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I. Introduction

It was shown by F. Riesz [5; 350](2) that every subharmonic function u

can be represented as the sum of the potential of its mass distribution plus a

harmonic function; the potential appears in the form of a Stieltjes integral

(Riesz's theorem is stated in (2.2.1)). We prove that the Stieltjes integral

may be replaced by a Lebesgue integral if u is continuous, and if the lower

generalized Laplacian of u is less than + <», except possibly on a set of ca-

pacity zero (Theorem II). In other words, the above assumptions imply the

absolute continuity of the mass distribution associated with u.

We obtain this result as a consequence of Theorem I, which deals with the

representation of continuous functions in integral form. In another paper,

Theorem I will be used in an investigation of the uniqueness theory for

Laplace series. The theorem was actually suggested by this application, and

is of a type similar to a theorem of Zygmund [9; 276] on the representation of

continuous functions of one variable.

Our results are stated for the plane, but analogous theorems evidently hold

for continuous functions of three or more variables, if the generalized La-

placians are suitably defined (see, for instance, [7]).

1.1. Notation. Let D be a finite plane domain (that is, a connected open

set not containing the point at infinity). Let Z be a closed and bounded plane

set of capacity zero (see 2.3). Let J(P, r) denote the closed circular disc

bounded by the circle C(P, r) with center at P, and radius r. If the function

F EL on C(P, r), we put

(1.1.1) ^F(P) = — f        F(Q)dsQ - F(P).
¿irr J C(P,r)

If there exists r0>0 such that F EL on C(P, r) for 0<r<r0, we define the

generalized Laplacian of F at P by
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(1.1.2) AF(F) = lim 4ArF(P)/r2,
J—0

provided the limit exists. The upper and lower Laplacians, A*F(F) and

A*F(P), are defined likewise, with lim sup and lim inf in place of lim.

By Wiener's sequence method [8; 25] it is possible to define Green's

function for any bounded domain R. We therefore do not have to restrict

ourselves to Dirichlet domains. We shall introduce some more notation in 3.1.

1.2. Theorem I. Let the function F be continuous in D. Suppose

(i) A*F(P) > - », A*F(F)<+ °o for P in D-DZ;
(ii) there exists a function y, defined in D, such that yÇ^L on every closed

subset of D, and such that y(P) i£A*F(P) for P in D.

Then

(a) AF(P) is finite at almost all points P of D;

(b) AF£L on every closed subset of D;

(c) at almost all points P of D we have

(1.2.1) ff \AF(Q)\ogPQ\dQ<+ » (J(P,r)CD);
J  J J-(P,r)

(d) at all points P of D at which (1.2.1) holds, and for all bounded domains

R which contain P and whose closure is contained in D, we have

(1.2.2) F(P) = -— ff AF(Q)g(P, Q)dQ + 22(F),
2t J J r

where g(P, Q) is Green's function for R, and H is harmonic in R and assumes

the values of F on the boundary of R (in the sense of Wiener [8; 25], if R is

not a Dirichlet domain).

1.3. Theorem II. Let the function u be continuous and subharmonic in D.

Suppose that A*w(P) < + =° for P in D — DZ. Then, at all points P of D, and

for all bounded domains R which contain P and whose closure is contained in

D, we have

(1.3.1) u(P) = -- f f Au(Q)g(P, Q)dQ + 72(F),
¿W J   J R

where g(P, Q) is Green's function for R, and H is the least harmonic majorant

of u in R. In addition, if D is bounded, and if u has a harmonic majorant in D,

then (1.3.1) holds if R = D.

Evidently, (1.2.2) (and (1.3.1)) may also be written in the form

(1.3.2) F(P) = - f f AF(Q) log PQdQ + h(P),
2w J J r
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in which the integral represents  the potential  of a  mass distribution  of

density AF, and h is harmonic in R.

II. SUBHARMONIC FUNCTIONS, SETS OF CAPACITY ZERO

2.1. Definition. A function u is said to be subharmonic in D if [4; 333]

(a) u is upper semi-continuous in D,

(b) u(P) < + oo in D,

(c) u(P) is finite on a dense set in D,

(d) for every domain G with boundary 73, such that G+BED, the in-

equality u(P)^H(P) on 73 implies u(P)^H(P) in G for every function 77

which is harmonic in G and continuous on G+73.

The condition (d) may be replaced by

(2.1.1) ArU(P)   ̂    0

provided J(P, r)ED [4; 334], or by

(2.1.2) A*u(P) ^ 0

for Pin 7» [3; 14].

2.2. Lemma. If u is subharmonic in D, then Au(P) is^finite at almost all

points P of D, and EL on every closed subset of D.

Proof. There exists a non-negative set function ju, called the mass dis-

tribution of u, such that (1) pt(e) is finite for any Borel set e contained with

its closure in D, (2) if G is any open set contained with its boundary in D,

then p is absolutely additive on G, and

(2.2.1) u(P) = ff log PQdm + h(P) (P in G),

where h is harmonic in G [5; 350], [7; 452].

Defining the symmetric derivative [6; 149] by

1
(2.2.2) 7>8ym ¡x(P) = lim —- M(/(P, r)),

r^o irr1

we have, by the two-dimensional case of a theorem of Saks [7],

(2.2.3) Au(P) = 2xAym ß(P)

at all points P at which Deymri(P) is finite.

Since ju is additive, the derivative Dp(P) (and, a fortiori, 7>Bym p(P)) is

finite p. p. and EL on E, where E is any measurable set for which p(E) is finite.

Combining these results, we obtain the lemma.

2.3. Sets of capacity zero. Let £ be a closed and bounded plane set whose

complement contains an unbounded domain U, and which is contained in

the interior 7 of a circle C. Let T be the boundary of U. Put V= U-I. Then
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F is a domain. Let u be the function which is harmonic in V and which is the

sequence solution [8; 25] of the Dirichlet problem, corresponding to the

boundary values 1 on T and 0 on C.

The set E is said to be of capacity zero if the function u thus determined

vanishes in F[l; 208]. This definition is independent of the choice of C.

Closed and bounded plane sets of capacity zero, which we shall denote by

the letter Z, have the following geometric properties [l ] :

(2.3.1) If C is a circle, then Z-C is of measure zero on C.

(2.3.2) If G is a domain, then G — G-Z is a domain.

We shall also make use of the following result:

(2.3.3) Let G be a domain; Let Z(ZG; let u be subharmonic in G — Z and

bounded above in a neighborhood of Z. If we define u(P) on Z by

u(P)  =  lim sup u(Q),

then the extended function is subharmonic in G[2; 31].

The following lemma will enable us to infer that the function H in (1.2.2)

and (1.3.1) is harmonic.

2.4. Lemma. Let E be a set of measure zero, contained in the finite domain R.

Let F be defined on R — E. Suppose FGF on J(P, r) if J(P, r)(ZR, and suppose

ArF(P) =0for P on R — E, if J(P,r) CF. Then there exists a function H which

is harmonic in R, such that H(P) = F(P) on R—E.

Proof. It is easily verified that the function

H(P) = Hr(P) =—ff       F(Q)dQ (PGR; J(P, r) C R)
irr¿ J  J J(P,r)

is independent of r for fixed P on R — E, coincides with F(P) on R — E, is

continuous in R, hence independent of r for fixed P on E. It follows that H has

the Gaussian mean value property for all J(P, r)CR-

III. The operator  ti

It will be convenient to have a short symbol for integrals of the type ap-

pearing in (1.2.2) and (1.3.1). Hence we make the following definition.

3.1. Definition. Let f(E.L on R, where F is a bounded domain. Put

f+ = max (/, 0), /" = - min (/, 0). We define

(3.1.1) Üf(P) = üRf(P) = - — f f f(Q)g(P, Q)dQ
2x J J r

at all points F of F at which at least one of the integrals

ff f+(Q)g(P, Q)dQ,        ff t(Q)g(P, Q)dQ
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is finite. g(P, Q), as before, is Green's function for R. It will not be necessary

in the sequel to indicate the dependence of fl on R.

Let J(P, r)ER, and suppose fEL on R. We shall use the following prop-

erties of ß:

3.2. ß/+ and ß/~ are subharmonic in R.

3.3. UfEL on C(P, r), and Q,fEL on J(P, r); hence ß/(P) is finite at al-

most all points P of R.

3.4. If f is bounded above in R, then Uf is lower semi-continuous and

> — oo in R.

3.5. If P is a point at which ß/(P) is defined, then

(3.5.1) Araf(P)=^-ff      f(Q) log^
¿WJ  Jj(P,r) F\

(3.5.2) lim- f        Qf(Q)dsQ - fi/(P)
r->0   2xr J C(P,r)

dQ,
PQ

3.6. At almost all points P of R, Aß/(P) =f(P).
3.7. If f is upper semi-continuous and less than + » at P, then A*ß/(P)

Zf(P).
3.8. Iff is bounded above in R, and if Z is a closed set of capacity zero, then,

for P in R,

lim inf  üf(Q) = ttf(P).
q->p,qEz

3.9. Proofs of 3.2-3.8. We can write g(P, Q)=h(P, 0-log P<2, where

h(P, Q) is harmonic in P, for each Q, and is symmetric in P, Q. Then

(3.9.1)       Qf+(P) = ~-ff f+(Q)h(P, Q)dQ +^-ff f+(Q) log PQdQ.
2ir J J ¡t ¿17 J J r

Let these two integrals be denoted by fa(P) and fa(P) respectively. The func-

tion fa is clearly continuous in R. Since

Arh(P, Q) =- f        h(M, Q)dsM - h(P, Q) = 0,
2irr J ciP.r)

we have, by Fubini's theorem on the change of order of integration,

A^(P) = -~f f f+(Q)Arh(P, Q)dQ = 0,
2ir J J r

which shows that fa is harmonic in R. Next, fa is subharmonic in R; this fol-

lows from [5; 328], with p(e) =ffef+(Q)dQ. Thus 3.2 is proved.
By 3.2, Í2/+ and Qf~EL on C(P, r) and on J(P, r) [3; 4]. 3.3 follows.
If / is bounded above in R, ß/+(P) is finite at all P of R. Hence ñ/(P)
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> — cc in R. Since ñra is continuous in R for any constant m, we may assume

without loss of generality that/(F) ^0 in R. Lower semi-continuity (and

hence 3.4) follows from 3.2 and 2.1.

Next, (3.5.1) is a consequence of Fubini's theorem and the formula

Ar log PQ = - I log MQdsu - log PQ =   {
2*rJClP,r) V        llog r/PQ       (PQ ¿ r).

By 3.2, (3.5.2) holds for/+ and for/" [3; 8], and hence for/.

Noting that limr.0 CS/Trr2)ffj(P,r)f(Q)dQ=f(P) p. p. in R [6; 118], we see
that 3.2, (3.9.1), and (2.2.3) imply AÍ2/+(F) =/+(F) p. p. in R. 3.6 follows.

To prove 3.7, we note that/ is bounded above in a neighborhood of P.

Hence ß/(P) is defined. Suppose first that/(P) is finite. Let e>0 be arbitrary.

There exists 5>0 such that/(Q) ^f(P) +e for Q in J(P, 5). By (3.5.1) we have,

for 0<r<5,

Ari2/(F) ^^ff        (f(P) + «) log -¿- dQ = - r2(f(P) + e).
2wJ J ji.p,r) PQ 4

Hence A*fl/(P) g/(P)+e, which implies h*Q,f(P)^f(P). Next, suppose/(F)

= — co. Let íb>0 be arbitrary. There exists ô>0 such that f(Q) ^—m for

Q in J(P, 5). Proceeding as above, we see that A*Qf(P) i=—m, which implies

A*Q/(P) = -oo.

To prove 3.8, we note that fí/ is defined in R, and that

lim inf  tlf(Q) ̂  lim inf Qf(Q) ̂  Qf(P) (P in R)

(by 3.4). Thus, if 3.8 is false, there exists a number m such that

lim inf  Qf(Q) > m > fi/(P).
Q-p,gCz

For Q sufficiently near to F, Q&Z, we have then Qf(Q)tm. By (2.3.1), Z

is of measure zero on every circle; hence

lim inf- f        Qf(Q)dsQ ^ m > üf(P),
r-»o     2irr J c (P ,>•}

contrary to (3.5.2).

IV. Proof of main results

In the proof of Theorem I we shall make use of the following theorem.

4.1. Vitali-Carathéodory Theorem. Let f be defined in R, fGL on R.

Then there exist functions Ui, u2, • ■ ■ , Vi, Vi, ■ ■ • , defined in R, with the fol-

lowing properties:

(a) Ui(P)^ui(P)ú ■ ■ • ^/(F)g • • • úvi(P)eVi(P) in R;
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(b) each un is bounded above and is upper semi-continuous in R, each vn

is bounded below and is lower semi-continuous in R;

(c) u„EL, vnEL on R, n = l, 2, 3, ■ ■ ■ ;

(d) un(P)—>f(P), vn(P)—*f(P) as «—>oc, at almost all points P of R.

For the proof we refer to [6; 75].

4.2. Proof of Theorem I. Let u be one of the upper semi-continuous func-

tions associated with y in R, in the sense of the Vitali-Carathéodory Theorem.

Put

(4.2.1) W(P) = F(P) - tiu(P) (P in R).

By 3.4, W is upper semi-continuous and  < + oo in P. Applying 3.7 to u, we

have, for P in R — RZ,

A*W(P) è A*7(P) - A*fi«(P) ^ A*F(P) - u(P)

^ A*7(P) - y(P) ^ 0.

Here we used assumption (ii) and the first half of assumption (i) of Theorem I.

By 3.2, W(P) is finite on a dense set in the domain R — R-Z (see (2.3.2)).

Thus, by (2.1.2), IF is subharmonic in R — RZ.

Let MER-Z. By (2.3.2), there exists a simple closed curve T in P whose

interior G contains M, such that YZ = 0. Being upper semi-continuous and

less than + oo in P, IF is bounded above in G. Moreover, by 3.8,

lim sup    W(Q)   =   lim F(Q)   -    lim inf   Qu(Q)
q-*m,qEz Q-*m q^m.qEz

(4.2.3)
= F(M) - Sïu(M) = W(M).

Since G-Z is closed, we can now apply (2.3.3), and conclude that W is

subharmonic in G, and thus in P. By 2.2, AW(P) is finite p. p. in P. By 3.6,

(4.2.4) A7(P) = AIF(P) + AQu(P) = AW(P) + u(P) (p. p. in R).

Since R is an arbitrary bounded domain in D, it follows that AF(P) is finite

p. p. in D. Similarly, 2.2 shows that AFEL on any closed subset of R, and

hence on any closed subset of D. By 3.3, (1.2.1) holds p. p. in D. We have thus

proved (a), (b), and (c) of Theorem I.

Next, put

(4.2.5) f(P) = (A*7(P) + A*7(P))/2

at all points P of D at which the sum in (4.2.5) is defined, and put/(P) =0 at

all other points of D. Then

(4.2.6) AJF(P) ^ f(P) ^ \*F(P) (P in D),

(4.2.7) f(P)=AF(P) (p. p. inD).

Let «i, u2, ■ ■ • , Vi, v2, • • • , be functions associated with / and R in the
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sense of 4.1. Let E be the set on which both Q,Ui(P) and Çtvi(P) are finite. It

follows, by (a) of 4.1, that ß«„(P), Slvn(P) (« = 1, 2, 3, • • • ), as well as

Í2/(P), are finite for P on E. By 3.3, E contains almost all points of R. Let

J(M, r)QR, with M in E. This choice of M assures that all integrals used in

the remainder of this proof are finite. Put

(4.2.8) Wn(P) = F(P) - iiUn(P) (PER;n = 1,2, 3, ••• ).

Proceeding as in (4.2.2) and (4.2.3), with un and/ in place of u and y, we see

that Wn is subharmonic in R. By (2.1.1)

(4.2.9) ArWn(M)^Q (n= 1, 2, 3, • • • )•

By (3.5.1), (4.2.8), and (4.2.9),

(4.2.10) ArF(M) ̂—ff        un(Q) log -¿- dQ (n = X, 2, 3, • • ■ ).
2-ÏÏ J  J J (M,r) I Q

The sequence {un(P)} converges to/(P) monotonically p. p. in R. Hence we

may pass to the limit in (4.2.10), and obtain

(4.2.11) ArF(M) ̂ — f f        f(Q) log ~- dQ.
2-kJ Jj{M,r) PQ

In the same manner, working with the functions vn(P), we obtain (4.2.11)

with the inequality reversed. Hence the equality sign holds in (4.2.11), and

comparison with (3.5.1) shows that

(4.2.12) Ar(F(M) - af(M)) = 0.

By 3.3, the function F—12/ thus satisfies all hypotheses of 2.4. Hence there

exists a function H, harmonic in R, such that

(4.2.13) F(P) = üf(P) + H(P) (p. p. in R).

Now let N he a point in R at which (1.2.1) holds. By (4.2.7), ß/(A) is

finite. Since F and H are continuous in R, we have

F(N) - H(N) = lim — f f        (F(Q) - H(Q))dQ
r->0   irr¿ J J J(N,r->

= lim —ff        Üf(Q)dQ = Üf(N),
t^O    TCr1 J  JjW.r)

the last equality being a consequence of (3.5.2).

4.3. We have now proved Theorem I, except for the assertion concerning

the houndary values of H.

Put Mi(P) =fí/+(P), Ui(P) =0/-(P), for P in R. By 3.2, «i and «2 are sub-

harmonic in R; the least harmonic majorants of «i and «2 in R are both zero

[5; 357].

(4.2.14)
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Fix a point M in P. Choose a sequence {Pn} of domains with polygonal

boundaries 73„, such that MERi, RiERiE ■ • ■ ER, Pn—>P as w—>oo. The

functions ui and u2EL on T3„, since they are subharmonic [2; 14]. Since

Q,f = Ui — u2, this shows that ß/ exists p. p. on Bn. We have shown that (4.2.13)

holds wherever ß/ is finite. Hence (4.2.13) holds at almost all points of 73„,

which implies

(4.3.1) Hn(M) = £\m) - hn\M) + H(M),

where 77„ is harmonic in Rn and coincides with F on 73„, and h„l), h™, are the

best harmonic majorants of ui, u2, in Pn.

(For the concepts of best harmonic majorants (B.H.M.) and least harmonic

majorants (L.H.M.) of a subharmonic function in a given domain we refer

to [4; 334], [5; 357-358]. Radó [3; 39] proved that the L.H.M. is equal to
the B.H.M. for Dirichlet domains. Since the B.H.M. is defined for Dirichlet

domains only, it would seem that Radó's theorem has made the concept of

B.H.M. superfluous.)

Since lim hnl\M) =0 = lim h™(M) as ra^oo [5; 358], (4.3.1) implies that

lim Hn(M) =H(M). This completes the proof of Theorem I.

4.4. Proof of Theorem II. All hypotheses of Theorem I are evidently

satisfied (we can take y = 0). To show that (1.3.1) holds everywhere, it is

sufficient, by (d) of Theorem I, to show that ß/(P) > — «s for P in P, where

/=A*w^0. By 3.4, ß/ is upper semi-continuous in R, hence the equation ß/(P)

= — co would imply lim ß/(Q) = — oo as Q—»P, and ß/ would not be equal

to the continuous function u — H almost everywhere in P.

The remaining assertions of Theorem II were proved by Riesz [5; 357]

for the Stieltjes integral representation. Hence they evidently hold in our

case as well.

Bibliography

1. M. Brelot, Sur la structure des ensembles de capacité nulle, C. R. Acad. Sei. Paris vol.

192 (1931) pp. 206-208.
2. -, Etude des fonctions sousharmoniques au voisinage d'un point, Paris, 1934.

3. T. Radó, Subharmonic functions, Ergebnisse der Mathematik, vol. 5, no. 1, Berlin, 1937.

4. F. Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel. Acta

Math. vol. 48 (1926) pp. 329-343.
5. -, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta

Math. vol. 54 (1930) pp. 321-360.
6. S. Saks, Theory of the integral, 2d. ed., Warsaw, 1937.

7. -, On the operators of Blaschke and Privaloff for subharmonic functions, Rec. Math.

(Mat. Sbornik) vol. 51 (1941) pp. 451-456.
8. N. Wiener, Certain notions in potential theory, Journal of Mathematics and Physics

vol. 3 (1924) pp. 24-51.
9. A. Zygmund, Trigonometrical series,'Warsaw, 1935.

Duke University,

Durham, N. C.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


