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Abstract: The purpése of this paper is to present a rather comprehensive classifica-
tion of incompressible quantum Hall states in the limit of large distance scales and low
frequencies. In this limit, the description of low-energy excitations above the ground-

state of an incompressible quantum Hall fluid is intimately connected to the theory‘of

integral quadratic forms on certain lattices which we call quantum Hall lattices. This
connection is understood with the help of the representation theory of algebras of gap-
less, chiral edge currents or, alternatively, from the point of view of the bulk effective
Chern-Simons theory.

Our main results concern the classification of quantum Hall lattices in terms of
certain invariants and their enumeration in low dimensions and for a limited range of
values of those invariants. Among physical consequences of our analysis we find explicit,
discrete sets of plateau-values of the Hall conductivity, as well as the quantum numbers
of quasi-particles in fluids corresponding to anyone amdng those quantum Hall lattices.
Furthermore, we are able to predict transitions between structurally different quantum
Hall fluids corresponding to the same ﬁ]lmg factor.

Our general results are illustrated by explicitly considering the following plateau-
values: ”H,-_NE'N“lza ,Uu—ls,s,s,landUH-—-.;.
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1. Introduction

The quantum Hall effect (QHE) is observed in ‘electron gases confined to a planar
region £ and subject to a strong, uniform magnetic field BO) = (Bf‘o), B(o)) transver-
sal to Q, (i.e., with B(O) # 0). Such systems of electrons (and/or holes) are realized,
experimentally, as inversion layers which are formed at the interface between a semicon-
ductor and an insulator, e.g. in a MOSFET or in a heterostructure, such as one made -
of GaAs/ Al Ga,_.As, when an electric field (gate voltage) is apphed in the dnechon
perpendicular to the interface. The quantum mechanical motion of the electrons in the
direction perpendicular to the interface is then quantized - - the electrons (or holes) are
bound to the interface by a deep potential well. At very low temperatures, the ga.s of
electrons (or holes) is therefore a very nearly two-dimensional system.

The domain  to which the electrons are confined is chosen to be a bounded subset
of the (z,y)-plane, typically a disk. When the magnetic field B© has been turned on
one tunes the total electric current in the y-direction to a value I, and then measures
the difference in the chemical potentials of the electrons (or holes) at the two edges |
of ) transversal to the z-direction, i.e., the voltage drop, V,, in the z-direction. The
Hall resistance is deﬁned as the ratio

. V: . : '
Ry = I (14)
Sirnila.rly, one can measure the longitudinal resistance
| 17
Ry = I_" (1.2)

where V denotes the voltage drop in the y-dlrectlon :

The surprizing experimental discoveries made at the beginning of the eighties by
von Klitzing et al. [1] and Tsui et al. [2] can be summarized as follows: Let n denote
the density of electrons (minus the density of holes), e the elementary electric charge,

h Planck’s constant, and c the velocity of light. One defines the filling factor v, a

dimensionless quantity, as
. : n

= WS, | (1.3)

where £ is the quantum of magnetic flux. If the electrons were free, spinless fermions

v would be the fraction of filled Landau levels. At very low temperntures T =~ 0, the

| resistances Ry and Ry are functions of v with the following remarkable propertxes

(i) The dimensionless quantity
o on = ARF, )



where RH is the Hall conductlwt , is constant on certam intervals, i.e., has pla-
teaux, and the values of o on all observed plateaux are rational numbers. The
most pronounced plateaux have integer heights (integer QHE) which can be mea-
sured with extraordinary precision (one part in 10®). They serve as new standards

for the definition of e. Most plateaux ~ha#e values o = ny/dy, where ny and

dy are relatively prime integers, and dy is odd (odd denominator rule [3]), but a
plateau .a.t oy = -:— has been observed, too [4], and, in double layer systems, one
 has observed a plateau at o = 1 [5]. /

(i) Whenever (v,0n) belongs to a plateau, Rp, very nearly vanishes. Thus when on

has a plateau value the system is free of dissipative processes, and conversely. It is

then called an “incorhp_ressible guantum Hall 1QH) fluid”.

(iii) The precision of plateau helghts (but not their mdths) is insensitive to sample
 preparation and geometry. ‘

There is convincing evidence [6],[7] that when oy is on a plateau of non-integer
height the system exhibits fractionally ebarged excitations, the fractional charges bemg
related to the denommator dy in the value, 3%, of oy. Moreover, when the: m-plane
component BII of the magentic field is va.ned keeping v fixed, one has found that
'certam plateaux disappear to reemerge, in some cases, at other values of B ; [8] This
strongly suggests that Zeeman energies, and thus electron spin, play an lmportant role

" in a QH fluid at certain values ofag, suchasoy =3, §, &, :,etc .

- For lllustratlon, a table of observed plateau values, for 0 < oy < 1, is glven in
Table 1, below. More detalls about observed plateaux and their special properties will
be discussed in Sect. 7. : :

A variety of attempts at a theoretical explanation of these truly remarkable features
of two-dimensional electron gases have been made, for both, the integer QHE and the
fractional QHE [9]. In both cases, ideas.due to Laughlin have been seminal; see ref. [10].

In this paper, we further develop a line of thought initiated in [11],[12],[13]. In
order to make this paper accessible to readers not familiar with the literature on the
FQHE, we shall recall some of the key ideas proposed in the papers quoted above. The
novel feature of this paper is that, starting from basic physical principles, it relates
the observed plateau values of a}j to the theory of integral quadratic forms on integral
lattices which the reader may have encountered in Lie group theory or number theory;
see [15],[16]. The logics of this relationship will involve a study of the algebras of chiral
edge currents in QH fluids and their representation theory. In order to give the reader a

rudimentary idea of what is involved, we shall summarize a few elementary facts about :

integral qua.dratlc forms and describe some basxc results.
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Table 1

' Observed plateau values, for 0 <op=3F <1

ny S OH
:13 1 2

1 3 2 s * 4
5 5 ' 5 5 5
7 1 2 3 % .g.
9 T 2 T LA %
11 2 ’ 3 2 ’ 3 s T"i
13’ 11 s 11 . 11 E _1& 9

s, 13 13 13 13

15 5

‘Let V be an N-dimensional, real vector space with an inner product (-,-). A basis
{€e1,---,en} of Vis said to be integral iff its Gram matrix is integral, i.e.,

K15 = (eI,eJ) €Z, foral I, J . (1.5)

Clearly Krj= . K s,80 K=(Krs)is a regula.r symmetric N X N matrix mth mteger
matrix elements We define a lattice T’ by setting

T = {q = ~‘Z“q’,e; : q’e}z, vfora.ll I}. | (1.6)

I=1

Let {€!,---,€M} be a basis of V dual to the basis {€;,---,en}, i.e., satisfying
(e',e;) =64, 1,J=1,--- ,N. Here |

Z(K—I)IJ ey.

'The basis {€!,--- ,€"} generates the dual lattice

N .
= {n:En;S’:nIEZ, for all I}. ' 1.7)

I=1
N , .
Since ey = Z K sret , with K1y € Z, we can view the lattice l‘ as a sublattice of its
dual T*, T C'T%; and T is called selfdual if T' = .
A vector ¥ € V can be identified with a column vector ¥ = (v!,--- ,9V¥)T, called
a charge vector, with v/ = (v, &’), and with a row vector v = (vi1,--- ,vn), called a
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flux vector, with vy = (v,e7), I =1,--- ,N. Note that, in the inner product ('. ) on
Vv, | ’

(q, ') 7Kg = Eq an 2 for q,q' er, (1.8)
and , , .
(n,n') = ﬁK'lgT = Z nI(K_l)IJﬂ], for n,n' €. (1.9)
‘ » 1,J . ; , ~
By Kramer’s rule, ;
) -niJ 1 > 4
(K ) = A K (1 10)

where A=det K € Z, and K = (K!7), with K” K” € Z, is the cofactor matrix.
Thus the matrix elements (K )7 are ratxonal numbers.

The set of vectors in I'* modulo vectors in l" ™ /T, is an abelian group, and 1t is
easy to see that its order is given by |

II“/I‘I- S (1.11)

'The lattice I' is called even iff all scalar products (q,q’ ) are even mtegers, ie., iff
Kir € 2Z,for all I =1,---,N. Otherwise I' is called odd.
- We call T' Euclidian iff the inner product (,) is positive-definite, ie, iff K is
positive-definite. )
Linear transformations of V mapping the la.ttlce I’ onto 1tself form a group, denoted

by GL(N,Z), which is defined by
GL(N,Z) = {s (s,-,) s” €Z, VI, J, det §=+1}. (112)

It contains the subgroup, O(T'), of all those invertible transforma.txons which preserve
the length of each lattice vector, i.e.,

o(r) = {S € GL(N,Z) : STKS = K}. o (113)
If S € O(T) then S~ € O(T'), and hence
SK"ST”= K. | (1.14)

ie, O(T) = O(I“) Two mtegra.l quadratic forms, K; and Kz, are equivalent iff there
is some matnx S € GL(N,Z) such that :

= STK,S. . (1.15)
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. The pnma.ry purpose of this paper is to derive the following basic connection be-

tween mcompressxble (Rt = 0) QH fluids and equivalence classes of mtegra.l quadratic

forms on lattices.

Basic result. An mcompressible QH fluid is cha.ractenzed by a pair of __g;g_l_
odd Euclidian lattices, T'c and I's, and two linear forms, Q. and Q4, on these lattices,
ie., vectors @z = ((Q=)1,- ,(Q,)N_) in I'; with

Qu@) = (Qua) = Q.7 VaeT,

sa.tlsfymg the followmg two constraints:
(i) Q- is a “visible” vector in I';, i.e,,

g.ci.d.’ ((Qs)}l, 'A' ¢ ’(Qs)N-) . = 1’ .

where g.c.d. denotes the greatest common divisor;
(ii) Q- is an “odd” functional on T, i.e., -

Q:(9) =(9.9).  mod2, - (1.16)

(meaning that the parity of Q,(q) is the same as the one (q, q),) for z = e, h.
The Hall conductxvity oy is given by

OH = 0. — O, (117

where
N,
oo = (@,Q.) = Qu K7 QT = 3 (QU(K)(Qu)s  (118)
) I,J ' ' .

Clearly o, and dh, and hence o, are rational numbers. Distinct’ vectors @), belonging
to the same orbit denoted [Q.], under the orthogonal group of the lattice, o(T'y),

~specify the same geometrical data. In a.ll'exa.mples that we will have to deal with orbits
have just two +@Q, or four elements. By (1.10),

= & X (@), R Q1)

_wherelnumerator, 7, =Y (Q:) If{'f, (Q:), and‘ denominator, A., are integers. Let [,
be their greatest common divisor which we call the level of I',:

I; = gcd. (72,Az)

7



Then,
K

4,

Oy =

| ged. (ng,dy) =1,
with SR

me = £ 3@, B (@),

d; = -1—- A, o (1.19)
-z = e, h. It turns out that when d, is even then I, must be even, too, in fact a multiple
of 4, and the QH fluid will exhibit Laughlin vortices of electric charge :I:e/2d,, where e
is the elementary electric charge; (see Theorem 6, Sect. 5). |

~ Let us pause to explain some features of this result. The subscripts'e and h stand
for “electrons” and “holes”, respectively. They indicate the nature of the basic charge
carriers of the fluid. Fluids for which I‘, # 0 and T', # 0 are composite fluids containing
both, electrons and holes, as basic charge ca.rﬁers. The nature of the basic charge carriers
can be inferred from the chirality. (leff. — or right) of the edge currents in the sample,
given the direction of the external magnetic field. The chirality of edge currents is
apparently expenmenta]ly measurable [46].
Given the Basic Result described above, the task arises to classify mcompresslble
QH fluids by clasmfymg pairs of odd, mtegra.l Euclidian la.ttlces together with orbits of
visible odd vectors in the dual lattices. Clea.rly, the classification problems for z = e
and h are identical, so that we may focus e.g. on the cla.ssxﬁcatlon of (T, Q) and
henceforth drop the subscript e. We define a quantity, Lmqz., by setting |

mez. = 1’{7;:'1; (M:l, ° N (qM, qM)) . ,‘ (1.20)

where the minimum is taken over all possible bases {41, -+ ,gn} of T with the property
that Q(qs) =1, for all J =1,---,N; (such bases exist!). Physically, Lmss. has the
following interpretation: If a state of the QH fluid is prepared which describes two
electrons excited above the groundstate of the system one may consider the mlmmum
of the modulus of their relative a.ngulm' '_momentum in that state. For a proper choice
of the quantum numbers of the state that minimum is at least L;,.u From the physics

of Coulomb systems it is plausible that L,,q-. satisfies an absolute upper bound eg.

—

Lmez. S 9 o @)

(in units where ki = = 1).
The dimension, N, of the lattice T is the number of mdependent U(1)-edge currents
of fixed chirality exhibited by the QH fluid. _The, discriminant, A ‘of the Gram matrix
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of a basis of I'is related to the number of distinct fractionally charged Laughlin vortices
“of the fluid. It is plausible that for samples with a positive density of mpuntles the K
possible values of N.and A are bounded by finite, positive numbers (which depend on
' the density of impurities). | '
The qua.nhtxes N, A and Lpyac. are invariants. Thus the problem is to classlfy
" equivalence classes of odd, integral, Euclidian lattices, I', and O(T")-orbits [Q] of visible
vectors () € I'* satisfying condition (1.16) with the property that the values of the
invariants N, A and Lz, are bounded. Pairs of such data (for z =e,h) then classify
incompressible QH fluids and determine the possible values of the Hall conduct:vxty oH,
via egs. (1.17) and (1.18). ‘
This classification problem is a very difficult, but finite problem in the “geometry
of natural numbers”. -
We shall see that the structure of the lattices T',, T'; and of the orbits [Q.] and [Q4]

will determine much more tha.n the value of oy, It will determine quantum numbers of |

quasi-particle excitations of the type of Laughlin vortlces, certain properties of the spin
wave functions of electrons or holes and possible transitions, as the values of components
of the magnetic field or of the electron dcnmty are varied, for a fixed value of the ﬁ]]mg »
factor. ;

AThe reader may wonder why odd, integral, Euclidian lattices appear in the analysis
of incompressible QH fluids. We shall see that such lattices describe the structure of
~ all physically realizable representations of level ¥ = 1 Kac-Moody algebras of chiral .
edge currents descnbmg the bounda.ry degrees of freedom of an incompressible QH
fluid. The existence of such algebras of chiral edge currents can be derived from the
electrodynamics of mcompresmble QH fluids by mvolnng a mechanism of gauge anoma.'ly
~ cancellation; see [11],[12]. ‘

In Sect. 2, we recall the basic facts concermng the electrodynamcs of incompressible
QH fluids and some features of their quantum mechanics; (see [12] for more details).

In Sect. 3, we show that the edge degrees of freedom of an incompressible QH fluid
which are related to the chiral boundary currents first described by Halperin [21] are de-
scribed by a quantum theory of chiral currents that exhibits an abelian gauge anomaly
‘exactly cancelled by‘a.n abelian gauge anomaly of the bulk degrees of freedom. This
mechanism of gauge anomaly cancellation leads to a concept of boundary-bulk duality
" which is made precise by descnbmg the theory of conserved bulk currents, in the Lim-
iting regime of large distance scales and low frequencies (scaling hmt), in terms of an
abelian Chern-Simons gauge theory. The analysis of the space of physical states of the
‘Chern-Simons theory, combined with natural assumptions on the spectrum of integrally
charged quasi-particles of an incompressible QH ﬂi:id' and their statistics, then leads to

9



- a proof of the “Ba.slc Result” described above.

In Sect. 4, we present additional details concerning boundary—bulk duality and
rederive the “Basic Result” by studying the algebras of chiral edge currents describing
the boundary degrees of freedom of an incompressible QH fluid and their representation
theory. We 1dent1.fy the physical states of the Chern-Simons theory descnbmg the bulk
currents with so-ca.lled conformal blocks of the algebras of chiral edge curreats and
derive some consequences for QH fluids on surfaces mthout bounda.ry (of interest in the
analysis of numerical experiments).

In Sect. 5, we begin with the main task set for tlus paper, the classlﬁcatlon of
integral, odd Euclidian lattices I' and visible vectors Q er describing the physics
in the scaling limit of incompressible QH fluids. A pair (T, Q) of an integral, odd
Euclidian lattice T' and a visible vector Q € I is called a QH lattice. We discuss
some basic invariants of QH lattxces and theu- physxcal meaning, arithmetic congruences
between these invariants and mphcatlons for the physma.l properties of mcompresslble
QH fluids. Our analysis is organized in twelve short paragraphs, and the main results are
summarized in seven theorems. Taking the “Basic Result” described above for granted,
 the material in Sects. 5 and 6 can be read without bemg familiar with Sects. 2, 3 and 4.
We say this to encourage theoreticians and experimentalists, who are not familiar with
current algebra and Chern-Simons gauge theory to proceed directly to Sect. 5 where
they will find results which they may or should find relevant. y |

In Sect. 6, we present a constructive approach to finding QH lattices and deriving
the value of the Hall conductivity oy and the spectrum of quasi-particles (Laughlin V
- vortices) and their quantum vnumbers. Our methods are fairly effective in constructing
the QH lattices corresponding to “elementary” QH fluids with oz < 2 which generalize
the QH fluids with oy = 1,31,%,---. For-a large class of such fluids, we present an
ADE-O classification, where A, D and E refer to the Lie algebras su(n), s0(2n + 4),
n=2,3,---, E¢ and Eq, respectively, and O stands for one- or two—dunensxonal integral,
odd Euclidian lattices which have been classified by Gauss.

These results enable us to associate QH lattices wlth all observed plateau values of
on and predict properties of the corresponding QH fluids, including phase transitions. -

Sect. 7 summarizes our results on the construction of QH lattices in the form of

explicit tables.
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2. The electrodxnainics of incon’m ressible QH fluids

We consider a two-d;menslona.l gas of electrons (or holes) in a umform, externa.l
magnetic field 50 = (B(o) B(o)) with B(o) the component of 5(%) perpendicular to
the plane of the system, non-zero. In linear response theory, the connection between the

,electnc ﬁeld E= (Ez, E,), in the plane of the. system and the electric current density
zc is glven by the Ohm-Hall law

E: pfc, o (21)
where , S E
. Pzz. — PH
= : 2
g ‘ (PH Pﬂ) | (2.2)

is the resistivity tensor. In two dJmensmns,
pu = Ry,

and, for a rectangulat sample with edges of length l; and 1, psz = RL(I,/I,) and
Pyy = Ri(lz/ lv) In particular,

in which case the conductivity tensor, p“, has the form

- 0 : 1 pe '
= (*O'H "’6’), with on = py' = Ry, (24)

" in units where 5,:— =1.

When Ry, = 0 eq. (2.1) thus takes the form

it = ggeME (Hal law), (2.5)

“where zj is the k** component of the vector ' = (2;,2y) = (21, 22), a.nd e=(e*) =
'(—1 o) ’ : '
The conservation of electric charge is expressed, as usual, in the form of the conti-
‘nuity equation for charge- and current density, i.e., ’
8 5 - | .
b—;p¢+V-zc,=.0, - (2.6)
where p, is the electric charge density, and i, = (iZ,i¥), (with i* = 0, as there is no
current flowing in the direction perpendicular to the plane of the system).
Faraday’s induction law for E= (Ez, Ey) and B**, the total z-component of the
magnetic field, is the equation ‘ S
1 o BY*
c Ot

+¥AaBE=0 = @n
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Assuming tempora.nly that the spins of the electrons in the sample are frozen in the
dxrect:on parallel or antiparallel to that of B(®), we may 1gnore electron spin and treat
' the electrons as spinless fermions whose classical and quantum dynamics is insensitive to
Bjand E; . In this situation, egs. (2.5) through (2. 7) summarize the main features of the
electrodynamics of QH fluids in the limit of large distance scales and small frequenmes

Combining egs. (2. 5) through (2.7), one easily finds that

a laBtot
1P T BT ThHt -

(2.8)

We define i = ¢(p.—en) as c times the difference between the charge density p. and the
uniform background density en of the system. By B we denote the difference between
the actual z-component of the magnetic field, B'"*, and the z-component, BS_), of the
‘uniform background magnetic field, 5(®). Then eq. (2:8) can be mtegrated in t to yield

'ig = oy B. | | (2 9)

Faraday’s induction law implies that the electromagnetlc field (E,B) can be derived
" from a vector potential A = (4o, A), 4 = (4., 4,):

L 104
E--VA0+——0;T

B= VAA o ‘ (2.10).

The vector potential A is determined by (E, B) up to gauge transformations Ay —
Ao+ 3 % A — A + Vyx, where x is a scalar function. Setting i, = (tc,tc), we can
summarize the Hall law (2.5) and eq. (2.9) in the equations

i* = og ! By A, | - (211)

or, using differential forms, ~
i = *on dA, ' o (2.12)
where * denotes the Hodge *operation and d denotes exterior dﬁerentxatlon Settmg
J = xig, i.e., Juy = £ 12, (2.12), becomes

J = —ogdA. (2.13)

This equation can be derived from the action functional

4r

_ O9H Y
_.-4—;-/5" A&A;—--—-/A t"d’c+BT ’ (2.14)

s(4) = & /AAdA - —1- /AAJ + B.T.

13



by setting the variation of S(A) with respect to A to zero, [14]. In (2. 14), the integrations
extend over the three-dimensional space-time, the cylinder A = Q x R, of the system,
and B.T. stands for “bounda.ry terms”, i.e., terms only depending on the vector potential
A restricted to the bounda.ty, 80 x R, of the space-time of the system. ‘

Treating electrons as non-interacting, classical particles of charge —e, one easily
finds (by equating electrostatic- and Lorentz force) that-

v. . \’(2[15)

This equntion is not far from what is actually observed in very pure sampies, where the
widths of the plateaux of oy are tiny, as long as v is not too big. The important point |
is that when R is measured to vanish in some interval, I, of ﬁllmg factors then uy

remains constant over that mterval with a value that is some ratlonal multiple of $ -,;-

The classical law is followed only in so far, as oy = 5 &, forall v in I, where 71 is
a rational number in the interval I. Steps towards a theoretlcal understanding of this
remarkable quantiZation of the values of oy under the condition that R, vanishes

have been descnbed in [9]-[13], and refs. given there. Some of these steps will be recalled -

briefly, below. But the main ob_]ectxve of this paper is to provide an understanding of
which rational multiples of correspond to plateau va.lues of oy, and, given a plateau
- value of oy, to predJct the spectrum of quam-pa.rtxcles found in the system and to -
determine their electric charge, their statlstlcs and their spin. In trying to reach this
objective we shall encounter the theory of integral quadratic forms on lattices [15],[16].
But before we can understand how this happens, we must combine the electrodynamics
of QH systems, as summarized in egs. (2.11) and (2.14), with quantum mechanics. In
the remainder of this paper we shall employ units suchthate=fh =1 (unless mentioned
otherwise). ' , : '

" There are different apptoaches towards qua.ntlzmg a two-dimensional system of
electrons coupled to an external vector potential A = (Ao,A). One is to work with
Feynman path integrals. In this approach one introduces a Grassmann algebra with
generators ¥.(2),¥.(2)*, where s = +1 denotes the z-component of the electron spin
and z = (Z,t) is a space-time point belonging to A = 2 x R. The action functional,
Sa(¥*,%; A), is taken to be the usua.l action functional of non-relatlvmtlc many-body
theory where the fields ¢ and ¥* are coupled to A in the way familiar from the Pauli
~ equation. All this is explained in much detail e.g. in [12]; see also [17]. '

Let A(®) denote the vector potential of the uniform background electromagnetic field
E©® = 0, B(o) and let A be the vector potential of a small perturbing electromagnetic

I
field E,B, as in eq. (2.10). [We set the components E, and B" to zero and work in a
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three-dimensional space-t1me, as before, see egs. (2.5) through (2. 14)1 KE, and BII
do not vanish one must interpret them as components of an SU(2) gauge field coupling
‘to the spin current, as explained in [18]. We shall not repeat these matters here.] A
quantity of considerable interest is the parti\tion function

Za(A) = Na(A+ A®)/Ny(A©®), B - (2.16)

where L | .

| M) = [DrDvem S sid) @)

As long as space ( is bounded and the density of electrons in {1 is finite, the path integral

(2.17) is just a slick notation for an object that has a perfectly precise mathematical

status, for a large class of physically realistic model systems including those considered

in this paper, (assuming that A is e.g. uniformly bounded and smooth). ’
The important facts about the pa.rtltxon function Z,(A) are the following ones:

(1) As long as z; # z;, for i # Js (non-comcxdmg a.rguments) :

6‘1&
A (21) - bA, (e ™ 2a4)
= (T [*(21) i (2a)] ) (218)

(27r "

‘where the right side denotes the connected, time-ordered Green function of n quantum
- mechanical current d‘ens‘_ity operators 1#1(z;),: - ,i**(2,) ina two-dimensional system
of electrons coupled to an external vector potential A + A®). [Thus In Z,(A4) is the
generating functional of the connected current Green functions.] In particuia.r, déﬁning
~ the electric current density i#(z) at a space-time point z (as measured expenmentally)
as the expectation value of the quantum mechanical current denslty z“(z), we have
that ‘

#(z) = (i“(z)),.' = 2mi 376”(—25 inZa(4). (2.19)
. The functional :
S (A) = iln Za(4) - (2.20)

is customarily called the effective action of the system. Eq. (2.19) then reads:

#(z) = 2n FZ%(?) Ses5(A). (2.21)

‘The second important fact about the partition function is its gauge invariance.

1§pin-orbit interactions are neglected; but see [18].
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@)
Za(A+dx) = Za(A), or -
S(A+dx) = ‘”(A), | (2:22)

for an arbitrary function x on A. Eq. (2 22) summarizes the Ward identities for a gas of
electrons. It expresses the fact that all physical qua.ntltles of such a system are invariant
under gauge transformationsof A: A — A +dx (i.e.,, Ao — Ao +1 a X, Ao A+ 6x)
In other words, a system of nonrealistic charged particles in a bounded region of space
and at a finite denslty does not exhibit any gauge anomalies.

Next, we compare eq. (2. 21) to eq. (2 11) ~ the Hall law - to find that eq. (2.21)
implies (2. 11) if and only if

e”(A) = %% A""”A Au Oy Ax + W(Aly,)

= ."_’i/_A AdA + W(A,,), | | @)

where W(4 |, A) stands for the boundary terms, B.T., in eq. (2.14) wh:ch will be.
discussed in the next section.

'One should ask whether the form of Si//(4) given in (2.23) can be derived
from the microscopic quantum mechanical dynamical laws of a two-dimensional electron
gas, under the condition that the longitudinal resistance Ry vanishes, and what an
appropriate quantum mechanical reformulatlon of the equation Rz = 0is. This question
has been studied in [18], where it has been proposed that the vanishing of Ry be
interpreted as certain cluster decay properties of the conneéted current Green functions.
Then one is able to show that the term X /. [ AAdA, the so called Chern-Simons term, .
is the leading contribution to the effective action S5/ ! (A) in the regime of large distance
scales and low frequences. Moreover, it is the‘oﬁly contribution to the bulk effective
action which violates gauge invariance, in the form of eq. (2.22). This violation of gauge

invariance essentially determines the bounda.ry term W(A | s A) which must cancel it
exactly.

Thus, the hard analytical problem arising in the theory of the quantum Hall eﬂ'ect
is to prove a certain kind of cluster decay properties of the connected current Green
funétions, for certain values of the filling factor ». Although this problem has been
studied analytically and numerically in much detail (see [19],[20] and refs. given thefe),
it has not found a mathemaﬁca]ly rigorous solution, so far — not even for systems where
the interactions between electrons can be 1gnored but with disorder, which exhibit an

integer QHE.
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In this paper, we study an easier and yet quite non-trivial problem: Assuming that
_the analytical problem just described can be solved, i.e., that it is justified to use the
_effective action given in (2.23) in a description of the system in the limit of large distance
~ scales and low frequencies —in ‘accordance with the phenomenology of the QH eﬁ'ect
eqs. (2.13),(2.14) — what can we say about the possible values of the coefficient oy; can
we understand why it is quantized? To this question we find some surpriziné answers
which, incidentally, also shed some light on the analytical problem described above.

Our analysis is analogous to a group-theoretical analysis of symmetries of a quan-
tum mechanical system, leaving the question open how one can solve its Schrodmger
~ equation — except that in our problem we encounter Kac-Moody algebras of chiral cur-
rents, rather than ordinary groups and finite-dimensional Lie algebras. It is explained in
the next section how Kac-Moody algebras arise in the study of qua.ntum Ha.]l systems.
 For details see [21],[11],[12],[13]. |
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3. Anomaly cancellation and U(lhcurrent algébra‘

In this section, we shall ﬁrst determine the form of the a]l-lmportant boundary term |
W(A |sr) in the effective actlon S:71(A) given in eq. (2.23). It turns out that this
form is essentlally determined by the gauge invariance (2.22) of the effective action. Let

x(z) be a gauge function not vanishing at the: bounda.ry OA = 80 x R of the spa.ce-tune
region to which the electron gas is conﬁned Then -

S;ff(A+dx) L /(A+djc) AdA + W ((A+dx)|,,)

e
-+ W((A+4X) IOA) W (4 ]5)

= S‘ff(A) I8 dxAA - (31)

where we have used that d? = 0, along with Stokes’rt.;heorem. Thus
. e &H y : ‘
W((A+dx) loa) = WA |py) = = /a x4 (62

This equation determines the general form of W, up to gauge-invariant terms. To see
this, let us assume, for simplicity, that the system is confined to a region Q of the (z,y)-
plane with the t opologx‘ of a disk. Let L denote the lenéth of the circumference of 6Q.
It is convenient to parametnze 60 by an angle ¥ € [0,27) and to introduce ].lght-oone
coordmates u3 on OA:

Ut = 3 (vt + 5—;1’), o (3.3)

where v is some velocity. Interpreting thekgaug'e‘ﬁeld A |sr as a one-form a, we have
that | '
a(u) = aj(u)duy + a—(u)du_. o (3.4)

In light-cone coordinates the right side of (3.2) can be written as
2 [ [ar@o-x(w) - a-@Bix(w)] Fu. (3.5)
With this, the general solution of eq. (3.2) is found to be
W(a) = o Wi(a) — ox Wr(a) + G(a) (3.6)
where G(a) is a gauge-invariant functional of a,
1 PN 1
Win(@) = 3= [ |as@a-()-205(0) ZF azlw)| v, (37)
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and |
OH = Oc — Oj. (3.8)

In (3.7), 8+ = 0/Oux and O = 26,8_ is the two-dxmenslonal d’Alembertxan in light-
cone coordinates. For further details see e.g. [18]. , |

~ The problem we are now confronted with is to find out what egs. (3 6) through'
(3.8) tell us about the dynamics of boundary charge density waves in two-dimensional
.' systemskof electrons and holes in a transversal magnétic field. The answer is known from
current algebra: Wy, /r(@) is the generating functional of the connected Green functions
of left moving / right moving chiral U(1)-currents localized on 8A. These currents
describe charged boundary density waves of the two-dimensional electron and hole gas.
The study of charged excitations in the two-dimensional electron gas is closely related to
the study of the representation theory of left- and right moving U(1)-current algebras.
We have prejudices from physics concerning the charged low-energy excitations in an
incompressible QH fluid, and these pi'ejudiceé select a class of representations of the
" U(1)-current algebras which can be realized in such a fluid. Knowledge of this class of
representations will imply knowledge of the possible values of oy.

The theory of chiral current algebras is perfectly symmetric under exchanging left
movers (L) with right movers (R). We shall focus on left movers, drop the subscript L
and set u := u4 and o := o.. Let J(u) be a left moving current on BA. By (3.6) and
(3.7), we have that the connected two-point current Green function in the groundstate
(vacuum), i.e., the second derivative of W(a) with respect to a_, is given by | |

4 o7 (@) = 22(1. u +k7L.—2-)— : (3.9)

kez

All other connected Green functions vanish (at @ = - 0). We conclude that the commu-
tator between two currentus given by

[J(u),J(u')] = io6(u —u) (3.10)

From these facts it follows that J is a derivative of a massless, chiral free field. The
most general solution has the form | |

J(u) = (Q,0¢(x)) = Q- 8¢(u) Z Q184 (u), | (3.11)

where

Q = (Q1, ,Qn) | (3.12)

19



N $(u) = ($'@),- " w)" | (3.13)
_is‘a.n N -tuple .of massless, chira.l free ﬁelds,‘for some N =1,2,3,:-- . The commutation
relations of the fields & (u), =1,---,N, haire the form '

[a¢’(u), 88°()] = §(C) 8u— ), (319

for some positive-definite matrix C = (Crs). This matrix defines a scalar product (-,-)
on the space R¥ of vectors ¢ and Q. Combining egs. (3.10), (3 11) and (3.14), we find
-the relation

o = (Q» Q) = C“‘Q”' = Y QM) Qs  (315)
1,7=1 ‘ o ,
By choosmg appropna.te coordmates in ﬁeld space RY we can always transform C
into the ndentlty matnx ,, ‘
The currents

J’(uj = a¢’(u), I=1,---,N, - (3.16)

genera.te a Kac-Moody algebra isomorphic to an N-fold tensor product of coupled chiral
u(l) current algebras. '

In a QH fluid with neghglble electron-electron mteractlons, every filled Landau level
gives rise to a separate chiral u(l)—current algebra at level 1 describing the edge cur-
rents first studied by Halperin [21]; see also [18]. The system is free of dissipative -
processes, with Ry = 0, precisely when the density of electrons is chosen such that
the extended states of an integer number, N, of Landau levels are completely filled
with electrons, in the groundstate of the system. In that case there are N independent
u(l) current algebras of edge currents. Choosing the sign of B( ) appropriately, these
u(l) current algebras are generated by left-moving currents, for Landau levels filled with
electrons, and righf-moving currents, for Landau levels filled with holes.

* For N Landau levels filled with electrons, the vector @ is given by Q a1,---,1),
the total electric edge current opera.tor, J, is given by

J(u) = E 8¢'(u), )
| I=1 N
'a.nd the matrix C is given by
' Cry = 614,
so that 4 o
o =N. (3.18)
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Formulas (3.9) through (3.16) generalize what one knows from the integral qua.ﬁtutn
Hall effect [21] to general QH fluids of interacting electrons [18]. |
The theory of chiral U(1)-currents describéd,'by formulas (3.9) - (3.16) has a La-
grangian description in terms of functional integrals. In this form, they can be coupled to
external U(1)-vector potentials. The reéulting theory exhibits a gauge anomaly given in
terms of the actions Wi, and Wi of eq. (3.7). Since the theories of left- and right-movers
are isomorphic, we shall focus on left-movers and omit the corresponding subscripts.
Leta= (a1, ,an) be an N-tuple of U(l)-gauge fields on the “cylinder” 8A =
80 x R. We consider an action functional

IaA(J, a) = ;11;; /8 . 8_¢T(u)-C 01(u) P u

1 . yy 2 _ -1 |
~ on ./a . [a-(u) - 0+(u) — a4 (u)(8-¢ — C*aTl)(u)] & u (3.19)

b N a_(u): C‘l_a_z‘z(u) du, |

where u := (u4,u-) and C = (CyJ) is a positive-definite N x N matrix. Since the
non-chiral fields ¢!,--- ,¢" are coupled to external U(1)-gauge fields a3, - - »@N, the
constraint that says that the physical degrees of freedom are described by left-moving
components cannot be formulated by '

8- & (u) = 0, R (3.20)

(ie., & (u) independent of u_), since (3.20) is not ga._uge-invariaht. The correct gauge-

invariant generalization of (3.20) is the equation

| 8-(u) — C7'aT(u) = 0. (321)
 For, under U(1)-gauge transformatim, the fields ¢ transform like angles, |
Fu) > XP(u) = Bw) + C %7, (3.22)

while | |
a(u) = Xa(v) = a(u) + dx(u), - (3.23)

as usual, where x = (x1,---,xn) is an N-tuple of scalar functions. Thus (3.21) is
gauge-invariant. - | '
Now, one checks by quadratic completion that

N1 / D$ eiha(".:) G(O.Jj— C_ng)

= e [ [a+) -0 aT0) - 22— 07 B aT]u),

(3.24)
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where A is a (divergent) normalization constant. The r.h.s. of (3.24) exhibits a U(1)-
gauge anomaly cancelled by the one of a Chern-Simons action on A which depends on
an N-tuple A of U(1)-vector potentials coupled through the matrix C~1.

Next w;set o S
A a(u) = Qa(u),, with a := A|,,, (3.25)

where A is an external electroma.gnetlc vector potentla.l and Q is an N-tuple of electric
charges Fnrthermore, we set

| o = Q-C1Q7. ...(3.26)

-

Comparing egs. (3.22) and (3.7), we find that
- lea($, Q a) = '
N / DFe = §(0-§—CQTa.)
' = exp toWr(a). ' (3.27)
- The r.h.s. of (3.27) exhibits a U(1)-anomaly which is cancelled by the U(1)-anomaly of
. o ' |
exp 1 e /A ANdA. | _ (3.28)

Except for relative minus signs, the formulas for right movers (L — R) are identical.
For a suitable choice of the direction of the uniform external magnetic field 5(°), left-
moving edge currents are observed if the basic charge carriers are electrons, and right-
* moving ones are observed if the charge carriers are holes. Reversmg the direction of
B(® exchanges left with right.

These findings are quite 1mportant We know from [18] that the Chern-Simons

- term
/ AAdA

~ is the only anomalous bulk term in the eﬂ'ectlve action Sy ef1 (A) of an mcompresslble
QH fluid. Appa.rently, we learn from this that the degrees of freedom located near the
boundary of such a fluid are described by N left-moving U(1)-currents with electric
charges (Qe1, - -Q,N) and coupled through a positive-definite matrix C,, and by M
right-moving U(1)-currents with electric charges (@41, ,Qan) and coupled through
a posltlve-deﬁmte matrix C}, for certa.m, as yet undetermined posmve integers N and
M. By (3.26) - (3.28), we have that

oH =¢,—0'1.,;‘with»

O = | ge Qe y Oh = Qh . C;]\'_Q'}:- (3.29)
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The dynatm't:s of the left-moving currents is described by a (14+1)- dimensional onoma-

 lous Lagrangian field theory with action IaA(¢, a) given by (3 19), (a similar field theory

(L — R) describes the right movers) ‘
So far, the only constraints on the still undetermined quantities N, M, Q,, Qk, C.

and C), are the ones described in eq. (3.29). From the physics of mcompressrble QH

fluids we shall derive further constraints on these quantities. Agam, the arguments for

left- and nght-overs are similar, and we focus our attention on left-movers and drop

subscnpts

| The gauge-invariant U(1)-current operators

: Jé(u) = aﬂ:¢1(u’) - (C-lﬁ:{)l(‘“), I=1,---,N, » ‘ (3’30)
pern:xit us to define N U(1)-charge operators: Let s = 71-(u+ —u_), t= (u+ +
u_); see (3.3). ‘A gauge-invariant expression for the U(1)- charge operators Q

(@,--- QN)T at time % is given by
= f j;,(a,ft)da = —-l--f (f... - f+)(s,t)d3. - (3.31)

In a Feynman path mtegra.l like the one appearing in eq. (3.24), the ﬁelds ¢(a, t)

be chosen to be periodic in the space variable s with period L. We wish to consider
a Feynman integral describing a transition of the boundary system from a state with
U(1)-charges §; at time #; to a state with U(1)-charges ; at time ¢;. By eq. (3.31), and
since the integration variables J; are periodic in s, such a transition occurs if the external '
U(1)-gauge fields a are chosen as follows: a= a.,.du"’ + a- du~ = aodt + alda and
the spatial components, ai, of a are constrmned to have the cu'cu.latxons

f ai(a,t;)ds = —-gf-C. - (8.32)

" If the boundary systern consrsts of left-movers only then we must 1mpose the chu'al

constraint

o ”(u) - c-laT(u) = | (3.33)

which, by periodicity of ¢ in s, implies that a- can be gauged away Then we have
that '

1 1
a = —\/—gq,—. ag = _2‘g+:
with ,
f ai(s,t)ds = V2E-C, (3.34)
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for I = 1,2. From (3.34), (3.33), (3.30) and (3.31) we finally obtain
S = @, forl =12  (3.35)

Let us suppose that the gauge fields d are the restrictions of N U(i)-gauge fields
= (Aj,-++ ,AN) defined on the bulk space-tlme A = Q xR of the QH fluid to the
boundary 8A. Then, by Stokes thoorem, e :

falda /dA n,’ | - (3.36)
am ™~ i

~ where the I'* component, ny, of n is the total flux of the “magnetic field” By = dAr
through space 2, for I =1,--- ,N. By (3.32), n and the U(1)-charges ¢ are related by
the equation ' f

§=C1aT - | (3.37) |

We shall call the vectors n “fux vectors”, while the ¢’s are called “charge vectors”.
The chiral theory described by the action (3.19) and the Feynman integral (3.24)

cau be equivalently described by a topological Chern-Simons theory on a space-time
A = Q x R. This fact is called oundm bulk duality [18] To understand boundary-
bulk duality, we introduce N U(l) -gauge fields

= (1,1, BT (3.38)
a.nd N external vector potentials A = (A1 2 o 2 AN) and define the Chern;Simons action

SA(bA)—-—/ AC’db+-——/dAAb+BT ' (3.39)

where B.T. stands for (gauge—dependent) boundary terms. We note that Sa(?, A) is
quadratic in b. It is therefore not hard to show — modulo some subtle ties related to '
. gauge ﬁ.xmg [26] - that

—1iSA(d,A
/e‘A( ) bl

where A is a normalization factor, and
WiGia) = o [ [as@)-CaZw) ~ 2a-()- 0 T aT(w)] dhu, (341
- 4 oA — — — . D -

and where “g.f.” indicates some gauge ﬁxingy'for the degrees of freedom located at 8A,
[26],[27]. Formally, eq. (3.40) follows from (3.39) by quadratic completion. Thus the
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- partition function of an incoinpressible QH fluid in the Limit of large distance scales
- and low frequenc:es is obtained form a Chern-Simons theory for a certain number of
abelian gauge fields b coupled to external vector potentials A QA where A is an

electromagnetic vector potential. The Hall conductivity, o, is given by o=Q -C1QT.
The gauge fields b can be interpreted as the vector potentials of conserved currents

i = =db, |  (3.42)
with - ,
i=Q- 1 S (3. 43)

the total electric current denslty operator, in a description of the QH ﬂmd valid, asymp-
totically, on large distance scales and at low frequencies. This has been discussed in
detail in [27]. '

The U(1)- charge operators assocxated w1th a current dmtnbut:on iat time ¢ are
given by ‘

3, = / (2, 1) d’z,
Q
and the electric charge operator Q; is given by

= Qét

The qua.ntum-mechamcal equations of motion obta.med by varymg the Chern-Sunons \
action (3.39) with respect to b are given by

db = C’“dé", or i=C"xFT, (3.44)
where E = dé. Integrating these equations over all of space {2, we obtain that
G: = ¢ nf, (3.45)

* where ,
- / dA(Z,1) (3.46)
— Q — )

is ‘the flux vector at time t.
Let us consider a state of the system with U(1)-charges given by.a charge vector g,
- corresponding to a vector of eigenvalues of Q. Then (3.45) implies that

§=C7naT. | (3.47)
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This equation coincides with (3.37), as oﬁe would expect. The electric charge of the
state, (assuming that the electric charge of the groundstate is set to zero) is then given
by ‘ ’ ‘ -
Qel. = Q q= Q C'n ~ (8.48)
In pa.rtlcula.r if A QA where A is an external electromagnetic vector potential with
magnetxc flux m = fn dA, then

gt = om, o =Q - CQ. o (3.49)

Let us consider a state of an incompressible QH fluid describing k electrons and I
holes excited from the groundstate by coupling the QH fluid to suitable external vector
potentm.ls A Suppose this state is descnbed by a charge vector §. Then we clearly have
thet

gel. Qq -k

© We set A(°) = QA(°) where A is a fixed background electromagnetlc vector potential;

see egs. (2 16), (2.17).. Then QA“‘ A(°) + A and the vector potentials A form an
additive group . Hence the flux vectors n and by eq. (3.47), the charge vectors qof
physical states of an mcompressxble QH ﬂuld form an additive group. We denote the
group of charge vectors of physical states by I'pay,. . This group contains a lattice,
denoted by T, of q—vectors with in __teg_ er electric cha.rge ie.,

r = {q € Ppkys : Qel. = Q . q € Z}. | - (3.50)
Now, the physics of incompressible QH fluids motivates us to require the followirlg -
~ Basic Hypothesis : o : :
(A1) An arbitrary localized cluster of quasi-particle excitations of an incompressible
QH fluid of electric charge ¢ € Z can be mterpreted as a physlcal state of the system
composed of I + g holes and [ electrons, for some = 0,1,2,-

(A2). Electrons and holes satisfy Ferxm statistics. Thus, a cluster of quasl-pa.rtxcles
of electric charge g € Z is . '
a fermion if g is an odd integer; :
' SRR . (3.51)
‘abosonif ¢ isan even mteger
Wave functions of physical states of an mcompressxble QH fluid are ggl ue in the

positions of electrons or holes.
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Fig. 1

Let us explore the consequences of hypotheses (A1), (A2). For this purpose, we
consider histories of states of an incompressible QH fluid describing an excitation with
charge vector §; localized in a disk D; and an excitation with charge vector ¢, localized
in a disk D, disjoint from D;. We supﬁose that D; and D, sweep out spacetime tubes
Ty and T}, as depicted in Fig. 1, {0), (1) and (2),-above. According to egs. (3.44) and
(3.47), such histories are described by coupling the gauge fields b to external vector
potentials A("‘) with

suppd A™ ¢ T yT{™,
supp d A™ (to,") € D{™ U D™,
with

(dﬁ(m))i,‘ =0, unlessi=1,7=2, ori=2,j=1, (3.52)

/D - dAMT (24) = C Guya=1,2, (3.53)

—

27



for m = 0,1, 2, as follows from egs. (3.46), (3.47). We let
—iSA (B, A(™))

be given by (3.40), with _Af"ﬂ as described above, for m = 0,1,2. We consider the
two ratios I(1)/I(®) and I(?)/I(%), In these ratios we can pass to the limit 2  R?,
‘A /' R3. Using the explicit expresslon on the r. h 8. of eq. (3.40), we can then calculate
the limiting ratios explicitly. For ¢; = qg = ¢, we find that '

o f. (3.54)

I/19 = exp i(ps +92) exp 7i (27 -C7), (358)

- where ¢, is a phase only depending on A IT(...), fore=1,2;, m= 0 1. For arbltrary q1
and g2, we find that

I®/IO) = exp ;(¢;+'¢z‘-) exp 2ri (@1 T-C @), (3.56) -

" where 9, is a phase only depending on A |1.(;.); for e = 1,2; m = 0,2. [For suitable

choices of A |T(..), e=12,m=0,1,2, the phases 1, 2,%: and ¥, actually vanish.]
The Aha.ronov-Bohm hases, exp 7i(g7- .C i) and exp 21rl(q1 -C @2), describe the

statistics of the quasi-particle exmtatlons. Thus, if §} = §2 = ¢, with go1. = Q - §= %1,

the two excitations are holes or electrons and thus satisfy Fermi statistics. _‘Hence, by

eq. (3.55), exp in(g- Ci) = —1, i.e., §- C§is an odd integer. More generally, by ,

hypothesis (A2), two excitations with charge vectors g1 = g2 = ¢ € I'pay,. are identical

‘bosons if g, = Q g is an even mteger and identical fermions if g.;, = Q g is an odd
integer. Thus, usmg eq. (3.55), we conclude that if g1, = Q dis an mteger then -Cq
is an integer, and the parity of Q - § equals the parity of ¢T - C §, i.e.,

-—

Among the quasi-particles appearing.in an incompressi’bie QH fluid there are single
electron and hole. Thus ‘

Q-q1 = 1, for some vector q1 €T. S (3.58)

We conclude that T is an integral lattice contained in RY, the matrix C determines an |

integral quadratic form, G, ), on T, and Q is a vector with components Q in the dual,
I'*, of T. By (3.40), (3.19) and (3.14), C is positive-definite and hence I' is a Euclidian
lattice. By (3.58) and (3.57), I' contains a vector ¢, such that

Q@ =1 andhence ¢ -C¢q isodd. ~ (3.59)

. 28
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e,

that -

vThus T is an odd, integral Euclidian lattice, and Q is a visible vector in the dual lattice

I'*, (i.e., the open line segment from the ongm of I“ to Q does not contain any pomts
of I“) |
‘ gcd. (@1, ,Qn) = 1.

Next, let us consider a state describing a cluster of quasi-paiticles with charge
vector § € I' localized in a disk D; and a cluster of quasi-particles with an arbitrary
charge vector a2 € I'pry,. localized in a disk D,. If the clustexf with .cha.rg'e vector tﬁ
makes a round trip round the cluster with charge vector g, as depicted in Fig. 1, (2),

~ then the state is multlphed by an Aharonov-Bohm phase factor

, exp 2xi gy -C &, ‘
see (3 56). Since gy € T, Q q1 € Z hence the cluster of quasi-particles with charge
vector ¢ corresponds to electrons and holes. Then hypothesxs (A2) implies that

exp21rtq1 Cqg =

F-CoeZ, forall €T, @ € Tpiye. (3.60)
It follows that | o

Tpaye, C I*. o (3e1)
By (3.49), and since the quadratic form (-, ) is integral on T’ and Q eI, it follows ‘

o =(Q,Q) =Q-c? QT is a rational number. - (3.62)

If an incompressible QH fluid is composed of two such ﬂulds with the property that |
the basic charge carriers of one fluid are electrons while the basic charge carriers of the
other one are holes then the entire story told, so far, must be repeated with (e, L, —,--)
replaced by (h,R,+,--). We then conclude that such a fluid is characterized, asymp-
totically on large distance scales and at low frequencies, by two integral, odd Euclidian
lattices, I'. and T, mtegra.l quadratic forms, (-,:). on I and (:,-)s on T, and vmble
vectors, Q. € Tt and Q; € I‘,,, such that

aH = 0 — O, : " | | (363)
with
= (QhQC)e’ Oy = ‘(Qlqu)k- o | (3.64)

It follows that oz is a ra.txona.l number.
Comparing these conclusions with eqs. (1.12) through (1 15), we find that we have

established a first part of the “Basic Result” announced in Sect. 1.
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A crash course on the represegtatlon theogx
gf chlral u(l) current ggebras :

In tlus section, we reconsnder the main results of Sect. 3 from the pomt of view of
the representation theory of chiral u(l)-current nlgebras

In egs. (3.14) and (3.16) we found that an incompressible QH ﬂmd in a uniform
background magnetic field B (9, with electrons as basic charge ca,rners, exhibits chxral
edge currents, J : ‘
J'(u) = a¢.’(a-),, I=1,--,N, (4.1)
localized near the boundary 8 of the system. For an appropriate choice of the direction
of B(9), these currents are left movers, and u = 71- vt + £ 9) is a light-cone
coordinate on A = 6 x R; see (3. 3). The commutation relations of the currents J”/

are glven by
' [JI(u), JL(u')] = i(C—l)IL 6'(u u'), (4.2)

where C'is a posltlve-deﬁmte N x N matrix; see (3.14). By choosing a sultable basis in
 field space, (¢*,---,¢V ), we'can always achieve that C is the ldentlty matrix.

Al unitary representations of these u(l) current algebra.s can be constructed with
the help of vertex operators [22, 23]

- Vi(u; n) =: exp i\f2_ n - $(u) h é RN, . (4.3)

The vertex operators generate the operator (product) algebra. .

‘ VL(u,n)VL(u n') ~ (u u')A"'A'A VL(u,n+n) (44)
where
L ._’i S ey
A =3 (n,n) = § I'zJ;l nr(C ) ny
Al = -;- (n',n'), and A" = -;-(n'+ n', n+n'). (4.5)

While the currents J'(u) are periodic operator-valued distributions of the light-cone
variable u with period é‘;, see egs. (3.3), (3.9), the vertex operators Vi (u; n) are in
general not periodic in u, but should be viewed as operator-valued dmtnbutlom; on the
covering space of the circle of circumference L, i.e., on the real line. By (4 2) and (4 3)
they satisfy the quadratic Weyl algebra : :

Vil m)Va(u'in®) = ¢ =S Vi (ut; n)Va (i m), (4.6)
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for. u 2'v', where the phase 9( n, n' ) is given by
N ’ L '

b(n,n') = (m,n') = Y nf(C)n, (47)
' I,J=1 '

- The U(1)-charge operators G are given by

= (@, "),

with . \ |
| | r- f s, (48)
Egs. (4.1) - (4.3) yield the commutation relations ‘ ‘
[@F,Vi(u;n)] = ¢ Vi(u;n), - (49)
where o ,
Z (0~1)'M (4.10)
. ) ‘ M=1 ' .
Let {J{}xez be the Fourier coefficients of J' (u), ie.,
Jw) = 3 Jf e 2, o (a11)
kEZ

The vacuum state | 0) of the -1;(\1)-cutrent algebras is characterized by the property that
Ji|0) =0, for k=0,1,2,:--. ‘ (4.12)

" A dense set of states with vanishing U(1)-charges is obtained by acting with polynomials
in the operators J{,k < 0, on the vacuum | 0). Let ¥ be such a state. Then, formally,

Vz.(u,g)fb | | - (4.13)

is a state? with U(1)-charges g(n), where ¢ = ¢(n) is given by eq. (4.10). This follows

from (4.9) and the fact that Oy = 0. ‘ '
Every charge vector § of eigenvalues of Q labels a distinct, unitary irreducible

representation of the tensor product of N u(l) current algebras. The representation

space is spanned by the vectors (4.13), with é‘(n) g. Thus the vertex operators
Vi(u; n) play the role of Clebsch-Gorda.n operators in the representatxon theory of

u(l)—current algebra.

2Smearing (4.13) in u with a test function, one obtains a welldefined normalizable state.
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Comparing egs. (4.9), (4.10), (4.13) with egs. (3.24), (3.31) - (3.35), we conclude
that applying a vertex operator Vi (u; n ) to some state ¢ at time O corresponds, in a
Feynman path integral formalism, to coupling the integration variables .in the path
integral (3.24) to external gauge fields a with the following properties: a is the re-
striction to the boundary of N U(l)-gauge fields A =(41, -+ ,AN)on A that describe
‘a vortex tube in A carrying fluxes n and contamed in the half-space at positive time
which ends, at time 0, in a magnetic monopole mth magnetxc cha.rges n located in the
point (u,0) € 8A.

‘Repeating the discussion at the end of Sect. 3, a.fter eq. (3 49), we must ask which
family of vertex operators Vi(u; n) create physical states of the algebras of chiral edge
currents of an incompressible Qﬁ fluid when applied to states of charge 0. Clearly,
we want these vertex operators to generate a closed operator algebra, for the operator
product specified in (4.4). Thus the charge vectors §= C _IET’ (see eq. (4.10)), labelling
physical represent‘a.fions ef the algebras of chiral edge currents form an additive group
Tpays.. The electric charge of a state with U(1)-charges ¢'is given by

e =Qq |  (414)
since, by eq: (3.11), the electric edgc current densify, J , is given by
=Q88=0Q.J; : (4.15)

see also eqgs. (3.48) and (4.9), (4.10). The chafge vectors § with integer electric charge
gel. = Q - ¢ form a lattice ' C T'ppy,.. Hypotheses (Al) and (A2) of Sect. 3, after
_eq. (3.50), can be reformulated as follows:

(A1) A vertex operator Vi(u; n) with ga. = é’(n) Q -C7nT = g € Z creates’
a bounda.ry excitation of the system composed of 1- +q holes and ! electrons,
1=0,1,2,-

(A2 ) A vertex opera.tor Vi(u; n) must satlsfy

Fermi statistics if qu, =Q-q(n)
<EIInl Stallshics 1t A A Vi

odd integer; and R | | ’ (4.16)
Bose statistics if gei. =Q- q‘(g) is even.

If g = Q - g(n) is an integer and ¢ = g(n') belongs to T'pay,. then
Vi(un)Vi(u'yn') =F Vi(u'in')Wi(u;n), (4.17)
(independently of the sign of u —u').
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CombiningA(A2’) with the Weyl relations (46), we conclude, in view of (4.17), that

‘if Q-¢ is an odd integer, with §=C"1n T, then |
g -Cqg= n- C'lﬁT is an odd integer ; : } (4.18)

if Q¢ is an even integer, with § = C"lﬁr, then
Q'T—-.Cé' =n- C*lgT is an even integer . (4.19)
Furthermore,
if 9 .§ is an integer end_ G € Tphys. then |
qT-cq' = n- C_ln'T is an intege;' , | (4.20)

as follows from (4.17), (4.6) and (4.7).

This, as in Sect. 3, we find that I' is an integral, odd Euclidian lattice in RN, C
defines a positive-definite, integral quadratic form on T, and Tphys. i8 a lattice contained
in or equal to the lattice I'* dual to I.

'Next, we wish to make the connection between the two descnptxons (boundary-bulk
dua.hty) of an incompressible QH fluid,

(i) in termsof a topological Chern-Simons theory, and
(ii) in terms of the representation theory of u(l) current algebras

‘more precise. This connection has been described in the literature, starting with [24];

see also [25],[26],[27]. A key fact concerning this connection is the following one (see .
[25]): In the Chern-Simons theory described in Sect. 3, (3.39) - (3. 44), a physical state

with U(1)-charges g, concentrated at points (z4,¥.) of Q,a = 1,---,P, is described

by a conformal block [36],(37],

‘<HVL(zc»"«)> s B | | (4.21)

a=1 al()

of the chiral conformal field theory introduced in (3.19), (3.21)- (3.24) which describes
the representation theory of N u(l) current algebras. Here

24 = %o + 1Ya, (422)
- and the flux vectors n, satisfy the equations

na =@’ C. ‘ (4.23)



The gauge fields a(®) are chosen to be the vector potentials of N uniform, neutralizing
background “magnetic fields”, with

a® = E ne. (4.24)

an ‘—1

The conforma.l blocks in (4. 21) are given by branches of the generally multi-valued

functions ‘
I (z., — z)(q=) f,,(o, (21,21, , 2w, 2n), (4.25)
1<a<b<P - :

where fa(o) are single-valued functions on QxP , and (e, @5) = Ga ‘Cd’b, see e.g. [31].

Note that the monodromy phases of the functions in (4.25) are precisely given by
the pha.ses , :
exp ib(ne ), me = &7, (4:26)

where 0 is given in eq. (4.7). This makes the connection between hypotheses (A2) of
Sect. 3 and (A2’), above, precise. o =
| The function in (4.25) describes the asymptotic behaviour at large distances of an
" amplitude describing a state of the QH fluid, where localized quasi~pa.rticle gxcitatibns
of charge vectors g, are present at the points (24,s) of Q, fora=1,- P By (4.25)
and (4.26), the quantmes C :

0(2,, 25) = (n,,n,;) = na c? :Lf (4.27)
are apparently the values of the relative angular m omentﬁm of the excitations at (%a,%a)

.and at (cb,yb), 1< a, b<P. H Q Ga = Q s = —1 the two excitations describe two
_single electrons. Then the relative anguhr momentum between these two electrons is
' glven by

Loy = (ﬂ.,nb) = (qﬂ:qb) | (4 28)

The tota.l “orbital a.ngula.r momentum of the state descnbed by the amplitude in

(4.25) is then given by ‘ .
o Liot. = Z (9., @) : - (429)
 1<a<b<P : ,

We shall see later that in a tensor product of N uA(l)-cunenf algebras one can imbed, in
general in many different and inequivalent ways, an a;@)-current‘algebra, see [37],[38].
This will enable us to describe electron épin which has been neglected, so far; see Sect. 6.
So far, we have assumed that the QH fluid is confined to a domain {2 in the (z,y)-
plane. The cdnneétionbetWeen states of Chern-Simons theory and conformal blocks  6£
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massless, chiral free fields expressed in (4.21) enables us to study incompressible QH
fluids on arbitrary surfaces, I, e.g. surfaces without boundary and of arbitrary genus.
Although such systems cannot be realized in the laboratory, their study is of some
* interest, e.g. for purposes of numerical simulations.

" A groundstate of Chern-Simons theory with an action glven by (3.39) on a space-
time A = X xR s given by a conformal block of the conformal field theory corresponding
to (3.19), (3.21) on the surface ¥ without any punctures. These conformal blocks span
- a linear space of dimension A, where g is the genus of the surface X, and A is the order
of the abelian group I'*/T' which is equal to the discriminant of the integral quadratic
form on T given by (q,q') = §T - C§q", q,q' € T; see [29]. Thus, if Tppys. = I'* then
the QH fluid on a surface X of genus g, described by the Chern-Simons theory (3.39),
has ' | ' ‘ ' o
A?  degenerate groﬁndstates, with A =|I'*/T|. (4.30)

This result has previously been noticed in [30].

It is a widely accepted heuristic idea that conformal blocks, like those in (4.21), are
likely to capture some of the main features of electronic groundstate wave functions of an
incompressible QH fluid of N electrons, provided that g = Q Qs = Q Clnal=-1,
for a =1,---,P; see e.g. [31]. Of course, this idea does not logxca.lly follow from
our analysis. However, for the Laughlin QH fluid at ox = — - and other simple fluids,
it has been quite successful, see [28], for reasons that are not entirely understood. -
Taking the idea seriously and studying an incompressible QH fluid on a closed surface
of genus g, one can make the following predJctlon of interest to people, who do numerical
mmulatlons We consider a gas of electrons on the surface 3. Let & denote the total
flux of the external magnetic ﬁeld, B (°), through ¥. For simple topological reasons &
is an integer, in unites where % = 1. We imagine that there are N different species of
electrons corresponding to charge vectors §(1), - - , §(¥) which are a basis of the lattice
T'. Let I; be the number of electrons of type §(¥ on X. Let us agsu:he that the energies
of eigenstates of the qua'.ntum-mechanical Hamiltonian of the fluid which are orthogonal
to all the gfoundstates of the system are separated from the groundstate energies by
a fairly large gap, for a given value of & and for given l;,--- ,Iy. It is then tempting
to imagine that a groundstate wave function of this system is described by a conformal
block of the conformal field the,ory‘ with an action Iz(ci;, a ) as given in eq. (3.19), where

= Q(4+0), _\ (4.31)

where A is the vector potential whose field strength is the given external magnetic
field B(®), and Q is the Levi-Civita spin connection on £ in the representation with
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conformal spin 1, corresponding to the fact that electrons have spin % By the Gauss-
| Bonnet theorem, the integral of the curvature of the spin mnnection Q2 over X is given
by1l—g. Standard neutrality conditions for the conformal blocks of the field theory
with action I5(4, a), with a as in (4.31), imply that |

Ez 7® = ¢! QT(q>+(1 g)) (4.32)

=1

and hence, by multiplying with Q,

N.=ou(®@+(1-g), - (4.33)

where N, is the total number of electrons in the system. Eqgs. (4.32) and (4.33) are
necessary conditions for the groundstate wave functions of an incompressible QH fluid
‘on a surface ¥ to be related to conformal blocks of an associated conformal field theory.
Eq. (4. 33) reproduces the “shift formula” of ref. [32].

Whatever we have said about QH fluids composed of electrons applles also to QH
fluids composed of holes, after exchanging “e” and “h” (“left” and f‘nght”) In our
effective description, valid on large distance scales and at low frequencies, ksubsystem‘s
~ composed of electrons and subsystems composed of holes are independent of each other.

The main result established so far is the fact that the physics of an incompressible
QH fluid in the scaling limit is coded into a pair of integral, odd Euclidian lattices, T,
and I'y. The purpose of thé next section is to summarize our results concerning a partial
classification of such lattices and to apply ihese results to the analysis of incompressible
QH fluids corresponding to experimentally observed plateaux.
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5. General results on the classification of QH lattices

‘We start this section by recalling the notation already introduced in Sect. 1 a.nd
summarizing the main results of Sects. 3 and 4. '

Let V be an N-dimensional, real vector space with inner product (+y+) Let {®r},
be a basis of V and {£7}}_, the basis dual to {&s}),. A vector v € V can be
represented as a column vector # = (v!,--- ,9™)7, with v/ = (v, £7), or as a row vector
v= (v1,-- ,vN), withvr = (v, 21), I =1, - ,N."’ Then

N N | o
=Y v =) wu, - (81)
I=1 I=1 : ‘ .

sad |
(v,v') = Z‘DI‘U Zv C]J‘U = ZvI(C“I)IJvf,, (5.2)
| I=1 Iy
~ where

Ciy = (@n,s) and (CT)7 = (£1,€7) = (53)

are the matrix elements of the Gram matrices cOrresponding to the bases {x:} and
(33 A | '
A basis {€;}} of Vis called teg;al if its Gram matrix, henceforth denoted K,

“with matnx elements |
Kr; = (er,ey), : (5.4)

is integral. It determines an integral lattice T C V given by

T={g=) de:qd¢ez forall I} o (58)
I . .

Let {€/}]_, be the basis of V dual to {€;}}_,. Its Gram matrix is given by K%, with
(K = (e, €”). |
It generates the dual lattice |
Ir' = {n = 2 nie’ : ny€Z, forall I}.

A vector ¥ € V belongs to T iff the components v/ = (v,€f) of ¥ are integers; it
belongs to I'* iff the components vy = (v,€r) of v are integers. -

The main results of Sects. 3 and 4 can be su;_nmarized as follows (see egs. (3.62)
- (3.64), and (4.14) - (4.20))': Asympototically, on large distance scales and at low
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frequencies, an incompressible QH fluid is characterized by two integral, odd Euclidian
lattices, I'e and I's, with integral quadratic forms, (:,-). on T’ and (-,*)s on I's, and
visible vectors Q. € T* and Q; € T}, with the property that, for every vector ¢ € T,

(Q:9): = (9,9): mod2.  (58)
The Hall conductivity oy is given by .

| oy = O, — Ok,
with v -
o = (@2 Q:),, | )
for z = e, h. o |

Vectors in I'; label multi-electron-hole conﬁguratlons Configurations of arbitrary
quasi-particles are labelled by vectors in a lattice (I‘,),;.,, , with |

Ps c (ra)phys g Pz ’ - | (5 8)

see (3.50). With each vector T € (I‘,),;.,. one can associate the electric charge of
the corresponding state (normahzed such that the charge of the groundstate vanishes)
which is given by |

get. = (Q=, M) - - (5.9)

and a statistical phase expnrog(m m), with ,
0:(m,m) = (m, m), mod 2Z. (5.10)

Our purpose is to summarize some of our main results concerning the classification
of these data. Since our entire analysis is symmetric under interchange of z = e with
z = h, we shall drop the subscript z wherever possible. :

. Thus,let (T',Q € I'*) be an N-dimensional “QH lattice”, with T' C I“ V ~RV,
Linear transformations of RN mapping I onto itself form a group, denoted by GL(N,Z),
which ‘consists of all integral NxN matrices S = (Srs) of determinant detS = +1.
Hence two pairs, (K1, @1) and (K2, Q2) of positive-definite, integral N x N matrices and
visible vectors in I'* describe the sa;m QH fluid iff

Ky = STK,S, Q= Q,s for some S € GL(N,Z). - (5.11)

This will be abbreviated by writing (K 1 Ql) ~ (Ka, Qz) The group GL(N, Z) contains
the subgroup O(T') of all those transforma.txons S that preserve the quadratic form on
T, ie,, .

STKS = K, ) - (5.12)
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in a given basis.

‘Every mtegral odd latt:ce I’ has a basis {q;} T=1, called metn , such that
(@) =1, forall I=1,--- ,n, - (5.13)

a.nd hence Krr = (41,41) is odd, for all I. In fhe dual basis, @) has components
= (1,---,1). Furthermore, there always exists a basis {q,e,,-- ,ey_l}, called
“normal” such that

(Qs q) = 1: (Q) eI) = 0: I= 1: s ,N -1 (514)
and hence | ‘ | _ . |
| Ku = (q,q) is odd, K11 = (er,€y) is even, (5.15)
for I=1,---,N-1. '

Bya Qﬂ lattice we henceforth mean a pair of an jntegral, odd, Euclidian lattice T
and a visible vector € I'* satisfying the parity constraint (5.6). Given a basis in T,

a QH fluid is characterized by a pair (K, Q) of a positive-definite, integral matrix K
and a row vector Q, with g.c.d. (Q;, , QN) =1, where Qy are the components of Q
in the dual basis.—.Our aim is now to find invariants for pairs (K, Q) that enable us to
distinguish certain inequivalent QH lattices and are useful for a pa;tial classification of
QH lattices. Details of our results will appear in a separate article [40]

- Among the most elementary invariants of QH lattices are the followmg ones:

(1) The d;mensxon N of the lattice T.

(2) The oddness of T, (i.e., I' is ‘of type I, in the nomenclature of [15]; even lattices
are said to be of type II and can apparently not describe QH fluids).

(3) The discriminant A of the quadratic form (-,-) on I'. It can be defined as the
determinant of the Gram matrix K assoc:ated to a given basls of T. By (5. 11), det K

" is an invariant.

Note that the space I'*/T of cosets of I'* modulo T is an abelian group. Its order
is denoted by | T*/T |. It is easy to derive from (5.9) that | :

A = detK =|I*/T|. | | ~ (5.16)

1

As pointed out in (4.30), A is the groundstate degeneracy of the QH fluid descnbed by
(T, Q) on a torus.

Lattices with A = +1 are ca.lled unimodular, or selfdual and appear only in the
description of QH fluids with integer Hall conductivity iQHE), while QH fluids ex-
hibiting a fractional quantum Hall eﬂ'ect (FQHE) are always described by non-selfdual

, lattlces
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(4) An invariant Lo, is defined by sctting

| Lmez = {ﬁg (1-1, ® (qJ,qJ)) . | (5.17.)

where the minimum is taken over all symmetric bases of I'. Let ¢ # be a basis vector
for which (@ #,q #) = Lynee. Since (g # is an element of a symmetric basis, it follows
that g = (Q, g #) = 1 corresponds to a state of the QH fluid, where one electron with
quantum numbers —q # has been created from the groundstate. By (4.28), Lmag is the
minimum of the modulus of the angular momentum of a state deécribing two electrons
- with quantum numbers —q'# created from the groundstate.

Since the matrix K = (KIJ), defined by Ky = (q;, qJ), for a basis {qI} minimiz-

ing ; __zn (qJ, q;), is positive-definite, Hadamard’s inequality implies that

A=detK<L¥ . - (5.18)
In a real, incon;pressible QH fluid, Ly.. satisfies a universal ilpper bound
Lmnz S Lt 4< :W’, : | (5.19)

" with L, ~ 9. “To understand this, we recall that the suppression of relative angular
momenta, [, between pa.lrs of electrons with | I |< Lmas is due to the Coulomb repulsion
between the electrons which has a finite strength. Furthermore, if Loz were very large
the electron densﬂ;y of the system would be so small that the formation of a Wxgner |
lattice would lower the energy of the system. However, the formation of a Wigner lattice »
destroys the incompressibility of the system. A

It is easy to see [40] that the bound (5.19) on L,,.., and a bound on the dimension
N of the lattice I' yield upper bounds on the numerator and denominator of the Hall
conductivities o5 of mcompressxble QH ﬂulds Thus, if Ly,e and N are bounded above
the possible values of the Hall conductxvxty of incompressible QH fluids form a ﬁmte set
of rational numbers.

~ We should ask whether one can find a umversa.l upper bound on the dimension N
of QH lattices. Unfortunately, we do not know any method of determining an explicit
bound on N. However, heuristically, it is clear tl‘xat’ N cannot be arbitrarily large in a
re;ﬂ QH fluid. There are two reasons for that: A real QH fluid has a finite density of
impurities. These impurities tend to cause mixing between different chiral edge currents,
so that the number of independently conserved edge currents — which is the dimension of
the QH lattice — is limited’by the strength and density of impurities. Furthermore, the
- specific heat of the edge degrees of freedom of an inéompressible QH fluid is proportional
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to the dimension N of the lattice I' (which is equal to the central charge of the conformal
field theory describing the edge currents). Thus, finiteness of the specific heat of a QH
fluid implies an upper bound on the dimension N. [These issues deserve, however,A a
more careful analysis.] |

We may now state our first general result concerning the classification of incom-
pressible QH fluids. | |

Theorem 1. Consider an incompressible QH fluid described by two integral, odd
- Euclidian lattices, I'. and T's, of dimensions N () and N(P), respectively. Assume that
N® N® < N, < o (5.20)

and that the value of the invariant L,y satisfies the bound (5.19), for both lattices T,
and I';. ;

Then the number of inequivalent pairs of lattices, I'c and I'y, satisfying (5.19) and
f (5.20) is finite. [It is bounded by a number, depending on L, and N.. J Moreover, the
set of values of the Hall conductxvxty

‘O = O — Oh

is a finite set of rational numbers.

Remarks. Details of the proof of this theorem will be presented in [40]; see also
[15],[16]. Unfortunately, as N, and L, grow somewhat large, the number of inequivalent
‘pairs of lattices becomes unmanageably la.rge Aslong as N < 8 and A <13, a complete
list of QH lattices is known for 0 < oy < 2. Fairly exhaustive tables w1]1 be given in
Sect. 7, (see also [37]). | ~
Our bounds on the number of posmble values of oy grows exponentially in N..
From now on, we focus our attention on the classification of pairs (I, Q E I‘:) of
incompressible QH fluids composed of electrons, and we drop the subscnpt

(5) A lattice I is called decomposa.ble iff
' =TT, ‘ ‘ (5.21)
for two sublattices I'; and tI‘g with the property that

(¢,q2) = 0, forall g, €T; andall g; €5 (5.22)

Otherwise, it is called indecomposable.
K T is decomposable then I'* is decomposable. A QH ﬂlﬁd is called composite

iff the associated lattice I' is decomposable. Otherwise, it is called elementary. Let
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I =T,®T:6---®Ts be the decomposition of a lattice T into indecomposable
sublattices, and let I'* = I'{@- - -@T'} .and Q = Q,, with Q; € T, be the corresponding
decompositions of I'"* and Q. ‘¥ oy denotes the Hall conductlwty of a composite QH
fluid with lattice I then :

oH E(Q,, Q:) = ZG‘H, | (5.23)
7 i=1 i=1 ’
where a’}, is the Hall conductivity of the eleméntary QH fluid with lattice I';.

A pair (T', Q) of a decomposable lattice T and a vector Q € T™* is called improper
iff, in the decomposition of Q@ = Q; + - -- + Q1 associated with the decomposition of
r=re---ol, . ‘
‘ Qi =0, for at least one i. (5.24)
/Obviously, an elementary QH fluid with lattice T; and vector @Q; = 0 has a vanishing
Hall conductivity. Moreover, it does not mix with any other components of a given QH
fluid. We may therefore discard improper QH lattices (T, Q) throughout our analysis
and focus on the classification of inde’comp‘ osable QH lattices. |

'Next, we discuss some further invariants of QH lattices (I‘, Q).

(6) In the basis of I'* dual to a given basis of T, the vector Q has integer com-
‘ ponents, =(Q1, " ,Q@n) The only GL(N, Z)—mva.nant associated with an integral

vector Q xs the greatest common divison (g.c.d.) of its components

q = Sfc-d- (Q1,-- ,QN)-‘ | ' (5.25)

Geometrically, g — 1 is the number of points in I'* on the open, straight line segment

joining the origin of I'* to Q. Physically, +q is the electric charge of the particles of |

which the QH fluid is composed, (in units where e = 1). For a QH fluid composed of
electrons or holes, we have that ¢ = 1 which is equivalent to requiring that Q be a
visible vector in I'*. Since q is the only GL(N,Z)-invariant associated with Q, visibility

of Q implies that one can always choose symmetric bases of I for which Q = (,---,1)
and normal bases of I' for which @ = (1,0,--- ,0), see egs. (5.13) - (535). Given a
fixed integral matrix K , the ambi;uity in choosing a basis in T' with Gram matrix K
is degcribéd by the group O(T); see (5.12). An O(I‘)—iniax'iant' associated with @ is
its orbit, [@Q)], under O(T). It is an“experimental fact” about lattices of not too large
dimension and not too large discriminant that the orbit [@Q)] of the shortest odd visible
vector @) is unique, and in most cases the orbit, [Q], contains only +Q, i.e., Q is a

“face vector” in the terminology of reference [44].
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(M Let K = (K1) be the Gram matrix of a basis {€;} I_«1~ of I, and K~! the
Gram matrix of the basis {e’ L, of I'* dual to the basis {er})_,. By Kramer’s rule,

K- = AR, | (5.26)

where A = det K is the discriminant of the quadratic form (-,-) on I' and K is the
matrix of cofactors obtained from K; clearly K is a positive-definite integral matrix,
and A is an integer, so that the matrix elements of K~ are rational numbers. By
egs. (3 15) or (5.7), '

on = (QQ) = Z QKT Qs = A" IZQI K7 Q. (5.27)

Clearly, the length squared, (Q, Q) of the vector Q) is an invariant of a QH lattice
(T, Q); (generally coarser than the orbit [Q] of Q under O(T) ducussed in (6)). Since

Ais an mva.nant of T,
=AQ.Q) =Y ek Q, ~ (5.28)
1,7 :
is a numerical invariant of (T', Q). It is a positive integer. Although 7 is, a priori, an
. invariant of the pair (T, Q), it is actua.lly often related to a numerical mvanant of the
lattice I' alone. | —

- Theorem 2. Let I' be an integral, odd lattice with an odd d.lscnmma.nt A, and let
Q be an arbitrary odd vector of 1"‘ (ie., (Q,q) = (g, q) mod 2, for arbitrary q € T).
Let

A(Q Q).

Then 4 modulo 8 is an invariant of T.
The proof is an easy exercise; but see [40].
- In general 7 = A(Q, Q) need not be coprime to A. We deﬁlie‘ ‘

l = gcd. (1,A). . o (5.29)

The integer [ is called the level of a QH lattice (T, Q). Writing oy as a fraction of two

coprime integers ny and dy, we have that
v =lnyg, A = ldy. (5.30)

An indecompdsablé QH lattice (T', Q) of level 1=1is called a minimal QH lattice. |

(8) Next, we attempt to characterize the lattice Tpay,. C I'* of vectors in I'* which
are quantum numbers of configurations of quasi-particles created from the groundstate
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of an incompressible QH fluid descnbed by the QH la.ttlce (I‘, Q), see eq. (3.61) or the
remark after (4. 20) Obviously

r

N

rpliw- - ;hya. Q I“ab (531)

or A R
r _C_ ;h’._’ g I‘ph". g I".- (5.32)
The discussions of the inclusions (5.31) and (5.32) determihes‘four abelian groups,

Tonye /T which is- isomorphic to T*/Tpays., Tpays./Tpay,., and I'*/T. The orders of
these groups are denoted: by P, p,r a.nd A, respect:#ely Then (5.32) unphes tha.t

A=p-r | ~ (s33)
This simple e‘qﬁation limits the posSiBle choices of Cphys..
(a) If A is square-free then '

In a ‘system of non-intéracting electrbns,_ one obviously has that I'ppy,. = T.

" However, in this case, I' = Iy = ZV is gelfdual. But if electrons interact with
each other and oy is fractional (FQHE) then I' # I'*, and one expects that
Tphys. = T*, as suggested by the analysis of the simplest fractional QH fluids,
such as the Laughlin fluids [10]. |

(b) If A=p? then
either Tppy,. =T, or T c I',y,,,, = Tppye, C T*, or Tphye. =T*  (5.35)

The alternative I' C ‘I‘,,,.-,,,‘, = Ippys. C T* can sometimes be excluded by
showing that there are no selfdual lattices between I' and I'*. In this case,
Tyhys. = I'* is the alternative which is most hkely reallzed in an actual QH
fluid of interacting electrons

(c) Hdy = T = p’r, for some p = 2, 3,:--, then if T'ppy,. properly contains I' one
can prove that there are quasi-particles of fractional electric charge satisfying ,
Bose- or Fermi statistics (see [40]). If I'yny,./T has order p then these quasi-
particles are, in fact, local relative to all other quasi-particles of the system. A

'QH fluid with such a spectrum of quasi-particles would be somewhat exotic,
and we expect that, again, Tpay,. =T '
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It should be emphasized, however, that the issue of whether I'y4y,. properly con-
tains I', or whether F,;.,., =T, lies beyond the scope of the present analysis and can
only be decided on the basis of a detailed understanding of the .qtia.nt‘um mechanics of
incomptessibl_e QH fluids. Moreover, it is worth remembering that the Basic Hypothesis
~ (A2) of Sect. 3 or (A2’) of Sect. 4 puts non trivial constraints on the charge-statistics
relation for arbitrary quasi-particle excitation in I'ppy,.. As a consequence, it is not al-
ivays possible to set Lphys. = I'* in the general case of non minimal QH lattices. We will
not pursue here those issues, referring the interested reader to [40] for further details.

(9) Let us now assume that we consider a QH fluid described by a QH lattice
(T, Q) and with Tpay, = I'*. A quantity of considerable theoretical and experimental

interest is the smallest non-gero ﬁ'actlona.l electric charge of a quasi-particle appea.rmg '
in this syst Wc define :
g* = min ,n)| . ' 5.36
S 1(Q,n) ]| | (5.36)

Let n= gTK be the flux vector correspondmg toa charge vector g of a quasx-partxcle
ne b (n gives the components of 72 in the basis of I'*). Since

qel = (an) = QK—I = A-l QKth ' (5'37)

and QK nT is an integer, for arbitrary n, ¢°* is an integer multiple of A=, In general
- ¢* is not equal to A~!, and we may define an invariant, g, of (T', Q) by setting

¢ = gA-l. | | (5.38)

By (5.37), ‘ ‘ : \
g = gcd. ((Q K),--- ,(g K)n), (5.39)

where (QI? )i is the i** component of QI?. Since QKK = AQ, where Q is visible, and
since K is an integral matrix, it follows that g divides A. The invaria.;t v is given by
v =QK QT, see (5.28). By (5.39), g thus divides 4. Hence g divides the g.c.d. of 4
and A which is the level I of the QH lattice. This allows us to deﬁne.an' integer A, the
“charge parameter” of the QH lattice by setting

| 13 __ g.c.d.(v,A)

A= = == .
[} g-cd.(Q K)

(5.40)

The invariant A determines the value of the smallest, non-zero fractional electric charge
¢* in terms of the denominator, dy, of the Hall conductivity ox:
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since g¢* = gA~! = gl-ldz* = A~1dg}, by (5.38) and (5. 40).
The numerical mvanants of QH lattlces found so far can be arra.nged in the’ form

S\ ) : ‘
N(%’—‘) < | o (542)
- \dn , /
with I = g- A (the level), A =ldy =|T*/T' |, v = Ing, a.nd og = 3&. For m1n1ma.l QH
lattlces l=1and hence A\=g =1 andA dy. :

of a symbol

(10) Next, we define a more subtle invariant of QH lattices (T, Q) related to their

lséectrum of Laughlin vortices and their statistical phases: the genus of a lattice I' (see
e.g., [15],[16]). The abelian group I'*/T is determined by N positive integers dy,- - - ,dn,
some of which may be equal to 1. They have _fhe properties that

d; divides diy;, and |
A = detK = didy---dy. - (5.43)

Geometrically, there is a basis {r;}}_; of I such that {d;lrf}ﬁ__l_ is a basis of I'*.
Thus the group I'*/T has the following factorization into cyclic subgroups Zy:

T*)T =~ Zg, XX Zay. | (5.44)

The physical interpretation of (5.44) is that if T'pay,. = I'* then the number of fac-
tors in (5.44) for which dr > 1 is the number of different element uasi-particles, or
Laughlin vortlces, of the QH fluid. '
QH lattices always involve an odd lattice T. Thus a.ll vectors n + r of re / T have
the same length (n,n) mod Z:

(R+gn+q) = (n,n)+ 2(n,q)+(2,9)
= (n,m) modZ,

for all q € T. Hence (-, ﬁ -) defines a qua&ra.tlc form ¢ on I'*/T" with values in Q mod
Z. By (5.6), the squares of the statistical phases expzwﬂ(‘n n), i.e., the monodromies,
‘associated with vectors 70 € I'* uniquely ﬁx the qua.dra.tlc form ¢ on I'*/T, and con-
versely.

Definition of the genus of a lattice. Two lattices, T; and T2, have the same genus
iff they have the same dimension, the same parity (or type), and there is an isomorphism
between T'}/T; and T'3/T; which preserves the quadratic form ¥, (i.e., the monodromy
‘phases of the vectors in I'*). |



- Transcribed in physical jargon, two odd lattices I'; and I'; with equal dimension
- have the same genus iff they have isomorphic families of Laughlin vortices with identical
monodromy phases exp:21ra '

It should be emphasized that in general, there can be several inequivalent lattices
~ in the same genus. In fact, the number of equivalence classes in a given genus tends to
00, as N — 0o, [16]. For fairly small values of N (e.g. N < 7) and of A (e.g. A < 25),
the situation is, however, much less discouraging than suggested by this general result,
8o that the genus is a very useful invariant for the classification of QH lattices which

" has a fairly direct physical mterpreta.tlon ‘

(11) In the following, we summarize some interesting congruences between the
- various invariants of QH lattices discussed so far. Proofs of our results will appear in
[40]. A first example of such a congruence is the one stated in Theorem 2, i.e., if (T', Q;)
and (T, Q3) are two QH lattices with the same I' then

= .A(QI,QI) = A(Q2,Q:2) = 12 mod 8. .‘ (5.45)

A second example is

Theorem 3. Let (T, Q) be a Q8 lattiée, and assume that A and 7 = A(Q, Q)
are odd integers. ' :

Then the d.tmenslon N of I" is odd and
= N mod4. | © (5.46)
Eq. (5.'46) generalizes the equation oy = 4 = N valid in QH fluids of non-
interacting electrons. For minimal QH lattices (i.e., ! = 1), Theorem 3 can be sharpened.
Theorem 4. Let (T, Q) be a minimal QH lattice, (so that ¥y =ny,A = dy). Then
(a) dug isodd, and T*/T ~ Zg4, ;

(b) if ny is even then the dimension N is even;
(c) if ny is odd then N is ddd, and ny = N mod4.

Theorem 5. If (T, Q) is a QH lattice with an even charge parameter A then the
invariant g = % is even, too, if either dy is even and ny is odd, or dy is odd and ny
is even. f A = g = 2 then

*/T = Zuuy - : S (5.47)
Proofs of these results will appear in [40].
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As indicated in part (a) of Theorem 4, thére are apparently no minimal QH lattices
corresponding to a Hall conductivity oy = 71, with an evdn denominator. Since this
is a fundamental result for the analysis of platea.ux at oy = ;, observed in double

layer systems [5], we state it in a separate theorem.

Theorem 6. The charge pa.ra.nieter A of a QH lattice (I‘ Q) of arbitrary dimension
N, corresponding to a Ha]l conductlnty c;; (Q.Q)= g% with an even denominator
dy, is even. :

By Theorem 5, we have that the invariant g defined in (5.39) is then even, as well,
and hence, by (5.40), the level  of such a QH lattice is a multiple of 4. Thus there
are no minimal (I = 1) QH lattices with even denominator dy. However, in view of
Theorems 5 and 6, there are still some distinguished QH lattices (T, Q) corresponding
to a Hall conductivity o with an even denommator, namely those mth level I = Agis

4, ie.,

A=g=2 |  (5.48)

In this case, eq. (5.47) implies that I'* /T & Z4q4,.

These results have the following interesting consequences: If (T', Q) is a QH lattice
corresponding to a Hall conductivity oy =& with even denominator dy, and if
Tphys. = I'*, then there are quaSi-particles of electric charge ¢" = xiz (see (5.4)),
. where A is even. In particular, for o = 3 or oy = , one predicts the existence of
quasi-particles of charge +$, where e is the elementa.ry electric charge. This theoretical

prediction could be tested experimentally. - |
| We recall that one of the basic physical hypotheses on which our analysis of in-
compressible QH fluids is based is that a configuration of quasi-particles described by
q € T with odd electric charge is a fermidn, while if the Jelectri‘cvcharge is even it is
a boson. This expresses a relation between electric charge and statistics. It is natural
- to ask whether there is such a relation between charge and statisticé for configurations
corresponding to arbitrary vectors 72 € I'*. In the following, we answer this question in
the affirmative for minimal QH lattices with an odd denominator dy.

(12) A charge-statistics theorem. The purpose of this paragraph is to show that,
for any minimal QH lattice (T, Q) corresponding to a Hall conductivity og = 25 with
an odd denominator dy, the statistical phase 6(12,7) — see eq. (5.6) — of an arbitrary
vector 1@ € I'* is fixed by its electric charge Qel. = (Q, n). This is a theorem on the
connection between charge and statxstlcs We shall see that this connechon is fixed by
oy alone. This is due to the fact that the genus (see paragraph (10)) of a minimal QH
lattice with odd dy is fixed by oy.
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‘Special cases of our general theorm have been noticed before. It is well known that
thereisa charvge-st‘atisticseonnection for the Laughlin fluids corresponding to ox = ;%; ,
‘with dg odd. For certain hierarchy QH fluids, a charge-statistics connection has been
found by Block and Wen [41].

~ Our first observation is that, for a mlmma.l QH lattice (T, Q) with an odd dH,

)T ~ Zey, © (5.49)

(ie, dy =--- =dN-y =1, dy = dpy, in egs. (5.43), (5.44)). A generator of I'"*/T is
the vector Q For, the multlples rQ, r =0,1,2,---, of Q form a subgroup of I'"*/T,
whose order we denote by r.. Hence r,Q € T, and therefore

- -1 T _ T 1 ,
(1'.. Q’n) S r. _Q;K 2 - dH_,Kﬁ Z’

for arbitrary 1 € I'*. Since the invariant g = 1, for a minimal QH lattice, -f— must be
an integer. Hence r, = dH, and I'*/T" = {rQ}"" o} ~ Z4, (this proves part of Theorem |
4.a). In this situation, ny = du(Q, Q) fixes the genus of the lattice T, i.e., it fixes
the qua.dratlc form t9(n) =(n,n) mod Z,n € I'*, introduced in paragraph (10) For,
thanks to (5.49), every n € I'* can be wntten as 1l = rQ +q, g €T. Then

d(rQ+T) = r? (Q,Q) =2 2—; mod Z. _ (550)

This shows that ¥ is fixed by the quadratic class of n H modulo dy, which thus fixes the
genusof I'. In particulaf, the monodromy phases, exp 2ixf(n, 1), of all vectors 1 € I'*
are fixed by r, which is fixed by the electric charge of - mod Z, and by ny and dy. We
‘would like to show that, not only the monodromy phases, but the statistical phases, or
half-monodroxmes, expinf, are fixed by the electric cha.rges The key idea, here, is to

use the parity constra.mt
(Q,9) = (g,gq) mod 2, forall g € T, | (5.51)
see (56) Thusforn =+ Q + q,q € T, the statistical p}iase is

HR) . on,n) = (n,m) = (Q,Q) + (¢,9) mod 2
= #(@Q) + (Q.q) mod2, f ()

while the electric charge is , | |
E-g—::_) = (Q’n) =T (Q’Q) + (Q:q)s . : (553) .
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and hence

p(n) = r’ay +¢lH (qu) mod 211}1,} (5.54)

en) = rop + du (Q, Q) |

Now, if ny is odd ' - ‘ ‘
npp(n) = e(n)? ndod 2dy 4 . 55)

and smoe g-c.d. (ng, 2dy) =1, npy is invertible modulo 2dy. Its inverse mod 2dy is
denoted by (ny)™1. Then eq. (5.55) implies

Theorem 7. (Charge-statistics connectibn)

g (n) = (Q,h) = ‘%gl = ‘O(n,n) (nr)~! £ mod 2

(5.56)

which is the desired connection between charge and statistics, provided ny is odd. If
ny is even then it is not mvertxble mod 2dy, anymore. Deﬁmng

(nm)™ = 2 @n) + dur, (5.57)

where (2ng)~! is the inverse of 2ngy modulo dy, we find that the charge-statistics
 connection (5.56) still holds; see [40] ‘ ,
If (I‘,Q) is a minimal QH lattice with an even denomma.tor dp, and hence A =
g = 2, it is tempting to think that charge and spin of a vector n € I'* determine its
statistical phase. (We realize that we have not defined the “spin” of vectors in I'*;
but see [40]). For non-minimal QH lattices, the electric charge does, in general, not
determine the statisfical phase (except for vectors in I‘). For more details, see [40].

This completes our survey of general results on the classification of QH lattices. I
should be remarked that a complete classlﬁcatlon of one- and two-damenmona.l QH lat-
tices, based on results of Gauss, is known, and that the classification of three-dimensional
QH lattices with small L,z is possible; (see [37],[40]).
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6. The ADE—O classification of QH lattices

TIn this section we complement the general results discussed in Sect. 5 by presenting
a more constructive analysis of QH lattices.

An N-dimensional, integral Euclidian lattice I' contains a dxstmgmshed (N k)--
dimensional sublattice, I‘w, the socalled Witt snbla.tt:ce, (k= 0 1,---,N),

TwoO, CT. (6.1)

I'w is defined to be the subiattice of T genera.fed by all vectors of length squared 1
and 2. One shows that .
I'w = I'roat ® I, ‘ . (6-2)

where I; is an l-dimensional, simple hypercubic lattice generated by ! orthonormal basis
vectors of length 1, and I'y,0¢ is a direct sum of root lattlces of the Lie algebras A,.._.l =
“8u(m), D2 = 80(2m + 4), m = 2,3+, Eg, E7 and E,.

Since T is integral, it also contains a maximal sublattice Oy of dimension

k= N—dimI'y (6.3)

generated by vectors of length squared 3,4, ... and orthogonal to I'w. Thus we have

the inclusions

TwO®O,CTCT* CTiW 00} . (6.4)

The sublattice I'w @ 01; is called the Kneser shape of I', [15]. The Witt sublattice T'w
can be further decomposed: . '

where T',4 is the direct sum of I; and of all the E. root lattices conta.med in 'w. Clearly
Fa=T5,is selfdua.l
Thus (6.4) can be sharpened by wntmg -

T ® Pw & Ok CTCI*CTu® 'y ® O, (6.6)

‘and hence \ . . .
T =@l Claol = I (e
If (T, Q) is a QH lattice then, by (6.7), the corresponding QH fluid is composite: In
accordance with (6.7), 7 :
Q=Q.:+Q,
and

o=@ =@ Q)+ @ Q) =omatdh.  (65)
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By construction, _ _ : ‘

; | T =1 ®Tg, o (6.9)
where I'g, is a direct sum of Es root lattices. Accordipgly, Q.i = Qi+ QE,, and
(Te,, QE,) would have to be a QH sublattice. But I'g, is an even lattice and does
therefore not correspond to an incompressible QH fluid of electrons or holes. [It might -
however appear in the sfudy of a QH effect for surface layers of superfluid Hes, as
studied in [18].] Thus, for QH lattices (T', Q), T does not contain a I'g, sublattice. The
QH sublattxce (I1, Q1) describes, of course, a QH fluid exh:bltmg an integer quantum
Hall effect.

In the following we may a.lways assume that T' is indecomposable, and then I; = 0,
ie., ! =0. Thus, . :
'w=Tw . - (6.10)
’ does not conta.m any I'g,— or I;—sublattices.

Returning to the decomposition (6 4), we note that T'/(Tw @ Oy) ~ (I‘ e0;)/T*
is a finite abelian group, henceforth denoted by G and called the glue group. Clearly

g ~ -zp1 X ooe X z", ‘ (6.11)

‘where p;,--- ,p, are numbers > 1, with p; | piy1, i =1,---,» —1, and r < N. The
- generator of Zy; can be interpreted, geometrically, as a coset g; + (F'w + Oy), for some
vector g; € I'. If we like to work with a unique g;, we may choose g; to be the ghortest

vector'in its coset. This vector is called a gluing vector. It then follows that
= (gl: G I'w ®0k> . (6.12)l

Returning to (6.4), and recalling that | I*/T |= A, we find that
_ 7 | . |

T3 /Tw |- | OL/Ox | = A|G = A]] 5. - (613)

i=1

The order of | 'Yy /Tw | is easy to calculate if we know which root lattices appear in
Tw. It is well known (see e. 2 [42]) that |

|Tw/Tw|=detC, (6.14)

where C is the Cartan matrix (i.e., the Gram matrix of a basis of simple roots) of the
root lattices appearing in I'w, with 'y, the direct sum of the corresponding weight
lattices. Then SRR '

det Ca,._, = m, detCp,,, = 4m=2,3,--, (6.15)
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and , : _
detCg, = 3, detCg, = 2. (6.16)

In acordance with (6.4), every glue vector g can be written as £2 + v, where §2 € I“' :
and v € O}. Following [15], we mtroduce the following notations:

(a) IfI'w is the root lattice of Am-1, we choose a basis in '} wnﬁsthg of elemen-

tary v\veights dual to a basis of simple roots of I'yy. The elements {2°}7!
of such a basis can be labelled by their m-ality a, and we abreviate £2° by [a].
The 0-vector is the weight vector of the trivial representation and is denotgd

by [0]. We have that |
(ehfa) = (2702 = 2222 (ean)

(b) ¥ 'y is the root lattice of Dy, m >

4, then [0] stands for the O-vector
(weight of trivial representation), [1] stands for the weight vector of the spinor
representation, [2] for the weight vector of the vector representation, and [3]

- for the weight vector of the conjuga.fe spinor representation. It is known that

(1) = (3118) = T.(202) = 1. (6.18)

(c) For I'w the root lattice of Ey, there is only one weight vector to be specified, the
one corresponding to the 56-dimensional fundamental representa.tlon, wluch is
" denoted by [1] and has length squared

(1,11 = g | ‘(6.1'9)

(d) I I'w is the root lattice of Es, T}y is generatd by T'w and the weight vectors

| of the 27-dimensional fundamental representation and of its contragredient
representation which are denoted by [1] and [2], respectxvely, and have length

squared '

@) = @ ) = 5 (6.20)

(e) If the O-sublattice is one-dimensiona.l, k = 1, it is generated by a single vector

& which is determined by its lehgth squared s = (2, &). The vector § dual

to & then has length squared 1 . The O;-component, v, of a glue vector g;

is then a multiple of §, i.e., v =r-§, or ¥ = L &. We then abbreviate v by

o
If the Oj-sublattice is tivo—dimensiona.l, k = 2, we choose a basis, {®;,&;}, in
O, and describe O, by three integers, a ® ¢, where a = (£,,&,), b = (&1, 23)
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and ¢ = (&2, Z2), so that ¢ ") is the Gram matrix of the basis {@;,&2}. Then
| O3/02 |= ac — b’ The O3-component, ¥, of a glue vector g can be expanded in the
basis &,,T,, o
v=2 T + 1‘_3 3, (6'21) \

- 81 82 :
and we abreviate ¥ by the symbol [-‘-}, , f:

Thanks to Gauss’ work in number theory, the cla.smﬁcatlon of all two-dimensional
O-Iattxces is known. ‘

Fortunately, in our sea.rch for QH lattices (T, Q) for QH fluids corresponding to
| experimentally observed plateaux of oy, the O-sublattices of the lattices I' that arise
are ossent‘ailly all one- or two-dimensional. This enables us to come up with precise
predictions which we shall present in Sect. 7.

After this digression we contmue our general analysis of QH lattlces (T, Q). Let

us return to the inclusions of eq (6.4), | !
I‘WQOJ,CI‘CI“CI“ 690,, ; - (6.22)

By (6 5) and (6 10), T'w is an even sublattice of T'. If I‘w # 0, the inclusion of TweOs
in I’ must be proper, and hence the order of the glue group G is at least 2. Let

Q Qw +Q, : (6.23)

with Qw € Ty, Q' € O3, be the decomposition of theka-vector corresponding to
(6.22). Since I'w is even, condition (5.1) implies that : o

(Qw, q) = O mod?, | (6.24)
for all ¢ € T'w, i.e., Qw € 2y Thus, by egs. (6.17), (6.18), (6.19) and (6.20),

- (Qw.Qw) 2 2, | 62)
unless Qw = O Now ; “ S .
(@Q.Q) + (Qw,Qw)

(Q',Q') + 2, . o (6.26)

OH

\%

unless Qw = O.
Our discussion is summa.rizéd in‘the following theorem.

Theorem 8. Let (T, Q) be an mdecomposable QH lattice correspond.mg to a Hall
conductivity ox = (Q, Q) < 2. Then :

TwoO,CTcI"cly00;, | (6.27)



all inclusions being proper if I'w # @, I'w is a direct sum of root lattices corresponding
to Apm-1, D42, m = 2,3,---, Eg and E7 Oy is a k-dimensional lattice, with k& > 1,
generated by vectors of length squared 34,...,and Q €I is orthogonal to I'w, (i.e.,

Qe 0y)
O

This result has a rather remarkable corollary concerning symmetries of the edge
currents of the QH fluid described by (T, Q): Let G denote the Lie algebra — in general
a direct sum of Am, D1, Ee, E1 — whose root la.ttice is given by I'w. Then the a.lgebrs.
generated by the chiral currents 8¢7(u),I = 1,--- , N defined in (4.1), (see a]so (3.11)
and (3. 14)), and the vertex operators introduced in (4 3),

{r(n) Ve(u;n) : n € I‘w},

where the 4(72)’s are certain “cocycles” which can be found, eg in [22], contains the
" non-abelian Kac-Mood ebra 51 (at level 1). It is generated by the operators

{f.f ) a$(u)Ta 7(na)_VL (u-; nc)}, L (6.28)

where { 1,000, € N-k} is a basis of orthonormal (with respect to the metric given
by the matrix C~1, see (4.2)) row vectors of the (N — k)-dimensional subspace of R¥
containing I'w, and the vectors 12, are simple roots in Tw, ie., (Na,Na) = 2, for all
a. . . ’ . .

The operators in (6.28) are neutral, i.e., do not transfer any electric charge, since,
by Theorem 8, (Q, 1) = 0, for any n € 'y, (provided oy < 2).

The Kac-Moody algebra §; has only finitely many inequivalent, irreducible, unitary
representations labelled by the cosets I'y,/T'w. Every such coset is repreaented by an

elementary weight §2 € I'}y,.

Let ™ € I'piys. C I'* correspond to a phyiscal state of the algebra of edge currents

of an incompressible QH fluid described by the QH lattice (T, Q). Let

m = mw + m', with mw € Ty, m' € O},

be its decomposition corresponding to (6.27). Then mw = 2+1, with l € T'w, whese |
12 is an elementary weight corresponding to an irreducible, unitary representation n )
of G1. The physical state labelled by ™ then transforms according to the representation |

7y under elements of 91

The Kac-Moody algebra g1 contains a subalgebra of globa.l symmetry generators, ,
the zero-modes of the Kac-Moody currents, which generate the Lie algebra §. The cor-

responding Lie group G = exp G is the group of global symmeytries of the edge degrees
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of freedom of the QH fluid. If a state of the algebra of edgé currents corresponding
to the element ™ € Cpnys. transforms under a hlghest-wexght representation ) of G
“then 2 = Mw mod T'w. R

Given a Lie algebra g of rank N-k > 1, there are, in genera.l various conformal
embeddings of Kac-Moody algebras 3u(2), at level » > 1 into the Kac-Moody al-
gebra Gi; (see [38], [43] for reviews of conformal embeddmgs) Depending on the
~ quantum-mechanical properties of the QH fluid described by T, Q), it is sometimes:
possible to interpret an algebra au(2), conforma.lly embedded in G; as an algebra of
chiral edge spin currents describing the spin degrees of freedom of the edge states of the
QH fluid. In this case the Group G of global symmetries of the edge states contains
SU(2).pin as a subgroup. The posslble values of the spm, 8 la.belhng irreducible, unitary
representations of 3u(2), are given by 8=0, ; 500" 55

Conformal embeddings of current algebras 3u(p), into g;, p=2,3,---,¢g=1,2,---,
may describe internal symmetries encountered in a description of the QH»ﬂuid valid,
asymptotically, at large distance scales and low frequencies. For example, p may be
related to the number of layers (or valleys) of the QH fluid. -

Thus, remarkably, our theory of QH lattices is clever enough to dlscover that
electrons have spin and thus, in spite of the external magnetic field apphed to the

system, the edge states of a QH fluid may carry ‘chiral spin currents. This remarkis -

important for the analysis of spin-singlet QH fluids. Physical states of the edge cur-
rent algebra of electric charge +1 transforming trivially under SU(2),pin then describe
spin-polarized electrons. Our general theory predicts that there are QH fluids composed
of spin-singlet “Bands” of electrons and of “bands” of fully spin-polaﬁzéd electrons.
Similar remarks apply to internal symmetnes

It may be clear, at this point, that our theory of QH lattices enables us, in many
cases, to understand transitions observed in QH fluids, as, for_example, the external
magnetic field is tilted; keeping the filling factor v of the QH fluid fixed, [8] I, for a
given value ZZ of the Hall conductivity a;{, one can find several distinct QH lattiées,
(T1, Q1)+ ,(Tr, Qy), with (Q1, Q1) = - - - = (Q+, Q;), which, however, differ in that
they have distinct global symmetry g:oups and different degrees of spin polarization then
a QH fluid with Hall cdnductivity oy = 32 is predicted to exhibit transitions when
external control parameters, such as the m-pla.ne component of the external magnetic
field, are changed.

All this will be discussed in more detail in [40].

To conclude this section, we present a classification of QH lattices (I‘, Q) with a
one-dimensional ©;-sublattice and with Q orthogOnal to 'w. We also describe a series
‘of QH lattices with “maximal symmetry” for which many quantities of practical interest
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can be calculated explicitly. o
Theorem 8 and the results in a paragraph (6) of Sect. 5 (see also egs. (5.14) and
(5:15)) yield the following general result of considerable practical interest.

Theorem 9. Let (T', Q) be an N-dimensional QH lattice with oz < 2 and
Tw@®OCTlCcI*CTliy a0,

where O = 0O, is one-dimensional. v |
Then Q is orthogonal to I'w, and there exists a normal basis {q,e,,-- ,€x-1}
for T, (see egs. (5.14) and (5.15), ie., (Q,9) =1, (Q,er) =0, I =1,...,N-1), with

the properties that : o

| (a) {e1,--- ,en—1} generate an even httice, Ty, with

T'w CTo C T3 C Ty (6.29)

(b) g=2% Q+w, wherew €T}y,
(c) The Gram matrix of the basis {q,€;,--- ,eyx_1} has the form

2+1|
k= |2 =

: | (6.30)
of | Ko |

where pis a positive' integer,' Ko is the Gram matrix of the basis {e1,--- ,en_1}
of I'o, and the dual components, w, of the vector W are given by w; = (w, €;),
I=1,-.-.-,N-1. Furthermore
A =detK = (2p+1)det Ko —w Ko wT /
| = det Ko (2p +1 - (w,w)), - (6.31)

and

o = (Q,Q) = (K = A~ det Ko > © (6.32)

, 2p+1°
Remarks.
(1) It can often be ruled out that there is an even lattices I'o which is not selfdual, (see
(6.7) - (6.10)), and which contains T’y properly: |
(a) ¥ T} /Tw does not contain any non-trivial subgroup then Ty = I'w. As
an application, if I'w is the root lattice of E¢ or E; then I'yo = I'y. Similarly,
 since T'o cannot be selfdual, T'o = 'w if T'w is the root lattice of Dy, m > 4.
(b) If Ty is the root lattice of Ap, then Ty = Ty, for m < 14. The first exception
appears for A;5, corresponding to a symmetry group SU(16).
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(c) f T'w is a direct sum of root lattices, the situation is more com;-)licated; For
example, if 'y is a direct sum of four one-dimensional root lattices of A, there
‘is an even lattice properly contmmng I'w and contained in I'y,. However, the
corresponding QH lattice is equivalent to one where T'wis the root lattice of
D4. It can describe a QH ﬂmd with o =
Thus, for not too large values of the dnnens:on N,Ty = T'w i is the typxcal case.
See [40] for more details.

(2) Definition. A maximally symmetric, elementary QH fluid is one corresponding to
a QH lattice (T, Q), where T is 'indecomposa.ble, O = 0, is one-dimensional, T'y =
I'w, and Q € O is orthogonal to T'y. For such a QH fluid, the matrix element
K =2p+1 of the Gram matrix K given in (6. 30) is the invariant L., defined in
eq. (5.17) of paragraph (4) of Sect. 5, provided w € T}y, is chosen to be of minimal
length in its coset modulo I'w (see Eqs. (6.17)-(6.20)). In that paragraph, we have
described reasons (e.g. the Wigner lattice instability) for expecting that

W+1 = Lonee < Lo & 9; | (6.33)
see (5.19). By (6.31) and (6.32), | |
= 2p+1 - (w,w). | - (6.34)

| Hence, oy has an. absolute lower bound in this cla.ss of manma]ly symmetric QH
fluids op > 72— > £ ~ ;. Let

I‘W = r(l) ®--- T (6.35) -

be the decomposition of 'y into indecomposable root lattices of Apm—1, Dmsa,
m = 2,3,---, and Eg, Ey. Let w = wW + ... + ), with w® € T, be the
corresponding decomposition of the vector w. Since, for an elementary QH fluid,
I' is indecomposable, W ") £ 0, foralli =1,.-- ,s. Let N4 be the number of Am—;
root lattices, Np the number of D432 root lattices, and Ng, N; the number of Eq
and Ey root lattices appearing in (6.35), with N4 + Np + Ng + N-; = s. Then, by
egs. (6.17), (6.18), (6.19) and (6.20), -

4 3 ’ o
(w,w) > ENA + Np + §No + §N1. (6.36)
Since o > 0, egs. (6.34) a.nd(636) yield the following inequality.
Theorem 10. | |
1. 4 3
ENA+ND+-N.+—N7<2p+15L., (6.37)

3¢ T 9
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with L, = 9.
Thus, the number s of sublattices of I'w a.ppea.rmg in the decomposmon (6. 35)
.satlsﬁes a universal upper bound, s < 2L, = 18.

(3) The fnmnly of QH lattices described in Theorems 9 and 10 can be extended as
follows: Suppose the Gram matrix of a normal basis of I" has the form

w
©) - |
K - . |
K = o | - (6.38)
o ] o] x | |
with
Q = (1,0,---,0), (6.39)

where K is the Gram matrix of an even lattice, Tp, with 'y C Ty C T§ C T
Then ' |

’ (o) ' ' > .
A = detKo(A - (w,w)Y) and 4 = det 2 @ (6.40)
@ . ® © (0 |
where A =det K, (‘;) (K )11 Hence
v 9 © )
- L = —_ "1 -
on =% = @ o (w,w)) ™ (6.41)
—(w,w)y |

This completes our survey of general results on the classification of QH lattices.
More details on these results and their proofs can be found in [37] and [40]. The
task that remains is to apply these results to the analysis of experimentally observed |
incdmpressible QH fluid corresponding to specific plateau-values of 0. In carrying out
this task, the tables of Conway and Sloane [15] of low-dimensional lattices are extremely'
useful. Sect. 7 presents a survey Further details will appear elsewhere.
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7. Tables of QH lattices and observed plateaux of oy.

In this section we complete the discussion of Sect. 6 on the ADE-O classification
- of QH lattices by providing exphclt tables of such lattices and correlating them with
_ corresponding values of og. In carrying out this task, we use the tables of integral
Euclidian lattices compiled by’ Conwa.y and Sloane [15], whose notations we follow.

‘Let T be an integral, Euclidian lattice with Kneser shape Tw @ Ok C T, where
I'w is the Witt sublattice of I, and O is a k- dlmenswnal subla.ttlce of I" generated by
vectors of length squared 3,4, ... . Then

L= (g .gnTw@O) (1)

where g1, - ,gr are the gluing vectors (usually chosen as the shortest vectors in their
TwoO: coset). . . :
(2) We describe I'w by giving a list of A,,._1,Dm+3, = 2,3,--- ,Eq and E7 whose
root lattices are contained in T'w. . ’
(b) We describe Oy by specifying the Gram matrix of a basis {21, e .'c,,} of O;.
For k = 1, this Gram matrix is denoted by p;, for some p = 1,2,3,-
For k = 2 it is denoted by (a )2, w1th a = (21,2,1), b = (31,33) and c=
(%2, ®3). |
We shall not introduce special notations for k > 3, since our tables only contain
lattices with k=1 or 2. | | | '

(c) Every glue vector g, is decomposed as
= 2+,

where §2 € T}y is an elementary ivéight vector which we denote by [a;,a3,--+] =

[@1]+[az] +- - -, where the notation [a] is the one introduced in (6.17), (6.18), (6.19)

a.nd(6.20),a.nd1)€0,‘,isdenotedby[]lfk—landby[ ]1fk-—2see

point (e) of Sect. 6, in particular eq. (6.21). ‘

In our table of QH lattices, we shall also indicate the discriminant A of the lattice
and the maximal dimension N, = N,(A) up to which we have scanned all lattices,
using the notation A(N.,), the order, | G |, of the glue group G, the components of Q of
vector ), written in the basis {{;, - - ,fb} of O} dual to the basis {®;,---,Z:} of Ok.
To be precise, we list explicitly all the equivalent charge vectors (i.e., Q’s belonging to
a fixed O(T')-orbit, see eq. (5.12)) associated to the QH lattice. In all cases considered,
there are just two (:!:Q) or four vectors in each orbit. We only list QH lnttlces with
oy < 2, so that by Theorem 8 (Sect 6), Q belongs to O}.

817 83
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Finally, we shall display the symbol for the QH latitce, N(%):’ introduced in
‘Sect. 5, eq. (5.42). We repeat here, for convenience, how the basic invariants can be
‘read from the symbol. N is the lattice dimension, and A = Agdy its discriminant; A

is the charge parameter, and I = ) - g is the level. For minimal QH lattices, i.e., when
A =g =1, we shall omit the superscript g and the subscript A from the symbol.

It is rather striking that in all but three cases of Table 7.1 this symbol suffices to

fully characterize the QH lattice.

In the three exceptional cases, we add a sign to specify the genus of the lattice,

(see ; (1)3), following conventions of Conway and Sloane, Ref. [15], or if the genus is
the same for both lattices we merely d.lstmgmsh the 2 QH lattices by a prime ( see

() 1(3) ad o(§); ()

A remarkable feature of Table 7.1 emergés if we focus on low-dimensional, minimal
(level 1) QH lattices: To a fixed value of the Hall conductance oy, there corresponds
just one or no elementary Quantum Hall fluid! The “missing fractions” will be reviewed
explicitly in paragraph 7.2. For more details see [37] and [40].

7;1 Indecomposable QH lattices with oy <2 and A <19.

Our main interest being in minimal (A = dy) QH lattices which,-by theorem 4,
necessarily have odd discriminant A, we have omitted from our list the even-discriminant
lattices with A = 12,14,16 and 18. This reduces the size of the table quite substantially.

-We will list separately, in Sect. 7.3, the QH lattices with A = 8 and dy = 2. ’
- Finally, we note that there are no QH lattices with discriminant A = 2 in the
selected range of value for oy. |
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v’ Table 2

A(N,) |G | | TwOr[g1; G2 --] B ig N(”H);
118 | 1 |n € 1(1)
2 (16) — = — —
3 (14) 3, | ¢ 1(3)
| Er6, [1,1] 2¢ s(3)
Dy 12; [1,1] 4¢ w(3)
- 4(12) 2 | Dot [1,1] 2{ $(0);
2 Er A 4 [1,1,1] 2¢ s();
5 (12) 1 |5 ¢ 1(3)
| o2 [410[1,3 2¢ 2(3)
3 | Es15 [1,1] 3¢ 7(3)
4 | D20, [1,1] 4 s(3)
( 6 "Eq A, 30, [1,1,1] 6 5 10(§)
4 Dy (37), [1,1,4] $1+3¢a 1(3)
6 (11) 2 Dq 6, [1,1] | 2¢ +(3); »
4 Dq A, 12, [1: 1:‘1‘] 4 _{ 9(':'):
5 Ay 15, [4,%] . 5£ ‘10 (g):
7 (12) 1 T | - 3 1(7)
o 3 |42 [1,1] 3¢ s(7)
4 | Ds28 [1,1] 4¢ o(7)
2 |Er14 [1,3] 2_{ o(3)
6 | Es 4142 [1,1,1] 6¢ +(3)
9 Ag 63, [4,%‘ » 9_{ . ’(97-)
12 | Dr 4284 [1,1,3] 12¢ | (¥
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......

Table 2

A(N,) (1G] I‘wO;[gl;gz;---] ig N("H); |
2 | Er(s's),[13 3] E1—¢&2 [e(3)
, f—.l +3_éz o (%)
2.2 | Dy;(as),[1,4,0:2,0,1] 261+282 |10(8)
2.4 | Dy A ('e"‘m),[O, 1,0,3;1,1,%,% .2:6:1 —2§= ()
10 | ErAa70, [1,1,%] 10§ 12(3)’
8 (10) see section 7.3 |
9(8) |1 |9 - ¢ 1(3)
2 | 418 [1,}] 2¢ 2(3)
4 |As36,[1,3] 4f «(3)
5 | A48 [2,1] 5¢ s(§)
7 | de63 [3,3] 7€ (@)
| 8 | 4r72[3,] 8:{ o(3)
2 | 456 [3,1] ‘25 e(3)}
2-2 | D 6161 [1,2,0;3,0,1] 261226 |o(3)]
10(10) | 3 | A4s15 [2, %]' 3¢ o(2)]
4 | Ds 4120, [1,1,1] 4¢ 1(3);
6 | De A230, [1,1,1] 6¢ o)
8 | 474,40, [3,1,1] 8¢ e(d);
2 | Br(a2e) [1,0,] 26 [o($)
2§: +2¢3 (+($)7)’
11@) |1 |11, £ 1(31)
|1 (s'4)2 _il 3('1%)
’ | é1+2¢2 |2(3
?1 - 2-5.2 2(2
Az A, 66, [1,1,3] Tee ()
A 55 [1,1] 5;{ 5(3%)
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Table 2

...... cont’d
AN 161 | TwOi[gr;gai-+] 2Q  |w(on);
3 | B33 [1,1] 3¢ [1()
As Ty [2,1] ¢ 1(3%)
| Er 22, [1,1] 2 o)
14 | As A1 154, [3,1,%] - 14¢ s(i}
2.2 | Dg(6?)2[1,2,0;2,0,1] = |261+2¢2 |(22
| ‘ | 2§1 —2§, (33
13(8) | 1 |13, | e ()
12 |42 (LY 2t |a(R)
3 | 4,39, [1,1] 3¢ |s(H)
2 A (s? 9)2 [1’292 fl:fﬂ s(33)
10 | 4 4 130, 2L% 106 [e(28
6 | As78: [1,1] 6¢ |o(S)
4 | Ds(1%s) [1,3,1] | & ”—2"52 (B
4 | Dy52; [1,]] —’/4_{* o(55)
12 | Ds 45156 [1,1,%] 126 Jo(
3 ‘ Eg (s? 0)2_[1'3’31 fl +2fz s(3)
| : ’ 351 s(3
l15@) |1 |15, | I 1(2)
4 | Ds60, [1,3] 4t (%)
7 | As105, [1,1] - € (&)
| 6 |4s6,15 [1,3,1] 26:%3¢€2 [+(3
2 | B30, [1,1] | 2¢ s(3%)
14 | Ag A; 210 [2,1,4] | 14¢ s (3
|42 | s a6 200 [1,1,0,42,1,4,0] |26 {2_5., o2
3 Az (6%9)2 [1, 33 | 3_{’ o 4(6)1
| 2_5.1 + _{z | 4(2)1
2-2 [ Ds(82s)2 [1,';':0;3»0’%] 2£1+2£3 3(:)1
2{1-2¢a o(3);




...... cont’d , Table 2

A(N.) |G| I‘WOk[gl;g\z;';-‘] | | , ig | N(”H);
3 |42 dz15 [1,1,3] |ose [
6 As A2 30, [3,1,3] 6£ ’(%): -
2-2 | D 6,10, [1,1,0;3,0,1] 26 la(3)
luren |1 | o | 4 1)
2 | 434 [1,1] 2¢ (&)

(s'e)2 ’ f:; 2(37)
‘ | £1+2£z 2(34
: —£1 +,2_§z 2 %
2 | Ai(s'0)2 [1,3,3] €1-¢: 3(%)
= _{1 +3£z s(%

361+&2 |s(7)

As 68, [1,1] - 4 ()
As (829)2 [1,1,1] ‘ —2£1+£-.~ (3
: 251 +3€2 s($
10 | Ag A 170; [1,1, 3 " 10¢ o(37
3 |Besu[1,1] o 3¢ |d(2)
15 | Ay 42255 [2,1,4] 15 |+(%
4 [Ds(s'm) L3 | &1+3& |4(F
- —£1+5£2 (%
19 |1 |1, RS ELC ),
1 (a's)2 ‘ ‘ fz 2(%)
‘ 352 2(3

| 2£1+£z ’s(:f%
"’2£1-£2 2(3

2 A1(3113)2 [1:%1%] | £1+£3 3(1_75)
o - - €1—3fz 2(3
3 | 4257 [1,3] < 3¢ |s(%)

2.2 A1A1(a 10)2 [1 1,%,0100,2] 2£1+2£, 4(%
261 -2€2 |o(5
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...... cont’d T#ble 2
A(NY) 1G] | TwO[g1;92:--] ig n(on)s

5 | 495 [2,1] 56 |s(3)

12 | As A2 228, [1,1,3] | 12'_2. o(22

5 Ag(otu)e [1,3,3] _€.1+3£2 e(is

- , 3£1 - iz | (3

4 | Ds(s'1e)2 [1,2,1] €1-2¢2 |1(3%

, | | 3-21 +2—22 7(38

6 |45 (0% [1,3,1] 461+ &2 [1(B

| | ' _.3_{2'_. (3%

7.2 Values of o <2,dyg <19 not correspomiing
to an indecomposable QH lattice at level 1

, One of the interesting features of the table of QH lattices given above is the inex-
istence of minimal indecomposable QH lattices with dimension N < N.(A), for certain

specific values of oy < 2. Furthermore, using the constructive method described in
section 6, one can readily check whether a minimal maximally symmetric lattice of
* arbitrary dimension exists for these fractions. In this subsection, we list the “missing
fractions”, i.e.,’ those values of oy < 2 and dg < 19 that -do not correspond to any
minimal maximally symmetric QH lattice and for which no minimal indecomposable
QH lattice with dimension strictly below some dimension N’ 2 N,(A) exists. [We have
used Theorem 4 to optimize our estimate on A .] The value of oy and the optimal

dimension A are indicated in the symbol g (N).

dy =3
dg =5
dHF=7
dy =9
dg =11
dg =13
dg =15
dy =17
dg =19

s (1)

%(14); %(13)

3 (15)

£10); (9 B9 (1)
£(9)  3(10); 18(10); (1)
5(10); 13(9); i2(10); H#(11);
w0 Ok REx H6)
w(®:  13B@) (8)

Bo)
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3(10);
B(10);
RO
B9);
H{OF

7(g);

22(10); 23(9)

B(s); 28(9);
B9

28

178); 3709)
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Of _course, many among these values of a'H have been observed in FQH experi-
ments. For some fractions, e.g., , ; 5, B a.nd , the bound on the dimension A is high
- enough to practically rule out the possxblhty of a reasonable, elementary, minimal QH
lattice. In those cases we have but two options to understand the observed incompress-
ible state: either we must consider non-minimal (i.e., higher-level) QH lattices, at the
price of encountering more complicated quasi-particle spectra, (no charge — statistics
connection and/or exotic frectionnl charges for elementary vortices); or we must account
for the observed oy by means of a composite fluid, using, for example, electron-hole
conjugation. '
The second option, compositeness, generally appears to be simpler and more nat-
ural. We shall discuss the examples on = § and § explicitly in Sect 7 5.
"~ We also note that there is no elementa.ry QH fluid with cy = 1, Moreover, this
value of oy has no natural compos:te explanatlon, since oy = a.nd oy = 'i'i fluids
have not been observed, and, as 3% < 3, electron-hole con_]ugatxon (F=1-%)
can presumably be excluded. This result should be contrasted with predictions of
standard hierarchy schemes, Haldane-Halperin or Jain-Goldman [15], which predict an
- incompressible state corresponding to ox = 5. Up to now, no oy = 15 plateau has
been observed experimentally. Its persistent absence would represent an interesting,
partial experimental justification of the additional hypotheses on which the classification
presented in this work is based, namely low dirhension and minimality of the QH lattices
descnbmg chiral edge currents. ’
We also emphasize the absence of indecomposable QH la.ttlces at oy = 3%, °.,
and 12 which are three successive unobserved platea.ux in the “second main sequence
oy = i m = 1,2,---, of fractions converging to 3. In Sect. 7.4 we explain why an
observation (or not) of these fractions would be an interesting expenmental input for
our theoretical understandmg of Quantum Hall fluids.

7.3 QH Lattices with d}[ 2,A=8

If oy = %K then the mvanants g and A (see egs. (5.39), (5.40), paragraph (9),
Sect. 5) are at least 2 (Theorems 5 and 6, paragraph (11), Sect. 5). Thus A is divisible
by 8. We present all indecomposable QH lattices with I = A-g =4and A = 8in
dimension N < 10. Since A and N, are fixed, they are not displayed. Otherwise
notations are 1dent1ca.1 to those used in table. 7.1. Only o = % or % can appear

since we have limited ourselves to oy <2 asin Table 2. |
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Table 3

1161 TwOilg] +Q | w(on)i
1 | (s'sh . ‘ ’£1+£z | 2(2); 1
2 |4 418 [1,1,] BT O
2 |48 (23] | | | 2¢ «(3);
2 |Dm8i[23], 4sm<9 | 26 | mn();
3 | Es(a?0), [LE3] 3¢, +(3);
6 | Es A A 24 [1,1,1,1] | s—é o(3):
6 |EsAs24[L,24] 66 | n(d);

- 7.4 The maximally symmetric A- and E-Series-
of indecomposable QH lattices at level 1

| 'As examples of natural families of QH lattices we présént the maximally symmetric,

indecomposable QH lattices with a Witt sublatfice given by a root lattice of A or E.
[The O sublattice is one-dimensional, and T, = I'w; see (6.29‘), and (6.31), (6.32).] The
Dynkin 'diagra.ms describing these Witt sublattices are:

oy Dg="Eg' ey Ag=lE,"
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The Gram matrix, K, of a normal basis {q, €1, CN—:} vof I', where {61 T eu_l}
is a basis of simple roots for I'w, has the form ‘ |

(12)

——p

where C is the Cartan matrix, i.e., the Gram matrix of {e;, e ,eN_l}', and

w = [I]sl for Am-lxm?2)33"' ;ET)EG;ES,
w = [2], for E;, and w = [1][1], for Ej.

By formulas (6.31) and (6.32), and using egs. (6.15) through (6.20), we have that

| _ m
A = det K = 2pnt+1, oH = m, for Amy—-l,
m = 2,3,---; and , (7.3)
A =det K =2pm-1, og = py—— - for Eg_(m-1),

,m = 2,3,4,5,6. | | (14)

These functions also appear as Hall conductivities of “hierarchy states”; e.g. [33, 45]
(and [27] for the A-series). For p =1, i.e., for Lmaz = 2p+ 1 = 3 (see eq. (6.33)), we
get the following fractions:

A-series 4 - Values of ‘a-H E- series
Tw=1¥9 Ty= 2
A, E7
A Eg
As Es
Ag Eg
As Es
Ag A39),[ 1,11
As 7~
Ag e




Besides being singled out by their high symmetry, the QH lattices of the E-
series and those of the A—senes up to dimension 7 can be shown to be the unique,
smallest dimensional, minimal indecomposable lattices for the corresponding fraction.
This can be inferred from Table 7.1. For the A—senes the strength of our results is
limited by the available tables of lattices given in Ref. [15] '

The table presented above shows very clearly the as _ml_rg_g between the 2 series:
The E-series is finite, descnbmg five non-trivial lattices of decreasmg dimension; the

A-series is infinite, with increasing dimension. The fraction that immediately follows
the smallest fraction of the E-series is -13, ‘experimentally observed to which one can
associate a unique three-dimensional, indecomposable, minimal QH lattice (see table
1, s(55)). It is not a maximally symmetric lattice, however, since the O-part in the
Kneser shape is two-dimensional. But it is interesting to note that its Witt part is an
SU(2) sublattice. '

We stress that, for the next smaller fractions '15, & and I3, no indecomposable
. minimal solutions are available, (see Sect. 7.2). If feasible, this would be a fruitful
range for an experimenta.l search of composite ﬂuids ‘Typical solutions could be % =
() + () or % = (&) + (%)- [Note that % is an observed fraction.]| These two
composite fluids could be dxstmgmshed by thelr elementa.ry fractional charges, e} =
and e} = §, for the first composxte fluid, while e* = :\-( ), for the second fluid.

7.5 Examples~ The Plateaux at o= %

u(m

)1,

(I

If the external magnetic field B(®) acting on a QH sample is not very large, and
the effective g-factor of the electrons in the two-dimensional fluid is small then if the
~ fluid is incompressible it can be in a spin—singlet state”. In this case, there will be
- chiral edge spin currents generating an su(2)1 Kac-Moody algebra.

‘Suppose now that the component of BO in the plane of the sample is increased
(tilting of B(°)), while the filling factor v is kept constant. Then one must expect that,
at a critical value of the tilting angle, a transition from the spin-singlet state to a state -
of the system, where the spins of all electrons are polarized, will occur. _

We shall argue that the QH fluid corresponding to the platea.u at og = - is an
example of a QH fluid exhibiting such a transition.

Consulting the table in Sect. 7.2, we observe that there is no indecomposable,
minimal QH lattice corresponding to oy = 3. We are therefore forced to look for
- QH lattices which are either decomposable or non-minimal. Decomposable QH lattices
describe composite QH fluids. For small values of the m-plane component of B(); the /
following particle-hole composite QH fluid i xs a natural candidate for an incompressible -

state with oy = '
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(a) One pair of QH lattices corresponding to

. OH =§ is (»P¢:Q¢)®(r;,Qh),, with
e = I, Qe = ‘(151)

Th = A; 10, [1,—], Qr = 2§, corresponding

to a Gram matﬁx K, = : ;), with Q4 = (1,0), in a normal basis. Clearly (I's, Q4)
is the electron-hole conjugate of the Qﬁ.ﬂuid with n} = % discussed in 7.4. In a normal ’
basis, the Gram matrix of T, is given by K. = (3 ), with Q. = (1,0). The Witt
sublattices of T, and T are the root lattice of Ay, 8o, as explained in Sect. 6, (6.28),
there is an 3u(2),, a.c-Moody a]gebra of chiral edge currents which may be interpreted

‘as spin _currents. This explanation of oy = — thus corresponds to a “spin-singlet” state,
[8], which we expect to be realized at small values of B{".

As we increase §(“ ), keeping the filling factor constant the Zeeman energy of
electrons increases. We thus expect that, at some value of B" , the QH fluid described
above becomes unstable and a transition to a new incompressible state occurs, as §("°) | :
is increased further, [8]. This new state is likely to contain a fully polarized, completely
occupied lowest Landau level. The following is a plausible lattice. o

(b) A pair of QH lattices associated to oy = § =1+ 3is (T,QY @ (13,Q2),
with Il = I = 1, Q} = (1), and (T2, Q3) is the Eg-solution corresponding to o = 3
which we have disc-l;sséd in Sect. 7.4. Obviously, the QH fluid corresponding to this
- particular, decomposable QH lattices is partially spin-polarized.

Note that the QH fluid described in (a) exhibits edge currents of both chiralities,
while the edge currents of the one described in (b) have all the same chirality. Experi-
ments testing the chirality of edge currents are reported in [46]. | >

It illustrates an aspect of our general analysis that if we give up the condition
of minimality we can find further QH lattices with oy = :, in pa.rticulai there are
, ndecomposable, non-minimal QH lattices correspondmg to oy = 2. An example of
such a lattice is (T'¢, Q.), with T, = A74,40,[3,1,1], Qe = 8£ and symbol ,(‘)1 ;
see Table 7.1. It is tempting to interpret the SU(2) correspondmg to the A; sublattice
of T', as describing electron spin, while the SU(8) corresponding to Ay describes asymp-
totic (approximate) internal symmetries. Thus an elementary, incompressible QH fluid
described by (T, Q.) would have a “spin-sinélet” groundstate. Because of the large
internal symmetry it is perhaps unlikely that such a fluid can be realized in a monolayer.
" In contrast to the plateau at oy = § which exhibits a transition, as the external
magnetic field B is tilted (keeping the filling factor constant), no such transition has
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been observed for the plateau at oy = §. It is natural to ask whether our analysis
permits us to understand this. |

As emphasized in Sect. 7.2, no indecomposable minimal QH lattice exists for o =
$ in dimension below 17, and, moreover, no minimal, maximally symmetric QH lattice
can be constructed in any dimension! Ai:parently, the most natural explanations for
on = § will thus be found among composite fluids. (Non minimal indecomposable QH
lattm_es with oy = have high dimensions and a fairly weird structure.) Indeed, a
widelj accepted picture of the oy = § state is to view it as an electron-hole conjugate
form of the state at oy = , i.e., to interpret it as a composite fluid § =2— 1. In QH
lattice language, this corresponds.to a decomposition: '

(,Q) = (T, Q.) ® (s, Qs) (75)

with o, = (Q., Qe) =2 and o = (an Qh) = ‘
The electron part (T, @.) has integral Hall conducta.nce ge = 2; a very natural
choice is therefore a composite of two elementary ﬂmds w1th og=1: ‘

(rc:Qe); Te=1,01; Q.-—(l 1), oe=1+1.

Our classification results strongly restnct the QH lattices that can be a.ssocmted to the
hole fluid with o = % There is a umque minimal QH lattice, and all non-minimal
solutions have necessarly a non-trivial value for the.charge parameter A

This is the contents of the followmg simple lemma.

Lemma 11. Let (T, Q) be an mdecomposable QH lattice with (Q,Q) = oy =
21— dg =1, 3 5,- Then

(1) thereis a unique minimal QH lattice (T = (dg), Q =(1)); and

(2) if dim T >2 then the charge parameter A is at least 2, (hence I > 2).

Proof. Recall that 9 =gc d. (Q K) and 4 = Ky, in a normal basis; see (5.39)

and (5. 28) Thus g devides 7. Hfg=« then there is a normal basis in which K has the
form

v 0 ... 0
Y
K= |0 *
0
Thus, by a further basis transformation, K can be brought to the form
' y 0 ... 0
-~ 0 :
K = .
. %
0



and hence T is decomposable which contradicts our hypothesm By (5. 40) it then follows
that A > 2. Q.E.D.

As a consequence, if dim I'n > 1 then we predict that the smallest fractional
electric charge is e* = i‘x, with A > 2. But experiments reported in [6],[7] suggest that

*

e* = § for the oy = -,- state. This favours the idea that I'; is the one-dimensional
lattice (3), and Q;. = (1). Obviously, this lattice does not contain an A4; sublattice, and
hence it describes a state of fully spin-polarized holes. -

The lattice (T'e, Q.) appearing in the decomposition (7.5) describes a composite
QH fluid with two bands of oppositely spin-polarized electrons. 4 |

These results nicely fit experimental data [8] indicating that when the external
magnetic field B ls tilted the incompressible state at op = 3 remains stable, no
matter how large B" is. Our results suggest that the oy = § state will exhibit edge
currents of both clnra.htxes This might be tested in edge magnetoplasmon experiments
[46].

~ Next, we wish to analyze QH lattices with o = 1. According to Lemma 11, the |

only elexnentuy QH fluid without excitations of fractional electric charge corresponds to
the QH lattice (T'. = (1), Q. = (1)). It is tempting to ask wehther there is a natural QH
lattice with charge pa.rameter A>2 correspondmg tooyg =1. The corresponding QH

fluid would then exhibit fractional electric charges which might arise as a consequence

of electron-electron interactions. Furthermore, it might happen that, in such a fluid,
there is no preferred direction for spin polarization, i.e., one would observe spin waves.
The corresponding QH lattice would then have to contain an A, root lattice.

~ Our general analysis shows that QH lattices correspondmg toog =1 thh these
properties exist. We have encountered two examples in Table 7.1:

L =Dt L3l Q=2¢ (1)
with symbol ;" (1):, and
T=EA4LL7], @=2¢. | (7.7)

with symbol o (1): .

These examples have discriminant A = 4 and charge parameter A = 2. They also
offer natura.l possibilities to imbed SU(2),pin in their symmetry groups. However, thelr
symmetry groups and the dimension of T are frighteningly large.

There are, however, fairly natural two- and three-dimensional QH lattices w1th

= 1. I the invariant L, (Wwhose phys:cal significance is well understood see
eq. (5.17)) is constrained to take the value 3 then we find the following lattices:
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The unique two-dimensional QH lattice is
=(3'3), Q=1 -6 | (7.8)

'correspondmg to the symbol 3(1 )s. : :

Note that the lattice ' = (313) is also encountered in the analysis of oy = 1, but
in combination with a Q-vector Q = £, + .. .

Clearly, the QH lattice displayed in (7.8) describes a QH fluid of spin-polarized
electrons, since I does not contain an A, sublattice. However, in three dimensions, we
find a QH lattice containing an 4, sublattice:

41 (41) (61) [1»§ 3l

26, | - (19)

r
i

with symbol 3(1)2
- A second three-dimensional QH lattlce (T, Q) with symbol s (1)2 is descnbed by

its K -matrix

3 1 -1

K = ( 1 3 1 ), Q = (1,1,1), ; (7.10)
11 3 = : .

in a symmetric basxs These two QH lattices can be shown to exhaust the list of QH

'la.ttlces with Lz = 3, oy = 1 in three dimensions [37]. :

We notice that only the QH lattice displayed in (7.9) can account for SU(2),pin in
an elementary QH fluid of unpolerized electrons, has Lz =3 and has small dimension.
It predicts the existence of excitations with halfinteger electric charge, just as in the case
of the lattices described in (7.6) and (7.7). However it has a rather large discriminant
A =12, while the lattices in (7.6) and (7.7) have a A = 4. This may cast some doubt
on the stability of a QH fluid -described by (7.9). - :

In conclusion, one might argue that the QH lattices given in (7.7) and in (7. 9)
rather natural candadates for the description of an unpolarized, elementary QH ﬂmd

. with oy =1 and with an SU(2)spin symmetry.

Finally we note that the lattices in (7.7) and (7.9) could also describe spm-polanzed

elementary QH fluids in double-laxer systems, with the SU(2) symmetry acting on the
layer index. ‘

Next, we study QH lattlces descnbmg elementu'y QH fluids wﬂ;h oy = , , a plateau
tha.t is observed in double-layer systems. Besides the “boring” solutlon,

= (313)2! Q = il + E.?) ) . . | (7.11)

-
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there are “more imaginative” solutions that are listed as the second, third and fourth
lattice in Table 7.3. Among these three, the most natural one is

T = AA8 [1,1, -;-] , Q=2¢. - (1.12)
It describes a QH fluid composed of two species of spin-unpolé.rized electrons (corre-
sponding to the two layers) exhibiting an SU(2).pin X SU(2)iayer symmetry. Electrons
transform according to the spin 1 representatlons of both. SU(2) s symmetries. There are
excitations of fractional electric charge £ £, spin 3 1 and “isospin” 0, or spin 0 and i lsospm
%. Three excitations of one kind and one of the other kind reconstitute an electron.

A look at Table 7.3 suggests that, in certain double-la.yer' systems, one should be
able to realize an elementary QH fluid with oy = (second but last lattice i in Table
7.3), although such fluids would exhibit large mternal symmetries.

~ Should we expect to find QH fluids with o = i, or § ? What one can show is that,
for a two- or three-dimensional QH lattice with o = §, Lmaz > 5, and this is also true
for maximally symmetric"QH lattices. Moreover, since g, A > 2, the discriminant A of
~all QH lattices with oy = 15 always > 16, while QH lattices expected to correspond
to experimentally observed plateau values have discriminants A < 15. For oy = 1, the
corresponding bounds are Lomaz > 7,' and A > 24. 'These large values of Lys: and A
hint at an expla.nation of why plateaux at oy = i,% are not observed: Tentative QH

fluids with o = 1,1 would presumably have a very smn.]l gap a.nd/or be threatened

D
by the Wigner crystal instability.

In a separate paper (with U. Studer) [37], we sha]l analyze fairly systematically QH
lattices corresponding to many.observed plateaux of o and make predictions concern-
ing those plateaui that exhibit transitions between different incompressible QH fluids
when external parameters, such as the density or the in-plane magnetic field are varied.
Conmdermg an example such as oy = % somewhat systematically shows that this is
a rather complicated ta.sk because when there are many QH lattices corresponding to
the same value of o one must appeal to physlcal principles to find out which lattices

have a chance to describe experimentally realizable QH fluids. B
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