
in VA consisting of all vectors s̃ = (s, (sv)) such that sα > 0 for all α ∈ AU , and sv,α > 0
for all v | ∞ and α ∈ Av. Pulling-back via rA the characteristic function of ΛA and obtain
a rational function XΛA

on VC; it is given by

XΛA
(s̃) =





∏

α∈AU

sα

∏

v|∞

∏

α∈Av

sv,α





−1

.

Set V ′ = V/M and let π : V → V ′ be the natural projection. By Proposition 3.8.3

below, the composition MR → V
rA−→ VA is injective. Let V ′

A = VA/MR and πA : VA → V ′
A

be the natural projection; one has V ′
A = Pic(U ; A)R; let us endow V ′

A with the Lebesgue
measure normalized by Pic(U ; A). There exists a unique map r′A : V ′ → V ′

A such that
πA : rA = r′A : π, so that V ′

A is a quotient of V ′. We let Λ′
A = π(ΛA) be the image of ΛA

in V ′
A; it is an open cone whose closure Λ

′

A is generated by the images of the generators
of ΛA. We pull-back to V ′ the characteristic function of the cone Λ′

A and obtain a rational
function which is given by the integral formula

XΛ′

A
(π(s̃)) =

1

(2π)rankM

∫

MR

XΛA
(s̃ + im) dm.

(See, e.g., [12], prop. 3.1.9.)
We first conclude that for each χ ∈ U K

T ,

Z̃A(s̃ + ρ̃ + im̃(χ); χ) =
1

(2π)rank M

∫

MR

ĤA(s̃ + ρ̃ + im̃(χ) + im; χ) dm

is a holomorphic function on the tube domain T((r′A)−1(Λ′
A)) in T(V ′). Moreover, there

exists an open neighborhood ΩA of the origin in V ′ such that Z̃A(s̃+ ρ̃+im̃(χ); χ) extends
to a meromorphic function on T(ΩA +(r′A)−1(Λ′

A)) whose poles are given the linear forms

on V ′ corresponding to the faces of Λ
′

A. Moreover, Z̃A decays rapidly in vertical strips
and for any positive s̃ ∈ V ,

(3.5.2) lim
t→0

tdim(ΛA)Z̃A(ts̃ + ρ̃ + im̃(χ); χ)

= XΛ′

A
(s̃)ϕ(ρ; χ)

∏

α∈AU

L∗(1; χα)
∏

v|∞

ϕv,Av
(im(χv); χv,1).

We now sum these meromorphic functions Z̃A(·; χ) over all χ ∈ U K
T . Due to the stated

decay in vertical strips, this series converges and defines a meromorphic function with
poles given by the translates of the cones Λ′

A by a discrete subgroup consisting of (the
images of) imaginary vectors im̃(χ), for χ ∈ U K

T .

Lemma 3.5.3. — Under the map χ 7→ π(m̃(χ)), the group U K
T is mapped to a discrete

subgroup of V ′
A.
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This furnishes the existence and holomorphy of Z̃ in the tube domain formed of s̃ such
that Re(s̃) > ρ̃. (This means Re(sα) > 1 if α ∈ AU , Re(sv,α) > 0 for v | ∞ and α in a
face of the analytic Clemens complex C an

v (X, D).)(3)

3.6. Restriction to a log-anticanonical line

Let us consider the particular case of the height zeta function with respect to the log-
anticanonical line bundle. We assume that this line bundle belongs to the interior of the
effective cone of X. Then there exists a λ in the interior of the effective cone of PicT (X)
such that ρ ∼ λ in Pic(X). Since the height of a rational point only depends on the
isomorphy class of the underlying line bundle, one has

Z(sρ) = Z(ρ + (s − 1)λ) = Z̃(ρ̃ + (s − 1)λ̃),

where λ̃ is the vector (λ, (λ)) ∈ V . Observe that all components of λ̃ are positive. It
follows that s 7→ Z(sρ) is holomorphic for Re(s) > 1 and has a meromorphic continuation
to the left of 1.

3.7. Poles on the boundary of the convergence domain

We now describe the poles of the function s 7→ Z(sρ) which satisfy Re(s) = 1.
We first claim that they lie in a finite union of arithmetic progressions. Indeed, ac-

cording to the summation process above, there is a pole at 1 + iτ whenever there exists
χ ∈ UT , A = (Av) a family of faces of maximal dimension of the analytic Clemens com-

plexes, such that rA(τ λ̃ + m̃(χ)) belongs a face of the cone ΛA. This means that there
exists α ∈

⋃

Av such that τ = −mv(χα)/λα. The result now follows from the fact that for
each fixed (α, v), the image of U K

T by the map χ 7→ mv(χα) is an arithmetic progression.
Fix such a character χ ∈ U K

T and τ ∈ R. According to the limit formula (3.5.2) and
the vanishing of ϕv for ramified characters stated in Lemma 3.4.1, the order of the pole
at 1 + iτ is at most equal to the sum b(τ) of the following integers:

– − rank M ;
– if τ = 0, the cardinality of AU ;
– for each v | ∞, the maximal cardinality of a face Av ∈ C an

v (X, D) such that there
exists an unramified character χv ∈ UT such that for any α ∈ Av, m(χv,α) = −τ .

We set b = b(0); observe that

b = − rank M + |AU | +
∑

v|∞

(1 + dim C
an
v (X, D))

= rank(Pic(U)) +
∑

v|∞

(1 + dim C
an
v (X, D)).(3.7.1)

We shall prove later, by computing the constant term, that the order of the pole at s = 0
is indeed equal to b.

(3)Il faudra inventer une bonne notation



INTEGRAL POINTS OF BOUNDED HEIGHT 19

Recall the assumption that the log-anticanonical divisor belongs to the interior of the
effective cone; a fortiori that T 6= U , hence AU 6= ∅. Therefore,

b >
∑

v|∞

(dim C
an
v (X, D) + 1) − rank M > b(τ).

3.8. Characters giving rise to the pole of maximal order

Let A(T )∗ be the group of all automorphic characters χ ∈ (T (AF )/T (F ))∗ such that
χα ≡ 1 for all α ∈ A .

Lemma 3.8.1. — The group A(T )∗ is finite, and canonically identifies with the Pontrya-

gin dual of the group T (AF )/T (F )
w

, quotient of T (AF ) by the closure of T (F ) for the
product topology.

Note that the product topology on T (AF ) is coarser than the adelic topology, so that

T (F )
w

is indeed a closed subgroup of T (AF ).

Proof. — Let P be the quasi-split torus dual to the permutation Galois module PicT (X);
the map M → PicT (X) induces a morphism µ : P → T of algebraic tori. By definition,
A(T )∗ is the kernel of the morphism

µ∗ : (T (AF )/T (F ))∗ → (P (AF )/P (F ))∗.

By Pontryagin duality, A(T )∗ is the dual of the cokernel of the map

P (AF )/P (F ) → T (AF )/T (F )

induced by µ. Inspection of the proof of Theorem 6 of [36] then shows this cokernel is

equal to the finite group T (AF )/T (F )
w

, hence the lemma.

The quotient T (AF )/T (F )
w

is classically denoted A(T ), it measures the obstruction to
weak approximation.

Lemma 3.8.2. — The closure T (F ) of T (F ) in X(AF ) coincides with X(AF )Br, the locus
in X(AF ) where the Brauer–Manin obstruction vanishes. In particular, it is open and
closed in X(AF ).

Proof. — Let us observe that T (AF ) is dense in X(AF ), so that T (F )
w

= T (AF )∩T (F ).

According to [31], Theorem 8.12, T (F )
w

coincides with the locus T (AF )Br in T (AF )
where the Brauer–Manin obstruction vanishes. Moreover, by Corollary 9.4 of that pa-
per, T (AF )Br = T (AF ) ∩ X(AF )Br. Since the Brauer–Manin pairing is continuous and
Br(X)/Br(F ) is finite, X(AF )Br is open and closed in X(AF ). An easy topological argu-

ment then shows that T (F ) = X(AF )Br.

A character χ ∈ U K
T contributes to a pole of order b at s = 0 if and only if the following

properties hold:

– for any α ∈ AU , the Hecke character χα is trivial;
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– for any v | ∞, there exists a face Av of maximal dimension of C an
v (X, D), such that

for any α ∈ Av, the local character χv,α is trivial.

According to the following proposition, this implies χ ∈ A(T )∗.

Proposition 3.8.3. — (4) Let A = (Av)v∈S be a family, where for each v, Av is a
maximal stratum of C an

v (X, D). Let χ ∈ (T (AF )/T (F ))∗ be any topological character
satisfying the following assumptions:

– For all α ∈ AU , the adelic character χα is trivial;
– For any v ∈ S, the restriction of the analytic character χv to the stabilizer of the

stratum DAv
in T (Fv) is trivial.

Then χ ∈ A(T )∗.

Proof. — Let us first prove that for any place v ∈ S, the analytic character χv is trivial.
Let us fix such a place. The description of the analytic Clemens of a smooth toric variety
done in [14] implies that for each v, there exists a maximal stratum Bv of C an

v (X, X \ T )
containing Av, and this stratum is reduced to a point bv ∈ X(Fv). Moreover, there exists
a maximal split torus T ′

v in TFv
such that the Zariski closure of T ′

v in XFv
contains bv.

The assumptions imply that χv,β is trivial for any β ∈ Bv. Since the corresponding
cocharacters generate the group of cocharacters of T ′

v, the analytic character χv is trivial
on T ′

v. Moreover, the torus TFv
/T ′

v is anisotropic by construction, so that T (Fv)/T
′
v(Fv) is

compact; moreover, T (Fv) is contained in the product of T ′(Fv) and the stabilizer in T (Fv)
of the stratum DAv

. It follows that χv is trivial, as claimed.
Returning to the adelic character χ, we conclude that it is trivial on T (F )

∏

v∈S T (Fv).
Let us now consider the exact sequence of Z[ΓF ]-modules

0 → X∗(TF ) → PicT (XF ) → Pic(XF ) → 0

and the induced exact sequence of algebraic tori:

0 → TNS →
∏

α∈A

Gm,Fα
→ T → 0.

Fix α ∈ A . We need to prove that the adelic character χα is trivial. If α ∈ AU , this holds
by assumption. Let us now assume that α ∈ AD; let Sα be the set of places of Fα which
extend the places of S. The character χα of Gm(AFα

) is trivial on Gm(AFα
)
∏

w∈Sα
F×

α,w.
Moreover, since Sα contains the archimedean places of Fα and χα is continuous, the
kernel of the restriction of χα to

∏

w 6∈Sα
Gm(Fα,w) contains an open subgroup. By weak

approximation in F×
α , we conclude that χα is trivial, as was to be shown.

3.9. The leading term

By the preceding analysis, with b defined as in Equation (3.7.1), one has

lim
t→1

(t − 1)bZ(tρ) =
∑

A∈C
an,max
∞ (X,D)

ΘA

(4)Déjà utilisée plus haut!
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where, for each A ∈ C an,max
∞ (X, D),

ΘA = cT

∑

χ∈A(T )∗

XΛ′

A
(π(λ̃))ϕ(ρ; χ)

∏

α∈AU

L∗(1; χα)
∏

v|∞

ϕv,Av
(im(χv); χv,1)

= cT XΛ′

A
(π(λ̃))



lim
t→1

(t − 1)b+rank M





∑

χ∈A(T )∗

ĤA(ρ̃ + (t − 1)λ̃; χ)







 .

Recall from Lemma 3.8.2 that T (AF )Br is the orthogonal of A(T )∗ in T (AF ), it is an
open subgroup of finite index in the adelic group T (AF ). We apply the Poisson summation
formula again. For any positive s̃, one has

∑

χ∈A(T )∗

ĤA(ρ̃ + s̃; χ) = |A(T )|

∫

T (AF )Br

H(x; ρ̃ + s̃)δ(x)θA(x) dx,

so that

(3.9.1) ΘA = |A(T )| cT XΛ′

A
(π(λ̃))×

×

(

lim
t→1

(t − 1)b+rank M

∫

T (AF )Br

H(x; ρ + (t − 1)λs)δ(x)θA(x) dx

)

.

3.10. Leading term and equidistribution for rational points

Assume that U = X, i.e., we consider the distribution of rational points of bounded
height in toric varieties. In this case, all analytic Clemens complexes are empty and
C an,max
∞ (X, D) is understood as the set {∅}. We have

Pic(U ; ∅) = Pic(X);

because of the chosen normalizations for measures, and the characteristic function
XΛ′

∅
is the characteristic function of the effective cone Λeff(X) in Pic(X) multiplied by

|H1(ΓF , M)|. The height zeta function has a single pole at t = 1 of multiplicity

b = |A | − rank M = rank Pic(X),

and

Θ∅ := lim(t − 1)bZ(tρ)

is given by

(3.10.1) Θ∅ = cT |A(T )| |H1(ΓF , M)|XΛeff(X)(ρ) lim
t→1

(t − 1)|A |

∫

T (AF )Br

H(x; tρ) dx.

The boundary of T (AF )Br in X(AF ) is contained in a countable union of spaces of the
form

∏

w 6=v X(Fw) × (X \ T )(Fv), hence has measure 0 for the Tamagawa measure τX .

In our paper [14], we have computed limits as in (??) (Proposition 4.4.4) and derived in
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Theorem 4.4.5 an asymptotic formula for volumes, as well as the equidistribution property
for height balls. This analysis implies that for any continuous function ϕ on X(AF ),

lim
t→1

(t − 1)|A |

∫

T (AF )Br

H(x; tρ)ϕ(x) dx =
∏

α∈A

1

ρα

∫

X(AF )

ϕ(x) dτX(x),

where τX is Peyre’s Tamagawa measure on X(AF ). (The measure dτ(X,D) of that paper

is dx/L∗(1, M).) Then, the same formula also holds for the characteristic function of
X(AF )Br since its boundary has measure 0. Therefore,

Θ∅ = cT |A(T )| |H1(ΓF , M)|XΛeff(X)(ρ) τX(X(AF )Br).

Lemma 3.10.2. — One has

cT |A(T )| |H1(ΓF , M)| = |H1(ΓF , Pic(X))|.

Proof. — The measure dτ(X, X \ T ) is exactly the Haar measure of T (AF ) used by Ono
in [27]. According to this paper,

vol(T (AF )1/T (F )) =
|H1(Γ, M)|

|X(T )|
.

Moreover, Voskresenskii has shown ([36], Theorem 6) that

|A(T )| |X(T )| = |H1(Γ, Pic(X))|.

The lemma follows.

Since this holds for an arbitrary choice of smooth adelic metrics on the involved line
bundles, we also deduce that the rational points of bounded height are equidistributed in
X(AF )Br with respect to the restriction of the measure τX . Since the Tamagawa measure
has full support on X(AF ), we see in particular that the closure of T (F ) contains X(AF )Br.
However, T (F ) is contained in T (AF )Br (product formula), hence in X(AF )Br, from which
we conclude that

T (F ) = X(AF )Br.

We summarize our results:

Theorem 3.10.3. — Let X be a smooth projective toric variety over a number field F .
Endow the canonical line bundle KX with a smooth adelic metric and let H be the corre-
sponding height function. Then

Card{x ∈ T (F ) ; H(x) 6 B} ∼ ΘB(log B)r−1, B → ∞,

with
Θ = |H1(ΓF , Pic(X))|XΛeff(X)(ρ) τX(X(AF )Br).

Moreover, rational points of height 6 B equidistribute towards the probability measure

1

τX(X(AF )Br
τX |X(AF )Br

on X(AF )Br.
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3.11. Leading term and equidistribution for integral points

We return to the case of integral points. By Lemma 3.8.2, the characteristic function
of X(AF )Br is continuous on X(AF ). Recall that

ΘA = |A(T )| cT XΛ′

A
(π(λ̃))×

×

(

lim
t→1

(t − 1)b+rank M

∫

T (AF )Br

H(x; ρ + (t − 1)λs)δ(x)θA(x) dx

)

.

Applying Equation (4.4.3) (rather, its straightforward generalization for finite adeles and
in the quasi-projective case) and Proposition 4.2.4 (for places in v) of our paper [14], we
obtain:

lim
t→1

(t − 1)b+rank M

∫

T (AF )Br

H(x; ρ + (t − 1)λs)δ(x)θA(x) dx

=

∫

U(AF,fin)
Q

DAv (Fv)

1X(AF )Brδ(x)θA(x)dτfin
U (xfin)

∏

v

dτAv
(xv)

=

∫

U(AF,fin)
Q

DAv (Fv)

1X(AF )Brδ(x)dτfin
U (xfin)

∏

v

dτAv
(xv)

since θAv
≡ 1 on DAv

(Fv). Moreover,

|A(T )|cT =
|H1(ΓF , Pic(X))|

|H1(ΓF , M)|

so that,

(3.11.1) ΘA = |H1(ΓF , Pic(X))||H1(ΓF , M)|XΛ′

A
(ρ)×

×

∫

U(AF,fin)
Q

DAv (Fv)

1X(AF )Brδ(x)dτfin
U (xfin)

∏

v

dτAv
(xv).

Recall that

(3.11.2) lim
t→1

(t − 1)bZ(tρ) =
∑

A∈C
an,max
∞ (X,D)

ΘA.

Theorem 3.11.3. — Let X be a smooth projective toric variety over a number field F .
Let D be an invariant divisor such that −(KX + D) is big and let U = X \ D. Let U be
a model of U over oF . Let us endow the canonical line bundle KX with a smooth adelic
metric; let H be the corresponding height function. Then, when B → ∞,

Card{x ∈ T (F ) ∩ U (oF ) ; H(x) 6 B} ∼ ΘB(log B)b−1
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with

Θ =
|H1(ΓF , Pic(X))|

|H1(ΓF , X)|
×

×
∑

A∈C
an,max
∞ (X,D)

XΛ′

A
(ρ)

∫

U(AF,fin)
Q

DAv (Fv)

1X(AF )Brδ(x)dτfin
U (xfin)

∏

v|∞

dτAv
(xv)

and
b = rank Pic(U) +

∑

v|∞

|Av| = rank Pic(U) +
∑

v|∞

(1 + dim C
an
v (X, D)).

Moreover, the integral points of height 6 B equidistribute towards the probability mea-
sure proportional to

∑

A∈C
an,max
∞ (X,D)

XΛ′

A
(ρ)

∫

U(AF,fin)
Q

DAv (Fv)

1X(AF )Brδ(x)dτfin
U (xfin)

∏

v|∞

dτAv
(xv)

on X(AF )Br ∩ U(AF,fin) ×
∏

v|∞ |D| (Fv). In particular,

T (F ) ∩ U (oF ) = X(AF )Br ∩





⋃

A=(Av)∈C
an,max
∞ (X,D)

U(AF,fin)) ×
∏

v|∞

DAv
(Fv)



 ,

where T (F ) ∩ U (oF ) is the closure of T (F ) ∩ U (oF ) in X(AF ).

In the theorem, note that the groups Pic(U ; A) all have rank r.
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