INTEGRAL QUADRATIC FORMS, KAC-MOODY ALGEBRAS, AND FRACTIONAL QUANTUM HALL EFFECT. AN ADE-O CLASSIFICATION*

Jürg Fröhlich and Emmanuel Thiran

ETH-Hönggerberg, CH-8093 Zürich, Switzerland

Abstract: The purpose of this paper is to present a rather comprehensive classification of incompressible quantum Hall states in the limit of large distance scales and low frequencies. In this limit, the description of low-energy excitations above the groundstate of an incompressible quantum Hall fluid is intimately connected to the theory of integral quadratic forms on certain lattices which we call quantum Hall lattices. This connection is understood with the help of the representation theory of algebras of gapless, chiral edge currents or, alternatively, from the point of view of the bulk effective Chern-Simons theory.

Our main results concern the classification of quantum Hall lattices in terms of certain invariants and their enumeration in low dimensions and for a limited range of values of those invariants. Among physical consequences of our analysis we find explicit, discrete sets of plateau-values of the Hall conductivity, as well as the quantum numbers of quasi-particles in fluids corresponding to anyone among those quantum Hall lattices. Furthermore, we are able to predict transitions between structurally different quantum Hall fluids corresponding to the same filling factor.

Our general results are illustrated by explicitly considering the following plateauvalues: $\quad \sigma_{H}=\frac{N}{2 N \pm 1}, N=1,2,3, \cdots, \sigma_{H}=\frac{5}{13}, \frac{8}{5}, \frac{5}{3}, 1$ and $\sigma_{H}=\frac{1}{2}$.

[^0]
Contents

1. Introduction
2. The electrodynamics of incompressible quantum Hall fluids.
3. Anomaly cancellation and $\mathrm{U}(1)$-current algebra.
4. A crash course on the representation theory of chiral $U(1)$-current algebras.
5. General results on the classification of quantum Hall lattices.
6. The ADE-O classification of quantum Hall lattices.
7. Tables of quantum Hall lattices and observed plateaux of σ_{H}.

1. Introduction

The quantum Hall effect (QHE) is observed in electron gases confined to a planar region Ω and subject to a strong, uniform magnetic field $\vec{B}^{(0)}=\left(\vec{B}_{\|}^{(0)}, B_{\perp}^{(0)}\right)$ transversal to Ω, (i.e., with $B_{\perp}^{(0)} \neq 0$). Such systems of electrons (and/or holes) are realized, experimentally, as inversion layers which are formed at the interface between a semiconductor and an insulator, e.g. in a MOSFET or in a heterostructure, such as one made of $\mathrm{GaAs} / \mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}$, when an electric field (gate voltage) is applied in the direction perpendicular to the interface. The quantum mechanical motion of the electrons in the direction perpendicular to the interface is then quantized - the electrons (or holes) are bound to the interface by a deep potential well. At very low temperatures, the gas of electrons (or holes) is therefore a very nearly two-dimensional system.

The domain Ω to which the electrons are confined is chosen to be a bounded subset of the (x, y)-plane, typically a disk. When the magnetic field $\vec{B}^{(0)}$ has been turned on one tunes the total electric current in the y-direction to a value I_{y} and then measures the difference in the chemical potentials of the electrons (or holes) at the two edges of Ω transversal to the x-direction, i.e., the voltage drop, V_{x}, in the x-direction. The Hall resistance is defined as the ratio

$$
\begin{equation*}
R_{H}=\frac{V_{x}}{I_{y}} \tag{1.1}
\end{equation*}
$$

Similarly, one can measure the longitudinal resistance

$$
\begin{equation*}
R_{L}=\frac{V_{y}}{I_{y}} \tag{1.2}
\end{equation*}
$$

where V_{y} denotes the voltage drop in the y-direction.
The surprizing experimental discoveries made at the beginning of the eighties by von Klitzing et al. [1] and Tsui et al. [2] can be summarized as follows: Let n denote the density of electrons (minus the density of holes), e the elementary electric charge, h Planck's constant, and c the velocity of light. One defines the filling factor ν, a dimensionless quantity, as

$$
\begin{equation*}
\nu=\frac{n}{\left(B_{\perp}^{(0)} / \frac{h c}{c}\right)}, \tag{1.3}
\end{equation*}
$$

where $\frac{h c}{e}$ is the quantum of magnetic flux. If the electrons were free, spinless fermions ν would be the fraction of filled Landau levels. At very low temperatures, $T \approx 0$, the resistances R_{H} and R_{L} are functions of ν with the following remarkable properties
(i) The dimensionless quantity

$$
\begin{equation*}
\sigma_{H}=\frac{h}{e^{2}} R_{H}^{-1} \tag{1.4}
\end{equation*}
$$

where R_{H}^{-1} is the Hall conductivity, is constant on certain intervals, i.e., has plateaux, and the values of σ_{H} on all observed plateaux are rational numbers. The most pronounced plateaux have integer heights (integer QHE) which can be measured with extraordinary precision (one part in 10^{8}). They serve as new standards for the definition of e. Most plateaux have values $\sigma_{H}=n_{H} / d_{H}$, where n_{H} and d_{H} are relatively prime integers, and d_{H} is odd (odd denominator rule [3]), but a plateau at $\sigma_{H}=\frac{5}{2}$ has been observed, too [4], and, in double layer systems, one has observed a plateau at $\sigma_{H}=\frac{1}{2}[5]$.
(ii) Whenever $\left(\nu, \sigma_{H}\right)$ belongs to a plateau, R_{L} very nearly vanishes. Thus when σ_{H} has a plateau value the system is free of dissipative processes, and conversely. It is then called an "incompressible quantum Hall (QH) fluid".
(iii) The precision of plateau heights (but not their widths) is insensitive to sample preparation and geometry.
There is convincing evidence [6],[7] that when σ_{H} is on a plateau of non-integer height the system exhibits fractionally charged excitations, the fractional charges being related to the denominator d_{H} in the value, $\frac{n_{H}}{d_{B}}$, of σ_{H}. Moreover, when the in-plane component $\vec{B}_{\|}^{(0)}$ of the magentic field is varied, keeping ν fixed, one has found that certain plateaux disappear to reemerge, in some cases, at other values of $\vec{B}_{\|}^{(0)} ;[8]$. This strongly suggests that Zeeman energies, and thus electron spin, play an important role in a QH fluid at certain values of σ_{H}, such as $\sigma_{H}=\frac{2}{3}, \frac{4}{3}, \frac{8}{5}, \frac{5}{2}$, etc. .

For illustration, a table of observed plateau values, for $0<\sigma_{H} \leq 1$, is given in Table 1, below. More details about observed plateaux and their special properties will be discussed in Sect. 7.

A variety of attempts at a theoretical explanation of these truly remarkable features of two-dimensional electron gases have been made, for both, the integer QHE and the fractional QHE [9]. In both cases, ideas due to Laughlin have been seminal; see ref. [10].

In this paper, we further develop a line of thought initiated in [11],[12],[13]. In order to make this paper accessible to readers not familiar with the literature on the FQHE, we shall recall some of the key ideas proposed in the papers quoted above. The novel feature of this paper is that, starting from basic physical principles, it relates the observed plateau values of σ_{H} to the theory of integral quadratic forms on integral lattices which the reader may have encountered in Lie group theory or number theory; see [15],[16]. The logics of this relationship will involve a study of the algebras of chiral edge currents in QH fluids and their representation theory. In order to give the reader a rudimentary idea of what is involved, we shall summarize a few elementary facts about integral quadratic forms and describe some basic results.

Table 1

Observed plateau values, for $0<\sigma_{H}=\frac{n_{H}}{d_{H}} \leq 1$

Let V be an N-dimensional, real vector space with an inner product (\cdot, \cdot). A basis $\left\{e_{1}, \cdots, e_{N}\right\}$ of V is said to be integral iff its Gram matrix is integral, i.e.,

$$
\begin{equation*}
K_{I J}:=\left(e_{I}, e_{J}\right) \in \mathbf{Z}, \quad \text { for all } I, J \tag{1.5}
\end{equation*}
$$

Clearly $K_{I J}=K_{J I}$, so $K=\left(K_{I J}\right)$ is a regular, symmetric $N \times N$ matrix with integer matrix elements. We define a lattice Γ by setting

$$
\begin{equation*}
\Gamma:=\left\{q=\sum_{I=1}^{\boldsymbol{N}} q^{I} e_{I}: q^{I} \in \mathbb{Z}, \quad \text { for all } I\right\} \tag{1.6}
\end{equation*}
$$

Let $\left\{\varepsilon^{1}, \cdots, \varepsilon^{N}\right\}$ be a basis of V dual to the basis $\left\{e_{1}, \cdots, e_{N}\right\}$, i.e., satisfying $\left(\varepsilon^{I}, e_{J}\right)=\delta_{J}^{I}, I, J=1, \cdots, N$. Here

$$
\varepsilon^{I}=\sum\left(K^{-1}\right)^{I J} e_{J}
$$

The basis $\left\{\varepsilon^{1}, \cdots, \varepsilon^{N}\right\}$ generates the dual lattice

$$
\begin{equation*}
\Gamma^{*}:=\left\{n=\sum_{I=1}^{N} n_{I} \varepsilon^{I}: n_{I} \in \mathbb{Z}, \text { for all } I\right\} \tag{1.7}
\end{equation*}
$$

Since $e_{J}=\sum_{I=1}^{N} K_{J I} \varepsilon^{I}$, with $K_{I J} \in \mathbb{Z}$, we can view the lattice Γ as a sublattice of its dual $\Gamma^{*}, \Gamma \subseteq \subseteq^{\bar{I}=\frac{1}{\Gamma^{*}}}$; and Γ is called selfdual if $\Gamma=\Gamma^{*}$.

A vector $v \in V$ can be identified with a column vector $\vec{v}=\left(v^{1}, \cdots, v^{N}\right)^{T}$, called a charge vector, with $v^{I}=\left(v, \varepsilon^{I}\right)$, and with a row vector $\underset{\rightarrow}{v}=\left(v_{1}, \cdots, v_{N}\right)$, called a
flux vector, with $v_{I}=\left(v, e_{I}\right), I=1, \cdots, N$. Note that, in the inner product (\cdot, \cdot) on V,

$$
\begin{equation*}
\left(q, \boldsymbol{q}^{\prime}\right)=\vec{q}^{T} \cdot K \vec{q}=\sum_{I, J} q^{I} K_{I J} q^{\prime J}, \text { for } q, q^{\prime} \in \Gamma \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(n, n^{\prime}\right)=\underset{\rightarrow}{n} K^{-1} n^{T}=\sum_{I, J} n_{I}\left(K^{-1}\right)^{I J} n_{J}, \quad \text { for } n, n^{\prime} \in \Gamma^{*} \tag{1.9}
\end{equation*}
$$

By Kramer's rule,

$$
\begin{equation*}
\left(K^{-1}\right)^{I J}=\frac{1}{\Delta} \tilde{K}^{I J} \tag{1.10}
\end{equation*}
$$

where $\Delta=\operatorname{det} K \in \mathbb{Z}$, and $\widetilde{K}=\left(\widetilde{K}^{I J}\right)$, with $\widetilde{K}^{I J}=\widetilde{K}^{J I} \in \mathbb{Z}$, is the cofactor matrix. Thus the matrix elements $\left(K^{-1}\right)^{I J}$ are rational numbers.

The set of vectors in Γ^{*} modulo vectors in $\Gamma, \Gamma^{*} / \Gamma$, is an abelian group, and it is easy to see that its order is given by

$$
\begin{equation*}
\left|\Gamma^{*} / \Gamma\right|=\Delta \tag{1.11}
\end{equation*}
$$

The lattice Γ is called even iff all scalar products ($\boldsymbol{q}, \boldsymbol{q}^{\prime}$) are even integers, i.e., iff $K_{H} \in \mathbf{2 Z}$, for all $I=1, \cdots, N$. Otherwise Γ is called odd.

We call Γ Euclidian iff the inner product (\cdot, \cdot) is positive-definite, i.e., iff K is. positive-definite.

Linear transformations of V mapping the lattice Γ onto itself form a group, denoted by $G L(N, \mathbb{Z})$, which is defined by

$$
\begin{equation*}
G L(N, \mathbb{Z}):=\left\{S=\left(S_{I J}\right): S_{I J} \in \mathbb{Z}, \forall I, J, \operatorname{det} S= \pm 1\right\} \tag{1.12}
\end{equation*}
$$

It contains the subgroup, $O(\Gamma)$, of all those invertible transformations which preserve the length of each lattice vector, i.e.,

$$
\begin{equation*}
O(\Gamma):=\left\{S \in G L(N, \mathbb{Z}): S^{T} K S=K\right\} \tag{1.13}
\end{equation*}
$$

If $S \in O(\Gamma)$ then $S^{-1} \in O(\Gamma)$, and hence

$$
\begin{equation*}
S K^{-1} S^{T^{\prime}}=K^{-1} \tag{1.14}
\end{equation*}
$$

i.e., $O(\Gamma)=O\left(\Gamma^{*}\right)$. Two integral quadratic forms, K_{1} and K_{2}, are equivalent iff there is some matrix $S \in G L(N, \mathbb{Z})$ such that

$$
\begin{equation*}
K_{2}=S^{T} K_{1} S \tag{1.15}
\end{equation*}
$$

The primary purpose of this paper is to derive the following basic connection between incompressible ($R_{L}=0$) QH fluids and equivalence classes of integral quadratic forms on lattices.

Basic result. An incompressible $Q H$ fluid is characterized by a pair of integral, odd Euclidian lattices, Γ_{e} and Γ_{h}, and two linear forms, \boldsymbol{Q}_{e} and $\boldsymbol{Q}_{\boldsymbol{h}}$, on these lattices, i.e., vectors $Q_{\boldsymbol{x}}=\left(\left(Q_{x}\right)_{1}, \cdots,\left(Q_{x}\right)_{N_{0}}\right)$ in Γ_{x}^{*} with

$$
\boldsymbol{Q}_{x}(\boldsymbol{q})=\left(\boldsymbol{Q}_{x}, \boldsymbol{q}\right)=\underset{\boldsymbol{x}}{\boldsymbol{Q}_{x} \cdot \vec{q} \quad \forall \boldsymbol{q} \in \Gamma_{x}, ~}
$$

satisfying the following two constraints:
(i) Q_{x} is a "visible" vector in Γ_{x}^{*}, i.e.,

$$
\text { g.c.d. }\left(\left(Q_{x}\right)_{1}, \cdots,\left(Q_{x}\right)_{N_{x}}\right)=1
$$

where g.c.d. denotes the greatest common divisor;
(ii) \boldsymbol{Q}_{x} is an "odd" functional on Γ_{x}, i.e.,

$$
\begin{equation*}
Q_{x}(\boldsymbol{q}) \equiv(\boldsymbol{q}, \boldsymbol{q})_{x} \quad \bmod 2 \tag{1.16}
\end{equation*}
$$

(meaning that the parity of $\boldsymbol{Q}_{\boldsymbol{x}}(\boldsymbol{q})$ is the same as the one $\left.(\boldsymbol{q}, \boldsymbol{q})_{x}\right)$, for $\boldsymbol{x}=e, h$. The Hall conductivity σ_{H} is given by

$$
\begin{equation*}
\sigma_{H}=\sigma_{e}-\sigma_{h}, \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{x}=\left(Q_{x}, Q_{x}\right)=\underset{\rightarrow}{Q_{x}} \cdot K^{-1} \underset{\sim}{Q_{x}^{T}}=\sum_{I_{x}}^{N_{x}}\left(Q_{x}\right)_{I}\left(K_{x}^{-1}\right)^{I J}\left(Q_{x}\right)_{J} \tag{1.18}
\end{equation*}
$$

Clearly σ_{e} and σ_{h}, and hence σ_{H}, are rational numbers. Distinct vectors $Q_{\boldsymbol{z}}$ belonging to the same orbit denoted $\left[Q_{x}\right]$, under the orthogonal group of the lattice, $O\left(\Gamma_{z}\right)$, specify the same geometrical data. In all examples that we will have to deal with orbits have just two $\pm \boldsymbol{Q}_{\boldsymbol{z}}$ or four elements. By (1.10),

$$
\sigma_{x}=\frac{1}{\Delta_{x}} \sum\left(Q_{x}\right)_{I} \widetilde{K}_{x}^{I J}\left(Q_{x}\right)_{J}
$$

where numerator, $\gamma_{x}=\sum\left(Q_{x}\right)_{I} \widetilde{K}_{x}^{I J}\left(Q_{x}\right)_{J}$, and denominator, Δ_{x}, are integers. Let l_{x} be their greatest common divisor which we call the level of Γ_{x} :

$$
l_{x}=\text { g.c.d. }\left(\gamma_{x}, \Delta_{x}\right)
$$

Then,

$$
\sigma_{x}=\frac{n_{x}}{d_{x}}, \quad \text { g.c.d. }\left(n_{x}, d_{x}\right)=1
$$

with

$$
\begin{align*}
n_{x} & =\frac{1}{l_{x}} \sum\left(Q_{x}\right)_{I} \tilde{K}_{x}^{I J}\left(Q_{x}\right)_{J} \\
d_{x} & =\frac{1}{l_{x}} \Delta_{x} \tag{1.19}
\end{align*}
$$

$x=e, h$. It turns out that when d_{x} is even then l_{x} must be even, too, in fact a multiple of 4, and the QH fluid will exhibit Laughlin vortices of electric charge $\pm e / 2 d_{x}$, where e is the elementary electric charge; (see Theorem 6, Sect. 5).

Let us pause to explain some features of this result. The subscripts e and h stand for "electrons" and "holes", respectively. They indicate the nature of the basic charge carriers of the fluid. Fluids for which $\Gamma_{e} \neq \emptyset$ and $\Gamma_{h} \neq \emptyset$ are composite fluids containing both, electrons and holes, as basic charge carriers. The nature of the basic charge carriers can be inferred from the chirality (left - or right) of the edge currents in the sample, given the direction of the external magnetic field. The chirality of edge currents is apparently experimentally measurable [46].

Given the Basic Result described above, the task arises to classify incompressible QH fluids by classifying pairs of odd, integral, Euclidian lattices together with orbits of visible odd vectors in the dual lattices. Clearly, the classification problems for $x=e$ and h are identical, so that we may focus e.g. on the classification of (Γ_{e}, Q_{e}) and henceforth drop the subscript e. We define a quantity, $L_{\text {max., }}$ by setting

$$
\begin{equation*}
L_{\text {max. }}:=\min _{\{\bar{\Phi}\}}\left(\max _{M=1, \cdots, N}\left(\boldsymbol{q}_{M}, \boldsymbol{q}_{M}\right)\right) \tag{1.20}
\end{equation*}
$$

where the minimum is taken over all possible bases $\left\{\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{N}\right\}$ of Γ with the property that $Q\left(q_{J}\right)=1$, for all $J=1, \cdots, N$; (such bases exist!). Physically, $L_{\text {max }}$. has the following interpretation: If a state of the QH fluid is prepared which describes two electrons excited above the groundstate of the system one may consider the minimum of the modulus of their relative angular momentum in that state. For a proper choice of the quantum numbers of the state that minimum is at least $L_{m a x .}$. From the physics of Coulomb systems it is plausible that $L_{\text {max. }}$ satisfies an absolute upper bound, e.g.

$$
\begin{equation*}
L_{\text {max. }} \leqq 9 \tag{1.21}
\end{equation*}
$$

(in units where $\hbar=1$).
The dimension, N, of the lattice Γ is the number of independent $U(1)$-edge currents of fixed chirality exhibited by the QH fluid. The discriminant, Δ, of the Gram matrix
of a basis of Γ is related to the number of distinct fractionally charged Laughlin vortices of the fluid. It is plausible that for samples with a positive density of impurities the possible values of N and Δ are bounded by finite, positive numbers (which depend on the density of impurities).

The quantities N, Δ and $L_{\text {max }}$ are invariants. Thus the problem is to classify equivalence classes of odd, integral, Euclidian lattices, Γ, and $O(\Gamma)$-orbits $[Q]$ of visible vectors $Q \in \Gamma^{*}$ satisfying condition (1.16) with the property that the values of the invariants N, Δ and $L_{m a x}$. are bounded. Pairs of such data (for $x=e, h$) then classify incompressible QH fluids and determine the possible values of the Hall conductivity σ_{H}, via eqs. (1.17) and (1.18).

This classification problem is a very difficult, but finite problem in the "geometry of natural numbers".

We shall see that the structure of the lattices Γ_{e}, Γ_{h} and of the orbits [Q_{e}] and [Q_{h}] will determine much more than the value of σ_{H}. It will determine quantum numbers of quasi-particle excitations of the type of Laughlin vortices, certain properties of the spin wave functions of electrons or holes and possible transitions, as the values of components of the magnetic field or of the electron density are varied, for a fixed value of the filling factor.

The reader may wonder why odd, integral, Euclidian lattices appear in the analysis of incompressible QH fluids. We shall see that such lattices describe the structure of all physically realizable representations of level $k=1 \mathrm{Kac}$-Moody algebras of chiral edge currents describing the boundary degrees of freedom of an incompressible QH fluid. The existence of such algebras of chiral edge currents can be derived from the electrodynamics of incompressible QH fluids by invoking a mechanism of gauge anomaly cancellation; see [11],[12].

In Sect. 2, we recall the basic facts concerning the electrodynamics of incompressible QH fluids and some features of their quantum mechanics; (see [12] for more details).

In Sect. 3, we show that the edge degrees of freedom of an incompressible QH fluid which are related to the chiral boundary currents first described by Halperin [21] are described by a quantum theory of chiral currents that exhibits an abelian gauge anomaly exactly cancelled by an abelian gauge anomaly of the bulk degrees of freedom. This mechanism of gauge anomaly cancellation leads to a concept of boundary-bulk duality which is made precise by describing the theory of conserved bulk currents, in the limiting regime of large distance scales and low frequencies (scaling limit), in terms of an abelian Chern-Simons gauge theory. The analysis of the space of physical states of the Chern-Simons theory, combined with natural assumptions on the spectrum of integrally charged quasi-particles of an incompressible QH fluid and their statistics, then leads to
a proof of the "Basic Result" described above.
In Sect. 4, we present additional details concerning boundary-bulk duality and rederive the "Basic Result" by studying the algebras of chiral edge currents describing the boundary degrees of freedom of an incompressible QH fluid and their representation theory. We identify the physical states of the Chern-Simons theory describing the bulk currents with so-called conformal blocks of the algebras of chiral edge currents and derive some consequences for QH fluids on surfaces without boundary (of interest in the analysis of numerical experiments).

In Sect. 5, we begin with the main task set for this paper, the classification of integral, odd Euclidian lattices Γ and visible vectors $\boldsymbol{Q} \in \Gamma^{*}$ describing the physics in the scaling limit of incompressible $Q H$ fluids. A pair (Γ, Q) of an integral, odd Euclidian lattice Γ and a visible vector $Q \in \Gamma^{*}$ is called a $Q H$ lattice. We discuss some basic invariants of $Q H$ lattices and their physical meaning, arithmetic congruences between these invariants and implications for the physical properties of incompressible QH fluids. Our analysis is organized in twelve short paragraphs, and the main results are summarized in seven theorems. Taking the "Basic Result" described above for granted, the material in Sects. 5 and 6 can be read without being familiar with Sects. 2, 3 and 4. We say this to eacourage theoreticians and experimentalists, who are not familiar with current algebra and Chern-Simons gauge theory to proceed directly to Sect. 5 where they will find results which they may or should find relevant.

In Sect. 6, we present a constructive approach to finding QH lattices and deriving the value of the Hall conductivity σ_{H} and the spectrum of quasi-particles (Laughlin vortices) and their quantum numbers. Our methods are fairly effective in constructing the QH lattices corresponding to "elementary" QH fluids with $\sigma_{H}<2$ which generalize the QH fluids with $\sigma_{H}=1, \frac{1}{3}, \frac{1}{5}, \cdots$. For a large class of such fluids, we present an $A D E-\mathcal{O}$ classification, where A, D and E refer to the Lie algebras $s u(n), s o(2 n+4)$, $n=2,3, \cdots, E_{6}$ and E_{7}, respectively, and O stands for one- or two-dimensional, integral, odd Euclidian lattices which have been classified by Gauss.

These results enable us to associate QH lattices with all observed plateau values of σ_{H} and predict properties of the corresponding QH fluids, including phase transitions.

Sect. 7 summarizes our results on the construction of QH lattices in the form of explicit tables.

Acknowledgements

We thank M. Berger and D. Ruelle for hospitality at I.H.E.S. during a period when many of our results were found and this paper was written. We are indebted to Louis

Michel for having explained to us many crucial aspects of the theory of integral lattices and for having guided us to some of the important literature in this area of mathematics. He and. D. Sullivan deserve our thanks for encouragement. We are grateful to Thomas Kerler and Urban Studer for sharing with us many insights and contributing important observations.

2. The electrodynamics of incompressible QH fluids

We consider a two-dimensional gas of electrons (or holes) in a uniform, external magnetic field $\vec{B}^{(0)}=\left(\vec{B}_{\|}^{(0)}, B_{\perp}^{(0)}\right)$, with $B_{\perp}^{(0)}$, the component of $\vec{B}^{(0)}$ perpendicular to the plane of the system, non-zero. In linear response theory, the connection between the electric field, $\vec{E}=\left(E_{x}, E_{y}\right)$, in the plane of the system and the electric current density \vec{i}_{c} is given by the Ohm-Hall law

$$
\begin{equation*}
\vec{E}=\rho \vec{i}_{c} \tag{2.1}
\end{equation*}
$$

where

$$
\rho=\left(\begin{array}{cc}
\rho_{x x} & -\rho_{H} \tag{2.2}\\
\rho_{H} & \rho_{y y}
\end{array}\right)
$$

is the resistivity tensor. In two dimensions,

$$
\rho_{H}=R_{H}
$$

and, for a rectangular sample with edges of length l_{x} and $l_{y}, \rho_{x x}=R_{L}\left(l_{y} / l_{x}\right)$ and $\rho_{y y}=R_{L}\left(l_{x} / l_{y}\right)$. In particular,

$$
\begin{equation*}
R_{L}=0 \quad \Leftrightarrow \quad \rho_{x z}=\rho_{y y}=0 \tag{2.3}
\end{equation*}
$$

in which case the conductivity tensor, ρ^{-1}, has the form

$$
\rho^{-1}=\left(\begin{array}{lr}
0 & \sigma_{H} \tag{2.4}\\
-\sigma_{H} & 0
\end{array}\right), \quad \text { with } \sigma_{H}=\rho_{H}^{-1}=R_{H}^{-1}
$$

in units where $\frac{e^{2}}{h}=1$.
When $R_{L}=0$ eq. (2.1) thus takes the form

$$
\begin{equation*}
i_{c}^{k}=\sigma_{H} \varepsilon^{k l} E_{l} \quad \text { (Hall law) } \tag{2.5}
\end{equation*}
$$

where z_{k} is the $k^{t h}$ component of the vector $\vec{z}=\left(z_{x}, z_{y}\right) \equiv\left(z_{1}, z_{2}\right)$, and $\varepsilon=\left(\varepsilon^{k l}\right)=$ $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$.

The conservation of electric charge is expressed, as usual, in the form of the continuity equation for charge- and current density, i.e.,

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{c}+\vec{\nabla} \cdot \overrightarrow{i_{c}}=0 \tag{2.6}
\end{equation*}
$$

where ρ_{c} is the electric charge density, and $\vec{i}_{c}=\left(i_{c}^{\pi}, i_{c}^{y}\right)$, (with $i_{c}^{z}=0$, as there is no current flowing in the direction perpendicular to the plane of the system).

Faraday's induction law for $\vec{E}=\left(E_{x}, E_{y}\right)$ and $B_{\perp}^{\text {tot., the total } z \text {-component of the }}$ magnetic field, is the equation

$$
\begin{equation*}
\frac{1}{c} \frac{\partial B_{\perp}^{t o t}}{\partial t}+\vec{\nabla} \wedge \vec{E}=0 \tag{2.7}
\end{equation*}
$$

Assuming temporarily that the spins of the electrons in the sample are frozen in the direction parallel or antiparallel to that of $\vec{B}^{(0)}$, we may ignore electron spin and treat the electrons as spinless fermions whose classical and quantum dynamics is insensitive to $\vec{B}_{\|}$and E_{\perp}. In this situation, eqs. (2.5) through (2.7) summarize the main features of the electrodynamics of QH fluids in the limit of large distance scales and small frequencies.

Combining eqs. (2.5) through (2.7), one easily finds that

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{c}=\sigma_{H} \frac{1}{c} \frac{\partial B_{\perp}^{t o t}}{\partial t} \tag{2.8}
\end{equation*}
$$

We define $i_{c}^{0}=c\left(\rho_{c}-e n\right)$ as c times the difference between the charge density ρ_{c} and the uniform background density en of the system. By B we denote the difference between the actual z-component of the magnetic field, $B_{\perp}^{\text {tot. }}$, and the z-component, $B_{\perp}^{(0)}$, of the uniform background magnetic field, $\vec{B}^{(0)}$. Then eq. (2.8) can be integrated in t to yield

$$
\begin{equation*}
i_{c}^{0}=\sigma_{H} B . \tag{2.9}
\end{equation*}
$$

Faraday's induction law implies that the electromagnetic field (\vec{E}, B) can be derived from a vector potential $A=\left(A_{0}, \vec{A}\right), \vec{A}=\left(A_{x}, A_{y}\right)$:

$$
\begin{align*}
& \vec{E}=-\vec{\nabla} A_{0}+\frac{1}{c} \frac{\partial \vec{A}}{\partial t} \\
& B=\vec{\nabla} \wedge \vec{A} \tag{2.10}
\end{align*}
$$

The vector potential A is determined by (\vec{E}, B) up to gauge transformations $A_{0} \rightarrow$ $A_{0}+\frac{1}{c} \frac{\partial x}{\partial t}, \vec{A} \rightarrow \vec{A}+\vec{\nabla} \chi$, where χ is a scalar function. Setting $i_{c}=\left(i_{c}^{0}, \overrightarrow{i_{c}}\right)$, we can summarize the Hall law (2.5) and eq. (2.9) in the equations

$$
\begin{equation*}
i_{c}^{\mu}=\sigma_{H} \varepsilon^{\mu \nu \lambda} \partial \nu A_{\lambda} \tag{2.11}
\end{equation*}
$$

or, using differential forms,

$$
\begin{equation*}
i_{c}=* \sigma_{H} d A \tag{2.12}
\end{equation*}
$$

where * denotes the Hodge *operation and d denotes exterior differentiation. Setting $J=* i_{c}$, i.e., $J_{\mu \nu}=\varepsilon_{\mu \nu \lambda} i_{c}^{\lambda},(2.12)$, becomes

$$
\begin{equation*}
J=-\sigma_{H} d A \tag{2.13}
\end{equation*}
$$

This equation can be derived from the action functional

$$
\begin{align*}
S(A) & =\frac{\sigma_{H}}{4 \pi} \int A \wedge d A-\frac{1}{2 \pi} \int A \wedge J+B . T \\
& =\frac{\sigma_{H}}{4 \pi} \int \varepsilon^{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}-\frac{1}{2 \pi} \int A_{\mu} i_{c}^{\mu} d^{3} x+B . T \tag{2.14}
\end{align*}
$$

by setting the variation of $S(A)$ with respect to A to zero, [14]. In (2.14), the integrations extend over the three-dimensional space-time, the cylinder $\Lambda=\Omega \times R$, of the system, and B.T. stands for "boundary terms", i.e., terms only depending on the vector potential A restricted to the boundary, $\partial \Omega \times \mathbb{R}$, of the space-time of the system.

Treating electrons as non-interacting, classical particles of charge $-e$, one easily finds (by equating electrostatic- and Lorentz force) that

$$
\begin{equation*}
\sigma_{H}=\frac{c e n}{B_{\perp}}=\frac{e^{2}}{h} \nu \tag{2.15}
\end{equation*}
$$

This equation is not far from what is actually observed in very pure samples, where the widths of the plateaux of σ_{H} are tiny, as long as ν is not too big. The important point is that when R_{L} is measured to vanish in some interval, I, of filling factors then σ_{H} remains constant over that interval, with a value that is some rational multiple of $\frac{e^{2}}{h}$. The classical law is followed only in so far, as $\sigma_{H}=\frac{e^{2}}{k} \frac{n_{H}}{d_{H}}$, for all ν in I, where $\frac{n_{H}}{d_{H}}$ is a rational number in the interval I. Steps towards a theoretical understanding of this remarkable "quantization" of the values of σ_{H} under the condition that R_{L} vanishes have been described in [9]-[13], and refs. given there. Some of these steps will be recalled briefly, below. But the main objective of this paper is to provide an understanding of which rational multiples of $\frac{e^{2}}{h}$ correspond to plateau values of σ_{H}, and, given a plateau value of σ_{H}, to predict the spectrum of quasi-particles found in the system and to determine their electric charge, their statistics and their spin. In trying to reach this objective we shall encounter the theory of integral quadratic forms on lattices [15],[16]. But before we can understand how this happens, we must combine the electrodynamics of QH systems, as summarized in eqs. (2.11) and (2.14), with quantum mechanics. In the remainder of this paper we shall employ units such that $e=\hbar=1$ (unless mentioned otherwise).

There are different approaches towards quantizing a two-dimensional system of electrons coupled to an external vector potential $A=\left(A_{0}, \vec{A}\right)$. One is to work with Feynman path integrals. In this approach one introduces a Grassmann algebra with generators $\psi_{s}(x), \psi_{s}(x)^{*}$, where $s= \pm \frac{1}{2}$ denotes the z-component of the electron spin and $x=(\vec{x}, t)$ is a space-time point belonging to $\boldsymbol{\Lambda}=\boldsymbol{\Omega} \times \mathbf{R}$. The action functional, $S_{\Lambda}\left(\psi^{*}, \psi ; A\right)$, is taken to be the usual action functional of non-relativistic many-body theory where the fields ψ and ψ^{*} are coupled to A in the way familiar from the Pauli equation. All this is explained in much detail e.g. in [12]; see also [17].

Let $A^{(0)}$ denote the vector potential of the uniform background electromagnetic field $\vec{E}_{\|}^{(0)}=0, B_{\perp}^{(0)}$, and let A be the vector potential of a small perturbing electromagnetic field \vec{E}, B, as in eq. (2.10). [We set the components E_{\perp} and $\vec{B}_{\|}$to zero and work in a
three-dimensional space-time, as before; see eqs. (2.5) through (2.14) ${ }^{1}$. If E_{\perp} and $\vec{B}_{\|}$ do not vanish one must interpret them as components of an $\mathrm{SU}(2)$ gauge field coupling to the spin current, as explained in [18]. We shall not repeat these matters here.] A quantity of considerable interest is the partition function

$$
\begin{equation*}
Z_{\Lambda}(A)=N_{\Lambda}\left(A+A^{(0)}\right) / N_{\Lambda}\left(A^{(0)}\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{\Lambda}(A)=\int \mathcal{D} \psi^{*} \mathcal{D} \psi \exp \left[i S_{\Lambda}\left(\psi^{*}, \psi ; A\right)\right] \tag{2.17}
\end{equation*}
$$

As long as space Ω is bounded and the density of electrons in Ω is finite, the path integral (2.17) is just a slick notation for an object that has a perfectly precise mathematical status, for a large class of physically realistic model systems including those considered in this paper, (assuming that A is e.g. uniformly bounded and smooth).

The important facts about the partition function $Z_{\Lambda}(A)$ are the following ones:
(1) As long as $x_{i} \neq x_{j}$, for $i \neq j$, (non-coinciding arguments)

$$
\begin{array}{r}
(2 \pi i)^{n} \frac{\delta^{n}}{\delta A_{\mu_{1}}\left(x_{1}\right) \cdots \delta A_{\mu_{n}}\left(x_{n}\right)} \ln Z_{\Lambda}(A) \\
=\left\langle T\left[i^{\mu_{1}}\left(x_{1}\right) \cdots i^{\mu_{n}}\left(x_{n}\right)\right]\right\rangle_{A}^{c} \tag{2.18}
\end{array}
$$

where the right side denotes the connected, time-ordered Green function of n quantum mechanical current density operators $i^{\mu_{2}}\left(x_{1}\right), \cdots, i^{\mu_{n}}\left(x_{n}\right)$ in a two-dimensional system of electrons coupled to an external vector potential $A+A^{(0)}$. [Thus $\ln Z_{\Lambda}(A)$ is the generating functional of the connected current Green functions.] In particular, defining the electric current density $i_{c}^{\mu}(x)$ at a space-time point x (as measured experimentally) as the expectation value of the quantum mechanical current density $i^{\mu}(x)$, we have that

$$
\begin{equation*}
i_{c}^{\mu}(x)=\left\langle i^{\mu}(x)\right\rangle_{A}=2 \pi i \frac{\delta}{\delta A_{\mu}(x)} \ln Z_{\Lambda}(A) \tag{2.19}
\end{equation*}
$$

The functional

$$
\begin{equation*}
S_{\Lambda}^{e f f}(A)=i \ln Z_{\Lambda}(A) \tag{2.20}
\end{equation*}
$$

is customarily called the effective action of the system. Eq. (2.19) then reads:

$$
\begin{equation*}
i_{c}^{\mu}(x)=2 \pi \frac{\delta}{\delta A_{\mu}(x)} S_{e f f}(A) \tag{2.21}
\end{equation*}
$$

The second important fact about the partition function is its gauge invariance.

[^1](2)
\[

$$
\begin{align*}
Z_{\Lambda}(A+d \chi) & =Z_{\Lambda}(A), \quad \text { or } \\
S_{\Lambda}^{e f f}(A+d \chi) & =S_{\Lambda}^{e f f}(A) \tag{2.22}
\end{align*}
$$
\]

for an arbitrary function χ on Λ. Eq. (2.22) summarizes the Ward identities for a gas of electrons. It expresses the fact that all physical quantities of such a system are invariant under gauge transformations of $A: A \rightarrow A+d \chi$ (i.e., $A_{0} \rightarrow A_{0}+\frac{1}{c} \frac{\partial x}{\partial t}, \vec{A} \rightarrow \vec{A}+\vec{\nabla} \chi$). In other words, a system of nonrealistic charged particles in a bounded region of space and at a finite density does not exhibit any gauge anomalies.

Next, we compare eq. (2.21) to eq. (2.11) - the Hall law - to find that eq. (2.21) implies (2.11) if and only if

$$
\begin{align*}
S_{\Lambda}^{\text {eff }}(A) & =\frac{\sigma_{H}}{4 \pi} \int_{\Lambda} \varepsilon^{\mu \nu \lambda} A_{\mu} \partial_{\nu} A_{\lambda}+W\left(\left.A\right|_{\partial \Lambda}\right) \\
& =\frac{\sigma_{H}}{4 \pi} \int_{\Lambda} A \wedge d A+W\left(\left.A\right|_{\partial \Lambda}\right) \tag{2.23}
\end{align*}
$$

where $W\left(\left.A\right|_{\partial \Lambda}\right)$ stands for the boundary terms, B.T., in eq. (2.14) which will be discussed in the next section.

One should ask whether the form of $S_{\Lambda}^{\text {eff }}(A)$ given in (2.23) can be derived from the microscopic quantum mechanical dynamical laws of a two-dimensional electron gas, under the condition that the longitudinal resistance R_{L} vanishes, and what an appropriate quantum mechanical reformulation of the equation $R_{L}=0$ is. This question has been studied in [18], where it has been proposed that the vanishing of \boldsymbol{R}_{L} be interpreted as certain cluster decay properties of the connected current Green functions. Then one is able to show that the term $\frac{\sigma_{\pi}}{4 \pi} \int_{\Lambda} A \wedge d A$, the so called Chern-Simons term, is the leading contribution to the effective action $S_{\Lambda}^{e f f}(A)$ in the regime of large distance scales and low frequences. Moreover, it is the only contribution to the bulk effective action which violates gauge invariance, in the form of eq. (2.22). This violation of gauge invariance essentially determines the boundary term $W\left(\left.A\right|_{\partial \Lambda}\right)$ which must cancel it exactly.

Thus, the hard analytical problem arising in the theory of the quantum Hall effect is to prove a certain kind of cluster decay properties of the connected current Green functions, for certain values of the filling factor ν. Although this problem has been studied analytically and numerically in much detail (see [19],[20] and refs. given there), it has not found a mathematically rigorous solution, so far - not even for systems where the interactions between electrons can be ignored, but with disorder, which exhibit an integer QHE.

In this paper, we study an easier and yet quite non-trivial problem: Assuming that the analytical problem just described can be solved, i.e., that it is justified to use the effective action given in (2.23) in a description of the system in the limit of large distance scales and low frequencies - in accordance with the phenomenology of the QH effect, eqs. (2.13),(2.14) - what can we say about the possible values of the coefficient σ_{H}; can we understand why it is quantized? To this question we find some surprizing answers which, incidentally, also shed some light on the analytical problem described above.

Our analysis is analogous to a group-theoretical analysis of symmetries of a quantum mechanical system, leaving the question open how one can solve its Schrödinger equation - except that in our problem we encounter Kac-Moody algebras of chiral currents, rather than ordinary groups and finite-dimensional Lie algebras. It is explained in the next section how Kac-Moody algebras arise in the study of quantum Hall systems. For details see [21],[11],[12],[13].

3. Anomaly cancellation and U(1)-current algebra

In this section, we shall first determine the form of the all-important boundary term $W\left(\left.A\right|_{\partial \Lambda}\right)$ in the effective action $S_{\Lambda}^{\text {eff }}(A)$ given in eq. (2.23). It turns out that this form is essentially determined by the gauge invariance (2.22) of the effective action. Let $\chi(x)$ be a gauge function not vanishing at the boundary $\partial \Lambda=\partial \Omega \times R$ of the space-time region to which the electron gas is confined. Then

$$
\begin{align*}
S_{\Lambda}^{e f f}(A+d \chi)= & \frac{\sigma_{H}}{4 \pi} \int_{\Lambda}(A+d \chi) \wedge d A+W\left(\left.(A+d \chi)\right|_{\partial \Lambda}\right) \\
= & S_{\Lambda}^{e f f}(A)-\frac{\sigma_{H}}{4 \pi} \int_{\partial \Lambda} d \chi \wedge A \tag{3.1}\\
& +W\left(\left.(A+d \chi)\right|_{\partial \Lambda}\right)-W\left(\left.A\right|_{\partial \Lambda}\right)
\end{align*}
$$

where we have used that $d^{2}=0$, along with Stokes' theorem. Thus

$$
\begin{equation*}
W\left(\left.(A+d \chi)\right|_{\partial \Lambda}\right)-W\left(\left.A\right|_{\partial \Lambda}\right)=\frac{\sigma_{H}}{4 \pi} \int_{\partial \Lambda} d \chi \wedge A \tag{3.2}
\end{equation*}
$$

This equation determines the general form of W, up to gauge-invariant terms. To see this, let us assume, for simplicity, that the system is confined to a region Ω of the (x, y)plane with the topology of a disk. Let L denote the length of the circumference of $\partial \Omega$. It is convenient to parametrize $\partial \Omega$ by an angle $\vartheta \in[0,2 \pi)$ and to introduce light-cone coordinates $u_{ \pm}$on $\boldsymbol{\delta \Lambda}$:

$$
\begin{equation*}
u_{ \pm}=\frac{1}{\sqrt{2}}\left(v t \pm \frac{L}{2 \pi} \vartheta\right) \tag{3.3}
\end{equation*}
$$

where v is some velocity. Interpreting the gauge field $\left.A\right|_{\partial \Lambda}$ as a one-form α, we have that

$$
\begin{equation*}
\alpha(u)=\alpha_{+}(u) d u_{+}+\alpha_{-}(u) d u_{-} \tag{3.4}
\end{equation*}
$$

In light-cone coordinates the right side of (3.2) can be written as

$$
\begin{equation*}
\frac{\sigma_{H}}{4 \pi} \int_{\partial \Lambda}\left[\alpha_{+}(u) \partial_{-} \chi(u)-\alpha_{-}(u) \partial_{+} \chi(u)\right] d^{2} u \tag{3.5}
\end{equation*}
$$

With this, the general solution of eq. (3.2) is found to be

$$
\begin{equation*}
W(\alpha)=\sigma_{e} W_{L}(\alpha)-\sigma_{h} W_{R}(\alpha)+G(\alpha) \tag{3.6}
\end{equation*}
$$

where $G(\alpha)$ is a gauge-invariant functional of α,

$$
\begin{equation*}
W_{L / R}(\alpha)=\frac{1}{4 \pi} \int_{\partial \Lambda}\left[\alpha_{+}(u) \alpha_{-}(u)-2 \alpha_{\mp}(u) \frac{\partial_{ \pm}^{2}}{\square} \alpha_{\mp}(u)\right] d^{2} u \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{H}=\sigma_{e}-\sigma_{h} . \tag{3.8}
\end{equation*}
$$

In (3.7), $\partial_{ \pm}=\delta / \partial u_{ \pm}$and $\square=2 \partial_{+} \partial_{-}$is the two-dimensional d'Alembertian in lightcone coordinates. For further details see e.g. [18].

The problem we are now confronted with is to find out what eqs. (3.6) through (3.8) tell us about the dynamics of boundary charge density waves in two-dimensional systems of electrons and holes in a transversal magnetic field. The answer is known from current algebra: $W_{L / R}(\alpha)$ is the generating functional of the connected Green functions of left moving / right moving chiral $\mathrm{U}(1)$-currents localized on $\partial \Lambda$. These currents describe charged boundary density waves of the two-dimensional electron and hole gas. The study of charged excitations in the two-dimensional electron gas is closely related to the study of the representation theory of left- and right moving $U(1)$-current algebras. We have prejudices from physics concerning the charged low-energy excitations in an incompressible QH fluid, and these prejudices select a class of representations of the $\mathrm{U}(1)$-current algebras which can be realized in such a fluid. Knowledge of this class of representations will imply knowledge of the possible values of σ_{H}.

The theory of chiral current algebras is perfectly symmetric under exchanging left movers (L) with right movers (R). We shall focus on left movers, drop the subscript L and set $u:=u_{+}$and $\sigma:=\sigma_{e}$. Let $J(u)$ be a left moving current on $\partial \Lambda$. By (3.6) and (3.7), we have that the connected two-point current Green function in the groundstate (vacuum), i.e., the second derivative of $W(\alpha)$ with respect to α_{-}, is given by

$$
\begin{equation*}
\frac{1}{4 \pi^{2}}\left\langle J(u) J\left(u^{\prime}\right)\right\rangle^{c}=\frac{1}{4 \pi^{2}} \sum_{k \in Z}\left(u-u^{\prime}+k \frac{L}{\sqrt{2}}\right)^{-2} \tag{3.9}
\end{equation*}
$$

All other connected Green functions vanish (at $\alpha=0$). We conclude that the commutator between two currents is given by

$$
\begin{equation*}
\left[J(u), J\left(u^{\prime}\right)\right]=i \sigma \delta^{\prime}\left(u-u^{\prime}\right) \tag{3.10}
\end{equation*}
$$

From these facts it follows that J is a derivative of a massless, chiral free field. The most general solution has the form

$$
\begin{equation*}
J(u)=(Q, \partial \phi(u))=Q \cdot \partial \vec{\phi}(u)=\sum_{I=1}^{N} Q_{I} \partial \phi^{I}(u) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\rightarrow}{Q}=\left(Q_{1}, \cdots, Q_{N}\right) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{\phi}(u)=\left(\phi^{1}(u), \cdots, \phi^{N}(u)\right)^{T} \tag{3.13}
\end{equation*}
$$

is an N-tuple of massless, chiral free fields, for some $N=1,2,3, \cdots$. The commutation relations of the fields $\phi^{I}(u), I=1, \cdots, N$, have the form

$$
\begin{equation*}
\left[\partial \phi^{I}(u), \partial \phi^{J}\left(u^{\prime}\right)\right]=i\left(C^{-1}\right)^{I J} \delta^{\prime}\left(u-u^{\prime}\right) \tag{3.14}
\end{equation*}
$$

for some positive-definite matrix $C=\left(C_{I J}\right)$. This matrix defines a scalar product (\cdot, \cdot) on the space \mathbb{R}^{N} of vectors ϕ and Q. Combining eqs. (3.10), (3.11) and (3.14), we find the relation

$$
\begin{equation*}
\sigma=(Q, Q)=\underset{\rightarrow}{Q} \cdot C^{-1} Q^{T}=\sum_{I, J=1}^{N} Q_{I}\left(C^{-1}\right)^{I J} Q_{J} \tag{3.15}
\end{equation*}
$$

By choosing appropriate coordinates in field space $\mathbf{R}^{\boldsymbol{N}}$ we can always transform C into the identity matrix.

The currents

$$
\begin{equation*}
J^{I}(u):=\partial \phi^{I}(u), I=1, \cdots, N \tag{3.16}
\end{equation*}
$$

generate a Kac-Moody algebra isomorphic to an \boldsymbol{N}-fold tensor product of coupled chiral $\widehat{u(1)}$-current algebras.

In a QH fluid with negligible electron-electron interactions, every filled Landau level gives rise to a separate chiral $\widehat{u(1)}$-current algebra at level 1 describing the edge currents first studied by Halperin [21]; see also [18]. The system is free of dissipative processes, with $R_{L}=0$, precisely when the density of electrons is chosen such that the extended states of an integer number, N, of Landau levels are completely filled with electrons, in the groundstate of the system. In that case there are N independent $\widehat{u(1)}$-current algebras of edge currents. Choosing the sign of $B_{\perp}^{(0)}$ appropriately, these $\widehat{u(1)}$-current algebras are generated by left-moving currents, for Landau levels filled with electrons, and right-moving currents, for Landau levels filled with holes.

For N Landau levels filled with electrons, the vector Q is given by $Q=(1, \cdots, 1)$, the total electric edge current operator, J, is given by

$$
\begin{equation*}
J(u)=\sum_{I=1}^{N} \partial \phi^{I}(u) \tag{3.17}
\end{equation*}
$$

and the matrix C is given by

$$
C_{I J}=\delta_{I J}
$$

so that

$$
\begin{equation*}
\sigma=N \tag{3.18}
\end{equation*}
$$

Formulas (3.9) through (3.16) generalize what one knows from the integral quantum Hall effect [21] to general QH fluids of interacting electrons [18].

The theory of chiral $U(1)$-currents described by formulas (3.9) - (3.16) has a Lagrangian description in terms of functional integrals. In this form, they can be coupled to external $U(1)$-vector potentials. The resulting theory exhibits a gauge anomaly given in terms of the actions W_{L} and W_{R} of eq. (3.7). Since the theories of left- and right-movers are isomorphic, we shall focus on left-movers and omit the corresponding subscripts.

Let $\underset{\rightarrow}{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{N}\right)$ be an N-tuple of $\mathrm{U}(1)$-gauge fields on the "cylinder". $\boldsymbol{\partial \Lambda}=$ $\partial \Omega \times \mathbf{R}$. We consider an action functional

$$
\begin{align*}
& I_{\partial \Lambda}(\vec{\phi}, \underset{\rightarrow}{\alpha}):=\frac{1}{4 \pi} \int_{\partial \Lambda} \partial_{-} \vec{\phi}^{T}(u) \cdot C \partial_{+} \vec{\phi}(u) d^{2} u \\
& -\frac{1}{2 \pi} \int_{\partial \mathrm{A}}\left[\underset{\rightarrow}{\alpha}(u) \cdot \partial_{+} \vec{\phi}(u)-\underset{\rightarrow}{\alpha_{+}}(u)\left(\partial_{-} \vec{\phi}-C^{-1}{\underset{\rightarrow}{\boldsymbol{\alpha}}}_{-}\right)(u)\right] d^{2} u \tag{3.19}\\
& +\frac{1}{4 \pi} \int_{\partial \Lambda} \underset{\rightarrow}{\alpha}(u) \cdot C^{-1}{\underset{\rightarrow}{\alpha}}_{+}^{T}(u) d^{2} u,
\end{align*}
$$

where $u:=\left(u_{+}, u_{-}\right)$and $C=\left(C_{I J}\right)$ is a positive-definite $N \times N$ matrix. Since the non-chiral fields $\phi^{1}, \cdots, \phi^{N}$ are coupled to external $U(1)$-gauge fields $\alpha_{1}, \cdots, \alpha_{N}$, the constraint that says that the physical degrees of freedom are described by left-moving components cannot be formulated by

$$
\begin{equation*}
\partial_{-} \vec{\phi}(u)=0, \tag{3.20}
\end{equation*}
$$

(i.e., $\overrightarrow{\boldsymbol{\phi}}(u)$ independent of u_{-}), since (3.20) is not gauge-invariant. The correct gaugeinvariant generalization of (3.20) is the equation

$$
\begin{equation*}
\partial_{-} \vec{\phi}(u)-C^{-1}{\underset{\rightarrow}{T}}^{T}(u)=0 \tag{3.21}
\end{equation*}
$$

For, under U(1)-gauge transformations, the fields $\vec{\phi}$ transform like angles,

$$
\begin{equation*}
\vec{\phi}(u) \mapsto x_{\vec{\phi}(u)}:=\vec{\phi}(u)+C^{-1} \underline{x}^{T}(u) \tag{3.22}
\end{equation*}
$$

while

$$
\begin{equation*}
\underset{\rightarrow}{\alpha}(u) \mapsto x_{\rightarrow}^{\alpha}(u):=\underset{\rightarrow}{\alpha}(u)+d \underset{\sim}{x}(u), \tag{3.23}
\end{equation*}
$$

as usual, where $\underset{\rightarrow}{\chi}=\left(\chi_{1}, \cdots, \chi_{N}\right)$ is an N-tuple of scalar functions. Thus (3.21) is gauge-invariant.

Now, one checks by quadratic completion that

$$
\begin{align*}
& \mathcal{N}^{-1} \int \mathcal{D} \vec{\phi} e^{i I_{\theta A}(\vec{\phi}, \alpha)} \stackrel{\rightarrow}{\rightarrow} \delta\left(\partial_{-} \vec{\phi}-C^{-1} \underset{\rightarrow}{T}\right) \\
& =\exp \left\{\frac{i}{4 \pi} \int_{\partial \Lambda}\left[\alpha_{+}(u) \cdot C^{-1}{\underset{\rightarrow}{\underline{T}}}^{T}(u)-2 \alpha_{-}(u) \cdot C^{-1} \frac{\partial_{+}^{2}}{\square} \underset{\rightarrow}{\alpha_{-}^{T}}(u)\right] d^{2} u\right\}, \tag{3.24}
\end{align*}
$$

where \mathcal{N} is a (divergent) normalization constant. The r.h.s. of (3.24) exhibits a $U(1)$ gauge anomaly cancelled by the one of a Chern-Simons action on $\mathbf{\Lambda}$ which depends on an N-tuple $\underset{\rightarrow}{A}$ of $U(1)$-vector potentials coupled through the matrix C^{-1}.

Next we set

$$
\begin{equation*}
\underset{\rightarrow}{\alpha}(u):=\underset{\rightarrow}{Q \alpha(u), \quad \text { with } \alpha:=\left.A\right|_{\partial \Lambda},} \tag{3.25}
\end{equation*}
$$

where A is an external electromagnetic vector potential, and Q is an N-tuple of electric charges. Furthermore, we set

$$
\begin{equation*}
\sigma:=\underset{\rightarrow}{Q} \cdot C^{-1} \underline{Q}^{T} \tag{3.26}
\end{equation*}
$$

Comparing eqs. (3.22) and (3.7), we find that

$$
\begin{gather*}
\mathcal{N}^{-1} \int \mathcal{D} \vec{\phi} e^{i I_{\theta A}(\bar{\phi}, \phi \alpha)} \delta\left(\partial_{-} \vec{\phi}-C^{-1} Q^{T} \alpha_{-}\right) \\
=\exp i \sigma W_{L}(\alpha) \tag{3.27}
\end{gather*}
$$

The r.h.s. of (3.27) exhibits a $U(1)$-anomaly which is cancelled by the $U(1)$-anomaly of

$$
\begin{equation*}
\exp i \frac{\sigma}{4 \pi} \int_{\Lambda} A \wedge d A \tag{3.28}
\end{equation*}
$$

Except for relative minus signs, the formulas for right movers ($L \rightarrow R$) are identical. For a suitable choice of the direction of the uniform external magnetic field $\vec{B}^{(0)}$, leftmoving edge currents are observed if the basic charge carriers are electrons, and rightmoving ones are observed if the charge carriers are holes. Reversing the direction of $\vec{B}^{(0)}$ exchanges left with right.

These findings are quite important. We know from [18] that the Chern-Simons term

$$
i \frac{\sigma_{H}}{4 \pi} \int_{\Lambda} A \wedge d A
$$

is the only anomalous bulk term in the effective action $S_{\Lambda}^{e f f}(A)$ of an incompressible QH fluid. Apparently, we learn from this that the degrees of freedom located near the boundary of such a fluid are described by N left-moving $U(1)$-currents with electric charges ($Q_{e 1}, \cdots Q_{e N}$) and coupled through a positive-definite matrix C_{e}, and by M right-moving $\mathrm{U}(1)$-currents with electric charges $\left(Q_{h 1}, \cdots, Q_{h M}\right)$ and coupled through a positive-definite matrix C_{h}, for certain, as yet undetermined positive integers N and M. By (3.26) - (3.28), we have that

$$
\begin{align*}
\sigma_{H} & =\sigma_{e}-\sigma_{h}, \quad \text { with } \\
\sigma_{e} & =\underset{\rightarrow}{Q_{e}} \cdot C_{e}^{-1} \underline{Q}_{e}^{T}, \sigma_{h}={\underset{\rightarrow}{h}}^{Q_{C}} \dot{C}_{h}^{-1}{\underset{\rightarrow}{h}}_{T}^{T} \tag{3.29}
\end{align*}
$$

The dynamics of the left-moving currents is described by a ($1+1$)-dimensional, anomalous Lagrangian field theory with action $I_{\partial \Lambda}(\vec{\phi}, \underset{\rightarrow}{\alpha}$) given by (3.19); (a similar field theory ($L \rightarrow R$) describes the right movers).

So far, the only constraints on the still undetermined quantities $N, M, Q_{e}, Q_{h}, C_{e}$ and C_{h} are the ones described in eq. (3.29). From the physics of incompressible $\mathbf{Q H}$ fluids we shall derive further constraints on these quantities. Again, the arguments for left- and right-overs are similar, and we focus our attention on left-movers and drop subscripts.

The gauge-invariant $\mathrm{U}(1)$-current operators

$$
\begin{equation*}
J_{\mp}^{I}(u):=\partial_{ \pm} \phi^{I}(u)-\left(C^{-1}{\underset{\rightarrow}{\alpha}}_{T}^{T}\right)^{I}(u), I=1, \cdots, N \tag{3.30}
\end{equation*}
$$

permit us to define $N \mathrm{U}(1)$-charge operators: Let $s=\frac{1}{\sqrt{2}}\left(u_{+}-u_{-}\right), t=\frac{1}{\sqrt{2 v}}\left(u_{+}+\right.$ u_{-}); see (3.3). A gauge-invariant expression for the $U(1)$-charge operators $\overrightarrow{\boldsymbol{Q}}=$ $\left(Q^{1}, \cdots, Q^{N}\right)^{T}$ at time t is given by

$$
\begin{equation*}
\vec{Q}_{t}:=\oint_{\partial \Omega} \vec{J}_{0}(s, t) d s=\frac{1}{\sqrt{2}} \oint_{\partial \Omega}\left(\vec{J}_{-}-\vec{J}_{+}\right)(s, t) d s \tag{3.31}
\end{equation*}
$$

In a Feynman path integral, like the one appearing in eq. (3.24), the fields $\vec{\phi}(s, t)$ can be chosen to be periodic in the space variable s with period L. We wish to consider a Feynman integral describing a transition of the boundary system from a state with $\mathrm{U}(1)$-charges \vec{q}_{1} at time t_{1} to a state with $\mathrm{U}(1)$-charges \vec{q}_{2} at time t_{2}. By eq. (3.31), and since the integration variables $\vec{\phi}$ are periodic in s, such a transition occurs if the external $\mathrm{U}(1)$-gauge fields $\underset{\rightarrow}{\alpha}$ are chosen as follows: $\underset{\rightarrow}{\alpha}=\underset{\rightarrow}{\alpha} d u^{+}+\underset{\rightarrow}{\alpha} d u^{-}=\underset{\rightarrow}{\alpha_{0}} d t+\underset{\rightarrow}{\alpha_{1}} d s$, and the spatial components, ${\underset{\rightarrow}{1}}^{\text {, of }} \underset{\rightarrow}{\alpha}$ are constrained to have the circulations

$$
\begin{equation*}
\oint_{\partial \Omega} \alpha_{1}\left(s, t_{l}\right) d s=-\bar{q}_{l}^{T} \cdot C \tag{3.32}
\end{equation*}
$$

If the boundary system consists of left-movers only then we must impose the chiral constraint

$$
\begin{equation*}
\partial_{-} \vec{\phi}(u)-C^{-1} \underset{\rightarrow}{\alpha_{-}^{T}}(u) \equiv 0 \tag{3.33}
\end{equation*}
$$

which, by periodicity of $\vec{\phi}$ in s, implies that $\underset{\rightarrow}{\alpha}$ - can be gauged away. Then we have that

$$
\underset{\rightarrow}{\alpha_{1}}=-\frac{1}{\sqrt{2}} \underset{\rightarrow}{\alpha_{+}}, \underset{\rightarrow}{\alpha_{0}}=\frac{1}{\sqrt{2}} \underset{\rightarrow}{\alpha_{+}}
$$

with

$$
\begin{equation*}
\oint_{\partial \Omega} \alpha_{+}\left(s, t_{l}\right) d s=\sqrt{2} q_{l}^{T} \cdot C \tag{3.34}
\end{equation*}
$$

for $l=1,2$. From (3.34), (3.33), (3.30) and (3.31) we finally obtain

$$
\begin{equation*}
\overrightarrow{\boldsymbol{Q}}_{t_{l}}=\vec{q}_{l}, \quad \text { for } l=1,2 \tag{3.35}
\end{equation*}
$$

Let us suppose that the gauge fields $\boldsymbol{\alpha}$ are the restrictions of $N \mathrm{U}(1)$-gauge fields $\underset{\rightarrow}{A}=\left(A_{1}, \cdots, A_{N}\right)$ defined on the bulk space-time $\Lambda=\Omega \times \mathbf{R}$ of the $\mathbf{Q H}$ fluid to the boundary 8Λ. Then, by Stokes' theorem,

$$
\begin{equation*}
\oint_{\partial \Omega} \underset{\rightarrow}{\alpha_{1} d s}=\int_{\Omega} d \underset{\rightarrow}{A} \equiv \underset{\sim}{n} \tag{3.36}
\end{equation*}
$$

where the $I^{\text {th }}$ component, n_{I}, of $\underset{\sim}{n}$ is the total flux of the "magnetic field" $B_{I}=d A_{I}$ through space Ω, for $I=1, \cdots, \overrightarrow{N .}$ By (3.32), $n \rightarrow n$ and the $U(1)$-charges \vec{q} are related by the equation

$$
\begin{equation*}
\vec{q}=C^{-1}{\underset{\rightarrow}{n}}^{T} \tag{3.37}
\end{equation*}
$$

We shall call the vectors $\underset{\rightarrow}{n}$ "flux vectors", while the \vec{q} 's are called "charge vectors".
The chiral theory described by the action (3.19) and the Feynman integral (3.24) can be equivalently described by a topological Chern-Simons theory on a space-time $\Lambda=\Omega \times R$. This fact is called boundary-bulk duality [18]. To understand boundarybulk duality, we introduce $N \mathrm{U}(1)$-gauge fields

$$
\begin{equation*}
\vec{b}=\left(b^{1}, \cdots, b^{N}\right)^{T} \tag{3.38}
\end{equation*}
$$

and N external vector potentials $\underset{\rightarrow}{A}=\left(A_{1}, \cdots, A_{N}\right)$ and define the Chern-Simons action

$$
\begin{equation*}
S_{\Lambda}(\vec{b}, \underset{\rightarrow}{A})=\frac{1}{4 \pi} \int_{\Lambda} \vec{b}^{T} \wedge C d \vec{b}+\frac{1}{2 \pi} \int_{\Lambda} d \underset{\rightarrow}{A} \wedge \vec{b}+B . T ., \tag{3.39}
\end{equation*}
$$

where B.T. stands for (gauge-dependent) boundary terms. We note that $S_{\Delta}(\vec{b}, \underset{\rightarrow}{A})$ is quadratic in \vec{b}. It is therefore not hard to show - modulo some subtle ties related to gauge fixing [26] - that

$$
\begin{align*}
& \left.\int e^{-i S_{\Lambda}(\vec{b}, A)} \mathcal{D} \vec{b}\right|_{g . f .} \\
& =\mathcal{N} \exp -i\left(\frac{1}{4 \pi} \int_{\Lambda} A \wedge C^{-1} d A^{T}-W_{L}\left(C ;\left.\underset{\rightarrow}{A}\right|_{\partial \Lambda}\right)\right) \tag{3.40}
\end{align*}
$$

where \mathcal{N} is a normalization factor, and

$$
\begin{equation*}
W_{L}(C ; \underset{\rightarrow}{\alpha})=\frac{1}{4 \pi} \int_{\partial \Lambda}\left[\underset{\rightarrow}{\alpha}(u) \cdot C^{-1}{\underset{\rightarrow}{T}}^{T}(u)-2 \underset{\rightarrow}{\alpha}(u) \cdot C^{-1} \frac{\partial_{+}^{2}}{\square}{\underset{\sim}{T}}^{T}(u)\right] d^{2} u \tag{3.41}
\end{equation*}
$$

and where "g.f." indicates some gauge fixing for the degrees of freedom located at $\partial \Lambda$, [26],[27]. Formally, eq. (3.40) follows from (3.39) by quadratic completion. Thus the
partition function of an incompressible QH fluid in the limit of large distance scales and low frequencies is obtained form a Chern-Simons theory for a certain number of abelian gauge fields \vec{b} coupled to external vector potentials $A=Q A$, where A is an electromagnetic vector potential. The Hall conductivity, σ, is given by $\sigma=Q \cdot C^{-1} Q^{T}$.

The gauge fields \vec{b} can be interpreted as the rector potentials of conserved currents

$$
\begin{equation*}
\vec{i}=* d \vec{b}, \tag{3.42}
\end{equation*}
$$

with

$$
\begin{equation*}
i:=\underline{Q} \cdot \vec{i} \tag{3.43}
\end{equation*}
$$

the total electric current density operator, in a description of the QH fluid valid, asymptotically, on large distance scales and at low frequencies. This has been discussed in detail in [27].

The $\mathrm{U}(1)$-charge operators associated with a current distribution $\overrightarrow{\boldsymbol{i}}$ at time \boldsymbol{t} are given by

$$
\overrightarrow{\boldsymbol{Q}}_{t}=\int_{\Omega} \vec{i}^{0}(\vec{x}, t) d^{2} x,
$$

and the electric charge operator $\mathcal{Q}_{\boldsymbol{t}}$ is given by

$$
\boldsymbol{Q}_{\boldsymbol{t}}=\underline{Q} \cdot \overrightarrow{\boldsymbol{Q}}_{\boldsymbol{t}} .
$$

The quantum-mechanical equations of motion obtained by varying the Chern-Simons action (3.39) with respect to \vec{b} are given by

$$
\begin{equation*}
d \vec{b}=C^{-1} d A^{T}, \text { or } \vec{i}=C^{-1} * \underline{F}^{T}, \tag{3.44}
\end{equation*}
$$

where $\underset{\rightarrow}{F}=\underset{\rightarrow}{A}$. Integrating these equations over all of space Ω, we obtain that

$$
\begin{equation*}
\overrightarrow{\mathscr{Q}}_{t}=C^{-1}{\underset{n}{T}, ~}_{\substack{T}} \tag{3.45}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{n}_{t}=\int_{\Omega} d A(\vec{x}, t) \tag{3.46}
\end{equation*}
$$

is the flux vector at time t.
Let us consider a state of the system with $\mathrm{U}(1)$-charges given by a charge vector $\overrightarrow{\boldsymbol{q}}$, corresponding to a vector of eigenvalues of $\overrightarrow{\mathcal{Q}}$. Then (3.45) implies that

$$
\begin{equation*}
\vec{q}=C^{-1} n^{T} . \tag{3.47}
\end{equation*}
$$

This equation coincides with (3.37), as one would expect. The electric charge of the state, (assuming that the electric charge of the groundstate is set to zero) is then given by

$$
\begin{equation*}
q_{\text {el. }}=\underset{\longrightarrow}{Q} \cdot \vec{q}=\underset{\rightarrow}{Q} C^{-1} \underline{n}^{T} \tag{3.48}
\end{equation*}
$$

In particular, if $\underset{\rightarrow}{A}=\boldsymbol{Q} A$, where A is an external electromagnetic vector potential with magnetic flux $m=\int_{\Omega} d A$, then

$$
\begin{equation*}
q_{e l .}=\sigma m, \quad \sigma=\underset{\longrightarrow}{Q} \cdot C^{-1} \underline{Q}^{T} \tag{3.49}
\end{equation*}
$$

Let us consider a state of an incompressible QH fluid describing k electrons and l holes excited from the groundstate by coupling the QH fluid to suitable external vector potentials $\underset{\rightarrow}{A}$. Suppose this state is described by a charge vector $\overrightarrow{\boldsymbol{q}}$. Then we clearly have that

$$
q_{e l .}=\underset{\rightarrow}{Q} \cdot \vec{q}=l-k .
$$

We set $A^{(0)}=\underline{Q} A^{(0)}$, where $A^{(0)}$ is a fixed background electromagnetic vector potential; see eqs. (2.16), (2.17). Then $\underset{\rightarrow}{Q A^{t o t}}={\underset{\rightarrow}{(0)}}^{(0)}$, and the vector potentials $\underset{\rightarrow}{A}$ form an additive group. Hence the flux vectors $n \rightarrow$ and, by eq. (3.47), the charge vectors \vec{q} of physical states of an incompressible QH fluid form an additive group. We denote the group of charge vectors of physical states by $\Gamma_{p h y s .}$. This group contains a lattice, denoted by Γ, of $\overrightarrow{\boldsymbol{q}}$-vectors with integer electric charge, i.e.,

$$
\begin{equation*}
\Gamma=\left\{\vec{q} \in \Gamma_{p h y s .}: q_{e l .}=\underset{\rightarrow}{Q} \cdot \vec{q} \in \mathbb{Z}\right\} \tag{3.50}
\end{equation*}
$$

Now, the physics of incompressible QH fluids motivates us to require the following

Basic Hypothesis:

(A1) An arbitrary localized cluster of quasi-particle excitations of an incompressible QH fluid of electric charge $q \in \mathbf{Z}$ can be interpreted as a physical state of the system composed of $l+q$ holes and l electrons, for some $l=0,1,2, \cdots$.
(A2). Electrons and holes satisfy Fermi statistics. Thus, a cluster of quasi-particles of electric charge $q \in \mathbb{Z}$ is

$$
\left.\begin{array}{r}
\text { a fermion if } q \text { is an odd integer; } \tag{3.51}\\
\text { a boson if } q \text { is an even integer }
\end{array}\right\}
$$

Wave functions of physical states of an incompressible QH fluid are single-valued in the positions of electrons or holes.

Fig. 1

Let us explore the consequences of hypotheses (A1), (A2). For this purpose, we consider histories of states of an incompressible QH fluid describing an excitation with charge vector \vec{q}_{1} localized in a disk D_{1} and an excitation with charge vector \vec{q}_{2} localized in a disk D_{2} disjoint from D_{1}. We suppose that D_{1} and D_{2} sweep out spacetime tubes T_{1} and T_{2}, as depicted in Fig. 1, (0), (1) and (2), above. According to eqs. (3.44) and (3.47), such histories are described by coupling the gauge fields \vec{b} to external vector potentials $A^{(m)}$, with

$$
\begin{aligned}
& \operatorname{supp} d \underset{\rightarrow}{A^{(m)}} \subseteq T_{1}^{(m)} \cup T_{2}^{(m)}, \\
& \quad \operatorname{supp} d A^{(m)}\left(t_{0}, \cdot\right) \subseteq D_{1}^{(m)} \cup D_{2}^{(m)},
\end{aligned}
$$

with

$$
\begin{equation*}
\left(d A^{(m)}\right)_{i j}=0, \quad \text { unless } i=1, j=2, \quad \text { or } i=2, j=1, \tag{3.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D_{\alpha}^{(m)}} d A^{(m) T}\left(\vec{x}, t_{0}\right)=C \vec{q}_{\alpha}, \alpha=1,2, \tag{3.53}
\end{equation*}
$$

for $m=0,1,2$, as follows from eqs. (3.46), (3.47). We let

$$
\begin{equation*}
I^{(m)}:=\left.\int e^{-i S_{\mathrm{A}}\left(\vec{b}_{,} A^{(m)}\right)} \mathcal{D} \vec{b}\right|_{g . f .} \tag{3.54}
\end{equation*}
$$

be given by (3.40), with $A^{(m)}$ as described above, for $m=0,1,2$. We consider the two ratios $I^{(1)} / I^{(0)}$ and $I^{(2)} / I^{(0)}$. In these ratios we can pass to the limit $\Omega \nearrow \mathbf{R}^{\mathbf{2}}$, $\Lambda \nearrow \mathbb{R}^{\mathbf{3}}$. Using the explicit expression on the r.h.s. of eq. (3.40), we can then calculate the limiting ratios explicitly. For $\vec{q}_{1}=\vec{q}_{2}=\vec{q}$, we find that

$$
\begin{equation*}
I^{(1)} / I^{(0)}=\exp i\left(\varphi_{1}+\varphi_{2}\right) \exp \pi i\left(\vec{q}^{T} \cdot C \vec{q}\right) \tag{3.55}
\end{equation*}
$$

where φ_{ε} is a phase only depending on $\left.\underset{\rightarrow}{A}\right|_{T_{\varepsilon}(m)}$, for $\varepsilon=1,2 ; m=0,1$. For arbitrary \vec{q}_{1} and \vec{q}_{2}, we find that

$$
\begin{equation*}
I^{(2)} / I^{(0)}=\exp i\left(\psi_{1}+\psi_{2}\right) \exp 2 \pi i\left(\vec{q}_{1}^{T} \cdot C \vec{q}_{2}\right), \tag{3.56}
\end{equation*}
$$

where ψ_{ε} is a phase only depending on $\left.\underset{\rightarrow}{A}\right|_{T_{s}^{(m)}}$, for $\varepsilon=1,2 ; m=0,2$. [For suitable choices of $\left.A\right|_{T_{e}^{(m)}}, \varepsilon=1,2, m=0,1,2$, the phases $\varphi_{1}, \varphi_{2}, \psi_{1}$ and ψ_{2} actually vanish.]

The Aharonov-Bohm phases, $\exp \pi i\left(\vec{q}^{T} \cdot C \vec{q}\right)$ and $\exp 2 \pi i\left(\vec{q}_{1}^{2} \cdot C \vec{q}_{2}\right)$, describe the statistics of the quasi-particle excitations. Thus, if $\vec{q}_{1}=\vec{q}_{\mathbf{2}}=\overrightarrow{\boldsymbol{q}}$, with $\boldsymbol{q}_{\text {el. }}=\boldsymbol{Q} \cdot \overrightarrow{\boldsymbol{q}}= \pm \mathbf{1}$, the two excitations are holes or electrons and thus satisfy Fermi statistics. Hence, by eq. (3.55), $\exp i \pi(\vec{q} \cdot C \vec{q})=-1$, i.e., $\vec{q} \cdot C \vec{q}$ is an odd integer. More generally, by hypothesis (A2), two excitations with charge vectors $\vec{q}_{1}=\vec{q}_{2}=\vec{q} \in \Gamma_{p h y s}$. are identical bosons if $\boldsymbol{q}_{\text {el. }}=\underset{\rightarrow}{\boldsymbol{Q}} \cdot \overrightarrow{\boldsymbol{q}}$ is an even integer and identical fermions if $\boldsymbol{q}_{e l}=\underset{\rightarrow}{\boldsymbol{Q}} \cdot \overrightarrow{\boldsymbol{q}}$ is an odd integer. Thus, using eq. (3.55), we conclude that if $\boldsymbol{q}_{\mathrm{el} .}=\boldsymbol{Q} \cdot \overrightarrow{\boldsymbol{q}}$ is an integer then $\overrightarrow{\boldsymbol{q}}^{\boldsymbol{T}} \cdot \boldsymbol{C} \overrightarrow{\boldsymbol{q}}$ is an integer, and the parity of $\underset{\rightarrow}{Q} \cdot \vec{q}$ equals the parity of $\overrightarrow{\vec{q}^{T}} \cdot C \vec{q}$, i.e.,

$$
\begin{equation*}
\underset{\rightarrow}{Q} \cdot \vec{q} \equiv \vec{q}^{T} \cdot C \vec{q} \quad \bmod 2 \tag{3.57}
\end{equation*}
$$

Among the quasi-particles appearing in an incompressible QH fluid there are single electron and hole. Thus

$$
\begin{equation*}
\underset{\rightarrow}{Q} \cdot \vec{q}_{1}=1, \quad \text { for some vector } \vec{q}_{1} \in \Gamma . \tag{3.58}
\end{equation*}
$$

We conclude that Γ is an integral lattice contained in \mathbf{R}^{N}, the matrix C determines an integral quadratic form, (\cdot, \cdot), on Γ, and Q is a vector with components Q in the dual, Γ^{*}, of Γ. By (3.40), (3.19) and (3.14), C is positive-definite and hence $\Gamma \overrightarrow{i s}$ a Euclidian lattice. By (3.58) and (3.57), Γ contains a vector \vec{q}_{1} such that

$$
\begin{equation*}
\underset{\rightarrow}{Q} \cdot \vec{q}_{1}=1 \text { and hence } \vec{q}_{1}^{\boldsymbol{T}} \cdot C \vec{q}_{1} \text { is odd. } \tag{3.59}
\end{equation*}
$$

Thus Γ is an odd, integral Euclidian lattice, and Q is a visible vector in the dual lattice Γ^{*}, (i.e., the open line segment from the origin of Γ^{*} to Q does not contain any points of Γ^{*}):

$$
\text { g.c.d. }\left(Q_{1}, \cdots, Q_{N}\right)=1
$$

Next, let us consider a state describing a cluster of quasi-particles with charge vector $\vec{q}_{1} \in \Gamma$ localized in a disk D_{1} and a cluster of quasi-particles with an arbitrary charge vector $\overrightarrow{\boldsymbol{q}}_{\mathbf{2}} \in \Gamma_{\boldsymbol{p h y y}}$. localized in a disk \boldsymbol{D}_{2}. If the cluster with charge vector $\overrightarrow{\boldsymbol{q}}_{1}$ makes a round trip round the cluster with charge vector \vec{q}_{2}, as depicted in Fig. 1, (2), then the state is multiplied by an Aharonov-Bohm phase factor

$$
\exp 2 \pi i \vec{q}_{1}^{T} \cdot C \vec{q}_{2},
$$

see (3.56). Since $\vec{q}_{1} \in \Gamma, Q \cdot \vec{q}_{1} \in Z$, hence the cluster of quasi-particles with charge vector \vec{q}_{1} corresponds to electrons and holes. Then hypothesis (A2) implies that

$$
\exp 2 \pi i \vec{q}_{1}^{T} \cdot C \vec{q}_{2}=1
$$

i.e.,

$$
\begin{equation*}
\vec{q}_{1}^{T} \cdot C \vec{q}_{2} \in Z, \quad \text { for all } \vec{q}_{1} \in \Gamma, \vec{q}_{2} \in \Gamma_{p h y z .} \tag{3.60}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\Gamma_{\text {phya. }} \subseteq \Gamma^{*} \tag{3.61}
\end{equation*}
$$

By (3.49), and since the quadratic form (\cdot, \cdot) is integral on Γ and $Q \in \Gamma^{*}$, it follows that

$$
\begin{equation*}
\sigma=(Q, Q)=\underset{\rightarrow}{Q} \cdot C^{-1}{\underset{\rightarrow}{ }}_{\boldsymbol{Q}} \text { is a rational number. } \tag{3.62}
\end{equation*}
$$

If an incompressible $Q H$ fluid is composed of two such fluids with the property that the basic charge carriers of one fluid are electrons while the basic charge carriers of the other one are holes then the entire story told, so far, must be repeated with ($e, L,-, \cdots$) replaced by $(h, R,+, \cdots)$. We then conclude that such a fluid is characterized, asymptotically on large distance scales and at low frequencies, by two integral, odd Euclidian lattices, Γ_{e} and Γ_{h}, integral quadratic forms, $(\cdot, \cdot)_{e}$ on Γ_{e} and $(\cdot, \cdot)_{h}$ on Γ_{h}, and visible vectors, $Q_{e} \in \Gamma_{e}^{*}$ and $Q_{h} \in \Gamma_{h}^{*}$, such that

$$
\begin{equation*}
\sigma_{H}=\sigma_{e}-\sigma_{h}, \tag{3.63}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma_{e}=\left(Q_{e}, Q_{e}\right)_{e}, \quad \sigma_{h}=\left(Q_{h}, Q_{k}\right)_{h} \tag{3.64}
\end{equation*}
$$

It follows that σ_{H} is a rational number.
Comparing these conclusions with eqs. (1.12) through (1.15), we find that we have established a first part of the "Basic Result" announced in Sect. 1.

4. A crash course on the representation theory of chiral $\widehat{u(1)}$ current algebras

In this section, we reconsider the main results of Sect. 3 from the point of view of the representation theory of chiral $\widehat{u(1)}$-current algebras.

In eqs. (3.14) and (3.16) we found that an incompressible QH fluid in a uniform background magnetic field $\vec{B}^{(0)}$, with electrons as basic charge carriers, exhibits chiral edge currents,

$$
\begin{equation*}
J^{I}(u)=\partial \phi^{I}(u), \quad I=1, \cdots, N \tag{4.1}
\end{equation*}
$$

localized near the boundary $\partial \Omega$ of the system. For an appropriate choice of the direction of $\vec{B}^{(0)}$, these currents are left movers, and $u=\frac{1}{\sqrt{2}}\left(v t+\frac{L}{2 \pi} v\right)$ is a light-cone coordinate on $\partial \Lambda=\partial \Omega \times R$; see (3.3). The commutation relations of the currents J^{I} are given by

$$
\begin{equation*}
\left[J^{I}(u), J^{L}\left(u^{\prime}\right)\right]=i\left(C^{-1}\right)^{I L} \delta^{\prime}\left(u-u^{\prime}\right) \tag{4.2}
\end{equation*}
$$

where C is a positive-definite $N \times N$ matrix; see (3.14). By choosing a suitable basis in field space, $\left(\phi^{1}, \cdots, \phi^{N}\right)$, we can always achieve that C is the identity matrix.

All unitary representations of these $\widehat{u(1)}$-current algebras can be constructed with the help of vertex operators [22,23]

$$
\begin{equation*}
V_{L}(u ; \underset{\rightarrow}{n})=: \exp i \sqrt{2} \underset{\rightarrow}{n} \cdot \vec{\phi}(u):, \underset{\rightarrow}{n} \in \mathbf{R}^{N} \tag{4.3}
\end{equation*}
$$

The vertex operators generate the operator (product) algebra

$$
\begin{equation*}
V_{L}(u ; \underset{\rightarrow}{n}) V_{L}\left(u^{\prime} ; \underset{\rightarrow}{n^{\prime}}\right) \underset{u \rightarrow u^{\prime}}{\sim}\left(u-u^{\prime}\right)^{\Delta^{\prime \prime}-\Delta-\Delta^{\prime}} V_{L}\left(u ; \underset{\rightarrow}{n}+{\underset{\sim}{n}}^{\prime}\right) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta=\frac{1}{2}(n, n) \equiv \frac{1}{2} \sum_{I, J=1}^{N} n_{I}\left(C^{-1}\right)^{I J} n_{J} \\
& \Delta^{\prime}=\frac{1}{2}\left(n^{\prime}, n^{\prime}\right), \quad \text { and } \Delta^{\prime \prime}=\frac{1}{2}\left(n+n^{\prime}, n+n^{\prime}\right) \tag{4.5}
\end{align*}
$$

While the currents $J^{I}(u)$ are periodic operator-valued distributions of the light-cone variable u with period $\frac{L}{\sqrt{2}}$, see eqs. (3.3), (3.9), the vertex operators $V_{L}(u ; \underset{\rightarrow}{n})$ are in general not periodic in u, but should be viewed as operator-valued distributions on the covering space of the circle of circumference L, i.e., on the real line. By (4.2) and (4.3), they satisfy the quadratic Weyl algebra

$$
\begin{equation*}
V_{L}(u ; \underset{\rightarrow}{n}) V_{L}\left(u^{\prime} ; \underline{n}^{\prime}\right)=e^{ \pm \pi i \theta\left(n, n^{\prime}\right)} V_{L}\left(u^{\prime} ; n^{\prime}\right) V_{L}(u ; \underset{\rightarrow}{n}), \tag{4.6}
\end{equation*}
$$

for $u \gtrless u^{\prime}$, where the phase $\theta\left(\underset{\rightarrow}{n}, \boldsymbol{n}^{\prime}\right)$ is given by

$$
\begin{equation*}
\theta\left(\underset{\rightarrow}{n}, n^{\prime}\right)=\left(n, n^{\prime}\right)=\sum_{I, J=1}^{N} n_{I}\left(C^{-1}\right)^{I J} n_{J} \tag{4.7}
\end{equation*}
$$

The $\mathrm{U}(1)$-charge operators $\overrightarrow{\mathcal{Q}}$ are given by

$$
\overrightarrow{\boldsymbol{Q}}=\left(\mathcal{Q}^{1}, \cdots, \boldsymbol{Q}^{N}\right)^{T}
$$

with

$$
\begin{equation*}
Q^{I}=\frac{1}{\sqrt{2}} \oint J^{I}(u) d u \tag{4.8}
\end{equation*}
$$

Eqs. (4.1) - (4.3) yield the commutation relations

$$
\begin{equation*}
\left[\mathcal{Q}^{I}, V_{L}(u ; \underset{\rightarrow}{n})\right]=q^{I} V_{L}(u ; \underset{\rightarrow}{n}), \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
q^{I}=\sum_{M=1}^{N}\left(C^{-1}\right)^{I M} n_{M} \tag{4.10}
\end{equation*}
$$

Let $\left\{J_{k}^{I}\right\}_{k \in Z}$ be the Fourier coefficients of $J^{I}(u)$, i.e.,

$$
\begin{equation*}
J^{I}(u)=\sum_{k \in Z} J_{k}^{I} e^{2 \pi i k \frac{\sqrt{2} x}{2}} \tag{4.11}
\end{equation*}
$$

The vacuum state $|0\rangle$ of the $\widehat{u(1)}$-current algebras is characterized by the property that

$$
\begin{equation*}
J_{k}^{I}|0\rangle=0, \quad \text { for } k=0,1,2, \cdots \tag{4.12}
\end{equation*}
$$

A dense set of states with vanishing $U(1)$-charges is obtained by acting with polynomials in the operators $J_{k}^{I}, k<0$, on the vacuum $|0\rangle$. Let ψ be such a state. Then, formally,

$$
\begin{equation*}
V_{L}(u, \underset{\rightarrow}{n}) \psi \tag{4.13}
\end{equation*}
$$

is a state ${ }^{2}$ with $U(1)$-charges $\boldsymbol{q}(\underset{\rightarrow}{n})$, where $\left.q^{I}=q^{I} \underset{\rightarrow}{n}\right)$ is given by eq. (4.10). This follows from (4.9) and the fact that $\vec{Q} \psi=0$.

Every charge vector \vec{q} of eigenvalues of $\overrightarrow{\boldsymbol{Q}}$ labels a distinct, unitary irreducible representation of the tensor product of $N \overline{u(1)}$-current algebras. The representation space is spanned by the vectors (4.13), with $\vec{q}(\underset{\sim}{n})=\vec{q}$. Thus the vertex operators $V_{L}(u ; \underline{n})$ play the role of Clebsch-Gordan operators in the representation theory of $\widehat{u(1)}$-current algebra.
${ }^{2}$ Smearing (4.13) in u with a test function, one obtains a welldefined normalizable state.

Comparing eqs. (4.9), (4.10), (4.13) with eqs. (3.24), (3.31) - (3.35), we conclude that applying a vertex operator $V_{L}(u ; \underset{\rightarrow}{n})$ to some state ψ at time 0 corresponds, in a Feynman path integral formalism, to coupling the integration variables $\vec{\phi}$ in the path integral (3.24) to external gauge fields α with the following properties: α is the restriction to the boundary of $N \mathrm{U}(1)$-gauge fields $A=\left(A_{1}, \cdots, A_{N}\right)$ on Λ that describe a vortex tube in Λ carrying fluxes $\underset{\rightarrow}{n}$ and contained in the half-space at positive time which ends, at time 0 , in a magnetic monopole with magnetic charges $\underset{\rightarrow}{n}$ located in the point $(u, 0) \in \partial \Lambda$.

Repeating the discussion at the end of Sect. 3, after eq. (3.49), we must ask which family of vertex operators $V_{L}(u ; \underline{n})$ create physical states of the algebras of chiral edge currents of an incompressible $Q H$ fluid when applied to states of charge 0 . Clearly, we want these vertex operators to generate a closed operator algebra, for the operator product specified in (4.4). Thus the charge vectors $\vec{q}=C^{-1} \boldsymbol{n}^{T}$, (see eq. (4.10)), labelling physical representations of the algebras of chiral edge currents form an additive group $\Gamma_{\text {phy.. }}$ The electric charge of a state with $U(1)$-charges \vec{q} is given by

$$
\begin{equation*}
q_{e l .}=\underset{\rightarrow}{Q} \cdot \overrightarrow{q_{1}} \tag{4.14}
\end{equation*}
$$

since, by eq. (3.11), the electric edge current density, J, is given by

$$
\begin{equation*}
J=\underset{\rightarrow}{\boldsymbol{Q}} \cdot \boldsymbol{\partial} \overrightarrow{\boldsymbol{\phi}}=\underset{\rightarrow}{\boldsymbol{Q}} \cdot \vec{J} ; \tag{4.15}
\end{equation*}
$$

see also eqs. (3.48) and (4.9), (4.10). The charge vectors \vec{q} with integer electric charge $q_{e l}=\underset{\rightarrow}{Q} \cdot \vec{q}$ form a lattice $\Gamma \subset \Gamma_{p h y \text {. }}$ Hypotheses (A1) and (A2) of Sect. 3, after eq. (3.50), can be reformulated as follows:
(A1') A vertex operator $V_{L}(u ; \underset{\rightarrow}{\boldsymbol{n}})$ with $q_{e l .}=\boldsymbol{Q} \cdot \vec{q}(\underset{\rightarrow}{\boldsymbol{n}})=\underset{\sim}{\boldsymbol{Q}} \cdot C^{-1}{\underset{\sim}{n}}^{T}=q \in \mathbb{Z}$ creates a boundary excitation of the system composed of $\vec{l}+q$ holes and l electrons, $l=0,1,2, \cdots$.
(A2') A vertex operator $V_{L}(u ; \boldsymbol{n})$ must satisfy

> Fermi statistics if $q_{e l .}=\underset{\rightarrow}{Q} \cdot \boldsymbol{q}(\underset{\rightarrow}{n})$ is an odd integer; and
> Bose statistics if $q_{e l}=\underset{\rightarrow}{Q} \cdot \boldsymbol{q}(\boldsymbol{n})$ is even.

If $\boldsymbol{q}_{\text {el }}=\underset{\rightarrow}{\boldsymbol{Q}} \cdot \overrightarrow{\boldsymbol{q}}(\underset{\rightarrow}{\boldsymbol{n}})$ is an integer and $\overrightarrow{\boldsymbol{q}}^{\prime} \equiv \boldsymbol{q}\left(\underset{\rightarrow}{\boldsymbol{n}^{\prime}}\right)$ belongs to $\Gamma_{p h y s}$ then

$$
\begin{equation*}
V_{L}(u ; \underset{\rightarrow}{n}) V_{L}\left(u^{\prime} ; \boldsymbol{n}^{\prime}\right)=\mp V_{L}\left(u^{\prime} ; \boldsymbol{n}^{\prime}\right) V_{L}(u ; \underset{\rightarrow}{n}), \tag{4.17}
\end{equation*}
$$

(independently of the sign of $u-u^{\prime}$).

Combining (A2') with the Weyl relations (4.6), we conclude, in view of (4.17), that if $\underset{\rightarrow}{Q} \cdot \vec{q}$ is an odd integer, with $\vec{q}=C^{-1}{\underset{\rightarrow}{T}}^{T}$, then $\vec{q}^{T} \cdot C \vec{q}=\underset{\rightarrow}{n} \cdot C^{-1}{\underset{n}{r}}^{T}$ is an odd integer ;
if $\underset{\rightarrow}{Q} \cdot \vec{q}$ is an even integer, with $\vec{q}=C^{-1}{\underset{\rightarrow}{\boldsymbol{n}}}^{T}$, then $\vec{q}^{T} \cdot C \vec{q}=\underset{\rightarrow}{n} \cdot C^{-1}{\underset{\sim}{n}}^{T}$ is an even integer.

Furthermore,
if $\underset{\rightarrow}{\boldsymbol{Q}} \cdot \overrightarrow{\boldsymbol{q}}$ is an integer and $\vec{q}^{\prime} \in \Gamma_{p h y s}$, then
$\vec{q}^{T} \cdot C \vec{q}^{\prime}=\underset{\rightarrow}{n} \cdot C^{-1}{\underset{n}{n}}^{T}$ is an integer,
as follows from (4.17), (4.6) and (4.7).
This, as in Sect. 3, we find that Γ is an integral, odd Euclidian lattice in \mathbb{R}^{N}, C defines a positive-definite, integral quadratic form on Γ, and $\Gamma_{p h y s}$. is a lattice contained in or equal to the lattice Γ^{*} dual to Γ.

Next, we wish to make the connection between the two descriptions (boundary-bulk duality) of an incompressible QH fluid,
(i) in terms of a topological Chern-Simons theory, and
(ii) in terms of the representation theory of $\widehat{u(1)}$-current algebras
more precise. This connection has been described in the literature, starting with [24]; see also [25],[26],[27]. A key fact concerning this connection is the following one (see [25]): In the Chern-Simons theory described in Sect. 3, (3.39) - (3.44), a physical state with $U(1)$-charges \vec{q}_{a} concentrated at points $\left(x_{a}, y_{a}\right)$ of $\Omega, a=1, \cdots, P$, is described by a conformal block [36],[37],

$$
\begin{equation*}
\left\langle\prod_{a=1}^{P} V_{L}\left(z_{a} ; n_{a}\right)\right\rangle_{\alpha(0)}, \tag{4.21}
\end{equation*}
$$

of the chiral conformal field theory introduced in (3.19), (3.21)- (3.24) which describes the representation theory of $N \widehat{u(1)}$-current algebras. Here

$$
\begin{equation*}
z_{a}=x_{a}+i y_{a} \tag{4.22}
\end{equation*}
$$

and the flux vectors ${\underset{\rightarrow}{n} \text { a }}^{\text {satisfy }}$ the equations

$$
\begin{equation*}
\underset{\rightarrow}{n_{a}}=\vec{q}_{e}^{T} C . \tag{4.23}
\end{equation*}
$$

The gauge fields $\dot{\alpha}^{(0)}$ are chosen to be the vector potentials of N uniform, neutralizing background "magnetic fields", with

$$
\begin{equation*}
\oint_{\theta \Omega} \alpha^{(0)}=\sum_{a=1}^{P} n_{a} \tag{4.24}
\end{equation*}
$$

The conformal blocks in (4.21) are given by branches of the generally multi-valued functions

$$
\begin{equation*}
\prod_{1 \leq a<b \leq P}\left(z_{a}-z_{b}\right)^{\left(q_{c}, q_{b}\right)} f_{\alpha}(0)\left(z_{1}, \bar{z}_{1}, \cdots, z_{N}, \bar{z}_{N}\right) \tag{4.25}
\end{equation*}
$$

where $f_{\alpha}(0)$ are single-valued functions on $\Omega \times P$, and $\left(q_{a}, q_{b}\right)=\vec{q}_{a}^{T} \cdot C \vec{q}_{b} ;$ see e.g. [31].
Note that the monodromy phases of the functions in (4.25) are precisely given by the phases

$$
\begin{equation*}
\exp 2 \pi i \theta\left(\underset{\rightarrow}{n_{a}}, n_{b}\right), \quad \underset{\rightarrow}{n_{a}}=\vec{q}_{a}^{T} C, \tag{4.26}
\end{equation*}
$$

where θ is given in eq. (4.7). This makes the connection between hypotheses (A2) of Sect. 3 and (A2'), above, precise.

The function in (4.25) describes the asymptotic behaviour at large distances of an amplitude describing a state of the QH fluid, where localized quasi-particle excitations of charge vectors \vec{q}_{a} are present at the points $\left(x_{a}, y_{a}\right)$ of Ω, for $a=1, \cdots, P$. By (4.25) and (4.26), the quantities

$$
\begin{equation*}
\theta\left({\underset{\rightarrow}{a}}_{n_{a}}, n_{b}\right)=\left(n_{a}, n_{b}\right)={\underset{\rightarrow}{a}}^{n_{a}} C^{-1} \underset{\rightarrow}{n_{b}^{T}} \tag{4.27}
\end{equation*}
$$

are apparently the values of the relative angular momentum of the excitations at (x_{a}, y_{a}) and at $\left(x_{b}, y_{b}\right) ; 1 \leq a, b \leq P$. If $\underset{\rightarrow}{\boldsymbol{Q}} \cdot \vec{q}_{a}=\underset{\vec{Q}}{\boldsymbol{Q}} \cdot \vec{q}_{b}=-1$ the two excitations describe two single electrons. Then the relative angular momentum between these two electrons is given by

$$
\begin{equation*}
L_{a b}=\left(\boldsymbol{n}_{a}, \boldsymbol{n}_{b}\right)=\left(\boldsymbol{q}_{a}, \boldsymbol{q}_{b}\right) . \tag{4.28}
\end{equation*}
$$

The total, orbital angular momentum of the state described by the amplitude in (4.25) is then given by

$$
\begin{equation*}
L_{\text {tot. }}=\sum_{1 \leq a<b \leq P}\left(q_{a}, q_{b}\right) \tag{4.29}
\end{equation*}
$$

We shall see later that in a tensor product of $N \widehat{u(1)}$-current algebras one can imbed, in general in many different and inequivalent ways, an su(2)-current algebra, see [37],[38]. This will enable us to describe electron spin which has been neglected, so far; see Sect. 6.

So far, we have assumed that the QH fluid is confined to a domain Ω in the (x, y)plane. The connection between states of Chern-Simons theory and conformal blocks of
massless, chiral free fields expressed in (4.21) enables us to study incompressible QH fluids on arbitrary surfaces, Σ, e.g. surfaces without boundary and of arbitrary genus. Although such systems cannot be realized in the laboratory, their study is of some interest, e.g. for purposes of numerical simulations.

A groundstate of Chern-Simons theory with an action given by (3.39) on a spacetime $\Lambda=\Sigma \times \mathbb{R}$ is given by a conformal block of the conformal field theory corresponding to (3.19), (3.21) on the surface Σ without any punctures. These conformal blocks span a linear space of dimension Δ^{g}, where g is the genus of the surface Σ, and Δ is the order of the abelian group Γ^{*} / Γ which is equal to the discriminant of the integral quadratic form on Γ given by $\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}\right)=\overrightarrow{\boldsymbol{q}}^{\boldsymbol{T}} \cdot \boldsymbol{C} \overrightarrow{\boldsymbol{q}}^{\prime}, \boldsymbol{q}, \boldsymbol{q}^{\prime} \in \Gamma$; see [29]. Thus, if $\Gamma_{p h y s}=\Gamma^{*}$ then the QH fluid on a surface Σ of genus g, described by the Chern-Simons theory (3.39), has

$$
\begin{equation*}
\Delta^{g} \text { degenerate groundstates, with } \Delta=\left|\Gamma^{*} / \Gamma\right| \tag{4.30}
\end{equation*}
$$

This result has previously been noticed in [30].
It is a widely accepted heuristic idea that conformal blocks, like those in (4.21), are likely to capture some of the main features of electronic groundstate wave functions of an incompressible $Q H$ fluid of N electrons, provided that $q_{e l}=\underset{\rightarrow}{Q} \cdot \vec{q}_{e}=\underset{\rightarrow}{Q} C^{-1} \underset{a}{\boldsymbol{n} \boldsymbol{T}}=-1$, for $a=1, \cdots, P$; see e.g. [31]. Of course, this idea does $\vec{n} 0$ logically follow from our analysis. However, for the Laughlin QH fluid at $\sigma_{H}=\frac{1}{3}$ and other simple fluids, it has been quite successful, see [28], for reasons that are not entirely understood. Taking the idea seriously and studying an incompressible QH fluid on a closed surface of genus g, one can make the following prediction of interest to people, who do numerical simulations: We consider a gas of electrons on the surface $\boldsymbol{\Sigma}$. Let Φ denote the total flux of the external magnetic field, $\vec{B}(0)$, through Σ. For simple topological reasons Φ is an integer, in unites where $\frac{h}{e}=1$. We imagine that there are N different species of electrons corresponding to charge vectors $\vec{q}^{(1)}, \cdots, \vec{q}^{(N)}$ which are a basis of the lattice Γ. Let \boldsymbol{l}_{i} be the number of electrons of type $\overrightarrow{\boldsymbol{q}}^{(i)}$ on $\boldsymbol{\Sigma}$. Let us assume that the energies of eigenstates of the quantum-mechanical Hamiltonian of the fluid which are orthogonal to all the groundstates of the system are separated from the groundstate energies by a fairly large gap, for a given value of Φ and for given l_{1}, \cdots, l_{N}. It is then tempting to imagine that a groundstate wave function of this system is described by a conformal block of the conformal field theory with an action $I_{\Sigma}(\vec{\phi}, \underset{\rightarrow}{\alpha})$ as given in eq. (3.19), where

$$
\begin{equation*}
\underset{\rightarrow}{\alpha}=\underset{\rightarrow}{Q(A+\Omega)}, \tag{4.31}
\end{equation*}
$$

where A is the vector potential whose field strength is the given external magnetic field $\vec{B}^{(0)}$, and Ω is the Levi-Civita spin connection on Σ in the representation with
conformal spin $\frac{1}{2}$, corresponding to the fact that electrons have spin $\frac{1}{2}$. By the GaussBonnet theorem, the integral of the curvature of the spin connection Ω over $\boldsymbol{\Sigma}$ is given by $1-g$. Standard neutrality conditions for the conformal blocks of the field theory with action $I_{\Sigma}(\vec{\phi}, \underset{\rightarrow}{\alpha})$, with $\underset{\rightarrow}{\alpha}$ as in (4.31), imply that

$$
\begin{equation*}
\sum_{i=1}^{N} l_{i} \vec{q}^{(i)}=C^{-1} \underset{\rightarrow}{Q^{T}}(\Phi+(1-g)) \tag{4.32}
\end{equation*}
$$

and hence, by multiplying with $\underset{\rightarrow}{\boldsymbol{Q}}$,

$$
\begin{equation*}
N_{e}=\sigma_{H}(\Phi+(1-g)), \tag{4.33}
\end{equation*}
$$

where N_{e} is the total number of electrons in the system. Eqs. (4.32) and (4.33) are necessary conditions for the groundstate wave functions of an incompressible QH fluid on a surface $\boldsymbol{\Sigma}$ to be related to conformal blocks of an associated conformal field theory. Eq. (4.33) reproduces the "shift formula" of ref. [32].

Whatever we have said about QH fluids composed of electrons applies also to QH fluids composed of holes, after exchanging " e " and " h " ("left" and "right"). In our effective description, valid on large distance scales and at low frequencies, subsystems composed of electrons and subsystems composed of holes are independent of each other.

The main result established so far is the fact that the physics of an incompressible QH fluid in the scaling limit is coded into a pair of integral, odd Euclidian lattices, Γ_{e} and Γ_{h}. The purpose of the next section is to summarize our results concerning a partial classification of such lattices and to apply these results to the analysis of incompressible QH fluids corresponding to experimentally observed plateaux.

5. General results on the classification of QH lattices

We start this section by recalling the notation already introduced in Sect. 1 and summarizing the main results of Sects. 3 and 4.

Let V be an N-dimensional, real vector space with inner product (\cdot, \cdot). Let $\left\{x_{I}\right\}_{I=1}^{N}$ be a basis of V and $\left\{\boldsymbol{\xi}^{I}\right\}_{I=1}^{N}$ the basis dual to $\left\{x_{I}\right\}_{I=1}^{N}$. A vector $v \in V$ can be represented as a column vector $\vec{v}=\left(v^{1}, \cdots, v^{N}\right)^{T}$, with $v^{I}=\left(\boldsymbol{v}, \xi^{I}\right)$, or as a row vector $\underset{\rightarrow}{v}=\left(v_{1}, \cdots, v_{N}\right)$, with $v_{I}=\left(v, x_{I}\right), I=1, \cdots, N$. Then

$$
\begin{equation*}
v=\sum_{I=1}^{N} v^{I} x_{I}=\sum_{I=1}^{N} v_{I} \xi^{I} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(v, v^{\prime}\right)=\underset{\rightarrow}{v} \cdot \vec{v}^{\prime}=\sum_{I=1}^{N} v_{I} \dot{v}^{\prime I}=\sum_{I, J} v^{I} C_{I J} v^{\prime J}=\sum_{I, J} v_{I}\left(C^{-1}\right)^{I J} v_{J}^{\prime} \tag{5.2}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{I J}=\left(x_{I}, x_{J}\right) \text { and }\left(C^{-1}\right)^{I J}=\left(\xi^{I}, \xi^{J}\right) \tag{5.3}
\end{equation*}
$$

are the matrix elements of the Gram matrices corresponding to the bases $\left\{x_{I}\right\}$ and $\left\{\boldsymbol{\xi}^{I}\right\}$.

A basis $\left\{e_{I}\right\}_{I=1}^{N}$ of V is called integral if its Gram matrix, henceforth denoted K, with matrix elements

$$
\begin{equation*}
K_{I J}=\left(e_{I}, e_{J}\right) \tag{5.4}
\end{equation*}
$$

is integral. It determines an integral lattice $\Gamma \subset V$ given by

$$
\begin{equation*}
\Gamma=\left\{q=\sum_{I} q^{I} e_{I}: q^{I} \in \mathbb{Z}, \text { for all } I\right\} \tag{5.5}
\end{equation*}
$$

Let $\left\{\varepsilon^{I}\right\}_{I=1}^{N}$ be the basis of V dual to $\left\{e_{I}\right\}_{I=1}^{N}$. Its Gram matrix is given by K^{-1}, with

$$
\left(K^{-1}\right)^{I J}=\left(\varepsilon^{I}, \varepsilon^{J}\right)
$$

It generates the dual lattice

$$
\Gamma^{*}=\left\{n=\sum n_{I} \varepsilon^{I}: n_{I} \in \mathbb{Z}, \text { for all } I\right\}
$$

A vector $v \in V$ belongs to Γ iff the components $\boldsymbol{v}^{I}=\left(v, \varepsilon^{I}\right)$ of \vec{v} are integers; it belongs to Γ^{*} iff the components $v_{I}=\left(\boldsymbol{v}, e_{I}\right)$ of $\underset{\rightarrow}{v}$ are integers.

The main results of Sects. 3 and 4 can be summarized as follows (see eqs. (3.62) - (3.64), and (4.14) - (4.20)): Asympototically, on large distance scales and at low
frequencies, an incompressible QH fluid is characterized by two integral, odd Euclidian lattices, Γ_{e} and Γ_{h}, with integral quadratic forms, $(\cdot, \cdot)_{e}$ on Γ_{e} and $(\cdot, \cdot)_{h}$ on Γ_{h}, and visible vectors $Q_{e} \in \Gamma_{e}^{*}$ and $Q_{h} \in \Gamma_{h}^{*}$, with the property that, for every vector $\boldsymbol{q} \in \Gamma_{x}$,

$$
\begin{equation*}
\left(Q_{x}, \boldsymbol{q}\right)_{x} \equiv(\boldsymbol{q}, \boldsymbol{q})_{x} \quad \bmod 2 \tag{5.6}
\end{equation*}
$$

The Hall conductivity σ_{H} is given by

$$
\sigma_{H}=\sigma_{e}-\sigma_{h},
$$

with

$$
\begin{equation*}
\sigma_{x}=\left(Q_{x}, Q_{x}\right)_{x} \tag{5.7}
\end{equation*}
$$

for $x=e, h$.
Vectors in $\Gamma_{\boldsymbol{x}}$ label multi-electron-hole configurations. Configurations of arbitrary quasi-particles are labelled by vectors in a lattice $\left(\Gamma_{x}\right)_{p h y m}$, with

$$
\begin{equation*}
\Gamma_{x} \subseteq\left(\Gamma_{x}\right)_{p h y s} \subseteq \Gamma_{x}^{*} ; \tag{5.8}
\end{equation*}
$$

see (3.50). With each vector $\boldsymbol{m} \in\left(\Gamma_{x}\right)_{p h y s}$. one can associate the electric charge of the corresponding state (normalized such that the charge of the groundstate vanishes) which is given by

$$
\begin{equation*}
q_{\text {el. }}=\left(Q_{x}, \boldsymbol{m}\right) \tag{5.9}
\end{equation*}
$$

and a statistical phase $\exp i \pi \theta_{x}(\boldsymbol{m}, \boldsymbol{m})$, with

$$
\begin{equation*}
\theta_{x}(m, m) \equiv(m, m)_{x} \quad \bmod 2 Z \tag{5.10}
\end{equation*}
$$

Our purpose is to summarize some of our main results concerning the classification of these data. Since our entire analysis is symmetric under interchange of $x=e$ with $x=h$, we shall drop the subscript x wherever possible.

Thus, let ($\Gamma, Q \in \Gamma^{*}$) be an N-dimensional "QH lattice", with $\Gamma \subseteq \Gamma^{*} \subset V \simeq \mathbf{R}^{\boldsymbol{N}}$. Linear transformations of \mathbb{R}^{N} mapping Γ onto itself form a group, denoted by $G L(N, \mathbb{Z})$, which consists of all integral $N \times N$ matrices $S=\left(S_{I J}\right)$ of determinant $\operatorname{det} S= \pm 1$. Hence two pairs, $\left(K_{1}, Q_{1}\right)$ and $\left(K_{2}, Q_{2}\right)$ of positive-definite, integral $N \times N$ matrices and visible vectors in Γ^{*} describe the same $Q H$ fluid iff

$$
\begin{equation*}
K_{1}=S^{T} K_{2} S,{\underset{\rightarrow}{Q}}_{Q_{1}}=\underset{\rightarrow}{Q_{2}} S, \text { for some } S \in G L(N, \mathbb{Z}) \tag{5.11}
\end{equation*}
$$

This will be abbreviated by writing $\left(K_{1}, Q_{1}\right) \sim\left(K_{2}, Q_{2}\right)$. The group $G L(N, \mathbb{Z})$ contains the subgroup $\mathcal{O}(\Gamma)$ of all those transformations S that preserve the quadratic form on Γ, i.e.,

$$
\begin{equation*}
S^{T} K S=K \tag{5.12}
\end{equation*}
$$

in a given basis.
Every integral, odd lattice Γ has a basis $\left\{\boldsymbol{q}_{I}\right\}_{I=1}^{N}$, called "symmetric", such that

$$
\begin{equation*}
\left(Q, q_{I}\right)=1, \text { for all } I=1, \cdots, n \tag{5.13}
\end{equation*}
$$

and hence $K_{I I}=\left(\vec{q}_{I}, \vec{q}_{I}\right)$ is odd, for all I. In the dual basis, Q has components $Q=(1, \cdots, 1)$. Furthermore, there always exists a basis $\left\{q, e_{1}, \cdots, e_{N-1}\right\}$, called "norma", such that

$$
\begin{equation*}
(Q, q)=1,\left(Q, e_{I}\right)=0, I=1, \cdots, N-1 \tag{5.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
K_{11}=(q, q) \text { is odd, } K_{I I}=\left(e_{I}, e_{I}\right) \text { is even, } \tag{5.15}
\end{equation*}
$$

for $I=1, \cdots, N-1$.
By a QH lattice we henceforth mean a pair of an integral, odd, Euclidian lattice Γ and a visible vector $Q \in \Gamma^{*}$ satisfying the parity constraint (5.6). Given a basis in Γ, a QH fluid is characterized by a pair (K, Q) of a positive-definite, integral matrix K and a row vector Q, with g.c.d. $\left(Q_{1}, \cdots, \overrightarrow{Q_{N}}\right)=1$, where Q_{I} are the components of Q in the dual basis. Our aim is now to find invariants for pairs (K, Q) that enable us to distinguish certain inequivalent QH lattices and are useful for a partial classification of QH lattices. Details of our results will appear in a separate article [40].

Among the most elementary invariants of QH lattices are the following ones:
(1) The dimension N of the lattice Γ.
(2) The oddness of Γ, (i.e., Γ is of type I, in the nomenclature of [15]; even lattices are said to be of type II and can apparently not describe QH fluids).
(3) The discriminant Δ of the quadratic form (\cdot, \cdot) on Γ. It can be defined as the determinant of the Gram matrix K associated to a given basis of Γ. By (5.11), det K is an invariant.

Note that the space Γ^{*} / Γ of cosets of Γ^{*} modulo Γ is an abelian group. Its order is denoted by $\left|\Gamma^{*} / \Gamma\right|$. It is easy to derive from (5.9) that

$$
\begin{equation*}
\Delta=\operatorname{det} K=\left|\Gamma^{*} / \Gamma\right| \tag{5.16}
\end{equation*}
$$

As pointed out in (4.30), Δ is the groundstate degeneracy of the $Q H$ fluid described by (Γ, Q) on a torus.

Lattices with $\Delta=+1$ are called unimodular, or selfdual, and appear only in the description of QH fluids with integer Hall conductivity (IQHE), while QH fluids exhibiting a fractional quantum Hall effect (FQHE) are always described by non-selfdual lattices.
(4) An invariant $L_{\text {max }}$ is defined by setting

$$
\begin{equation*}
L_{\max }=\min _{\left\{\boldsymbol{q}_{I}\right\}_{I=1}^{N}}\left(\max _{J=1, \cdots, N}\left(\boldsymbol{q}_{J}, \boldsymbol{q}_{J}\right)\right) \tag{5.17}
\end{equation*}
$$

where the minimum is taken over all symmetric bases of Γ. Let $q^{\#}$ be a basis vector for which $\left(q^{\#}, q^{\#}\right)=L_{\text {max }}$. Since $\left(\boldsymbol{q}^{\#}\right.$ is an element of a symmetric basis, it follows that $q_{e l}=\left(Q, q^{\#}\right)=1$ corresponds to a state of the $\mathbf{Q H}$ fluid, where one electron with quantum numbers $-q^{\#}$ has been created from the groundstate. By (4.28), $L_{m a x}$ is the minimum of the modulus of the angular momentum of a state describing two electrons with quantum numbers $-q^{\#}$ created from the groundstate.

Since the matrix $K=\left(K_{I J}\right)$, defined by $K_{I J}=\left(\boldsymbol{q}_{I}, \boldsymbol{q}_{J}\right)$, for a basis $\left\{\boldsymbol{q}_{I}\right\}$ minimizing $\max _{J=1, \cdots, N}\left(\boldsymbol{q}_{J}, \boldsymbol{q}_{J}\right)$, is positive-definite, Hadamard's inequality implies that

$$
\begin{equation*}
\Delta=\operatorname{det} K \leq L_{\max }^{N} \tag{5.18}
\end{equation*}
$$

In a real, incompressible QH fluid, $L_{m a z}$ satisfies a universal upper bound

$$
\begin{equation*}
L_{\max } \leq L_{*}<\infty, \tag{5.19}
\end{equation*}
$$

with $L_{*} \approx 9$. To understand this, we recall that the suppression of relative angular momenta, l, between pairs of electrons with $|\boldsymbol{l}|<L_{\text {max }}$ is due to the Coulomb repulsion between the electrons which has a finite strength. Furthermore, if $L_{\text {max }}$ were very large the electron density of the system would be so small that the formation of a Wigner lattice would lower the energy of the system. However, the formation of a Wigner lattice destroys the incompressibility of the system.

It is easy to see [40] that the bound (5.19) on $L_{\max }$ and a bound on the dimension N of the lattice Γ yield upper bounds on the numerator and denominator of the Hall conductivities σ_{H} of incompressible QH fluids. Thus, if $L_{m a x}$ and N are bounded above the possible values of the Hall conductivity of incompressible QH fluids form a finite set of rational numbers.

We should ask whether one can find a universal upper bound on the dimension N of QH lattices. Unfortunately, we do not know any method of determining an explicit bound on N. However, heuristically, it is clear that N cannot be arbitrarily large in a real QH fluid. There are two reasons for that: A real QH fluid has a finite density of impurities. These impurities tend to cause mixing between different chiral edge currents, so that the number of independently conserved edge currents - which is the dimension of the QH lattice - is limited by the strength and density of impurities. Furthermore, the specific heat of the edge degrees of freedom of an incompressible QH fluid is proportional
to the dimension N of the lattice Γ (which is equal to the central charge of the conformal field theory describing the edge currents). Thus, finiteness of the specific heat of a QH fluid implies an upper bound on the dimension N. [These issues deserve, however, a more careful analysis.]

We may now state our first general result concerning the classification of incompressible QH fluids.

Theorem 1. Consider an incompressible QH fluid described by two integral, odd Euclidian lattices, Γ_{e} and Γ_{h}, of dimensions $N^{(e)}$ and $N^{(h)}$, respectively. Assume that

$$
\begin{equation*}
N^{(e)}, N^{(h)} \leq N_{*}<\infty \tag{5.20}
\end{equation*}
$$

and that the value of the invariant $L_{\text {max }}$ satisfies the bound (5.19), for both lattices Γ_{e} and Γ_{h}.

Then the number of inequivalent pairs of lattices, Γ_{e} and Γ_{h}, satisfying (5.19) and (5.20) is finite. [It is bounded by a number, depending on L_{*} and N_{*}] Moreover, the set of values of the Hall conductivity

$$
\sigma_{H}=\sigma_{e}-\sigma_{h}
$$

is a finite set of rational numbers.
Remarks. Details of the proof of this theorem will be presented in [40]; see also [15],[16]. Unfortunately, as N_{*} and L_{*} grow somewhat large, the number of inequivalent pairs of lattices becomes unmanageably large. As long as $N \leq 8$ and $\Delta \leq 13$, a complete list of QH lattices is known for $0<\sigma_{H}<2$. Fairly exhaustive tables will be given in Sect. 7, (see also [37]).

Our bounds on the number of possible values of σ_{H} grows exponentially in N_{*}.
From now on, we focus our attention on the classification of pairs ($\Gamma_{e}, Q \in \Gamma_{e}^{*}$) of incompressible QH fluids composed of electrons, and we drop the subscript " e ".
(5) A lattice Γ is called decomposable iff

$$
\begin{equation*}
\Gamma=\Gamma_{1} \oplus \Gamma_{2} \tag{5.21}
\end{equation*}
$$

for two sublattices Γ_{1} and Γ_{2} with the property that

$$
\begin{equation*}
\left(q_{1}, q_{2}\right)=0, \text { for all } q_{1} \in \Gamma_{1} \text { and all } q_{2} \in \Gamma_{2} \tag{5.22}
\end{equation*}
$$

Otherwise, it is called indecomposable.
If Γ is decomposable then Γ^{*} is decomposable. A QH fluid is called composite iff the associated lattice Γ is decomposable. Otherwise, it is called elementary. Let
$\Gamma=\Gamma_{1} \oplus \Gamma_{2} \oplus \cdots \oplus \Gamma_{k}$ be the decomposition of a lattice Γ into indecomposable sublattices, and let $\Gamma^{*}=\Gamma_{i}^{*} \oplus \cdots \oplus \Gamma_{k}^{*}$ and $Q=Q_{k}$, with $\boldsymbol{Q}_{i} \in \Gamma_{i}^{*}$, be the corresponding decompositions of Γ^{*} and Q. If σ_{H} denotes the Hall conductivity of a composite $Q H$ fluid with lattice Γ then

$$
\begin{equation*}
\sigma_{H}=(Q, Q)=\sum_{i=1}^{k}\left(Q_{i}, Q_{i}\right)=\sum_{i=1}^{k} \sigma_{H}^{i} \tag{5.23}
\end{equation*}
$$

where σ_{H}^{i} is the Hall conductivity of the elementary QH fluid with lattice Γ_{i}.
A pair (Γ, Q) of a decomposable lattice Γ and a vector $Q \in \Gamma^{*}$ is called improper iff, in the decomposition of $Q=Q_{1}+\cdots+Q_{k}$ associated with the decomposition of $\Gamma=\Gamma_{1} \oplus \cdots \oplus \Gamma_{k}$,

$$
\begin{equation*}
Q_{i}=0, \text { for at least one } i . \tag{5.24}
\end{equation*}
$$

Obviously, an elementary $Q H$ fluid with lattice Γ_{i} and vector $\boldsymbol{Q}_{\boldsymbol{i}}=0$ has a vanishing Hall conductivity. Moreover, it does not mix with any other components of a given QH fluid. We may therefore discard improper $Q H$ lattices (Γ, Q) throughout our analysis and focus on the classification of indecomposable QH lattices.

Next, we discuss some further invariants of $Q H$ lattices (Γ, Q).
(6) In the basis of Γ^{*} dual to a given basis of Γ, the vector Q has integer components, $Q=\left(Q_{1}, \cdots, Q_{n}\right)$. The only $G L(N, Z)$-invariant associated with an integral vector $\underset{\rightarrow}{Q} \overrightarrow{\mathrm{is}}$ the greatest common divison (g.c.d.) of its components,

$$
\begin{equation*}
q=\text { g.c.d. }\left(Q_{1}, \cdots, Q_{N}\right) \tag{5.25}
\end{equation*}
$$

Geometrically, $q-1$ is the number of points in Γ^{*} on the open, straight line segment joining the origin of Γ^{*} to Q. Physically, $\pm q$ is the electric charge of the particles of which the QH fluid is composed, (in units where $e=1$). For a QH fluid composed of electrons or holes, we have that $q=1$ which is equivalent to requiring that Q be a visible vector in Γ^{*}. Since q is the only $G L(N, Z)$-invariant associated with Q, visibility of Q implies that one can always choose symmetric bases of Γ for which $Q \overrightarrow{=}(1, \cdots, 1)$ and normal bases of Γ for which $Q=(1,0, \cdots, 0)$, see eqs. (5.13)-(5.15). Given a fixed integral matrix K, the ambiguity in choosing a basis in Γ with Gram matrix K is described by the group $\mathcal{O}(\Gamma)$; see (5.12). An $\mathcal{O}(\Gamma)$-invariant associated with Q is its orbit, [Q], under $\mathcal{O}(\Gamma)$. It is an"experimental fact" about lattices of not too large dimension and not too large discriminant that the orbit [Q] of the shortest odd visible vector Q is unique, and in most cases the orbit, $[Q]$, contains only $\pm \boldsymbol{Q}$, i.e., \boldsymbol{Q} is a "face vector" in the terminology of reference [44].
(7) Let $K=\left(K_{I J}\right)$ be the Gram matrix of a basis $\left\{e_{I}\right\}_{I=1}^{N}$ of Γ, and K^{-1} the Gram matrix of the basis $\left\{\varepsilon^{I}\right\}_{I=1}^{N}$ of Γ^{*} dual to the basis $\left\{e_{I}\right\}_{I=1}^{N}$. By Kramer's rule,

$$
\begin{equation*}
K^{-1}=\Delta^{-1} \tilde{K} \tag{5.26}
\end{equation*}
$$

where $\Delta=\operatorname{det} K$ is the discriminant of the quadratic form (\cdot, \cdot) on Γ and \tilde{K} is the matrix of cofactors obtained from K; clearly \tilde{K} is a positive-definite integral matrix, and Δ is an integer, so that the matrix elements of K^{-1} are rational numbers. By eqs. (3.15) or (5.7),

$$
\begin{equation*}
\sigma_{H}=(Q, Q)=\sum_{I, J} Q_{I}\left(K^{-1}\right)^{I J} Q_{J}=\Delta^{-1} \sum_{I, J} Q_{I} \widetilde{K}^{I J} Q_{J} \tag{5.27}
\end{equation*}
$$

Clearly, the length squared, $(\boldsymbol{Q}, \boldsymbol{Q})$, of the vector \boldsymbol{Q} is an invariant of a $Q H$ lattice (Γ, \boldsymbol{Q}); (generally coarser than the orbit $[\boldsymbol{Q}]$ of \boldsymbol{Q} under $\mathcal{O}(\Gamma)$ discussed in (6)). Since Δ is an invariant of Γ,

$$
\begin{equation*}
\gamma:=\Delta(Q, Q)=\sum_{I, J} Q_{I} \tilde{K}^{I J} Q_{J} \tag{5.28}
\end{equation*}
$$

is a numerical invariant of (Γ, Q). It is a positive integer. Although $\boldsymbol{\gamma}$ is, a priori, an invariant of the pair (Γ, Q), it is actually often related to a numerical invariant of the lattice Γ alone.

Theorem 2. Let Γ be an integral, odd lattice with an odd discriminant Δ, and let \boldsymbol{Q} be an arbitrary odd vector of $\Gamma^{*}($ i.e., $(\boldsymbol{Q}, \boldsymbol{q}) \equiv(\boldsymbol{q}, \boldsymbol{q}) \bmod 2$, for arbitrary $\boldsymbol{q} \in \Gamma$). Let

$$
\gamma=\Delta(Q, Q)
$$

Then γ modulo 8 is an invariant of Γ.
The proof is an easy exercise; but see [40].
In general $\gamma=\Delta(Q, Q)$ need not be coprime to Δ. We define

$$
\begin{equation*}
l=\text { g.c.d. }(\gamma, \Delta) \tag{5.29}
\end{equation*}
$$

The integer l is called the level of a QH lattice (Γ, Q). Writing σ_{H} as a fraction of two coprime integers n_{H} and d_{H}, we have that

$$
\begin{equation*}
\gamma=\ln _{H}, \quad \Delta=l d_{H} \tag{5.30}
\end{equation*}
$$

An indecomposable QH lattice (Γ, Q) of level $\boldsymbol{l}=1$ is called a minimal QH lattice.
(8) Next, we attempt to characterize the lattice $\Gamma_{p h y .} \subseteq \Gamma^{*}$ of vectors in Γ^{*} which are quantum numbers of configurations of quasi-particles created from the groundstate
of an incompressible QH fluid described by the QH lattice (Γ, Q); see eq. (3.61) or the remark after (4.20). Obviously

$$
\begin{equation*}
\Gamma \subseteq \Gamma_{\text {phys. }} \subseteq \Gamma_{p h y s}^{*} \subseteq \Gamma^{*} \tag{5.31}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma \subseteq \Gamma_{p h y s .}^{*} \subseteq \Gamma_{p h y s .} \subseteq \Gamma^{*} \tag{5.32}
\end{equation*}
$$

The discussions of the inclusions (5.31) and (5.32) determines four abelian groups, $\Gamma_{p h y s}^{*} / \Gamma$ which is isomorphic to $\Gamma^{*} / \Gamma_{p h y s .}, \Gamma_{p h y s} / \Gamma_{p h y s .}^{*}$, and $\Gamma^{*} / \Gamma_{\text {. The orders of }}$ these groups are denoted by p, p, r and Δ, respectively. Then (5.32) implies that

$$
\begin{equation*}
\Delta=p^{2} \cdot r \tag{5.33}
\end{equation*}
$$

This simple equation limits the possible choices of $\Gamma_{\text {phys. }}$
(a) If Δ is square-free then

$$
\begin{equation*}
\text { either } \Gamma_{\text {phys. }}=\Gamma, \text { or } \Gamma_{p h y s .}=\Gamma^{*} \tag{5.34}
\end{equation*}
$$

In a system of non-interacting electrons, one obviously has that $\Gamma_{p h y s}=\Gamma$. However, in this case, $\Gamma=I_{N} \equiv \mathbb{Z}^{N}$ is selfdual. But if electrons interact with each other and σ_{H} is fractional (FQHE) then $\Gamma \neq \Gamma^{*}$, and one expects that $\Gamma_{\text {phys. }}=\Gamma^{*}$, as suggested by the analysis of the simplest fractional QH fluids, such as the Laughlin fluids [10].
(b) If $\Delta=\boldsymbol{p}^{\mathbf{2}}$ then

$$
\begin{equation*}
\text { either } \Gamma_{p h y s .}=\Gamma \text {, or } \Gamma \subset \Gamma_{p h y s .}=\Gamma_{p h y a .}^{*} \subset \Gamma^{*}, \text { or } \Gamma_{p h y s .}=\Gamma^{*} \tag{5.35}
\end{equation*}
$$

The alternative $\Gamma \subset \Gamma_{p h y s .}=\Gamma_{p h y s}^{*} \subset \Gamma^{*}$ can sometimes be excluded by showing that there are no selfdual lattices between Γ and Γ^{*}. In this case, $\Gamma_{\text {phys. }}=\Gamma^{*}$ is the alternative which is most likely realized in an actual QH fluid of interacting electrons.
(c) If $d_{H}=\frac{\Delta}{l}=p^{2} r$, for some $p=2,3, \cdots$, then if $\Gamma_{p h y s}$. properly contains Γ one can prove that there are quasi-particles of fractional electric charge satisfying Bose- or Fermi statistics (see [40]). If $\Gamma_{p h y s . /} / \Gamma$ has order p then these quasiparticles are, in fact, local relative to all other quasi-particles of the system. A QH fluid with such a spectrum of quasi-particles would be somewhat exotic, and we expect that, again, $\Gamma_{\text {phys. }}=\Gamma^{*}$.

It should be emphasized, however, that the issue of whether $\Gamma_{p h y s}$. properly contains Γ, or whether $\Gamma_{p h y s}=\Gamma^{*}$, lies beyond the scope of the present analysis and can only be decided on the basis of a detailed understanding of the quantum mechanics of incompressible QH fluids. Moreover, it is worth remembering that the Basic Hypothesis (A2) of Sect. 3 or (A2') of Sect. 4 puts non trivial constraints on the charge-statistics relation for arbitrary quasi-particle excitation in $\Gamma_{p h y s}$. As a consequence, it is not always possible to set $\Gamma_{\text {phys. }}=\Gamma^{*}$ in the general case of non minimal QH lattices. We will not pursue here those issues, referring the interested reader to [40] for further details.
(9) Let us now assume that we consider a QH fluid described by a QH lattice (Γ, Q) and with $\Gamma_{p h y s}=\Gamma^{*}$. A quantity of considerable theoretical and experimental interest is the smallest, non-zero, fractional electric charge of a quasi-particle appearing in this system. We define

$$
\begin{equation*}
q^{*}=\min _{n \in \Gamma^{*},(\boldsymbol{Q}, \boldsymbol{n}) \neq 0}|(\boldsymbol{Q}, \boldsymbol{n})| \tag{5.36}
\end{equation*}
$$

Let $\boldsymbol{n}=\overrightarrow{\boldsymbol{q}}^{\boldsymbol{T}} K$ be the flux vector corresponding to a charge vector $\overrightarrow{\boldsymbol{q}}$ of a quasi-particle $n \in \vec{\Gamma}^{*}\left(\underset{\rightarrow}{n}\right.$ gives the components of \boldsymbol{n} in the basis of $\left.\Gamma^{*}\right)$. Since

$$
\begin{equation*}
q_{e l}=(Q, n)=\underset{\rightarrow}{Q} \cdot \vec{q}=\underset{\rightarrow}{Q} K^{-1} \underset{\rightarrow}{n^{T}}=\Delta^{-1} \underset{\rightarrow}{Q} \tilde{K} \underset{\rightarrow}{n^{T}}, \tag{5.37}
\end{equation*}
$$

and $\underset{\rightarrow}{Q} \tilde{K}_{\boldsymbol{n}}{ }^{T}$ is an integer, for arbitrary $\underset{\rightarrow}{n}, q^{*}$ is an integer multiple of Δ^{-1}. In general q^{*} is not equal to Δ^{-1}, and we may define an invariant, g, of (Γ, Q) by setting

$$
\begin{equation*}
q^{*}=g \Delta^{-1} \tag{5.38}
\end{equation*}
$$

By (5.37),

$$
\begin{equation*}
\left.g=\text { g.c.d. }\left((\underset{\rightarrow}{Q} \tilde{K})_{1}, \cdots, \underset{\rightarrow}{(Q \tilde{K}}\right)_{N}\right) \tag{5.39}
\end{equation*}
$$

where $(Q \widetilde{K})_{i}$ is the $i^{\text {th }}$ component of $Q \widetilde{K}$. Since $Q \widetilde{K} K=\Delta Q$, where Q is visible, and since $\vec{K} \overrightarrow{\text { is an }}$ integral matrix, it follows that g divides Δ. The invariant $\boldsymbol{\gamma}$ is given by $\gamma=Q \widetilde{K} Q^{T}$, see (5.28). By (5.39), g thus divides γ. Hence g divides the g.c.d. of γ and $\vec{\Delta}$ which is the level l of the QH lattice. This allows us to define an integer λ, the "charge parameter" of the QH lattice by setting

$$
\begin{equation*}
\lambda=\frac{l}{g}=\frac{\text { g.c.d. }(\gamma, \Delta)}{\text { g.c.d. }(\mathbb{Q} \widetilde{K})} \tag{5.40}
\end{equation*}
$$

The invariant λ determines the value of the smallest, non-zero fractional electric charge q^{*} in terms of the denominator, d_{H}, of the Hall conductivity σ_{H} :

$$
\begin{equation*}
q^{*}=\frac{1}{\lambda d_{H}}, \tag{5.41}
\end{equation*}
$$

since $q^{*}=g \Delta^{-1}=g l^{-1} d_{H}^{-1}=\lambda^{-1} d_{H}^{-1}$, by (5.38) and (5.40).
The numerical invariants of QH lattices found so far can be arranged in the form of a symbol

$$
\begin{equation*}
N\left(\frac{n_{H}}{d_{H}}\right)_{\lambda}^{g}, \tag{5.42}
\end{equation*}
$$

with $l=g \cdot \lambda$ (the level), $\Delta=l d_{H}=\left|\Gamma^{*} / \Gamma\right|, \gamma=\ln _{H}$, and $\sigma_{H}=\frac{n_{H}}{d_{H}}$. For minimal QH lattices, $l=1$ and hence $\lambda=g=1$ and $\Delta=d_{H}$.
(10) Next, we define a more subtle invariant of $Q H$ lattices (Γ, Q) related to their spectrum of Laughlin vortices and their statistical phases: the genus of a lattice Γ (see e.g., [15],[16]). The abelian group Γ^{*} / Γ is determined by N positive integers d_{1}, \cdots, d_{N}, some of which may be equal to 1 . They have the properties that

$$
\begin{align*}
& d_{i} \text { divides } d_{i+1}, \text { and } \\
& \Delta=\operatorname{det} K=d_{1} d_{2} \cdots d_{N} \tag{5.43}
\end{align*}
$$

Geometrically, there is a basis $\left\{r_{I}\right\}_{I=1}^{N}$ of Γ such that $\left\{d_{I}^{-1} r_{I}\right\}_{I=1}^{N}$ is a basis of Γ^{*}. Thus the group Γ^{*} / Γ has the following factorization into cyclic subgroups $\mathbf{Z}_{\boldsymbol{d}_{I}}$:

$$
\begin{equation*}
\Gamma^{*} / \Gamma \simeq \mathbf{Z}_{d_{1}} \times \cdots \times \mathbf{Z}_{d_{N}} . \tag{5.44}
\end{equation*}
$$

The physical interpretation of (5.44) is that if $\Gamma_{p h y s}=\Gamma^{*}$ then the number of factors in (5.44) for which $d_{I}>1$ is the number of different elementary quasi-particles, or Laughlin vortices, of the QH fluid.

QH lattices always involve an odd lattice Γ. Thus all vectors $\boldsymbol{n}+\Gamma$ of Γ^{*} / Γ have the same length $(\boldsymbol{n}, \boldsymbol{n}) \bmod \mathbb{Z}$:

$$
\begin{aligned}
(\boldsymbol{n}+\boldsymbol{q}, \boldsymbol{n}+\boldsymbol{q}) & =(\boldsymbol{n}, \boldsymbol{n})+2(\boldsymbol{n}, \boldsymbol{q})+(\boldsymbol{q}, \boldsymbol{q}) \\
& \equiv(\boldsymbol{n}, \boldsymbol{n}) \bmod \mathbf{Z}
\end{aligned}
$$

for all $\boldsymbol{q} \in \Gamma$. Hence (\cdot, \cdot) defines a quadratic form \boldsymbol{v} on Γ^{*} / Γ with values in \mathbb{Q} mod \mathbb{Z}. By (5.6), the squares of the statistical phases $\exp i \pi \theta(n, n)$, i.e., the monodromies, associated with vectors $n \in \Gamma^{*}$ uniquely fix the quadratic form $\boldsymbol{\vartheta}$ on Γ^{*} / Γ, and conversely.

Definition of the genus of a lattice. Two lattices, Γ_{1} and Γ_{2}, have the same genus iff they have the same dimension, the same parity (or type), and there is an isomorphism between $\Gamma_{1}^{*} / \Gamma_{1}$ and $\Gamma_{2}^{*} / \Gamma_{2}$ which preserves the quadratic form ϑ, (i.e., the monodromy phases of the vectors in Γ^{*}).

Transcribed in physical jargon, two odd lattices Γ_{1} and Γ_{2} with equal dimension have the same genus iff they have isomorphic families of Laughlin vortices with identical monodromy phases exp $i 2 \pi \theta$.

It should be emphasized that, in general, there can be several inequivalent lattices in the same genus. In fact, the number of equivalence classes in a given genus tends to ∞, as $N \rightarrow \infty$, [16]. For fairly small values of N (e.g. $N \leq 7$) and of Δ (e.g. $\Delta \leq 25$), the situation is, however, much less discouraging than suggested by this general result, so that the genus is a very useful invariant for the classification of QH lattices which has a fairly direct physical interpretation.
(11) In the following, we summarize some interesting congruences between the various invariants of $Q H$ lattices discussed so far. Proofs of our results will appear in [40]. A first example of such a congruence is the one stated in Theorem 2, i.e., if (Γ, Q_{1}) and $\left(\Gamma, Q_{2}\right)$ are two $Q H$ lattices with the same Γ then

$$
\begin{equation*}
\gamma_{1}=\Delta\left(Q_{1}, Q_{1}\right) \equiv \Delta\left(Q_{2}, Q_{2}\right)=\gamma_{2} \bmod 8 \tag{5.45}
\end{equation*}
$$

A second example is
Theorem 3. Let (Γ, Q) be a $Q H$ lattice, and assume that Δ and $\gamma=\Delta(Q, Q)$ are odd integers.

Then the dimension N of Γ is odd, and

$$
\begin{equation*}
\gamma \equiv N \bmod 4 \tag{5.46}
\end{equation*}
$$

Eq. (5.46) generalizes the equation $\sigma_{H}=\gamma=N$ valid in QH fluids of noninteracting electrons. For minimal QH lattices (i.e., $l=1$), Theorem 3 can be sharpened.

Theorem 4. Let (Γ, Q) be a minimal $Q H$ lattice, (so that $\left.\gamma=n_{H}, \Delta=d_{H}\right)$. Then
(a) d_{H} is odd, and $\Gamma^{*} / \Gamma \simeq \mathbf{Z}_{d_{H}}$;
(b) if n_{H} is even then the dimension N is even;
(c) if n_{H} is odd then N is odd, and $n_{H} \equiv N \bmod 4$.

Theorem 5. If (Γ, Q) is a $Q H$ lattice with an even charge parameter λ then the invariant $g=\frac{l}{\lambda}$ is even, too, if either d_{H} is even and n_{H} is odd, or d_{H} is odd and n_{H} is even. If $\lambda=g=2$ then

$$
\begin{equation*}
\Gamma^{*} / \Gamma \simeq \mathbb{Z}_{4 d_{\mathbf{E}}} . \tag{5.47}
\end{equation*}
$$

Proofs of these results will appear in [40].

As indicated in part (a) of Theorem 4, there are apparently no minimal QH lattices corresponding to a Hall conductivity $\sigma_{H}=\frac{n_{H}}{d_{H}}$, with an even denominator. Since this is a fundamental result for the analysis of plateaux at $\sigma_{H}=\frac{1}{2}$, observed in double layer systems [5], we state it in a separate theorem.

Theorem 6. The charge parameter λ of a $Q H$ lattice (Γ, Q) of arbitrary dimension N, corresponding to a Hall conductivity $\sigma_{H}=(Q, Q)=\frac{n_{H}}{d_{H}}$ with an even denominator d_{H}, is even.

By Theorem 5, we have that the invariant g defined in (5.39) is then even, as well, and hence, by (5.40), the level l of such a QH lattice is a multiple of 4. Thus there are no minimal $(l=1)$ QH lattices with even denominator d_{H}. However, in view of Theorems 5 and 6, there are still some distinguished QH lattices (Γ, Q) corresponding to a Hall conductivity σ_{H} with an even denominator, namely those with level $\boldsymbol{l}=\boldsymbol{\lambda} \boldsymbol{g}$ is 4, i.e.,

$$
\begin{equation*}
\lambda=g=2 \tag{5.48}
\end{equation*}
$$

In this case, eq. (5.47) implies that $\Gamma^{*} / \Gamma \simeq \mathbb{Z}_{\mathbf{4 d}_{H}}$.
These results have the following interesting consequences: If (Γ, Q) is a $Q H$ lattice corresponding to a Hall conductivity $\sigma_{H}=\frac{n_{H}}{d_{H}}$ with even denominator d_{H}, and if $\Gamma_{p h y s .}=\Gamma^{*}$, then there are quasi-particles of electric charge $q^{*}=\frac{1}{\lambda d_{\bar{B}}} \quad$ (see (5.4)), where λ is even. In particular, for $\sigma_{H}=\frac{1}{2}$ or $\sigma_{H}=\frac{5}{2}$, one predicts the existence of quasi-particles of charge $\pm \frac{e}{4}$, where e is the elementary electric charge. This theoretical prediction could be tested experimentally.

We recall that one of the basic physical hypotheses on which our analysis of incompressible QH fluids is based is that a configuration of quasi-particles described by $q \in \Gamma$ with odd electric charge is a fermion, while if the electric charge is even it is a boson. This expresses a relation between electric charge and statistics. It is natural to ask whether there is such a relation between charge and statistics for configurations corresponding to arbitrary vectors $n \in \Gamma^{*}$. In the following, we answer this question in the affirmative for minimal QH lattices with an odd denominator d_{H}.
(12) A charge-statistics theorem. The purpose of this paragraph is to show that, for any minimal QH lattice (Γ, Q) corresponding to a Hall conductivity $\sigma_{H}=\frac{n_{H}}{d_{H}}$ with an odd denominator d_{H}, the statistical phase $\theta(n, n)$ - see eq. (5.6) - of an arbitrary vector $n \in \Gamma^{*}$ is fixed by its electric charge $q_{e l}=(Q, n)$. This is a theorem on the connection between charge and statistics. We shall see that this connection is fixed by σ_{H} alone. This is due to the fact that the genus (see paragraph (10)) of a minimal QH lattice with odd d_{H} is fixed by σ_{H}.

Special cases of our general theorm have been noticed before. It is well known that there is a charge-statistics connection for the Laughlin fluids corresponding to $\sigma_{H}=\frac{1}{d_{H}}$, with \boldsymbol{d}_{H} odd. For certain hierarchy QH fluids, a charge-statistics connection has been found by Block and Wen [41].

Our first observation is that, for a minimal $Q H$ lattice (Γ, Q) with an odd d_{H},

$$
\begin{equation*}
\Gamma^{*} / \Gamma \simeq \mathbb{Z}_{d_{F}} \tag{5.49}
\end{equation*}
$$

(i.e., $d_{1}=\cdots=d_{N-1}=1, d_{N}=d_{H}$, in eqs. (5.43), (5.44)). A generator of Γ^{*} / Γ is the vector \boldsymbol{Q}. For, the multiples $r \boldsymbol{Q}, r=0,1,2, \cdots$, of \boldsymbol{Q} form a subgroup of Γ^{*} / Γ, whose order we denote by r_{*}. Hence $r_{*} Q_{\mathcal{E}} \in \Gamma$, and therefore

$$
\left(r_{*} Q, n\right)=r_{*} Q K^{-1}{\underset{\rightarrow}{n}}^{T}=\frac{r_{*}}{d_{H}} \underset{\rightarrow}{Q} \underset{K}{n^{T}} \in \mathbb{Z}
$$

for arbitrary $n \in \Gamma^{*}$. Since the invariant $g=1$, for a minimal $Q H$ lattice, $\frac{r_{*}}{d_{I}}$ must be an integer. Hence $r_{*}=d_{H}$, and $\Gamma^{*} / \Gamma=\{r Q\}_{r=0}^{d_{F}-1} \simeq \mathbb{Z}_{d_{H}}$ (this proves part of Theorem 4.a). In this situation, $n_{H}=d_{H}(Q, Q) \overrightarrow{\text { fixes the genus of the lattice } \Gamma \text {, i.e., it fixes }}$ the quadratic form $\vartheta(n) \equiv(n, n) \bmod \mathbb{Z}, \boldsymbol{n} \in \Gamma^{*}$, introduced in paragraph (10). For, thanks to (5.49), every $\underset{\rightarrow}{n} \in \Gamma^{*}$ can be written as $n=r Q+q, q \in \Gamma$. Then

$$
\begin{equation*}
\vartheta(r Q+\Gamma)=r^{2}(Q, Q)=r^{2} \frac{n_{H}}{d_{H}} \bmod \mathbb{Z} \tag{5.50}
\end{equation*}
$$

This shows that ϑ is fixed by the quadratic class of n_{H} modulo d_{H}, which thus fixes the genus of Γ. In particular, the monodromy phases, $\exp 2 i \pi \theta(n, n)$, of all vectors $\boldsymbol{n} \in \Gamma^{*}$ are fixed by r, which is fixed by the electric charge of $n \bmod \mathbb{Z}$, and by n_{H} and d_{H}. We would like to show that, not only the monodromy phases, but the statistical phases, or half-monodromies, expinθ, are fixed by the electric charges. The key idea, here, is to use the parity constraint

$$
\begin{equation*}
(Q, q) \equiv(q, q) \bmod 2, \text { for all } q \in \Gamma \tag{5.51}
\end{equation*}
$$

see (5.6). Thus for $\boldsymbol{n}=r \boldsymbol{q}+\boldsymbol{q}, \boldsymbol{q} \in \Gamma$, the statistical phase is

$$
\begin{align*}
\frac{\mu(n)}{d_{H}} & :=\theta(n, \boldsymbol{n})=(n, n) \equiv r^{2}(Q, Q)+(q, q) \bmod 2 \\
& \equiv r^{2}(Q, Q)+(Q, q) \bmod 2 \tag{5.52}
\end{align*}
$$

while the electric charge is

$$
\begin{equation*}
\frac{\varepsilon(n)}{d_{H}}=(Q, n)=r(Q, Q)+(Q, q) \tag{5.53}
\end{equation*}
$$

and hence

$$
\left.\begin{array}{l}
\mu(n) \equiv r^{2} n_{H}+d_{H}(Q, q) \bmod 2 d_{H}, \tag{5.54}\\
\varepsilon(n)=r n_{H}+d_{H}(Q, q) .
\end{array}\right\}
$$

Now, if $\boldsymbol{n}_{\boldsymbol{H}}$ is odd

$$
\begin{equation*}
n_{H} \mu(n)=\varepsilon(n)^{2} \bmod 2 d_{H} \tag{5.55}
\end{equation*}
$$

and since g.c.d. $\left(n_{H}, 2 d_{H}\right)=1, n_{H}$ is invertible modulo $2 d_{H}$. Its inverse $\bmod 2 d_{H}$ is denoted by $\left(n_{H}\right)^{-1}$. Then eq. (5.55) implies

Theorem 7. (Charge-statistics connection)

$$
q_{e l .}(n)=(Q, n)=\frac{c(n)}{d_{\#}} \Rightarrow \theta(n, n) \equiv\left(n_{H}\right)^{-1} \frac{\varepsilon(n)^{2}}{d_{耳}} \bmod 2
$$

which is the desired connection between charge and statistics, provided n_{H} is odd. If n_{H} is even then it is not invertible $\bmod 2 d_{H}$, anymore. Defining

$$
\begin{equation*}
\left(n_{H}\right)^{-1}:=2\left(2 n_{H}\right)^{-1}+d_{H} \tag{5.57}
\end{equation*}
$$

where $\left(2 n_{H}\right)^{-1}$ is the inverse of $2 n_{H}$ modulo d_{H}, we find that the charge-statistics connection (5.56) still holds; see [40].

If (Γ, Q) is a minimal QH lattice with an even denominator d_{H}, and hence $\lambda=$ $g=2$, it is tempting to think that charge and spin of a vector $\boldsymbol{n} \in \Gamma^{*}$ determine its statistical phase. (We realize that we have not defined the "spin" of vectors in Γ^{*}; but see [40]). For non-minimal QH lattices, the electric charge does, in general, not determine the statistical phase (except for vectors in Γ). For more details, see [40].

This completes our survey of general results on the classification of QH lattices. It should be remarked that a complete classification of one- and two-dimensional QH lattices, based on results of Gauss, is known, and that the classification of three-dimensional QH lattices with small $L_{\text {max }}$ is possible; (see [37],[40]).

6. The ADE-O classification of QH lattices

In this section we complement the general results discussed in Sect. 5 by presenting a more constructive analysis of QH lattices.

An N-dimensional, integral Euclidian lattice Γ contains a distinguished ($N-k$)dimensional sublattice, Γ_{w}, the socalled Witt sublattice, $(k=0,1, \cdots, N)$,

$$
\begin{equation*}
\Gamma_{W} \oplus \mathcal{O}_{k} \subseteq \Gamma \tag{6.1}
\end{equation*}
$$

Γ_{W} is defined to be the sublattice of Γ generated by all vectors of length squared 1 and 2. One shows that

$$
\begin{equation*}
\Gamma_{w}=\Gamma_{\text {root }} \oplus I_{l} \tag{6.2}
\end{equation*}
$$

where I_{l} is an l-dimensional, simple hypercubic lattice generated by l orthonormal basis vectors of length 1 , and $\Gamma_{\text {root }}$ is a direct sum of root lattices of the Lie algebras $A_{m-1}=$ $s u(m), D_{m+2}=s o(2 m+4), m=2,3, \cdots, E_{6}, E_{7}$ and E_{8}.

Since Γ is integral, it also contains a maximal sublattice $\mathcal{O}_{\boldsymbol{k}}$ of dimension

$$
\begin{equation*}
k=N-\operatorname{dim} \Gamma_{W} \tag{6.3}
\end{equation*}
$$

generated by vectors of length squared $3,4, \ldots$ and orthogonal to Γ_{W}. Thus we have the inclusions

$$
\begin{equation*}
\Gamma_{W} \oplus \mathcal{O}_{k} \subseteq \Gamma \subseteq \Gamma^{*} \subseteq \Gamma_{W}^{*} \oplus \mathcal{O}_{k}^{*} \tag{6.4}
\end{equation*}
$$

The sublattice $\Gamma_{W} \oplus \mathcal{O}_{k}$ is called the Kneser shape of Γ, [15]. The Witt sublattice Γ_{W} can be further decomposed:

$$
\begin{equation*}
\Gamma_{W}=\Gamma_{e d} \oplus \stackrel{\circ}{\Gamma}_{W} \tag{6.5}
\end{equation*}
$$

where $\Gamma_{s d}$ is the direct sum of I_{l} and of all the E_{B} root lattices contained in Γ_{W}. Clearly $\Gamma_{s d}=\Gamma_{s d}^{*}$ is selfdual.

Thus (6.4) can be sharpened by writing

$$
\begin{equation*}
\Gamma_{s d} \oplus \stackrel{\circ}{\Gamma}_{W} \oplus \mathcal{O}_{k} \subseteq \Gamma \subseteq \Gamma^{*} \subseteq \Gamma_{s d} \oplus \stackrel{\circ}{\Gamma}_{W}^{*} \oplus \mathcal{O}_{k}^{*} \tag{6.6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Gamma=\Gamma_{s d} \oplus \stackrel{\circ}{\Gamma} \subseteq \Gamma_{s d} \oplus \stackrel{\circ}{\Gamma}^{*}=\Gamma^{*} \tag{6.7}
\end{equation*}
$$

If (Γ, Q) is a $Q H$ lattice then, by (6.7), the corresponding $Q H$ fluid is composite: In accordance with (6.7),

$$
\boldsymbol{Q}=\boldsymbol{Q}_{\lrcorner d}+\boldsymbol{Q}^{\prime},
$$

and

$$
\begin{equation*}
\sigma_{H}=(Q, Q)=\left(Q_{s d}, Q_{s d}\right)+\left(Q^{\prime}, Q^{\prime}\right)=\sigma_{H s d}+\sigma_{H}^{\prime} \tag{6.8}
\end{equation*}
$$

By construction,

$$
\begin{equation*}
\Gamma_{s d}=I_{l} \oplus \Gamma_{E_{\mathrm{a}}}, \tag{6.9}
\end{equation*}
$$

where $\Gamma_{E_{g}}$ is a direct sum of E_{s} root lattices. Accordingly, $Q_{s d}=Q_{l}+Q_{E_{\mathrm{a}}}$, and ($\Gamma_{E_{s}}, Q_{E_{s}}$) would have to be a QH sublattice. But $\Gamma_{E_{s}}$ is an even lattice and does therefore not correspond to an incompressible QH fluid of electrons or holes. [It might however appear in the study of a QH effect for surface layers of superfluid Hes, as studied in [18].] Thus, for $Q H$ lattices (Γ, Q), Γ does not contain a $\Gamma_{E_{8}}$ sublattice. The QH sublattice (I_{l}, Q_{l}) describes, of course, a QH fluid exhibiting an integer quantum Hall effect.

In the following we may always assume that Γ is indecomposable, and then $I_{l}=\boldsymbol{\theta}$, i.e., $l=0$. Thus,

$$
\begin{equation*}
\stackrel{\circ}{\Gamma}_{W}=\Gamma_{W} \tag{6.10}
\end{equation*}
$$

does not contain any $\Gamma_{E_{s}}-$ or I_{l}-sublattices.
Returning to the decomposition (6.4), we note that $\Gamma /\left(\Gamma_{W} \oplus \mathcal{O}_{k}\right) \simeq\left(\Gamma_{W}^{*} \oplus \mathcal{O}_{k}^{*}\right) / \Gamma^{*}$ is a finite abelian group, henceforth denoted by \mathcal{G} and called the glue group. Clearly

$$
\begin{equation*}
\mathcal{G} \simeq \mathbf{Z}_{p_{1}} \times \cdots \times \mathbf{Z}_{p_{r}} \tag{6.11}
\end{equation*}
$$

where p_{1}, \cdots, p_{r} are numbers >1, with $p_{i} \mid p_{i+1}, i=1, \cdots, r-1$, and $r \leq N$. The generator of $\mathbb{Z}_{p_{i}}$ can be interpreted, geometrically, as a coset $g_{i}+\left(\Gamma_{W}+\mathcal{O}_{k}\right)$, for some vector $\boldsymbol{g}_{i} \in \Gamma$. If we like to work with a unique g_{i}, we may choose g_{i} to be the shortest vector in its coset. This vector is called a gluing vector. It then follows that

$$
\begin{equation*}
\Gamma=\left\langle g_{1}, \cdots, g_{r}, \Gamma_{W} \oplus \mathcal{O}_{k}\right\rangle \tag{6.12}
\end{equation*}
$$

Returning to (6.4), and recalling that $\left|\Gamma^{*} / \Gamma\right|=\Delta$, we find that

$$
\begin{equation*}
\left|\Gamma_{W}^{*} / \Gamma_{W}\right| \cdot\left|\mathcal{O}_{k}^{*} / \mathcal{O}_{k}\right|=\Delta|\mathcal{G}|^{2}=\Delta \prod_{i=1}^{r} p_{i}^{2} \tag{6.13}
\end{equation*}
$$

The order of $\left|\Gamma_{W}^{*} / \Gamma_{W}\right|$ is easy to calculate if we know which root lattices appear in Γ_{W}. It is well known (see e.g. [42]) that

$$
\begin{equation*}
\left|\Gamma_{W}^{*} / \Gamma_{W}\right|=\operatorname{det} C \tag{6.14}
\end{equation*}
$$

where C is the Cartan matrix (i.e., the Gram matrix of a basis of simple roots) of the root lattices appearing in Γ_{W}, with Γ_{W}^{*} the direct sum of the corresponding weight lattices. Then

$$
\begin{equation*}
\operatorname{det} C_{A_{m-1}}=m, \quad \operatorname{det} C_{D_{m+2}}=4, m=2,3, \cdots, \tag{6.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det} C_{E_{\mathrm{e}}}=3, \quad \operatorname{det} C_{E_{7}}=2 \tag{6.16}
\end{equation*}
$$

In acordance with (6.4), every glue vector g can be written as $\Omega+v$, where $\Omega \in \Gamma_{W}^{*}$ and $v \in \mathcal{O}_{k}^{*}$. Following [15], we introduce the following notations:
(a) If Γ_{W} is the root lattice of A_{m-1}, we choose a basis in Γ_{W}^{*} consisting of elementary weights dual to a basis of simple roots of Γ_{W}. The elements $\left\{\Omega^{a}\right\}_{a=1}^{m-1}$ of such a basis can be labelled by their m-ality a, and we abreviate $\Omega^{\text {a }}$ by [a]. The 0 -vector is the weight vector of the trivial representation and is denoted by [0]. We have that

$$
\begin{equation*}
([a],[a]) \equiv\left(\Omega^{a}, \Omega^{a}\right)=\frac{a(m-a)}{m} \tag{6.17}
\end{equation*}
$$

(b) If Γ_{W} is the root lattice of $D_{m}, m \geq 4$, then [0] stands for the 0 -vector (weight of trivial representation), [1] stands for the weight vector of the spinor representation, [2] for the weight vector of the vector representation, and [3] for the weight vector of the conjugate spinor representation. It is known that

$$
\begin{equation*}
([1],[1])=([3],[3])=\frac{m}{4},([2],[2])=1 \tag{6.18}
\end{equation*}
$$

(c) For Γ_{W} the root lattice of E_{7}, there is only one weight vector to be specified, the one corresponding to the 56 -dimensional fundamental representation, which is denoted by [1] and has length squared

$$
\begin{equation*}
([1],[1])=\frac{3}{2} \tag{6.19}
\end{equation*}
$$

(d) If Γ_{W} is the root lattice of E_{6}, Γ_{W}^{*} is generatd by Γ_{W} and the weight vectors of the 27-dimensional fundamental representation and of its contragredient representation which are denoted by [1] and [2], respectively, and have length squared

$$
\begin{equation*}
([1],[1])=([2],[2])=\frac{4}{3} \tag{6.20}
\end{equation*}
$$

(e) If the $\mathcal{O}_{\boldsymbol{k}}$-sublattice is one-dimensional, $k=1$, it is generated by a single vector \boldsymbol{x} which is determined by its length squared $s=(\boldsymbol{x}, \boldsymbol{x})$. The vector $\boldsymbol{\xi}$ dual to \boldsymbol{x} then has length squared $\frac{1}{s}$. The \mathcal{O}_{1}^{*}-component, \boldsymbol{v}, of a glue vector $\boldsymbol{g}_{\boldsymbol{i}}$ is then a multiple of $\boldsymbol{\xi}$, i.e., $\boldsymbol{v}=\boldsymbol{r} \cdot \boldsymbol{\xi}$, or $\boldsymbol{v}=\frac{r}{\boldsymbol{r}} \boldsymbol{x}$. We then abbreviate \boldsymbol{v} by $\left[\frac{r}{a}\right]$.

If the \mathcal{O}_{k}-sublattice is two-dimensional, $k=2$, we choose a basis, $\left\{x_{1}, x_{2}\right\}$, in \mathcal{O}_{2} and describe \mathcal{O}_{2} by three integers, $a^{b} c$, where $a=\left(x_{1}, x_{1}\right), b=\left(x_{1}, x_{2}\right)$
and $c=\left(x_{2}, x_{2}\right)$, so that $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is the Gram matrix of the basis $\left\{x_{1}, x_{2}\right\}$. Then $\left|\mathcal{O}_{2}^{*} / \mathcal{O}_{2}\right|=a c-b^{2}$. The \mathcal{O}_{2}^{*}-component, v, of a glue vector g can be expanded in the basis x_{1}, x_{2},

$$
\begin{equation*}
v=\frac{r_{1}}{s_{1}} x_{1}+\frac{r_{2}}{s_{2}} x_{2}, \tag{6.21}
\end{equation*}
$$

and we abreviate v by the symbol $\left[\begin{array}{ll}r_{1} & \frac{r_{2}}{a_{2}}, \\ a_{2}\end{array}\right]$.
Thanks to Gauss' work in number theory, the classification of all two-dimensional O-lattices is known.

Fortunately, in our search for QH lattices (Γ, Q) for QH fluids corresponding to experimentally observed plateaux of σ_{H}, the \mathcal{O}-sublattices of the lattices Γ that arise are essentailly all one- or two-dimensional. This enables us to come up with precise predictions which we shall present in Sect. 7.

After this digression we continue our general analysis of QH lattices (Γ, \boldsymbol{Q}). Let us return to the inclusions of eq. (6.4),

$$
\begin{equation*}
\Gamma_{W} \oplus \mathcal{O}_{k} \subseteq \Gamma \subseteq \Gamma^{*} \subseteq \Gamma_{W}^{*} \oplus \mathcal{O}_{k}^{*} \tag{6.22}
\end{equation*}
$$

By (6.5) and (6.10), Γ_{W} is an even sublattice of Γ. If $\Gamma_{W} \neq 0$, the inclusion of $\Gamma_{W} \oplus \mathcal{O}_{k}$ in Γ must be proper, and hence the order of the glue group \mathcal{G} is at least 2. Let

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{Q}_{\boldsymbol{w}}+\boldsymbol{Q}^{\prime}, \tag{6.23}
\end{equation*}
$$

with $\boldsymbol{Q}_{\boldsymbol{W}} \in \Gamma_{W}^{*}, \boldsymbol{Q}^{\prime} \in \mathcal{O}_{\boldsymbol{k}}^{*}$, be the decomposition of the \boldsymbol{Q}-vector corresponding to (6.22). Since Γ_{W} is even, condition (5.1) implies that

$$
\begin{equation*}
\left(Q_{w}, q\right) \equiv 0 \bmod 2 \tag{6.24}
\end{equation*}
$$

for all $q \in \Gamma_{W}$, i.e., $Q_{W} \in 2 \Gamma_{W}^{*}$. Thus, by eqs. (6.17), (6.18), (6.19) and (6.20),

$$
\begin{equation*}
\left(Q_{w}, Q_{w}\right) \geq 2 \tag{6.25}
\end{equation*}
$$

unless $\boldsymbol{Q}_{\boldsymbol{w}}=0$. Now

$$
\begin{align*}
\sigma_{H} & =\left(Q^{\prime}, Q^{\prime}\right)+\left(Q_{W}, Q_{W}\right) \\
& \geq\left(Q^{\prime}, Q^{\prime}\right)+2, \tag{6.26}
\end{align*}
$$

unless $\boldsymbol{Q}_{\boldsymbol{w}}=0$.
Our discussion is summarized in the following theorem.
Theorem 8. Let (Γ, Q) be an indecomposable QH lattice corresponding to a Hall conductivity $\sigma_{H}=(\boldsymbol{Q}, \boldsymbol{Q})<2$. Then

$$
\begin{equation*}
\Gamma_{W} \oplus \mathcal{O}_{k} \subseteq \Gamma \subset \Gamma^{*} \subseteq \Gamma_{W}^{*} \oplus \mathcal{O}_{k}^{*} \tag{6.27}
\end{equation*}
$$

all inclusions being proper if $\Gamma_{W} \neq \emptyset, \Gamma_{W}$ is a direct sum of root lattices corresponding to $A_{m-1}, D_{m+2}, m=2,3, \cdots, E_{6}$ and $E_{7} \mathcal{O}_{k}$ is a k-dimensional lattice, with $k \geq 1$, generated by vectors of length squared $3,4, \ldots$, and $Q \in \Gamma^{*}$ is orthogonal to Γ_{W}, (i.e., $Q \in \mathcal{O}_{k}^{*}$).

This result has a rather remarkable corollary concerning symmetries of the edge currents of the $Q H$ fluid described by (Γ, Q) : Let \mathcal{G} denote the Lie algebra - in general a direct sum of $A_{m}, D_{l}, E_{6}, E_{7}$ - whose root lattice is given by Γ_{W}. Then the algebra generated by the chiral currents $\delta \phi^{I}(u), I=1, \cdots, N$ defined in (4.1), (see also (3.11) and (3.14)), and the vertex operators introduced in (4.3),

$$
\left\{\gamma(\boldsymbol{n}) V_{L}(u ; n): n \in \Gamma_{W}\right\}
$$

where the $\boldsymbol{\gamma}(\boldsymbol{n})$'s are certain "cocycles" which can be found, e.g. in [22], contains the non-abelian Kac-Moody algebra $\widehat{\mathcal{G}}_{1}$ (at level 1). It is generated by the operators

$$
\begin{equation*}
\left\{{\underset{\rightarrow}{e}}_{I} \cdot \partial \vec{\phi}(u)^{T}, \gamma\left(n_{\alpha}\right) V_{L}\left(u ; n_{\alpha}\right)\right\} \tag{6.28}
\end{equation*}
$$

where $\left\{e_{1}, \cdots, e_{N-k}\right\}$ is a basis of orthonormal (with respect to the metric given by the matrix $C^{-\overrightarrow{1}}$, see (4.2)) row vectors of the ($N-k$)-dimensional subspace of \mathbb{R}^{N} containing Γ_{W}, and the vectors \boldsymbol{n}_{α} are simple roots in Γ_{W}, i.e., $\left(\boldsymbol{n}_{\alpha}, \boldsymbol{n}_{\alpha}\right)=2$, for all $\boldsymbol{\alpha}$.

The operators in (6.28) are neutral, i.e., do not transfer any electric charge, since, by Theorem $8,(Q, n)=0$, for any $n \in \Gamma_{W}$, (provided $\sigma_{H}<2$).

The Kac-Moody algebra $\widehat{\mathcal{G}_{1}}$ has only finitely many inequivalent, irreducible, unitary representations labelled by the cosets $\Gamma_{W}^{*} / \Gamma_{W}$. Every such coset is represented by an elementary weight $\Omega \in \Gamma^{*}$.

Let $\boldsymbol{m} \in \Gamma_{p h y s} \subseteq \Gamma^{*}$ correspond to a phyiscal state of the algebra of edge currents of an incompressible QH fluid described by the QH lattice (Γ, Q). Let

$$
\boldsymbol{m}=\boldsymbol{m}_{W}+\boldsymbol{m}^{\prime}, \text { with } \boldsymbol{m}_{W} \in \Gamma_{W}^{*}, \boldsymbol{m}^{\prime} \in \mathcal{O}_{k}^{*}
$$

be its decomposition corresponding to (6.27). Then $\boldsymbol{m}_{W}=\boldsymbol{\Omega}+\boldsymbol{l}$, with $\boldsymbol{l} \in \Gamma_{W}$, where $\boldsymbol{\Omega}$ is an elementary weight corresponding to an irreducible, unitary representation $\boldsymbol{\pi} \boldsymbol{\Omega}$ of $\widehat{\mathcal{G}}_{1}$. The physical state labelled by \boldsymbol{m} then transforms according to the representation $\pi_{\boldsymbol{\Omega}}$ under elements of $\widehat{\mathcal{G}_{1}}$.

The Kac-Moody algebra $\widehat{\mathcal{G}_{1}}$ contains a subalgebra of global symmetry generators, the zero-modes of the Kac-Moody currents, which generate the Lie algebra \mathcal{G}. The corresponding Lie group $G=\exp \mathcal{G}$ is the group of global symmeytries of the edge degrees
of freedom of the QH fluid. If a state of the algebra of edge currents corresponding to the element $\boldsymbol{m} \in \Gamma_{p h y s}$. transforms under a highest-weight representation $\boldsymbol{\pi}_{\boldsymbol{\Omega}}$ of \boldsymbol{G} then $\boldsymbol{\Omega} \equiv \boldsymbol{\pi}_{\boldsymbol{W}} \bmod \Gamma_{W}$.

Given a Lie algebra \mathcal{G} of rank $N-k \geq 1$, there are, in general, various conformal embeddings of Kac-Moody algebras $\widehat{s u(2)})_{r}$ at level $r \geq 1$ into the Kac-Moody algebra $\widehat{\mathcal{G}}_{1}$; (see [38], [43] for reviews of conformal embeddings). Depending on the quantum-mechanical properties of the $Q H$ fluid described by Γ, Q), it is sometimes possible to interpret an algebra $\widehat{s u}(2)_{r}$ conformally embedded in $\widehat{\mathcal{G}}_{1}$ as an algebra of chiral edge spin currents describing the spin degrees of freedom of the edge states of the QH fluid. In this case the Group G of global symmetries of the edge states contains $\mathrm{SU}(2)_{\text {spin }}$ as a subgroup. The possible values of the spin, s, labelling irreducible, unitary representations of $\widehat{s u}(2)_{r}$ are given by $s=0, \frac{1}{2}, \cdots, \frac{r}{2}$.

Conformal embeddings of current algebras $\widehat{\delta u}(p)_{q}$ into $\widehat{\mathcal{G}_{1}}, p=2,3, \cdots, q=1,2, \cdots$, may describe internal symmetries encountered in a description of the QH fluid valid, asymptotically, at large distance scales and low frequencies. For example, p may be related to the number of layers (or valleys) of the QH fluid.

Thus, remarkably, our theory of QH lattices is clever enough to discover that electrons have spin and thus, in spite of the external magnetic field applied to the system, the edge states of a QH fluid may carry chiral spin currents. This remark is important for the analysis of spin-singlet QH fluids. Physical states of the edge current algebra of electric charge ± 1 transforming trivially under $\mathrm{SU}(2)_{\text {spin }}$ then describe spin-polarized electrons. Our general theory predicts that there are QH fluids composed of spin-singlet "bands" of electrons and of "bands" of fully spin-polarized electrons. Similar remarks apply to internal symmetries.

It may be clear, at this point, that our theory of QH lattices enables us, in many cases, to understand transitions observed in QH fluids, as, for example, the external magnetic field is tilted, keeping the filling factor ν of the QH fluid fixed, [8]: If, for a given value $\frac{n_{H}}{d_{H}}$ of the Hall conductivity σ_{H}, one can find several distinct QH lattices, $\left(\Gamma_{1}, Q_{1}\right), \cdots,\left(\Gamma_{r}, Q_{r}\right)$, with $\left(Q_{1}, Q_{1}\right)=\cdots=\left(Q_{r}, Q_{r}\right)$, which, however, differ in that they have distinct global symmetry groups and different degrees of spin polarization then a QH fluid with Hall conductivity $\sigma_{H}=\frac{n_{H}}{d_{H}}$ is predicted to exhibit transitions when external control parameters, such as the in-plane component of the external magnetic field, are changed.

All this will be discussed in more detail in [40].
To conclude this section, we present a classification of $Q H$ lattices (Γ, Q) with a one-dimensional \mathcal{O}_{1}-sublattice and with Q orthogonal to ΓW. We also describe a series of QH lattices with "maximal symmetry" for which many quantities of practical interest
can be calculated explicitly.
Theorem 8 and the results in a paragraph (6) of Sect. 5 (see also eqs. (5.14) and (5:15)) yield the following general result of considerable practical interest.

Theorem 9. Let (Γ, Q) be an N-dimensional QH lattice with $\sigma_{H}<2$ and

$$
\Gamma_{W} \oplus \mathcal{O} \subset \Gamma \subset \Gamma^{*} \subset \Gamma_{W}^{*} \oplus \mathcal{O}^{*},
$$

where $\mathcal{O}=\mathcal{O}_{1}$ is one-dimensional.
Then \boldsymbol{Q} is orthogonal to Γ_{W}, and there exists a normal basis $\left\{q, e_{1}, \cdots, e_{N-1}\right\}$ for Γ, (see eqs. (5.14) and (5.15), i.e., $\left.(Q, q)=1,\left(Q, e_{I}\right)=0, I=1, \cdots, N-1\right)$, with the properties that
(a) $\left\{e_{1}, \cdots, e_{N-1}\right\}$ generate an even lattice, Γ_{0}, with

$$
\begin{equation*}
\Gamma_{w} \subseteq \Gamma_{0} \subset \Gamma_{0}^{*} \subseteq \Gamma_{W}^{*} . \tag{6.29}
\end{equation*}
$$

(b) $\boldsymbol{q}=\frac{d_{B}}{n_{H}} Q+\omega$, where $\omega \in \Gamma_{W}^{*}$.
(c) The Gram matrix of the basis $\left\{\boldsymbol{q}, \boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{N-1}\right\}$ has the form

$$
K=\left(\begin{array}{c|c}
2 p+1 & \underset{\sim}{\omega} \tag{6.30}\\
\hline \boldsymbol{\omega}^{T} & K_{0}
\end{array}\right),
$$

where p is a positive integer, K_{0} is the Gram matrix of the basis $\left\{e_{1}, \cdots, e_{N-1}\right\}$ of Γ_{0}, and the dual components, $\underset{\rightarrow}{\omega}$, of the vector ω are given by $\omega_{I}=\left(\omega, e_{I}\right)$, $I=1, \cdots, N-1$. Furthermore

$$
\begin{align*}
\Delta=\operatorname{det} K & =(2 p+1) \operatorname{det} K_{0}-\underset{K_{0}}{\omega}{\underset{K}{0}}^{\omega^{T}} \\
& =\operatorname{det} K_{0}(2 p+1-(\omega, \omega)), \tag{6.31}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{H}=(Q, Q)=\left(K^{-1}\right)_{11}=\Delta^{-1} \operatorname{det} K_{0}>\frac{1}{2 p+1} \tag{6.32}
\end{equation*}
$$

Remarks.
(1) It can often be ruled out that there is an even lattices Γ_{0} which is not selfdual, (see (6.7) - (6.10)), and which contains Γ_{w} properly:
(a) If $\Gamma_{W}^{*} / \Gamma_{W}$ does not contain any non-trivial subgroup then $\Gamma_{0}=\Gamma_{w}$. As an application, if Γ_{W} is the root lattice of E_{6} or E_{7} then $\Gamma_{0}=\Gamma_{w}$. Similarly, since Γ_{0} cannot be selfdual, $\Gamma_{0}=\Gamma_{w}$ if Γ_{w} is the root lattice of $D_{m}, m \geq 4$.
(b) If Γ_{w} is the root lattice of A_{m} then $\Gamma_{0}=\Gamma_{W}$, for $m \leq 14$. The first exception appears for A_{15}, corresponding to a symmetry group $\mathrm{SU}(16)$.
(c) If Γ_{W} is a direct sum of root lattices, the situation is more complicated. For example, if Γ_{W} is a direct sum of four one-dimensional root lattices of A_{1} there is an even lattice properly containing Γ_{W} and contained in Γ_{W}^{*}. However, the corresponding QH lattice is equivalent to one where Γ_{W} is the root lattice of D_{4}. It can describe a $Q H$ fluid with $\sigma_{H}=\frac{1}{2}$.
Thus, for not too large values of the dimension $N, \Gamma_{0}=\Gamma_{W}$ is the typical case. See [40] for more details.
(2) Definition. A maximally symmetric, elementary QH fluid is one corresponding to a QH lattice (Γ, Q), where Γ is indecomposable, $\mathcal{O}=\mathcal{O}_{1}$ is one-dimensional, $\Gamma_{0}=$ Γ_{W}, and $Q \in \mathcal{O}_{1}^{*}$ is orthogonal to Γ_{W}. For such a $Q H$ fluid, the matrix element $K_{11}=2 p+1$ of the Gram matrix K given in (6.30) is the invariant $L_{\text {max }}$ defined in eq. (5.17) of paragraph (4) of Sect. 5, provided $\omega \in \Gamma_{W}^{*}$ is chosen to be of minimal length in its coset modulo Γ_{W} (see Eqs. (6.17)-(6.20)). In that paragraph, we have described reasons (e.g. the Wigner lattice instability) for expecting that

$$
\begin{equation*}
2 p+1=L_{\max } \leq L_{*} \approx 9 \tag{6.33}
\end{equation*}
$$

see (5.19). By (6.31) and (6.32),

$$
\begin{equation*}
\sigma_{H}^{-1}=2 p+1-(\omega, \omega) \tag{6.34}
\end{equation*}
$$

Hence, σ_{H} has an absolute lower bound in this class of maximally symmetric $\mathbf{Q H}$ fluids $\sigma_{H} \geq \frac{1}{L_{m a \theta}} \geq \frac{1}{L_{*}} \approx \frac{1}{9}$. Let

$$
\begin{equation*}
\Gamma_{W}=\Gamma^{(1)} \oplus \cdots \oplus \Gamma^{(\&)} \tag{6.35}
\end{equation*}
$$

be the decomposition of Γ_{W} into indecomposable root lattices of A_{m-1}, D_{m+2}, $m=2,3, \cdots$, and E_{6}, E_{7}. Let $\omega=\omega^{(1)}+\cdots+\omega^{(s)}$, with $\omega^{(i)} \in \Gamma^{(i)^{*}}$, be the corresponding decomposition of the vector ω. Since, for an elementary QH fluid, Γ is indecomposable, $\omega^{(i)} \neq 0$, for all $i=1, \cdots$, s. Let N_{A} be the number of A_{m-1} root lattices, N_{D} the number of D_{m+2} root lattices, and N_{6}, N_{7} the number of E_{6} and E_{7} root lattices appearing in (6.35), with $N_{A}+N_{D}+N_{6}+N_{7}=s$. Then, by eqs. (6.17), (6.18), (6.19) and (6.20),

$$
\begin{equation*}
(\omega, \omega) \geq \frac{1}{2} N_{A}+N_{D}+\frac{4}{3} N_{6}+\frac{3}{2} N_{7} \tag{6.36}
\end{equation*}
$$

Since $\sigma_{H}>0$, eqs. (6.34) and (6.36) yield the following inequality.
Theorem 10.

$$
\begin{equation*}
\frac{1}{2} N_{A}+N_{D}+\frac{4}{3} N_{6}+\frac{3}{2} N_{7}<2 p+1 \leq L_{*} \tag{6.37}
\end{equation*}
$$

with $L_{*} \approx 9$.
Thus, the number s of sublattices of Γ_{W} appearing in the decomposition (6.35) satisfies a universal upper bound, $s<2 L_{*} \approx 18$.
(3) The family of QH lattices described in Theorems 9 and 10 can be extended as follows: Suppose the Gram matrix of a normal basis of Γ has the form

$$
\begin{equation*}
K=\left(\right) \tag{6.38}
\end{equation*}
$$

with

$$
\begin{equation*}
\underset{\rightarrow}{Q}=(1,0, \cdots, 0), \tag{6.39}
\end{equation*}
$$

where K_{0} is the Gram matrix of an even lattice, Γ_{0}, with $\Gamma_{W} \subseteq \Gamma_{0} \subset \Gamma_{0}^{*} \subseteq \Gamma_{W}^{*}$. Then

$$
\begin{equation*}
\Delta=\operatorname{det} K_{0}(\stackrel{(0)}{\Delta}-(\omega, \omega) \stackrel{(0)}{\gamma}) \text { and } \gamma=\operatorname{det} K_{0}(\stackrel{(0)}{\gamma}, \tag{6.40}
\end{equation*}
$$

where $\stackrel{(0)}{\Delta}=\operatorname{det} \stackrel{(0)}{K}, \stackrel{(0)}{\gamma}=\stackrel{(0)}{\Delta} \cdot\left(\stackrel{(0)}{K}^{-1}\right)_{11} \cdot$ Hence

$$
\begin{equation*}
\left.\sigma_{H}=\frac{\gamma}{\Delta}=\frac{\stackrel{(0)}{\gamma}}{(\underset{\Delta}{\Delta}-(\omega, \omega)} \underset{\gamma}{(0)}\right)\left(\stackrel{(0)}{\sigma}_{H}^{1}-(\omega, \omega)\right)^{-1} \tag{6.41}
\end{equation*}
$$

This completes our survey of general results on the classification of QH lattices. More details on these results and their proofs can be found in [37] and [40]. The task that remains is to apply these results to the analysis of experimentally observed incompressible QH fluid corresponding to specific plateau-values of σ_{H}. In carrying out this task, the tables of Conway and Sloane [15] of low-dimensional lattices are extremely useful. Sect. 7 presents a survey. Further details will appear elsewhere.

7. Tables of QH lattices and observed plateaux of σ_{H}.

In this section we complete the discussion of Sect. 6 on the ADE- \mathcal{O} classification of QH lattices by providing explicit tables of such lattices and correlating them with corresponding values of σ_{H}. In carrying out this task, we use the tables of integral Euclidian lattices compiled by Conway and Sloane [15], whose notations we follow.

Let Γ be an integral, Euclidian lattice with Kneser shape $\Gamma_{w} \oplus \mathcal{O}_{k} \subset \Gamma$, where Γ_{W} is the Witt sublattice of Γ, and \mathcal{O}_{k} is a k-dimensional sublattice of Γ generated by vectors of length squared $3,4, \ldots$ Then

$$
\begin{equation*}
\Gamma=\left\langle g_{1}, \cdots, g_{r}, \Gamma_{w} \oplus \mathcal{O}_{k}\right\rangle \tag{7.1}
\end{equation*}
$$

where g_{1}, \cdots, g_{r} are the gluing vectors (usually chosen as the shortest vectors in their $\Gamma_{W} \oplus \mathcal{O}_{k}$ coset).
(a) We describe Γ_{W} by giving a list of $A_{m-1}, D_{m+2}, m=2,3, \cdots, E_{6}$ and E_{7} whose root lattices are contained in Γ_{W}.
(b) We describe $\mathcal{O}_{\boldsymbol{k}}$ by specifying the Gram matrix of a basis $\left\{x_{1}, \cdots, x_{k}\right\}$ of $\mathcal{O}_{\boldsymbol{k}}$.

For $k=1$, this Gram matrix is denoted by p_{1}, for some $p=1,2,3, \ldots$.
For $k=2$, it is denoted by $\left(a^{b} c\right)_{2}$, with $a=\left(x_{1}, x_{1}\right), b=\left(x_{1}, x_{2}\right)$ and $c=$ $\left(x_{2}, x_{2}\right)$.
We shall not introduce special notations for $k \geq 3$, since our tables only contain lattices with $k=1$ or 2.
(c) Every glue vector \boldsymbol{g}, is decomposed as

$$
g=\boldsymbol{\Omega}+\boldsymbol{v}
$$

where $\Omega \in \Gamma_{W}^{*}$ is an elementary weight vector which we denote by $\left[a_{1}, a_{2}, \cdots\right] \equiv$ $\left[a_{1}\right]+\left[a_{2}\right]+\cdots$, where the notation $[a]$ is the one introduced in (6.17), (6.18), (6.19) and (6.20), and $v \in \mathcal{O}_{k}^{*}$ is denoted by $\left[\frac{r}{z}\right]$ if $k=1$ and by $\left[\frac{r_{1}}{z_{1}}, \frac{r_{2}}{a_{2}}\right]$ if $k=2$; see point (e) of Sect. 6, in particular eq. (6.21).
In our table of QH lattices, we shall also indicate the discriminant Δ of the lattice and the maximal dimension $N_{*}=N_{*}(\Delta)$ up to which we have scanned all lattices, using the notation $\Delta\left(N_{*}\right)$, the order, $|\mathcal{G}|$, of the glue group \mathcal{G}, the components of Q of vector Q, written in the basis $\left\{\xi_{1}, \cdots, \xi_{k}\right\}$ of \mathcal{O}_{k}^{*} dual to the basis $\left\{x_{1}, \cdots, x_{k}\right\}$ of $\overrightarrow{\mathcal{O}_{k}}$. To be precise, we list explicitly all the equivalent charge vectors (i.e., Q 's belonging to a fixed $\mathcal{O}(\Gamma)$-orbit, see eq. (5.12)) associated to the $Q H$ lattice. In all cases considered, there are just two $(\pm Q)$ or four vectors in each orbit. We only list $Q H$ lattices with $\sigma_{H}<2$, so that by Theorem 8 (Sect. 6), Q belongs to $\mathcal{O}_{\boldsymbol{k}}^{*}$.

Finally, we shall display the symbol for the QH latitce, ${ }_{N}\left(\frac{n_{H}}{d_{H}}\right)_{\lambda}^{g}$, introduced in Sect. 5, eq. (5.42). We repeat here, for convenience, how the basic invariants can be read from the symbol. N is the lattice dimension, and $\Delta=\lambda g d_{H}$ its discriminant; λ is the charge parameter, and $l=\boldsymbol{\lambda} \cdot g$ is the level. For minimal QH lattices, i.e., when $\lambda=g=1$, we shall omit the superscript g and the subscript λ from the symbol.

It is rather striking that in all but three cases of Table 7.1 this symbol suffices to fully characterize the QH lattice.

In the three exceptional cases, we add a sign to specify the genus of the lattice, (see $\left.{ }_{0}^{ \pm}(1)_{2}^{2}\right)$, following conventions of Conway and Sloane, Ref. [15], or if the genus is the same for both lattices we merely distinguish the 2 QH lattices by a prime (see ${ }_{12}\left(\frac{10}{7}\right),{ }_{12}\left(\frac{10}{7}\right)^{\prime}$ and $\left.{ }_{\rho}\left(\frac{6}{5}\right)_{1}^{2}\left(0\left(\frac{6}{5}\right)_{1}^{2}\right)^{\prime}\right)$.

A remarkable feature of Table 7.1 emerges if we focus on low-dimensional, minimal (level 1) QH lattices: To a fixed value of the Hall conductance σ_{H}, there corresponds just one or no elementary Quantum Hall fluid! The "missing fractions" will be reviewed explicitly in paragraph 7.2. For more details see [37] and [40].

7.1 Indecomposable QH lattices with $\sigma_{H}<2$ and $\Delta \leq 19$.

Our main interest being in minimal $\left(\Delta=d_{H}\right)$ QH lattices which, by theorem 4; necessarily have odd discriminant Δ, we have omitted from our list the even-discriminant lattices with $\Delta=12,14,16$ and 18. This reduces the size of the table quite substantially. We will list separately, in Sect. 7.3, the QH lattices with $\Delta=8$ and $d_{H}=2$.

Finally, we note that there are no QH lattices with discriminant $\Delta=2$ in the selected range of value for σ_{H}.

Table 2

$\Delta\left(N_{*}\right)$	$\|\mathcal{G}\|$	$\Gamma_{W} \mathcal{O}_{k}\left[g_{1} ; g_{2} ; \cdots\right]$	$\pm \underline{\square}$	${ }_{N}\left(\sigma_{H}\right)_{\lambda}^{\prime}$
1 (18)	1	1_{1}	$\stackrel{\xi}{\underline{\square}}$	${ }_{1}(1)$
2 (16)	-	-	-	-
3 (14)	$\begin{aligned} & 1 \\ & 2 \end{aligned}$ 4	$\begin{aligned} & 3_{1} \\ & E_{7} 6_{1}\left[1, \frac{1}{2}\right] \\ & D_{9} 12_{1}\left[1, \frac{1}{4}\right] \end{aligned}$	$\begin{gathered} \underset{2}{\xi} \\ 4 \vec{\xi} \end{gathered}$	$\begin{aligned} & 1\left(\frac{1}{3}\right) \\ & 8\left(\frac{2}{3}\right) \\ & 10\left(\frac{4}{3}\right) \end{aligned}$
4 (12)	2	$\begin{aligned} & D_{8} 4_{1}\left[1, \frac{1}{2}\right] \\ & E_{7} A_{1} 4_{1}\left[1,1, \frac{1}{2}\right] \end{aligned}$	$\begin{aligned} & 2 \xi \\ & 2 \underline{\xi} \end{aligned}$	$\begin{aligned} & +(1)_{2}^{2} \\ & -(1)_{2}^{2} \end{aligned}$
5 (12)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \\ & 4 \end{aligned}$	5_{1} $A_{1}{ }_{10}\left[1, \frac{1}{2}\right]$ $E_{6} 15_{1}\left[1, \frac{1}{3}\right]$ $D_{7} 20_{1}\left[1, \frac{1}{4}\right]$ $E_{7} A_{2} 30_{1}\left[1,1, \frac{1}{6}\right]$ $D_{9}\left(3^{1} 7\right)_{2}\left[1, \frac{1}{4}, \frac{1}{4}\right]$	$\begin{gathered} \vec{\xi} \\ 2 \vec{\xi} \\ 3 \vec{\xi} \\ 4 \vec{\xi} \\ 6 \vec{\xi} \\ \xi_{1}+3 \xi_{2} \end{gathered}$	$\begin{aligned} & 1\left(\frac{1}{5}\right) \\ & 2\left(\frac{2}{5}\right) \\ & 7\left(\frac{3}{5}\right) \\ & 8\left(\frac{4}{5}\right) \\ & 10\left(\frac{6}{5}\right) \\ & 11\left(\frac{7}{5}\right) \end{aligned}$
6 (11)	$\begin{aligned} & 2 \\ & 4 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & D_{6} 6_{1}\left[1, \frac{1}{2}\right] \\ & D_{7} A_{1} 12_{1}\left[1,1, \frac{1}{4}\right] \\ & A_{9} 1_{1}\left[4, \frac{1}{8}\right] \\ & E_{7} A_{3} 12_{1}\left[1,1, \frac{1}{4}\right] \end{aligned}$	$\begin{gathered} 2 \vec{\xi} \\ 4 \vec{\xi} \\ 5 \vec{\xi} \\ 4 \vec{\xi} \end{gathered}$	$\begin{aligned} & \hline 7\left(\frac{2}{3}\right)_{1}^{2} \\ & 0\left(\frac{4}{3}\right)_{1}^{2} \\ & 10\left(\frac{5}{3}\right)_{1}^{2} \\ & 11\left(\frac{4}{3}\right)_{1}^{2} \end{aligned}$
7 (12)	$\begin{gathered} 1 \\ 3 \\ 4 \\ 2 \\ 6 \\ 9 \\ 12 \end{gathered}$	7_{1} $A_{2} 21_{1}\left[1, \frac{1}{3}\right]$ $D_{5} 28_{1}\left[1, \frac{1}{4}\right]$ $E_{7} 14_{1}\left[1, \frac{1}{2}\right]$ $E_{6} A_{1} 42_{1}\left[1,1, \frac{1}{6}\right]$ $A_{8} 63_{1}\left[4, \frac{1}{9}\right]$ $D_{7} A_{2} 84_{1}\left[1,1, \frac{1}{12}\right]$	$\begin{gathered} \underset{\xi}{\xi} \\ 3 \boldsymbol{\xi} \\ 4 \vec{\xi} \\ 2 \vec{\xi} \\ 6 \vec{\xi} \\ 9 \vec{\xi} \\ 12 \vec{\xi} \end{gathered}$	$1\left(\frac{1}{7}\right)$ $3\left(\frac{3}{7}\right)$ - $\left(\frac{4}{7}\right)$ $8\left(\frac{2}{7}\right)$ $8\left(\frac{6}{7}\right)$ - $\left(\frac{9}{7}\right)$ ${ }_{10}\left(\frac{12}{7}\right)$

Table 2

$\Delta\left(N_{*}\right)$	$\|\boldsymbol{G}\|$	$\Gamma_{W} \mathcal{O}_{k}\left[g_{1} ; g_{2} ; \cdots\right]$	$\xrightarrow{\text { Q }}$	${ }_{N}\left(\sigma_{H}\right)_{\lambda}^{g}$
	$\begin{gathered} 2 \\ 2 \cdot 2 \\ 2 \cdot 4 \\ 10 \end{gathered}$	$\begin{aligned} & E_{7}\left(\mathrm{~s}^{1} \mathrm{~s}\right)_{2}\left[1, \frac{1}{2}, \frac{1}{2}\right] \\ & D_{8} ;\left(4^{2}{ }_{\mathrm{s}}\right)_{2}\left[1, \frac{1}{2}, 0 ; 2,0, \frac{1}{2}\right] \\ & D_{9} A_{1}\left(\mathrm{~s}^{2} 10\right)_{2}\left[0,1,0, \frac{1}{2} ; 1,1, \frac{1}{4}, \frac{1}{4}\right] \\ & E_{7} A_{4} 70_{1}\left[1,1, \frac{1}{10}\right] \end{aligned}$	$\begin{gathered} \underset{\xi_{1}}{\vec{\xi}_{1}}+\overrightarrow{3 \xi_{2}} \\ \overrightarrow{2 \vec{\xi}}_{1}+2 \vec{\xi}_{2} \\ 2 \vec{\xi}_{1}-2 \vec{\xi}_{2} \\ \underset{\rightarrow}{\underline{\xi}} \end{gathered}$	$\begin{aligned} & 9\left(\frac{8}{7}\right) \\ & 9\left(\frac{13}{7}\right) \\ & 10\left(\frac{8}{7}\right) \\ & 12\left(\frac{10}{7}\right) \\ & 12\left(\frac{10}{7}\right)^{\prime} \end{aligned}$
8 (10)		see section 7.3		
9 (8)	$\begin{gathered} 1 \\ 2 \\ 4 \\ 5 \\ 7 \\ 8 \\ 2 \\ 2 \cdot 2 \end{gathered}$	$\begin{aligned} & 9_{1} \\ & A_{1} 18_{1}\left[1, \frac{1}{2}\right] \\ & A_{3} 36_{1}\left[1, \frac{1}{4}\right] \\ & A_{4} 45_{1}\left[2, \frac{1}{5}\right] \\ & A_{6} 63_{1}\left[3, \frac{1}{7}\right] \\ & A_{7} 72_{1}\left[3, \frac{1}{8}\right] \\ & A_{5} 6_{1}\left[3, \frac{1}{2}\right] \\ & D_{6} 6_{1} 6_{1}\left[1, \frac{1}{2}, 0 ; 3,0, \frac{1}{2}\right] \end{aligned}$	$\begin{gathered} \vec{\xi} \\ 2 \vec{\xi} \\ 4 \vec{\xi} \\ 5 \vec{\xi} \\ 7 \vec{\xi} \\ 8 \vec{\xi} \\ 2 \vec{\xi} \\ 2 \underset{\rightarrow}{\boldsymbol{\xi}} \pm 2 \xi_{2} \end{gathered}$	$\begin{aligned} & 1\left(\frac{1}{9}\right) \\ & 2\left(\frac{2}{9}\right) \\ & 4\left(\frac{4}{9}\right) \\ & 5\left(\frac{5}{9}\right) \\ & 7\left(\frac{7}{9}\right) \\ & 8\left(\frac{8}{9}\right) \\ & 6\left(\frac{2}{3}\right)_{1}^{3} \\ & 8\left(\frac{4}{3}\right)_{1}^{3} \end{aligned}$
10 (10)	$\begin{aligned} & 3 \\ & 4 \\ & 6 \\ & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & A_{5} 15_{1}\left[2, \frac{1}{3}\right] \\ & D_{5} A_{1} 20_{1}\left[1,1, \frac{1}{4}\right] \\ & D_{6} A_{2} 30_{1}\left[1,1, \frac{1}{6}\right] \\ & A_{7} A_{1} 40_{1}\left[3,1, \frac{1}{8}\right] \\ & E_{7}\left(4_{6}^{2}\right)_{2}\left[1,0, \frac{1}{2}\right] \end{aligned}$	$\begin{gathered} 3 \vec{\xi} \\ 4 \vec{\xi} \\ \overrightarrow{6 \xi} \\ \overrightarrow{8} \\ \vec{\xi} \\ 2 \xi_{2} \\ 2 \overrightarrow{\xi_{1}}+2 \xi_{2} \end{gathered}$	$\begin{aligned} & \circ\left(\frac{3}{5}\right)_{1}^{2} \\ & 7\left(\frac{4}{5}\right)_{1}^{2} \\ & 9\left(\frac{6}{5}\right)_{1}^{2} \\ & 9\left(\frac{8}{5}\right)_{1}^{2} \\ & O\left(\frac{4}{5}\right)_{1}^{2} \\ & \left(9\left(\frac{6}{5}\right)_{1}^{2}\right)^{\prime} \\ & \hline \end{aligned}$
11 (8)	$\begin{aligned} & 1 \\ & 1 \\ & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & 11_{1} \\ & \left(3^{1} 4\right)_{2} \\ & A_{2} A_{1} 66_{1}\left[1,1, \frac{1}{6}\right] \\ & A_{4} 55_{1}\left[1, \frac{1}{5}\right] \end{aligned}$		$\begin{aligned} & 1\left(\frac{1}{11}\right) \\ & 2\left(\frac{4}{11}\right) \\ & 2\left(\frac{12}{11}\right) \\ & 2\left(\frac{20}{11}\right) \\ & 4\left(\frac{6}{11}\right) \\ & 5\left(\frac{5}{11}\right) \end{aligned}$

... ... cont'd

$\Delta\left(N_{*}\right)$	$\|\mathcal{G}\|$	$\Gamma_{W} \mathcal{O}_{k}\left[g_{1} ; \boldsymbol{g}_{2} ; \cdots\right]$	\pm Q	${ }_{N}\left(\sigma_{H}\right)_{\lambda}^{\prime}$
	3	$E_{6} 33_{1}\left[1, \frac{1}{3}\right]$	3ξ	$7\left(\frac{3}{11}\right)$
	7	$A_{6} 77_{1}\left[2, \frac{1}{7}\right]$	$7 \overrightarrow{\underline{\xi}}$	$7\left(\frac{7}{11}\right)$
	2	$E_{7} 22_{1}\left[1, \frac{1}{2}\right]$	$2 \overrightarrow{\underline{\xi}}$	$8\left(\frac{2}{11}\right)$
	14	$A_{6} A_{1} 154_{1}\left[3,1, \frac{1}{14}\right]$	$14 \underline{\xi}$	(114)
	$2 \cdot 2$	$D_{6}\left(\mathrm{o}^{2}{ }_{8}\right)_{2}\left[1, \frac{1}{2}, 0 ; 2,0, \frac{1}{2}\right]$	$2 \underline{\xi}_{1}+2 \underline{\xi}_{2}$	$8\left(\frac{10}{11}\right)$
			$2 \vec{\xi}_{1}-2 \vec{\xi}_{2}$	8(18)
13 (8)	1	13_{1}	$\underset{\sim}{\xi}$	1($\frac{1}{13}$)
	2	$A_{1}{ }^{2} 6_{1}\left[1, \frac{1}{2}\right]$	$\overrightarrow{2 \xi}$	$2\left(\frac{2}{13}\right)$
	3	$A_{2}{ }^{3} 9_{1}\left[1, \frac{1}{3}\right]$	$3 \vec{\xi}$	s($\frac{3}{13}$)
	2	$A_{1}\left(\mathrm{~s}^{1} \mathrm{~g}\right)_{2}\left[1, \frac{1}{2}, \frac{1}{2}\right]$	$\underset{\rightarrow}{\boldsymbol{\xi}_{1}-\underline{\xi}_{2}}$	3(${ }^{13}$)
			$\overrightarrow{\underline{\xi}}_{1}+3 \overrightarrow{\underline{\xi}}_{2}$	3($\left(\frac{15}{13}\right)$
	10	$A_{4} A_{1} 130_{1}\left[2,1, \frac{1}{10}\right]$	${ }^{10} \underline{\underline{\xi}}$	-($\frac{10}{15}$)
	6	$A_{5} 78{ }_{1}\left[1, \frac{1}{6}\right]$	$6 \vec{\xi}$	- $\left(\frac{6}{13}\right)$
	4	$D_{5}\left(7^{2}{ }_{8}\right)_{2}\left[1, \frac{1}{2}, \frac{1}{4}\right]$	$\underline{\underline{1}}^{-\overrightarrow{2}} \underline{\xi}_{2}$	7 ($\left(\frac{11}{13}\right)$
	4	$D_{7} 52_{1}\left[1, \frac{1}{4}\right]$	${ }^{+4 \xi}$	$8\left(\frac{4}{13}\right)$
	12	$D_{5} A_{2} 156_{1}\left[1,1, \frac{1}{12}\right]$	$12 \overrightarrow{\underline{1} \boldsymbol{q}}$	8($\frac{12}{13}$)
	3	$E_{6}\left(\mathrm{~s}^{1} \mathrm{~s}\right)_{2}\left[1, \frac{1}{3}, \frac{1}{3}\right]$	$\underset{\rightarrow}{\underline{\xi}_{1}+\overrightarrow{2} \underline{\xi}_{2}}$	$8\left(\frac{8}{13}\right)$
			$\xrightarrow{3 \xi_{1}}$	$8\left(\frac{24}{13}\right)$
15 (8)	1	15_{1}	$\underline{\xi}$	1 $\left(\frac{1}{15}\right)$
	4	$D_{5} 60_{1}\left[1, \frac{1}{4}\right]$	$\overrightarrow{4 \underline{\xi}}$	- $\left(\frac{4}{15}\right)$
	7	$A_{6} 1051{ }_{1}\left[1, \frac{1}{7}\right]$	$7 \overrightarrow{\boldsymbol{\xi}}$.	$7\left(\frac{7}{15}\right)$
	6	$A_{5} 6_{1} 15_{1}\left[1, \frac{1}{2}, \frac{1}{3}\right]$		$7\left(\frac{10}{15}\right)$
	2	$E_{7} 30_{1}\left[1, \frac{1}{2}\right]$	$2 \underline{\square}$	$8\left(\frac{2}{15}\right)$
	14	$A_{6} A_{1} 210_{1}\left[2,1, \frac{1}{14}\right]$	$14 \underline{\square}$	$8\left(\frac{14}{15}\right)$
	$4 \cdot 2$	$D_{5} A_{1} 6_{1} 20_{1}\left[1,1,0, \frac{1}{4} ; 2,1, \frac{1}{2}, 0\right]$	$\underset{\rightarrow}{\underline{\boldsymbol{\xi}_{1}} \pm \overrightarrow{\underline{2}} \underline{\underline{\xi}}_{2}}$	$8\left(\frac{22}{15}\right)$
	3	$A_{2}\left(0^{3}\right)_{2}\left[1, \frac{1}{3}, \frac{1}{3}\right]$	${ }^{3} \underline{\underline{\xi}}_{2}$	${ }_{4}\left(\frac{6}{5}\right)_{1}^{3}$
			$\underline{2 \underline{\xi}_{1}+\underline{\underline{\xi}}_{2}}$	${ }_{4}\left(\frac{2}{3}\right)_{1}^{5}$
	$2 \cdot 2$	$D_{4}\left(\mathrm{~s}^{2} \mathrm{~s}\right)_{2}\left[1, \frac{1}{2}, 0 ; 3,0, \frac{1}{2}\right]$	$2 \overrightarrow{\underline{\xi}}_{1}+2 \overrightarrow{\underline{\xi}}_{2}$	$0\left(\frac{4}{5}\right)_{1}^{3}$
			$\underset{\rightarrow}{2 \vec{\xi}_{1}-2 \overrightarrow{\underline{\xi}}_{2}}$	- $\left(\frac{4}{3}\right)_{1}^{5}$

... ... cont'd
Table 2

\begin{tabular}{|c|c|c|c|c|}
\hline $\Delta\left(N_{*}\right)$ \& $|\boldsymbol{G}|$ \& $\Gamma_{W} \mathcal{O}_{k}\left[\boldsymbol{g}_{1} ; \boldsymbol{g}_{2} ; \cdots\right]$ \& $\pm \underline{\square}$ \& $N_{N}\left(\sigma_{H}\right)_{\lambda}^{\prime}$

\hline \& $$
\begin{gathered}
3 \\
6 \\
2 \cdot 2
\end{gathered}
$$ \& $$
\begin{aligned}
& A_{2} A_{2} 15_{1}\left[1,1, \frac{1}{3}\right] \\
& A_{5} A_{2} 30_{1}\left[3,1, \frac{1}{6}\right] \\
& D_{6} 6_{1} 10_{1}\left[1, \frac{1}{2}, 0 ; 3,0, \frac{1}{2}\right]
\end{aligned}
$$ \& $$
\begin{aligned}
& 3 \vec{\xi} \\
& 6 \vec{\xi} \\
& \overrightarrow{2 \xi}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{s}\left(\frac{3}{5}\right)_{1}^{3} \\
& \mathrm{~g}\left(\frac{6}{5}\right)_{1}^{3} \\
& \mathrm{~g}\left(\frac{2}{3}\right)_{1}^{5}
\end{aligned}
$$

\hline 17 (7) \& \& $$
\begin{aligned}
& 17_{1} \\
& A_{1} 34_{1}\left[1, \frac{1}{2}\right] \\
& \left(3^{1}\right)_{2} \\
& A_{1}\left(s^{1} 7\right)_{2}\left[1, \frac{1}{2}, \frac{1}{2}\right] \\
& A_{3} 68_{1}\left[1, \frac{1}{4}\right] \\
& A_{3}\left(8^{2} 9\right)_{2}\left[1, \frac{1}{4}, \frac{1}{2}\right] \\
& A_{4} A_{1} 170_{1}\left[1,1, \frac{1}{10}\right] \\
& E_{6} 51_{1}\left[1, \frac{1}{3}\right] \\
& A_{4} A_{2} 255_{1}\left[2,1, \frac{1}{15}\right] \\
& D_{5}\left(3^{1} 23\right)_{2}\left[1, \frac{1}{4}, \frac{1}{4}\right]
\end{aligned}
$$ \& \& $$
\begin{aligned}
& 1\left(\frac{1}{17}\right) \\
& 2\left(\frac{2}{17}\right) \\
& 2\left(\frac{6}{17}\right) \\
& 2\left(\frac{14}{17}\right) \\
& 2\left(\frac{22}{17}\right) \\
& 3\left(\frac{7}{17}\right) \\
& 3\left(\frac{23}{17}\right) \\
& 3\left(\frac{31}{7}\right) \\
& 4\left(\frac{4}{17}\right) \\
& 5\left(\frac{18}{17}\right) \\
& 5\left(\frac{21}{17}\right) \\
& 6\left(\frac{10}{17}\right) \\
& 7\left(\frac{3}{17}\right) \\
& 7
\end{aligned}
$$

\hline 19 (7) \& 1
1

2

3

2.2 \& $$
\begin{aligned}
& 19_{1} \\
& \left(4^{1} \mathrm{~s}\right)_{2} \\
& \\
& A_{1}\left(3^{1} 1 \mathrm{~s}\right)_{2}\left[1, \frac{1}{2}, \frac{1}{2}\right] \\
& A_{2} 57_{1}\left[1, \frac{1}{3}\right] \\
& A_{1} A_{1}\left(8^{2} 10\right)_{2}\left[1,1, \frac{1}{2}, 0 ; 1,0,0, \frac{1}{2}\right]
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\overrightarrow{\xi_{2}} \\
\overrightarrow{3 \xi_{2}} \\
2 \vec{\xi}_{1}+\xi_{2} \\
2 \vec{\xi}_{1}-\vec{\xi}_{2} \\
\vec{\xi}_{1}+\vec{\xi}_{2} \\
\vec{\xi}_{1}-3 \vec{\xi}_{2} \\
\overrightarrow{3 g} \overrightarrow{\xi_{2}} \\
2 \vec{\xi}_{1}+2 \xi_{2} \\
2 \vec{\xi}_{1}-2 \vec{\xi}_{2}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1\left(\frac{1}{10}\right) \\
& 2\left(\frac{4}{19}\right) \\
& 2\left(\frac{36}{19}\right) \\
& 3\left(\frac{20}{19}\right) \\
& 2\left(\frac{28}{19}\right) \\
& 3\left(\frac{7}{10}\right) \\
& 2\left(\frac{23}{19}\right) \\
& 3\left(\frac{3}{19}\right) \\
& 4\left(\frac{14}{19}\right) \\
& 4\left(\frac{22}{18}\right)
\end{aligned}
$$
\]

\hline
\end{tabular}

$\Delta\left(N_{*}\right)$	$\|\mathcal{G}\|$	$\Gamma_{W} \mathcal{O}_{k}\left[g_{1} ; g_{2} ; \cdots\right]$	$\pm \underline{\square}$	${ }_{N}\left(\sigma_{H}\right)_{\lambda}^{g}$
	5	$A_{4} 95_{1}\left[2, \frac{1}{5}\right]$	$5 \underline{\xi}$	$5\left(\frac{5}{19}\right)$
	12	$A_{3} A_{2} 228{ }_{1}\left[1,1, \frac{1}{2}\right]$	$12 \vec{\xi}$	- (12)
	5	$A_{4}\left(9^{1}{ }_{11}\right)_{2}\left[1, \frac{2}{5}, \frac{1}{5}\right]$	$\underset{\rightarrow}{\boldsymbol{\xi}_{1}+3 \underline{\underline{\xi}}_{2}}$	- $\left(\frac{16}{10}\right)$
			$\overrightarrow{3}_{\underline{\xi}}^{1}$ - $\vec{\xi}_{2}$	- $\left(\frac{24}{19}\right)$
	4	$D_{5}\left(5^{1}{ }_{16}\right)_{2}\left[1, \frac{1}{2}, \frac{1}{4}\right]$	$\overrightarrow{\boldsymbol{\xi}_{1}}-2 \overrightarrow{\underline{\xi}}_{2}$	$7\left(\frac{11}{19}\right)$
			$\overrightarrow{3 g}_{\vec{\xi}_{1}}+2 \overrightarrow{\underline{\xi}}_{2}$	$7\left(\frac{35}{19}\right)$
	6	$\left.A_{5}\left(10^{4} 13\right)\right)_{2}\left[1, \frac{1}{6}, \frac{1}{3}\right]$	$\overrightarrow{4 \xi}_{\underline{\xi}}+\vec{\xi}_{2}$	$7\left(\frac{31}{19}\right)$
			$\overrightarrow{3} \underset{\rightarrow}{\boldsymbol{\xi}_{2}} \vec{~}$	$7\left(\frac{15}{10}\right)$

7.2 Values of $\sigma_{H}<2, d_{H} \leq 19$ not corresponding to an indecomposable QH lattice at level 1

One of the interesting features of the table of QH lattices given above is the inexistence of minimal indecomposable QH lattices with dimension $N \leq N_{*}(\Delta)$, for certain specific values of $\sigma_{H}<2$. Furthermore, using the constructive method described in section 6, one can readily check whether a minimal maximally symmetric lattice of arbitrary dimension exists for these fractions. In this subsection, we list the "missing fractions", i.e., those values of $\sigma_{H}<2$ and $d_{H} \leq 19$ that do not correspond to any minimal maximally symmetric QH lattice and for which no minimal indecomposable QH lattice with dimension strictly below some dimension $\mathcal{N} \geqq N_{*}(\Delta)$ exists. [We have used Theorem 4 to optimize our estimate on \mathcal{N}.] The value of σ_{H} and the optimal dimension \mathcal{N} are indicated in the symbol $\sigma_{H}(\mathcal{N})$.

$$
\begin{array}{ll}
d_{H}=3 & \frac{5}{3}(17) \\
d_{H}=5 & \frac{8}{5}(14) ; \quad \frac{9}{5}(13) \\
d_{H}=7 & \frac{11}{7}(15) \\
d_{H}=9 & \\
d_{H}=11 & \frac{8}{11}(10) ; \quad \frac{9}{11}(9) ; \quad \frac{13}{11}(9) ; \quad \frac{15}{11}(11) ; \frac{16}{11}(10) ; \frac{17}{11}(9) ; \\
d_{H}=13 & \frac{5}{13}(9) ; \quad \frac{14}{13}(10) ; \frac{16}{13}(10) ; \frac{19}{13}(11) ; \frac{20}{13}(10) ; \frac{22}{13}(10) ; \frac{25}{13}(9) \\
d_{H}=15 & \frac{8}{15}(10) ; \quad \frac{13}{15}(9) ; \quad \frac{16}{15}(10) ; \frac{23}{15}(11) ; \frac{29}{15}(9) \\
d_{H}=17 & \frac{5}{17}(9) ; \quad \frac{9}{17}(9) ; \quad \frac{20}{17}(8) ; \quad \frac{24}{17}(8) ; \quad \frac{25}{17}(9) ; \quad \frac{28}{17}(8) ; \frac{29}{17}(9) ; \frac{30}{17}(8) ; \frac{33}{17}(9) \\
d_{H}=19 & \frac{8}{19}(8) ; \quad \frac{10}{19}(8) ; \quad \frac{13}{19}(9) ; \quad \frac{18}{19}(8) ; \quad \frac{29}{19}(9) ; \quad \frac{32}{19}(8) ; \quad \frac{33}{19}(9) ; \frac{37}{19}(9)
\end{array}
$$

Of course, many among these values of σ_{H} have been observed in FQH experiments. For some fractions, e.g., $\frac{5}{3}, \frac{8}{5}, \frac{9}{5}$ and $\frac{11}{7}$, the bound on the dimension \mathcal{N} is high enough to practically rule out the possibility of a reasonable, elementary, minimal QH lattice. In those cases we have but two options to understand the observed incompressible state: either we must consider non-minimal (i.e., higher-level) QH lattices, at the price of encountering more complicated quasi-particle spectra, (no charge \rightarrow statistics connection and/or exotic fractional charges for elementary vortices); or we must account for the observed σ_{H} by means of a composite fluid, using, for example, electron-hole conjugation.

The second option, compositeness, generally appears to be simpler and more natural. We shall discuss the examples $\sigma_{H}=\frac{5}{3}$ and $\frac{8}{5}$ explicitly in Sect. 7.5.

We also note that there is no elementary QH fluid with $\sigma_{H}=\frac{5}{13}$. Moreover, this value of σ_{H} has no natural composite explanation, since $\sigma_{H}=\frac{1}{13}$ and $\sigma_{H}=\frac{2}{13}$ fluids have not been observed, and, as $\frac{5}{13}<\frac{1}{2}$, electron-hole conjugation ($\frac{5}{13}=1-\frac{8}{13}$) can presumably be excluded. This result should be contrasted with predictions of standard hierarchy schemes, Haldane-Halperin or Jain-Goldman [15], which predict an incompressible state corresponding to $\sigma_{H}=\frac{5}{13}$. Up to now, no $\sigma_{H}=\frac{5}{13}$ plateau has been observed experimentally. Its persistent absence would represent an interesting, partial experimental justification of the additional hypotheses on which the classification presented in this work is based, namely low dimension and minimality of the QH lattices describing chiral edge currents.

We also emphasize the absence of indecomposable QH lattices at $\sigma_{H}=\frac{8}{15}, \frac{9}{17}$ and $\frac{10}{19}$ which are three successive unobserved plateaux in the "second main sequence", $\sigma_{H}=\frac{m}{2 m-1} ; m=1,2, \cdots$, of fractions converging to $\frac{1}{2}$. In Sect. 7.4 we explain why an observation (or not) of these fractions would be an interesting experimental input for our theoretical understanding of Quantum Hall fluids.
7.3 QH Lattices with $d_{H}=2, \Delta=8$

If $\sigma_{H}=\frac{n_{I I}}{2}$ then the invariants g and λ (see. eqs. (5.39), (5.40), paragraph (9), Sect. 5) are at least 2 (Theorems 5 and 6, paragraph (11), Sect. 5). Thus Δ is divisible by 8. We present all indecomposable QH lattices with $l=\lambda \cdot g=4$ and $\Delta=8$ in dimension $N \leq 10$. Since Δ and N_{*} are fixed, they are not displayed. Otherwise notations are identical to those used in table. 7.1. Only $\sigma_{H}=\frac{1}{2}$ or $\frac{3}{2}$ can appear since we have limited ourselves to $\sigma_{H}<2$ as in Table 2.

Table 3

7.4 The maximally symmetric A - and E-Series

 of indecomposable QH lattices at level 1As examples of natural families of $Q H$ lattices we present the maximally symmetric, indecomposable QH lattices with a Witt sublattice given by a root lattice of A or E. [The \mathcal{O} sublattice is one-dimensional, and $\Gamma_{e}=\Gamma_{w}$; see (6.29), and (6.31), (6.32).] The Dynkin diagrams describing these Witt sublattices are:

$$
m-1 \text { dots }
$$

The Gram matrix, K, of a normal basis $\left\{q, e_{1}, \cdots e_{N-1}\right\}$ of Γ, where $\left\{e_{1}, \cdots, e_{N-1}\right\}$ is a basis of simple roots for Γw, has the form

$$
K=\left(\begin{array}{c|c}
2 p+1 & \underset{\longrightarrow}{\omega} \tag{7.2}\\
\hline \underset{\rightarrow}{\omega^{T}} & C
\end{array}\right)
$$

where C is the Cartan matrix, i.e., the Gram matrix of $\left\{e_{1}, \cdots, e_{N-1}\right\}$, and

$$
\begin{aligned}
& \omega=[1],^{\prime} \text { for } A_{m-1}, m=2,3, \cdots, E_{7}, E_{6}, E_{5} \\
& \omega=[2], \text { for } E_{4}, \text { and } \omega=[1][1], \quad \text { for } E_{3} .
\end{aligned}
$$

By formulas (6.31) and (6.32), and using eqs. (6.15) through (6.20), we have that

$$
\begin{align*}
& \Delta=\operatorname{det} K=2 p m+1, \quad \sigma_{H}=\frac{m}{2 p m+1}, \quad \text { for } A_{m-1} \\
& m=2,3, \cdots ; \text { and } \tag{7.3}\\
& \Delta=\operatorname{det} K=2 p m-1, \quad \sigma_{H}=\frac{m}{2 p m-1}, \quad \text { for } E_{8-(m-1)} \\
& m=2,3,4,5,6 \tag{7.4}
\end{align*}
$$

These functions also appear as Hall conductivities of "hierarchy states"; e.g. [33, 45] (and [27] for the A-series). For $p=1$, i.e., for $L_{\text {max }}=2 p+1=3$ (see eq. (6.33)), we get the following fractions:

Figure 2

Besides being singled out by their high symmetry, the QH lattices of the E series and those of the A-series up to dimension 7 can be shown to be the unique, smallest dimensional, minimal indecomposable lattices for the corresponding fraction. This can be inferred from Table 7.1. For the A-series the strength of our results is limited by the available tables of lattices given in Ref. [15].

The table presented above shows very clearly the asymmetry between the 2 series: The E-series is finite, describing five non-trivial lattices of decreasing dimension; the A-series is infinite, with increasing dimension. The fraction that immediately follows the smallest fraction of the E-series is $\frac{7}{13}$, experimentally observed, to which one can associate a unique three-dimensional, indecomposable, minimal QH lattice (see table 1 , $3\left(\frac{7}{13}\right)$). It is not a maximally symmetric lattice, however, since the \mathcal{O}-part in the Kneser shape is two-dimensional. But it is interesting to note that its Witt part is an $\mathrm{SU}(2)$ sublattice.

We stress that, for the next smaller fractions $\frac{8}{15}, \frac{9}{17}$ and $\frac{10}{10}$, no indecomposable minimal solutions are available, (see Sect. 7.2). If feasible, this would be a fruitful range for an experimental search of composite fluids. Typical solutions could be $\frac{8}{15}=$ $\left(\frac{1}{3}\right)+\left(\frac{1}{5}\right)$, or $\frac{8}{15}=\left(\frac{4}{15}\right)+\left(\frac{4}{15}\right)$. [Note that $\frac{4}{15}$ is an observed fraction.] These two composite fluids could be distinguished by their elementary fractional charges, $e_{1}^{*}=\frac{e}{3}$ and $e_{2}^{*}=\frac{e}{5}$, for the first composite fluid, while $e^{*}=\frac{1}{\lambda}\left(\frac{e}{15}\right)$, for the second fluid.

7.5 Examples: The Plateaux at $\sigma_{H}=\frac{8}{5}, \frac{5}{3}, 1, \frac{1}{2}$.

If the external magnetic field $\vec{B}^{(0)}$ acting on a $Q H$ sample is not very large, and the effective g-factor of the electrons in the two-dimensional fluid is small then if the fluid is incompressible it can be in a "spin-singlet state". In this case, there will be chiral edge spin currents generating an $\widehat{\operatorname{su}}(2)_{1}$ Kac-Moody algebra.

Suppose now that the component of $\vec{B}^{(0)}$ in the plane of the sample is increased (tilting of $\vec{B}^{(0)}$), while the filling factor ν is kept constant. Then one must expect that, at a critical value of the tilting angle, a transition from the spin-singlet state to a state of the system, where the spins of all electrons are polarized, will occur.

We shall argue that the QH fluid corresponding to the plateau at $\sigma_{H}=\frac{8}{5}$ is an example of a QH fluid exhibiting such a transition.

Consulting the table in Sect. 7.2, we observe that there is no indecomposable, minimal QH lattice corresponding to $\sigma_{H}=\frac{8}{5}$. We are therefore forced to look for QH lattices which are either decomposable or non-minimal. Decomposable QH lattices describe composite $Q H$ fluids. For small values of the in-plane component of $\vec{B}^{(0)}$; the following particle-hole composite QH fluid is a natural candidate for an incompressible state with $\sigma_{H}=\frac{8}{5}$.
(a) One pair of QH lattices corresponding to

$$
\begin{aligned}
\sigma_{H}= & \frac{8}{5} \text { is }\left(\Gamma_{e}, Q_{e}\right) \oplus\left(\Gamma_{h}, Q_{h}\right), \text { with } \\
& \Gamma_{e}=I_{2}, Q_{e}=(1,1) \\
& \Gamma_{h}=A_{1} 10_{1}\left[1, \frac{1}{2}\right], \quad{\underset{Q}{h}}=2 \underset{\rightarrow}{\xi}, \text { corresponding }
\end{aligned}
$$

to a Gram matrix $K_{h}=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$, with $\boldsymbol{Q}_{h}=(1,0)$, in a normal basis. Clearly $\left(\Gamma_{h}, Q_{h}\right)$ is the electron-hole conjugate of the $Q H$ fluid with $\sigma_{H}=\frac{2}{5}$ discussed in 7.4. In a normal basis, the Gram matrix of Γ_{e} is given by $K_{e}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$, with $Q_{e}=(1,0)$. The Witt sublattices of Γ_{e} and Γ_{h} are the root lattice of A_{1}, so, as explained in Sect. 6, (6.28), there is an $\widehat{u}(2)_{1}$, Kac-Moody algebra of chiral edge currents which may be interpreted as spin currents. This explanation of $\sigma_{H}=\frac{8}{5}$ thus corresponds to a "spin-singlet" state, $[8]$, which we expect to be realized at small values of $\vec{B}_{\|}^{(0)}$.

As we increase $\vec{B}_{\|}^{(0)}$, keeping the filling factor constant, the Zeeman energy of electrons increases. We thus expect that, at some value of $\vec{B}_{\|}^{(0)}$, the QH fluid described above becomes unstable and a transition to a new incompressible state occurs, as $\vec{B}_{\|}^{(0)}$ is increased further, [8]. This new state is likely to contain a fully polarized, completely occupied lowest Landau level. The following is a plausible lattice.
(b) A pair of QH lattices associated to $\sigma_{H}=\frac{8}{5}=1+\frac{3}{5}$ is $\left(\Gamma_{e}^{1}, Q_{e}^{1}\right) \oplus\left(\Gamma_{2}^{2}, Q_{e}^{2}\right)$, with $\Gamma_{e}^{1}=I_{1} \equiv 1_{1}, Q_{e}^{1}=(1)$, and $\left(\Gamma_{e}^{2}, Q_{e}^{2}\right)$ is the E_{0}-solution corresponding to $\sigma_{H}=\frac{3}{5}$ which we have discussed in Sect. 7.4. Obviously, the QH fluid corresponding to this particular, decomposable QH lattices is partially spin-polarized.

Note that the QH fluid described in (a) exhibits edge currents of both chiralities, while the edge currents of the one described in (b) have all the same chirality. Experiments testing the chirality of edge currents are reported in [46].

It illustrates an aspect of our general analysis that if we give up the condition of minimality we can find further QH lattices with $\sigma_{H}=\frac{8}{8}$, in particular there are indecomposable, non-minimal QH lattices corresponding to $\sigma_{H}=\frac{8}{5}$. An example of such a lattice is $\left(\Gamma_{e}, Q_{e}\right)$, with $\Gamma_{e}=A_{7} A_{1} 40_{1}\left[3,1, \frac{1}{8}\right], Q_{e}=8 \underline{\xi}$ and symbol $\rho\left(\frac{8}{5}\right)_{1}^{2}$; see Table 7.1. It is tempting to interpret the $\operatorname{SU}(2)$ corresponding to the A_{1} sublattice of Γ_{e} as describing electron spin, while the $\mathrm{SU}(8)$ corresponding to A_{7} describes asymptotic (approximate) internal symmetries. Thus an elementary, incompressible QH fluid described by ($\Gamma_{e}, \boldsymbol{Q}_{e}$) would have a "spin-singlet" groundstate. Because of the large internal symmetry it is perhaps unlikely that such a fluid can be realized in a monolayer.

In contrast to the plateau at $\sigma_{H}=\frac{8}{5}$ which exhibits a transition, as the external magnetic field $\vec{B}^{(0)}$ is tilted (keeping the filling factor constant), no such transition has
been observed for the plateau at $\sigma_{H}=\frac{5}{3}$. It is natural to ask whether our analysis permits us to understand this.

As emphasized in Sect. 7.2, no indecomposable minimal QH lattice exists for $\sigma_{H}=$ $\frac{5}{3}$ in dimension below 17, and, moreover, no minimal, maximally symmetric QH lattice can be constructed in any dimension! Apparently, the most natural explanations for $\sigma_{H}=\frac{5}{3}$ will thus be found among composite fluids. (Non minimal indecomposable QH lattices with $\sigma_{H}=\frac{5}{3}$ have high dimensions and a fairly weird structure.) Indeed, a widely accepted picture of the $\sigma_{H}=\frac{5}{3}$ state is to view it as an electron-hole conjugate form of the state at $\sigma_{H}=\frac{1}{3}$, i.e., to interpret it as a composite fluid $\frac{5}{3}=2-\frac{1}{3}$. In QH lattice language, this corresponds to a decomposition:

$$
\begin{equation*}
(\Gamma, Q)=\left(\Gamma_{e}, Q_{e}\right) \oplus\left(\Gamma_{h}, \boldsymbol{Q}_{h}\right) \tag{7.5}
\end{equation*}
$$

with $\sigma_{e}=\left(Q_{e}, Q_{e}\right)=2$ and $\sigma_{h}=\left(Q_{h}, Q_{h}\right)=\frac{1}{3}$.
The electron part (Γ_{e}, Q_{e}) has integral Hall conductance $\sigma_{e}=2$; a very natural choice is therefore a composite of two elementary fluids with $\sigma_{H}=1$:

$$
\left(\Gamma_{e}, Q_{e}\right) ; \quad \Gamma_{e}=1_{1} \oplus 1_{1} \xrightarrow[\rightarrow]{Q_{e}}=(1,1) ; \quad \sigma_{e}=1+1
$$

Our classification results strongly restrict the QH lattices that can be associated to the hole fluid with $\sigma_{h}=\frac{1}{3}$. There is a unique minimal QH lattice, and all non-minimal solutions have necessarly a non-trivial value for the charge parameter λ.

This is the contents of the following simple lemma.
Lemma 11. Let (Γ, Q) be an indecomposable $Q H$ lattice with $(Q, Q)=\sigma_{H}=$ $\frac{1}{d_{H}}, d_{H}=1,3,5, \cdots$. Then
(1) there is a unique minimal $Q H$ lattice $\left(\Gamma=\left(d_{H}\right), Q=(1)\right)$; and
(2) if $\operatorname{dim} \Gamma \geq 2$ then the charge parameter λ is at least 2 , (hence $l \geq 2$).

Proof. Recall that $g=$ g.c.d. $(Q \tilde{K})$ and $\gamma=\widetilde{K}_{11}$, in a normal basis; see (5.39) and (5.28). Thus g devides γ. If $g=\gamma$ then there is a normal basis in which \tilde{K} has the form

$$
\widetilde{K}=\left(\begin{array}{cccc}
\boldsymbol{\gamma} & \boldsymbol{\gamma} & 0 & \cdots
\end{array}\right)
$$

Thus, by a further basis transformation, \tilde{K} can be brought to the form

$$
\tilde{K}=\left(\begin{array}{cccc}
\boldsymbol{\gamma} & 0 & \cdots & 0 \\
0 & & \\
\vdots & & * & \\
\mathbf{0} & &
\end{array}\right)
$$

and hence Γ is decomposable which contradicts our hypothesis. By (5.40) it then follows that $\lambda \geq$ 2. Q.E.D.

As a consequence, if $\operatorname{dim} \Gamma_{h}>1$ then we predict that the smallest fractional electric charge is $e^{*} ₹ \frac{e}{3 \lambda}$, with $\lambda \geq 2$. But experiments reported in [6],[7] suggest that $e^{*}=\frac{e}{3}$ for the $\sigma_{H}=\frac{1}{3}$ state. This favours the idea that Γ_{h} is the one-dimensional lattice (3), and $Q_{h}=(1)$. Obviously, this lattice does not contain an A_{1} sublattice, and hence it describes a state of fully spin-polarized holes.

The lattice (Γ_{e}, Q_{e}) appearing in the decomposition (7.5) describes a composite QH fluid with two bands of oppositely spin-polarized electrons.

These results nicely fit experimental data [8] indicating that when the external magnetic field $\vec{B}^{(0)}$ is tilted the incompressible state at $\sigma_{H}=\frac{5}{3}$ remains stable, no matter how large $\vec{B}_{\|}^{(0)}$ is. Our results suggest that the $\sigma_{H}=\frac{5}{3}$ state will exhibit edge currents of both chiralities. This might be tested in edge magnetoplasmon experiments [46].

Next, we wish to analyre QH lattices with $\sigma_{H}=1$. According to Lemma 11, the only elementary QH fluid without excitations of fractional electric charge corresponds to the QH lattice ($\left.\Gamma_{e}=(1), Q_{e}=(1)\right)$. It is tempting to ask wehther there is a natural QH lattice with charge parameter $\lambda \geq 2$ corresponding to $\sigma_{H}=1$. The corresponding $Q H$ fluid would then exhibit fractional electric charges which might arise as a consequence of electron-electron interactions. Furthermore, it might happen that, in such a fluid, there is no preferred direction for spin polarization, i.e., one would observe spin waves. The corresponding QH lattice would then have to contain an A_{1} root lattice.

Our general analysis shows that QH lattices corresponding to $\sigma_{H}=1$ with these properties exist. We have encountered two examples in Table 7.1:

$$
\begin{equation*}
\Gamma=D_{8} 4_{1}\left[1, \frac{1}{2}\right], \quad \underset{\rightarrow}{Q}=2 \xi \tag{7.6}
\end{equation*}
$$

with symbol ${ }_{9}^{+}(1)_{2}^{2}$, and

$$
\begin{equation*}
\Gamma=E_{7} A_{1} 4_{1}\left[1,1, \frac{1}{2}\right], \quad \underset{\rightarrow}{Q}=2 \xi \tag{7.7}
\end{equation*}
$$

with symbol ${ }_{9}^{-}(1)_{2}^{2}$.
These examples have discriminant $\Delta=4$ and charge parameter $\lambda=2$. They also offer natural possibilities to imbed $\operatorname{SU}(2)_{\text {epin }}$ in their symmetry groups. However, their symmetry groups and the dimension of Γ are frighteningly large.

There are, however, fairly natural two- and three-dimensional QH lattices with $\sigma_{H}=1$. If the invariant $L_{\text {max }}$ (whose physical significance is well understood; see eq. (5.17)) is constrained to take the value 3 then we find the following lattices:

The unique two-dimensional QH lattice is

$$
\begin{equation*}
\Gamma=\left(3^{1} 3\right), \underset{\rightarrow}{Q}=\underset{\rightarrow}{\xi_{1}}-\underset{\rightarrow}{\xi_{2}} \tag{7.8}
\end{equation*}
$$

corresponding to the symbol $2(1)_{2}^{4}$.
Note that the lattice $\Gamma=\left(3^{1} 3\right)$ is also encountered in the analysis of $\sigma_{H}=\frac{1}{2}$, but in combination with a Q-vector $Q=\boldsymbol{\xi}_{1}+\boldsymbol{\xi}_{2}$.

Clearly, the QH lattice displayed in (7.8) describes a QH fluid of spin-polarized electrons, since Γ does not contain an A_{1} sublattice. However, in three dimensions, we find a QH lattice containing an A_{1} sublattice:

$$
\begin{align*}
& \Gamma=A_{1}\left(4_{1}\right)\left(6_{1}\right)\left[1, \frac{1}{2}, \frac{1}{2}\right] \\
& \underset{\rightarrow}{\boldsymbol{Q}}=2{\underset{\rightarrow}{1}}^{1} \tag{7.9}
\end{align*}
$$

with symbol $s(1)_{2}^{6}$.
A second three-dimensional QH lattice (Γ, Q) with symbol $s_{3}(1)_{2}^{8}$ is described by its K-matrix

$$
K=\left(\begin{array}{ccc}
3 & 1 & -1 \tag{7.10}\\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right), \quad \underset{\rightarrow}{Q}=(1,1,1)
$$

in a symmetric basis. These two QH lattices can be shown to exhaust the list of QH lattices with $L_{\max }=3, \sigma_{H}=1$ in three dimensions [37].

We notice that only the QH lattice displayed in (7.9) can account for $\operatorname{SU}(2)_{\text {apin }}$ in an elementary QH fluid of unpolarized electrons, has $L_{\text {max }}=3$ and has small dimension. It predicts the existence of excitations with halfinteger electric charge, just as in the case of the lattices described in (7.6) and (7.7). However it has a rather large discriminant $\Delta=12$, while the lattices in (7.6) and (7.7) have a $\Delta=4$. This may cast some doubt on the stability of a QH fluid described by (7.9).

In conclusion, one might argue that the QH lattices given in (7.7) and in (7.9) are rather natural candidates for the description of an unpolarized, elementary QH fluid with $\sigma_{H}=1$ and with an $\operatorname{SU}(2)_{\text {spin }}$ symmetry.

Finally we note that the lattices in (7.7) and (7.9) could also describe spin-polarized, elementary QH fluids in double-layer systems, with the $\operatorname{SU}(2)$ symmetry acting on the layer index.

Next, we study QH lattices describing elementary QH fluids with $\sigma_{H}=\frac{1}{2}$, a plateau that is observed in double-layer systems. Besides the "boring" solution,

$$
\begin{equation*}
\Gamma=\left(3^{1} 3\right)_{2}, \underset{\rightarrow}{Q}=\underset{\rightarrow}{\xi_{1}}+\underset{\rightarrow}{\xi_{2}}, \tag{7.11}
\end{equation*}
$$

there are "more imaginative" solutions that are listed as the second, third and fourth lattice in Table 7.3. Among these three, the most natural one is

$$
\begin{equation*}
\Gamma=A_{1} A_{1} 8_{1}\left[1,1, \frac{1}{2}\right], \quad \underset{\rightarrow}{Q}=2 \xi \tag{7.12}
\end{equation*}
$$

It describes a QH fluid composed of two species of spin-unpolarized electrons (corresponding to the two layers) exhibiting an $S U(2)_{\text {apin }} \times S U(2)_{\text {layer }}$ symmetry. Electrons transform according to the spin $\frac{1}{2}$ representations of both $S U(2)$ symmetries. There are excitations of fractional electric charge $\frac{e}{4}$, spin $\frac{1}{2}$ and "isospin" 0 , or spin 0 and isospin $\frac{1}{2}$. Three excitations of one kind and one of the other kind reconstitute an electron.

A look at Table 7.3 suggests that, in certain double-layer systems, one should be able to realize an elementary QH fluid with $\sigma_{H}=\frac{3}{2}$ (second but last lattice in Table 7.3), although such fluids would exhibit large internal symmetries.

Should we expect to find QH fluids with $\sigma_{H}=\frac{1}{4}$, or $\frac{1}{6}$? What one can show is that, for a two- or three-dimensional QH lattice with $\sigma_{H}=\frac{1}{4}, L_{\text {max }} \geq 5$, and this is also true for maximally symmetric QH lattices. Moreover, since $g, \lambda \geq 2$, the discriminant Δ of all QH lattices with $\sigma_{H}=\frac{1}{4}$ is always ≥ 16, while $Q H$ lattices expected to correspond to experimentally observed plateau values have discriminants $\Delta \leq 15$. For $\sigma_{H}=\frac{1}{6}$, the corresponding bounds are $L_{\max } \geq 7$, and $\Delta \geq 24$. These large values of $L_{\max }$ and Δ hint at an explanation of why plateaux at $\sigma_{H}=\frac{1}{4}, \frac{1}{6}$ are not observed: Tentative QH fluids with $\sigma_{H}=\frac{1}{4}, \frac{1}{6}$ would presumably have a very small gap and/or be threatened by the Wigner crystal instability.

In a separate paper (with U. Studer) [37], we shall analyze fairly systematically QH lattices corresponding to many observed plateaux of σ_{H} and make predictions concerning those plateaux that exhibit transitions between different incompressible QH fluids when external parameters, such as the density or the in-plane magnetic field are varied. Considering an example such as $\sigma_{H}=\frac{2}{3}$ somewhat systematically shows that this is a rather complicated task, because when there are many QH lattices corresponding to the same value of σ_{H} one must appeal to physical principles to find out which lattices have a chance to describe experimentally realizable QH fluids.

8. References

[1] K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[2] D.C. Tsui, H.L. Stormer and A.C. Gossard, Phys. Rev. B 48, 1559 (1982).
[3] R. Tao and Y.-S. Wu, Phys. Rev. B 31, 6859 (1985).
[4] R.L. Willet, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard and J.H. English, Phys. Rev. Lett. 59, 1776 (1987);
J.P. Eisenstein, R.L. Willet, H.L. Stormer, D.C. Tsui, A.C. Gossard and J.H. English, Phys. Rev. Lett. 61, 997 (1988); and references therein;
J.P. Eisenstein, R.L. Willet, H.L. Stormer, L.N. Pfeiffer and K.W. West, Surf. Science 229, 31 (1990).
[5] Y.W. Suen, L.W. Engel, M.B. Santos, M. Shayegan and D.C. Tsui, Phys. Rev. Lett. 68, 1379 (1992);
J.P.Eisenstein, G.S. Boeblinger, L.N. Pfeiffer, K.W. West and Song He, Phys. Rev. Lett. 68, 1383 (1992).
[6] R.G. Clark, J.R. Mallet, S.R. Haynes, J.J. Harris and C.T. Foxon, Phys. Rev. Lett. 60, 1747 (1988);
A.M. Chang and J.E. Cunningham, Solid State Commun. 72, 652 (1989);
R.G. Clark et al., cited in [8] for $\sigma_{H}=2 / 3$ study
[7] J.A. Simmons, H.P. Wei, L.W. Engel, D.C. Tsui and M. Shayegan, Phys. Rev. Lett. 63, 1731 (1989);
S.W. Hwang, J.A. Simmons, D.C. Tsui and M. Shayegan, Surf. Science 263, 72 (1992).
[8] Experimental results for tilted magnetic field transition at $\sigma_{H}=\frac{8}{5}$ and $\sigma_{H}=\frac{5}{3}$:
J.P. Eisenstein, H.L. Stormer, L.N. Pfeiffer and K.W. West, Phys. Rev. Lett. 62, 1540 (1989); Surf. Science 229, 21 (1990)
at $\sigma_{H}=\frac{4}{3}$:
R.G. Clark, S.R. Haynes, A.M. Suckling; J.R. Mallet, P.A. Wright, J.J. Harris and C.T. Foxon, Phys. Rev. Lett. 62, 1536 (1989)
at $\sigma_{H}=\frac{2}{3}$:
J.P. Eisenstein, H.L. Stormer, L.N. Pfeiffer and K.W. West, Phys. Rev. B 41, 7910 (1990);
R.G. Clark, S.R. Haynes, J.V. Branch, A.M. Suckling, P.A. Wright, P.M.W. Oswald, J.J. Harris and C.T. Foxon, Surf. Science 229, 25 (1990)
at $\sigma_{H}=\frac{5}{2}$:
see [4];

See also D.A. Syphers and J.E. Furneaux, Surf. Science 196, 252 (1988); Solid State Commun. 65, 1513 (1988);
J. Haug, K. von Klitzing, R.J. Nicholas, J.C. Maan and G. Weimann, Phys. Rev. B 36, 4528 (1987).
[9] For reviews of the quantum Hall effect and comprehensive compilations of references, see e.g.
R.E. Prange and S.M. Girvin, eds., "The Quantum Hall Effect", Second Edition, Graduate Texts in Contemporary Physics (Springer, New York, 1990);
G. Morandi, "Quantum Hall Effect" (Bibliopolis, Napoli, 1988);
T. Chakraborty and P. Pietiläinen, "The Fractional Quantum Hall Effect: Properties of an Incompressible Quantum Fluid", Springer Series in Solid State Science 85 (Springer, Berlin, 1988); M. Stone, ed., "Quantum Hall Effect" (World Scientific, Singapore, 1992). See also:
F. Wilczeck, "Fractional Statistics and Anyon Superconductivity" (World Scientific, Singapore, 1990).
[10] For IQH: R.B. Laughlin, Phys. Rev. B 23, 5632 (1981);
for FQH: R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983);
Phys. Rev. B 27, 3383 (1983); Surf. Science 141, 11 (1984); see also [28].
[11] X.G. Wen, Phys. Rev. B 40, 7387 (1989); Phys. Rev. Lett. 64, 2206 (1990); Phys. Rev. B 41, 12838 (1990); Phys. Rev. B 43, 11025 (1991); Phys. Rev. Lett. 66, 802 (1991); Int. J. Mod. Phys B 6, 1711 (1992);
X.G. Wen and Q. Niu, Phys. Rev.B 41, 9377 (1990);
B. Block and X.G. Wen, Phys. Rev. B 42, 8133, 8145 (1990);
X.G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
[12] J. Fröhlich and T. Kerler, Nucl. Phys. B 354, 369 (1991);
J. Fröhlich and A. Zee, Nucl. Phys. B 364, 517 (1991);
J. Fröhlich and U.M. Studer, Commun. Math. Phys. 148, 553 (1992);

Int. J. Mod. Phys. B6, 2201 (1992); "Incompressible Quantum Fluids, Gauge Invariance and Current Algebra", in J. Fröhlich et al., eds., New Symmetry Principles in Quantum Field Theory, Cargèse Lectures 1991 (Plenum Press New York, 1992); "Gauge Invariance and Current Algebra in Non-Relativistic Many-Body Theory", Rev. Mod. Phys. 65, 733 (1993).
[13] M. Stone, Int. J. Mod. Phys. Bㅌ, 509 (1991);
Ann. Phys. (New York) 207, 38 (1991).
A.V. Balatsky, Phys. Rev. B 43, 1257 (1991).
[14] See J. Fröhlich and T. Kerler, cited in [12].
[15] J.H. Conway, N.J.A. Sloane, "Sphere Packings, Lattices and Groups" (Springer-

Verlag, New York, 1988);
J.H. Conway, F.R.S. and N.J.A. Sloane, Proc. R. Soc. Lond. A418, 17 (1988); ibid, 419, 29 (1988); ibid 418, 43 (1988); ibid 419, 259 (1988).
[16] J.W. S. Cassels, "Rational Quadratic Forms", (Academic Press, 1978).
[17] E. Fradkin, "Field theories of Condensed Matter Systems", Frontiers in Physics, Vol. 82 (Addison-Wesley, Redwood City, 1991).
[18] J. Fröhlich, U.M. Studer, cited in [12].
[19] R.E. Prange and S.M. Girvin, eds. "The Quantum Hall Effect", cited in [9].
[20] M. Stone, ed., "Quantum Hall Effect", cited in [9].
[21] B.I. Halperin, Phys. Rev. B 25, 2185 (1982).
[22] P. Goddard and D. Olive, Int. J. Mod. Phys. A1, 303 (1986).
[23] P. Ginsparg, "Applied Conformal Field Theory" in E. Brézin and J. Zinn-Justin, eds., "Fields, Strings and Critical Phenomena", Les Houches, Session XLIX, 1988 (North Holland, Elsevier Science Publishers B.V., 1990).
[24] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[25] J. Fröhlich and C. King, Commun. Math. Phys. 126, 167 (1989); Int. J. Mod. Phys. A4, 5321 (1989).
[26] S. Elitzur, G. Moore, A. Schwimmer and N. Seiberg, Nucl. Phys. B 326, 108 (1989).
[27] J. Fröhlich and T. Kerler (1991), cited in [12]; J. Fröhlich and Z. Zee (1991), ibid.
[28] R.B. Laughlin, Chap. 7 in R.E. Prange and S.M. Girvin, eds., cited in [9]; F.D.M. Haldane, Chap. 8, ibid.
[29] K. Gawȩdzki, in G. 't Hooft et al., eds., "Non perturbative Quantum Field Theory" (Plenum, New York, 1988).
[30] X.G. Wen, Int. J. Mod. Phys., B 4, 239 (1990).
[31] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991);
Prog. Theor. Phys. Suppl. 107, 157 (1992).
[32] X.G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
[33] N. Read, Phys. Rev. Lett. 65, 1502 (1990).
[34] V.V. Nikulin, Math. USSR-Izv. 14 (1979), $\mathrm{n}^{\circ} 1$, 103-167 (1980).
[35] J. Fröhlich and P.A. Marchetti, Lett. Math. Phys. 16, 347 (1988); Commun. Math. Phys. 121, 177 (1989).
[36] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B 241, 333 (1984).
[37] J. Fröhlich, U.M. Studer and E. Thiran, "Gauge Symmetry, Integral Lattices and the Classification of Quantum Hall fluids", preprint KUL-TF-93/33;
"An ADE-O Classification of Minimal Incompressible Quantum Hall fluids", to
appear in the proceedings of the conference "On Three Levels", Leuven (Belgium), 1993, A. Verbeure et al., eds, Plenum.
[38] V. Kac, M. Wakimoto, Adv. Math. 70, 156 (1988);
V. Kac, N. Sanielevici, Phys. Rev. D3Z, 2231 (1988);
M.A. Walton, Nucl. Phys. B322, 775 (1989);
D. Altschuler, M. Bauer and C. Itzykson, Commun. Math. Phys. 132, 349 (1990);
D. Verstegen, Commun. Math. Phys. 137, 567 (1991);
for the classification of Conformal Embeddings see [43].
[39] A.H. Chamseddine and J. Fröhlich, Commun. Math. Phys. 147, 549 (1992).
[40] J. Fröllich, T. Kerler and E. Thiran, in preparation.
[41] B. Block and X.G. Wen, Phys. Rev. B42, 8145 (1990).
[42] R. Slansky, Phys. Rep. 79, 1 (1981).
[43] F.A. Bais and P. Bouwknegt, Nucl. Phys. B279, 561 (1987);
A.N. Schellekens and N.P. Warner, Phys. Rev. D34, 3092 (1986).
[44] P. Engel, L. Michel and M. Senechal, Lattice Geometry (1993), in preparation.
[45] F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983);
B.I. Halperin, Phys. Rev. Lett. 51, 1583 (1983); for a review see F.D.M. Haldane, cited in [28]; see also [33];
J.K. Jain and V.J. Goldman, Phys. Rev. B45, 1255 (1992);
see also Y.J. Chen, Phys. Rev. B46, 7941 (1992).
[46] R.C. Aschoori et al., Phys. Rev. B 45, 3894 (1992).

[^0]: *This paper will appear in the J. of Stat. Phys.

[^1]: ${ }^{1}$ Spin-orbit interactions are neglected; but see [18].

