François Treves

Integral representation of solutions of first-order linear partial differential equations, I

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $4{ }^{e}$ série, tome 3 , $\mathrm{n}^{\circ} 1$ (1976), p. 1-35
http://www.numdam.org/item?id=ASNSP_1976_4_3_1_1_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Integral Representation of Solutions of First-Order Linear Partial Differential Equations, I (*).

 FRANÇOIS TREVES (**)dedicated to Hans Lewy

Introduction.

Until now the proofs of the local solvability of the linear PDEs with simple real characteristics satisfying Condition (P) are strictly "existential» and based on a priori estimates (see [1], [5]). In the present paper we give an integral representation of solutions (in a small open set) of the equation

$$
\begin{equation*}
L u=f, \tag{1}
\end{equation*}
$$

in the (very) particular case where L is a first-order linear partial differential operator with analytic coefficients, nondegenerate, satisfying Condition (P) (which, in these circumstances, is equivalent to being locally solvable). The right-hand side f is assumed to be C^{∞} and the found solution u is also C^{∞} (all this is local, in a fixed open neighborhood of the central point). Thus we answer, in this particular case, the question of the solvability within C^{∞}-still open in the more general cases.

The techniques introduced in the present paper compel us to look at the local solvability of first-order linear PDEs from a new viewpoint, and to analyze in finer detail its geometric implications (see Ch. I). I believe they should lead to interesting results in more general set-ups. An outline of the main ideas of the paper can be found in [7].

[^0]
Chapter I

GENERAL CONSIDERATIONS

1. - A new formulation of the solvability condition (P) for first-order linear PDEs.

Let Ω be an open subset of $\mathbb{R}^{N}(N \geqslant 2)$; the coordinates in \mathbb{R}^{N} are denoted (at least for the moment) by y^{1}, \ldots, y^{N}. We consider a first-order linear partial differential operator

$$
\begin{equation*}
L=\sum_{j=1}^{N} \gamma^{j}(y) \frac{\partial}{\partial y^{j}}+\gamma^{0}(y), \tag{1.1}
\end{equation*}
$$

where the $\gamma^{j}(0 \leqslant j \leqslant N)$ are complex-valued C^{∞} functions in Ω. We make throughout the hypothesis that L is nowhere degenerate, that is,

$$
\begin{equation*}
\forall y \in \Omega, \quad \sum_{j=1}^{N}\left|\gamma^{j}(y)\right| \neq 0 \tag{1.2}
\end{equation*}
$$

We denote by L_{0} the principal part of L, that is,

$$
L_{0}=\sum_{j=1}^{N} \gamma^{j}(y) \frac{\partial}{\partial y^{j}}
$$

Let then y_{0} be an arbitrary point of Ω. There is an open neighborhood $U \subset \Omega$ of y_{0} and local coordinates in $U, x^{1}, \ldots, x^{n}, t$ (we set $n=N-1$ and write $\left.x=\left(x^{1}, \ldots, x^{n}\right)\right)$ such that, in U,

$$
\begin{equation*}
L=\zeta(x, t)\left\{\frac{\partial}{\partial t}+i \sum_{j=1}^{n} b^{j}(x, t) \frac{\partial}{\partial x^{j}}+c(x, t)\right\}, \tag{1.3}
\end{equation*}
$$

where $\zeta, b^{j}(1 \leqslant j \leqslant n)$, c are C^{∞} functions in U; furthermore, ζ does not vanish at any point of U and the b^{j} are real-valued. We may in fact suppose that U is a product-set

$$
\begin{equation*}
U=\left\{(x, t) \in \mathbb{R}^{n+1} ; x \in U_{0},|t|<T\right\} \tag{1.4}
\end{equation*}
$$

where U_{0} is an open neighborhood of the origin and T a number >0 (we are assuming, for simplicity, that the coordinates x^{1}, \ldots, x^{n}, t all vanish at y_{0}). We set: $\boldsymbol{b}(x, t)=\left(b^{1}(x, t), \ldots, b^{n}(x, t)\right)\left(\in \mathbb{R}^{n}\right)$.

DEFINITION 1.1. We say that L satisfies Condition (\mathbf{P}) at the point y_{0} if there is an open neighborhood $V \subset U$ of y_{0} such that the following is true:
(1.5) In V, the vector field $\boldsymbol{b}(x, t)||\boldsymbol{b}(x, t)|$ is independent of t.

Although we have formulated (P) at y_{0} in terms of particular coordinates, it can be proved (see [4]) that it does not depend on our choice of the coordinates (provided that the expression of L be of the kind (1.3)). We say that L satisfies Condition (P) in Ω if it so does at every point of Ω.

Let us assume that (P) holds at y_{0} and take the neighborhood U equal to V in Def. 1.1. Let us introduce the singular set

$$
\begin{equation*}
\mathcal{N}_{0}=\left\{x \in U_{0} ; \forall t,|t|<T, \boldsymbol{b}(x, t)=0\right\} . \tag{1.6}
\end{equation*}
$$

In $U_{0} \backslash \mathcal{N}_{0}, \boldsymbol{b} /|\boldsymbol{b}|$ is a \boldsymbol{C}^{∞} vector field, nowhere zero; we shall regard it as a first-order linear partial differential operator, without zero-order term, which we denote by

$$
\begin{equation*}
X=\sum_{j=1}^{n} v^{j}(x) \frac{\partial}{\partial x^{j}} \tag{1.7}
\end{equation*}
$$

We extend $v=\left(v^{1}, \ldots, v^{n}\right)$ as an arbitrary unit-vector in \mathcal{N}_{0} (in general, v will not be smooth throughout U_{0}). In U we may then write

$$
\begin{equation*}
L=\zeta(x, t)\left\{\frac{\partial}{\partial t}+i|\boldsymbol{b}(x, t)| X+c(x, t)\right\} \tag{1.8}
\end{equation*}
$$

We find ourselves in the following situation: U is the union of the "vertical» lines $x=x_{0} \in \mathcal{N}_{0}$, along which $\zeta^{-1} L_{0}=\partial / \partial t$, and of the cylinders $\Sigma=\Gamma \times]-T, T$, where T is any integral curve of X in $U_{0} \backslash \mathcal{N}_{0}$, cylinders on which $\zeta^{-1} L_{0}=\partial / \partial t+i|\boldsymbol{b}(x, t)| X$.

Assuming now that (P) holds at every point of Ω, this leads to a foliation of Ω, which is best seen when the coefficients of L_{0} are analytic. Let us write $L_{0}=A+\sqrt{-1} B$, where A and B are real vector fields. Let us denote by $\mathfrak{g}(A, B)$ the real Lie algebra generated by A and B (for the commutation bracket $[A, B]=A B-B A$). When A and B are analytic vector fields, it is known (see [2]) that each point y_{0} of Ω belongs to one, and only one, subset \mathcal{M} of Ω having the following properties:
(1.9) \mathcal{M} is a connected analytic submanifold of Ω;
(1.10) the tangent space to \mathcal{M} at anyone of its points, y, is exactly equal to the «freezing» of $\mathfrak{g}(A, B)$ at y;
(1.11) \mathcal{H} is maximal for Properties (1.9) and (1.10).

We shall refer to the submanifolds \mathcal{M} as the leaves defined by L. When the coefficients of L_{0} are analytic, Condition (P) is equivalent with the local solvability of L (here, at each point of Ω). It can be subdivided into two parts:
(P1) the dimension of each leaf \mathcal{M}, defined by L, is either one or two.
Observe that (P1) is always true when the dimension of the surrounding space, i.e., of Ω, is $\leqslant 2-$ even when L is not locally solvable.
On an arbitrary two-dimensional leaf \mathcal{M} the complex vector field L_{0} defines a skew-symmetric real two-tensor, which it is natural to denote by

$$
\begin{equation*}
A \wedge B=-\frac{1}{2 i} L_{0} \wedge \bar{L}_{0} . \tag{1.12}
\end{equation*}
$$

(If we set $\alpha^{j}=\operatorname{Re} \gamma^{j}, \beta^{j}=\operatorname{Im} \gamma^{j}, j=1, \ldots, N$, the coordinates of $A \wedge B$ on the canonical basis $\partial / \partial y^{j} \wedge \partial / \partial y^{k}, 1 \leqslant j<k \leqslant N$, are $\alpha^{j} \beta^{k}-\alpha^{k} \beta^{j}$.) Locally on \mathcal{M}, we may always find a generator of the line bundle $\wedge^{2} T \cdot \mathcal{H}$ (in the coordinates x, t used earlier we may take $\partial / \partial t \wedge X)$. Let θ be such a generator, say over an open subset \mathcal{O} of \mathcal{M}. Then $A \wedge B=\varrho \theta$, where ϱ is a realvalued (analytic) function in \mathcal{O}. Observe that the property that ϱ does not change sign in \mathcal{O} is independent of our choice of θ; observe also that the zeroset of ϱ is a proper analytic subset of \mathcal{O}. This gives a meaning to the second «part» of Property (P):
(P2) Restricted to any two-dimensional leaf \mathcal{M} (defined by L) in Ω, $-(1 / 2 i) L_{0} \wedge \bar{L}_{0}$ does not change sign.

Indeed, in the form (1.7), we have

$$
\begin{equation*}
-\frac{1}{2 i} L_{0} \wedge \bar{L}_{0}=|\boldsymbol{b}(x, t)|\left(\frac{\partial}{\partial t} \wedge X\right) . \tag{1.13}
\end{equation*}
$$

There is no need to point out that (P), stated as the conjunction of (P 1) and (P2), is invariant under coordinates changes and also under multiplication of L by nowhere vanishing complex-valued (analytic) functions.

Along any one-dimensional leaf (parametrized by t) the principal part L_{0} is essentially $\partial / \partial t$. We shall see, in the course of the proof of our main result, that, by virtue of (P 2), on any two-dimensional leaf, L_{0} can be transformed (up to a scalar factor) into the «Cauchy-Riemann operator» $\partial / \partial t+i X$, via a homeomorphism naturally associated with L_{0}.

In the case of C^{∞} coefficients, the reformulation of Property (P) is more delicate. First of all it is not true, in general, that through each point y_{0} of Ω passes a unique C^{∞} submanifold \mathcal{M} with property (1.10). There is another
consequential difference: let us return to the local representation (1.8) and consider the restriction of L to a cylinder $\Sigma=\Gamma \times]-T$, T, where Γ is an integral curve of X in $U_{0} \backslash \mathcal{N}_{0}$. When the coefficients of L are analytic, $|\boldsymbol{b}(x, t)|$ is an analytic function on Σ; its zero-set intersects any vertical line $x=x_{0} \in \Gamma$ only on a locally finite set, otherwise $|\boldsymbol{b}|$ would vanish identically on such a line and we should have $x_{0} \in \mathcal{N}_{0}$, contrary to the definition of Γ. In particular the zero-set of $|\boldsymbol{b}|$ is a proper analytic subset of Σ. In the case of C^{∞} coefficients the zero-set of $|\boldsymbol{b}|$ might have a nonempty interior. It is submitted to the sole condition of not containing any vertical segment $\left.\left\{x_{0}\right\} \times\right]-T, T$. Requirement which is of course dependent on the length T of the «time interval».

Nevertheless we may formulate (P) as the conjunction of (P1) and (P2), provided we incorporate to (P 1) a statement as to the existence of the foliation $\{\mathcal{M}\}$. Leaves cannot anymore be required to have property (1.10) (example: $L=\partial / \partial t+i b(x, t)(\partial / \partial x)$, where $b \in C^{\infty}\left(\mathbb{R}^{2}\right)$ is real-valued and does not vanish anywhere, except at the origin, where all derivatives of b vanish; there can be but one leaf, the whole plane, although $g(A, B)$ is one-dimensional at the origin).

Definition 1.2. Let k be any integer such that $0 \leqslant k \leqslant N$. A k-dimensional leaf, defined by L in Ω, is a subset \mathscr{H} of Ω having the following properties:
(1.14) \mathcal{M} is a connected C^{∞} submanifold $\left(^{*}\right)$ of Ω, of dimension k;
(1.15) the tangent space to \mathcal{M} at anyone of its points, y, contains the "freezing" of $\mathfrak{g}(A, B)$ at y;
(1.16) the boundary $\left(^{(* *)}\right.$ of \mathcal{M} is a union of leaves defined by L in Ω whose dimension is $<k$;
\mathcal{M} does not contain any leaf defined by L in Ω whose dimension is $<k$.
With this definition we may now state:
(P1) Ω is the union of leaves defined by L, whose dimension is either one or two.
Observe that, because of Hypothesis (1.2), the dimension of $\mathfrak{g}(A, B)$ at every point is at least one; consequently there are no zero-dimensional leaves
(*) It is perhaps worth recalling what a C^{∞} submanifold \mathcal{K} of Ω is: every point of \mathcal{M} (and not necessarily every point of Ω !) has a neighborhood in which \mathcal{M} is defined by the vanishing of a number of smooth functions whose differentials are linearly independent.
(**) We use the word «boundary» as in «manifold with boundary», not with its point-set topology meaning.
and, in virtue of (1.16), the one-dimensional leaves defined by L must be without a boundary.

Let us prove that (P) is equivalent with the conjunction of (P1) and (P2). First, suppose (P) holds at every point of Ω. Let \mathcal{M} denote a connected one-dimensional C^{∞} submanifold of Ω, having property (1.15), and also the following one:
(1.18) Let $\left(U, x^{1}, \ldots, x^{n}, t\right)$ be a local chart in Ω, yielding the representation (1.8) of L. Any segment $\left.\left\{x_{0}\right\} \times\right]-T, T\left[, x_{0} \in U_{0}\right.$, which intersects $\mathcal{M} \cap U$ is contained in \mathcal{M}.

The manifold \mathcal{K} cannot have any boundary point y_{0} in Ω, as one sees by taking a local chart ($U, x^{1}, \ldots, x^{n}, t$) as in (1.18), containing y_{0}. Thus, by Def. 1.2, \mathcal{M} is a leaf of L in Ω; and every one-dimensional leaf of L must have property (1.18). Let F denote the union of all the one-dimensional leaves of L in Ω. Since, in any local chart like the one in (1.18), such leaves are unions of vertical segments $\left.\left\{x_{0}\right\} \times\right]-T, T\left[\right.$ with $x_{0} \in \mathcal{N}_{0}$, every point $y_{0} \in U$ which belongs to the closure of F must lie on such a segment, from which it follows at once that F must be closed.

Let now \mathcal{M} denote a connected two-dimensional C^{∞} submanifold of $\Omega \backslash F$, satisfying (1.15) and (1.18), and maximal for these properties. Its boundary $\partial \mathcal{N}$ in Ω (see footnote (**) to p. 5) must also have property (1.18). By the maximality of \mathcal{M}, at no point of $\partial \mathcal{M}$ can the Lie algebra $\mathfrak{g}(A, B)$ be two-dimensional. Thus $\partial \mathcal{M}$ must be a union of one-dimensional leaves of L, in fact of at most two of them, since \mathscr{H} is connected, and possibly of only one or of none. Thus \mathcal{H} is a two-dimensional leaf of L. A moment of thought shows that, conversely, every two-dimensional leaf of L in Ω is such a submanifold of $\Omega \backslash F$. Note that every C^{∞} submanifold of $\Omega \backslash F$, of dimension $\leqslant 2$, satisfying (1.15), must be entirely contained in some such leaf; and that any two such leaves cannot intersect without being identical. In particular, every point of $\Omega \backslash F$ is contained in one, and only one, twodimensional leaf of L.

That (P 2) is a consequence of (P) has already been explained.
Suppose now that (P 1) holds. Let y_{0} be an arbitrary point of Ω. By (1.2) we may assume that L has the representation (1.3) in a local chart ($U, x^{1}, \ldots, x^{n}, t$) centered at y_{0}. This also implies that every leaf \mathcal{M} defined by L in Ω (according to Def. 1.2), is equal, in U, to the union of vertical lines $x=x_{0}$: As a consequence, every two-dimensional leaf \mathcal{M} intersects the piece of "hyperplane» $\{(x, t) \in U ; t=0\}$ along a smooth curve $\Gamma \subset U_{0}$; and \mathcal{M} is the cylinder $\Sigma=\Gamma \times]-T, T[$. Let \tilde{X} be a smooth vector field tangent to Γ and nowhere vanishing on Γ. From what we have just seen it follows
that, on $\Sigma, \zeta^{-1} L_{0}=\partial / \partial t+i \lambda(x, t) \tilde{X}$, and (P2) means exactly that λ does not change sign in Σ (if \tilde{X} is a unit vector-field and if λ is nonnegative, in the notation of (1.8) we have $\lambda=|\boldsymbol{b}(x, t)|$ and $\tilde{X}=X$).

A final remark: in the C^{∞} case, in contrast with what happens in the analytic case, the foliation defined by L in a proper open subset of Ω can be strictly finer than the one induced by the foliation of Ω.

2. - Reduction to flat right-hand sides.

We shall systematically use the following terminology:
Definition 2.1. Let M be a C^{∞} manifold, ϱ a nonnegative continuous function in M. We say that a function $f \in C^{\infty}(M)$ is ϱ-flat in M if given any differential operator (with C^{∞} coefficients) \mathbb{P} in M and any integer ${ }^{\prime} k \geqslant 0$, $\varrho^{-k} \mathrm{P} f$ is a continuous function in M, and we write then $f \underset{e}{\sim} 0$.

It is convenient to introduce the notation:

$$
\begin{equation*}
\mathcal{E}_{e \text {-flat }}(M)=\left\{f \in C^{\infty}(M) ; f \text { is } \varrho \text {-flat in } M\right\}, \tag{2.1}
\end{equation*}
$$

(2.2) $\mathcal{D}_{o \cdot \text {-fat }}(M)=\left\{f \in \mathcal{E}_{o-\text {-fat }}(M)\right.$; supp f is a compact subset of $\left.M\right\}$.

We shall comply throughout with the notation of Sect. 1. In particular, we reason locally, in the neighborhood U given by (1.4). We assume that the «central point» is the origin in \mathbb{R}^{n+1} and that L is given by (1.3); we may even divide by ζ and take $L=L_{0}+c(x, t)$, with

$$
\begin{equation*}
L_{0}=\frac{\partial}{\partial t}+i \sum_{j=1}^{n} b^{j}(x, t) \frac{\partial}{\partial x^{j}} . \tag{2.3}
\end{equation*}
$$

We suppose that $\boldsymbol{b}=\left(b^{1}, \ldots, b^{n}\right)$ and c are C^{∞} functions in an open neighborhood of \bar{U} (which is compact), valued in \mathbb{R}^{n} and \mathbb{C} respectively.

The function ϱ we use (in a neighborhood of \bar{U}) is the following:

$$
\begin{equation*}
\varrho(x, t)=\left|\int_{-T}^{t}\right| \boldsymbol{b}(x, s)|d s| . \tag{2.4}
\end{equation*}
$$

Following a suggestion of L. Nirenberg we begin by proving
Theorem 2.1. If U is small enough, there is a continuous linear operator $E: C_{c}^{\infty}(U) \rightarrow C^{\infty}(U)$ such that $R=L E-I$ maps $C_{c}^{\infty}(U)$ into $\varepsilon_{e-f a t}(U)$.

Remark 2.1. In Th. 2.1 it is not assumed that L is locally solvable.

Remark 2.2. By Def. 2.1 it is clear that $\delta_{e \text {-fat }}(M)$ carries a natural Fréchet space topology: the coarsest one which renders all the mappings $f \mapsto \varrho^{-k} \mathbb{P} f$ continuous, from $\mathcal{E}_{e \cdot \text { flat }}(M)$ into $C^{0}(M)$, as k and \mathbb{P} vary freely. The space $\mathscr{D}_{\varrho \text {-fiat }}(M)$ carries the derived $\mathcal{L} \mathcal{F}$-topology. It will be obvious that the operator R is continuous for these topologies.

Proof. We apply Th. 1 of [6] (or else use almost-analytic extensions). If U is small enough, for each $j=1, \ldots, n$, there is a complex-valued C^{∞} function $z^{j}=z^{j}\left(x, t, t^{\prime}\right)$ such that

$$
\begin{align*}
& L_{0} z^{j}{\underset{e}{0}}^{\sim} \text { in an open neighborhood of } \bar{U}, \tag{2.5}\\
& \left.z^{j}\right|_{t=t^{\prime}}=x^{j} \tag{2.6}
\end{align*}
$$

$\left(t^{\prime} \in[-T, T]\right)$. If the coefficients of L_{0} are analytic, the equivalence (2.5) can be replaced by an exact equality $L_{0} z^{j}=0$ (because of the CauchyKovalevska theorem). Furthermore (according to Th. 1 of [6])

$$
\begin{equation*}
\left|z^{j}-x^{j}-i \int_{t^{\prime}}^{i} b^{j}(x, s) d s\right| \leqslant C \varrho(x, t) \tag{2.7}
\end{equation*}
$$

(where $C \rightarrow 0$ with T).
Application of Th. 1 of [6] yields (2.5) and (2.7) with $\varrho(x, t)$ replaced by $\left|\int_{i^{\prime}}^{t}\right| \boldsymbol{b}(x, s)|d s| ;$ but if $-T \leqslant t^{\prime} \leqslant t$, the latter quantity clearly does not exceed $\varrho(x, t)$. We write $z=\left(z^{1}, \ldots, z^{n}\right)$ and set, for arbitrary $f \in C_{c}^{\infty}(U)$,

$$
\begin{align*}
& E_{0} f(x, t)=(2 \pi)^{-n} \int_{-T}^{t} \int_{\xi \in \mathbb{R}_{n}} \exp \left[i z\left(x, t, t^{\prime}\right) \cdot \xi\right] \tag{2.8}\\
& \cdot g\left(\xi \cdot \operatorname{Im} z\left(x, t, t^{\prime}\right)\right) \hat{f}\left(\xi, t^{\prime}\right) d t^{\prime} d \xi,\left(^{*}\right)
\end{align*}
$$

where $\hat{f}(\xi, t)$ is the Fourier transform of f with respect to the x-variables, and $g \in C^{\infty}\left(\mathbb{R}^{1}\right), g(\tau)=1$ for $\tau>-1, g(\tau)=0$ for $\tau<-2$. It is checked at once that E_{0} maps continuously $C_{c}^{\infty}(U)$ into $C^{\infty}(U)$. Furthermore, if $R_{0}=L_{0} E_{0}-I$, we have

$$
\begin{equation*}
R_{0} f(x, t)=(2 \pi)^{-n} \int_{-T}^{t} \int_{\mathbf{R}_{n}} \exp [i z \cdot \xi] R_{0}\left(x, t, t^{\prime}, \xi\right) \hat{f}\left(\xi, t^{\prime}\right) d \xi d t^{\prime} \tag{2.9}
\end{equation*}
$$

(*) This formula mimicks the construction of continuous almost-analytic extensions by Mather ([3]).
with

$$
\begin{equation*}
R_{0}\left(x, t, t^{\prime}, \xi\right)=\left\{i g(\xi \cdot \operatorname{Im} z) L_{0} z+g^{\prime}(\xi \cdot \operatorname{Im} z) L_{0}(\operatorname{Im} z)\right\} \cdot \xi \tag{2.10}
\end{equation*}
$$

$\left(z=z\left(x, t, t^{\prime}\right)\right)$. Whatever $k \in \mathbb{Z}_{+}$, for a suitable $C_{k}>0$,

$$
\begin{equation*}
\left|g^{\prime}(\xi \cdot \operatorname{Im} z)\right| \leqslant O_{k}|\xi \cdot \operatorname{Im} z|^{k} \tag{2.11}
\end{equation*}
$$

whence, combining (2.7) and (2.11),

$$
\begin{equation*}
\left|g^{\prime}(\xi \cdot \operatorname{Im} z) L_{0}(\operatorname{Im} z) \cdot \xi\right| \leqslant C_{k}^{\prime}|\xi|^{k+1} \varrho(x, t)^{k} \tag{2.12}
\end{equation*}
$$

On the other hand, by (2.5), we have

$$
\begin{equation*}
\left|L_{0} z\right| \leqslant C_{k}^{\prime \prime} \varrho(x, t)^{k} \tag{2.13}
\end{equation*}
$$

Since on the support of $g(\xi \cdot \operatorname{Im} x)$, we have $|\exp [i z \cdot \xi]| \leqslant e^{2}$, we see that

$$
\begin{equation*}
\left|R_{0} f(x, t)\right| \leqslant C_{k}^{\prime \prime} \varrho(x, t)^{k} \int_{-T}^{t} \int(1+|\xi|)^{k+1}\left|\hat{f}\left(\xi, t^{\prime}\right)\right| d \xi d t^{\prime} \tag{2.14}
\end{equation*}
$$

An analogous inequality can be obtained for every derivative of $R_{0} f$ with respect to (x, t), which shows that $R_{0} f$ is ϱ-flat.

Let now $c_{1}(x, t) \in C_{c}^{\infty}(U)$ equal $c(x, t)$ in a subneighborhood U_{1} of the origin, and set

$$
\begin{equation*}
E f=\exp \left[-E_{0} c_{1}\right] E_{0}\left(\exp \left[E_{0} c_{1}\right] f\right), \quad f \in C_{c}^{\infty}\left(U_{1}\right) \tag{2.15}
\end{equation*}
$$

We have, in U_{1},

$$
\begin{aligned}
L E f & =\left(L_{0}+c_{1}\right)\left\{\exp \left[-E_{0} c_{1}\right] E_{0}\left(\exp \left[E_{0} c_{1}\right] f\right)\right\} \\
& =\exp \left[-E_{0} c_{1}\right]\left(L_{3}+c_{1}-L_{0} E_{0} c_{1}\right) E_{0}\left(\exp \left[E_{0} c_{1}\right] f\right) \\
& =f-\left(R_{0} c_{1}\right) f+\exp \left[-E_{0} c_{1}\right] R_{0}\left(\exp \left[E_{0} c_{1}\right] f\right)
\end{aligned}
$$

which shows that the statement of Th .2 .1 is verified, if U_{1} is substituted for U and if we define R by

$$
\begin{equation*}
R f=\exp \left[-E_{0} c_{1}\right] R_{0}\left(\exp \left[E_{0} c_{1}\right] f\right)-\left(R_{0} c_{1}\right) f . \quad \text { Q.E.D. } \tag{2.16}
\end{equation*}
$$

Chapter II

CONSTRUCTION OF FUNDAMENTAL SOLUTIONS
 WHEN THE COEFFICIENTS ARE ANALYTIC

1. - Statement of the theorem.

We use the notation of Ch. I. In particular, $L=L_{0}+c(x, t)$ and L_{0} has the form (2.3), Ch. I. The coefficients of L_{0} are now analytic in an open neighborhood of the origin in \mathbb{R}^{n+1}, which we take to be Ω. In this chapter we prove:

Theorem 1.1. There is an open neighborhood $U \subset \subset \Omega$ of the origin in R^{n+1} and a continuous linear operator $K: C_{c}^{\infty}(U) \rightarrow C^{\infty}(U)$ such that $L K=I$, the identity of $C_{c}^{\infty}(U)$.

Let us note right-away that it suffices to prove the result when $c(x, t) \equiv 0$. For if $L_{0} K_{0}=I$ and $h=K_{0} c_{1}$, with $c_{1} \in O_{c}^{\infty}(U), c_{1}=e$ in an open neighborhood $U^{\prime} \subset U$ of 0 , we may take $K=e^{-h} K_{0} e^{h}$, which yields $L K=I$ in U^{\prime}. From now on we assume that $L=L_{0}$, i.e.

$$
\begin{equation*}
L=\frac{\partial}{\partial t}+i \sum_{j=1}^{n} b^{j}(x, t) \frac{\partial}{\partial x^{j}} \tag{1.1}
\end{equation*}
$$

in Ω.
If we take Th. 2.1, Ch. I, into account, we see that Th. 1.1 will follow from the result below. We introduce and shall use throughout the following function:

$$
\begin{equation*}
r(x)=\left\{\int_{-T}^{T}|\boldsymbol{b}(x, s)|^{2} d s\right\}^{\frac{1}{z}} \tag{1.2}
\end{equation*}
$$

If we compare with the function $\varrho(x, t)$ defined in (2.4), Ch. I, we see that

$$
\begin{equation*}
\varrho(x, t)<\sqrt{(T+t)} r(x) \leqslant \sqrt{2 T} r(x) \tag{1.3}
\end{equation*}
$$

for $(x, t) \in \Omega,|t| \leqslant T$. Thus if we regard r as a function in Ω, we see that any ϱ-flat (Def. 2.1, Ch. I) C^{∞} function is also r-flat. In particular (see (2.1), Ch. I), $\varepsilon_{\text {e-fat }}(U) \subset \varepsilon_{r \text {-flat }}(U)$. We shall prove the following result:

THEOREM 1.2. If the open neighborhood $U \subset \subset \Omega$ of the origin is small enough, there is a linear operator $K_{1}: \mathfrak{D}_{r \text {-flat }}(U) \rightarrow \mathcal{E}_{r \text {-flat }}(U)$ (see (2.1), (2.2), Ch. 1) such that $L K_{1}=I$, the identity of $\mathfrak{D}_{r \text {-flat }}(U)$.

Let then $\zeta(x, t) \in C_{c}^{\infty}(U), \zeta(x, t)=1$ in an open subneighborhood U^{\prime} of 0. Let R be the operator in Th. 2.1, Ch. I, and set, for any $f \in C_{1}(U)$,

$$
\begin{equation*}
K f=E f-K_{1}[\zeta(x, t) R f] \tag{1.4}
\end{equation*}
$$

where E is the operator in Th. 2.1, Ch. I. Obviously K satisfies the requirements of Th. 1.1, if we substitute U^{\prime} for U (inspection of the proofs shows easily that K_{1}, as well as R, are continuous when $\mathscr{D}_{r \text {-flat }}(U)$ and $\mathcal{E}_{r \text {-fat }}(U)$ carry their natural topologies, and this implies the continuity of K).

2. - Determination of an across-the-board phase function.

From now on we suppose that

$$
\begin{equation*}
U_{0}=\left\{x \in \mathbb{R}^{n} ;|x|<R\right\}, \quad R>0 \tag{2.1}
\end{equation*}
$$

recalling that $\left.U=U_{0} \times\right]-T, T[$. We also recall that

$$
\begin{equation*}
\mathcal{N}_{0}=\{x \in \Omega ; \forall t,|t|<T, \boldsymbol{b}(x, t)=0\} \tag{2.2}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
\sigma(z, t)=\sum_{k=1}^{n}\left[b^{k}(z, t)\right]^{2} \tag{2.3}
\end{equation*}
$$

where $z=x+i y$ varies in an open neighborhood of $\bar{U}+i\left\{y \in \mathbb{R}^{n} ;|y| \leqslant r_{0}\right\}$. Since $\sigma(x, t) \geqslant 0$ (for $x \in \mathbf{R}^{n}$ in a neighborhood of \bar{U}), there is a constant $M \geqslant 0$ such that

$$
\begin{equation*}
\left|\sigma_{x}(x, t)\right| \leqslant M \sqrt{\sigma(x, t)}, \quad \forall x \in \bar{U},|t|<T \tag{2.4}
\end{equation*}
$$

Of course, $\sqrt{\sigma(x, t)}=|\boldsymbol{b}(x, t)|$. We may write

$$
\begin{equation*}
\sigma(x+i y, t)=\sigma(x, t)+i y \cdot \sigma_{x}(x, t)+\tau_{2}(x, y, t) \tag{2.5}
\end{equation*}
$$

where $\left|\tau_{2}(x, y, t)\right| \leqslant M_{1}|y|^{2}$. If $x>0$ is small enough and if

$$
\begin{equation*}
|y|<x|\boldsymbol{b}(x, t)|, \tag{2.6}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
|\sigma(x+i y, t)-\sigma(x, t)|<\frac{1}{2} \sigma(x, t) \tag{2.7}
\end{equation*}
$$

Lemma 2.1. If $x>0$ is small enough, $\beta(x, t)=|\boldsymbol{b}(x, t)|$ can be extended as a holomorphic function of $z=x+i y$ in the region:

$$
\begin{equation*}
x \in U_{0} \backslash \mathcal{N}_{0}, \quad|y|<x \sup _{|s|<T}|\boldsymbol{b}(x, s)| \tag{2.8}
\end{equation*}
$$

for all $t,|t|<T(\varkappa$ is independent of $t)$.
Proof. According to what precedes the statement of Lemma 2.1, in the region

$$
\begin{equation*}
x \in D_{0} \backslash \mathcal{N}_{0}, \quad|y|<x|\boldsymbol{b}(x, t)| \tag{2.9}
\end{equation*}
$$

we may (see (2.7)) set $\beta(z, t)=\sqrt{\sigma(z, t)}$ (the second inequality in (2.9) demands $|\boldsymbol{b}(x, t)| \neq 0)$. If we set, in (2.9),

$$
\begin{equation*}
\boldsymbol{v}(z, t)=\beta(z, t)^{-1} b(z, t) \tag{2.10}
\end{equation*}
$$

we see, by analytic continuation from $z=x$ real, that $\partial_{t} v(z, t)=0$, and we may write $v(z)$ instead of $v(z, t)$:

$$
\begin{equation*}
\beta(z, t) \boldsymbol{v}(z)=\boldsymbol{b}(z, t) \tag{2.11}
\end{equation*}
$$

Let $x_{0} \in U_{0} \backslash \mathcal{N}_{0}$ be arbitrary. Consider any number $\eta>0$ such that

$$
\begin{equation*}
\eta<\sup _{t \mid<T}|\boldsymbol{b}(x, t)| \tag{2.12}
\end{equation*}
$$

There is $t_{0},\left|t_{0}\right|<T$, such that $\beta\left(x_{0}, t_{0}\right)>\eta$. Actually, we may find $\eta_{1}>0$ such that

$$
\begin{equation*}
\left|x-x_{0}\right|<\eta_{1} \Rightarrow \beta\left(x, t_{0}\right)>\eta \tag{2.13}
\end{equation*}
$$

We apply (2.7) or, rather, its consequence, namely that

$$
\begin{equation*}
|y|<\varkappa \beta\left(x, t_{0}\right) \Rightarrow\left|\beta\left(x+i y, t_{0}\right)\right|>\frac{1}{\sqrt{2}} \beta\left(x, t_{0}\right) \tag{2.14}
\end{equation*}
$$

hence:

$$
\begin{equation*}
\left|x-x_{0}\right|<\eta_{1}, \quad|y|<\varkappa \beta\left(x, t_{0}\right) \tag{2.15}
\end{equation*}
$$

implies

$$
\begin{equation*}
\beta\left(x+i y, t_{0}\right)>\eta / \sqrt{2} . \tag{2.16}
\end{equation*}
$$

But then, in the region (2.15),

$$
\begin{equation*}
\boldsymbol{v}(x+i y)=\boldsymbol{b}\left(x+i y, t_{0}\right) / \beta\left(x+i y, t_{0}\right) \tag{2.17}
\end{equation*}
$$

is holomorphic and, since $\left|\boldsymbol{b}\left(z, t_{0}\right)\right| \geqslant\left|\beta\left(z, t_{0}\right)\right|$, nowhere vanishes. In particular, every point in the set (2.15) has an open neighborhood in which, for some $j=1, \ldots, n, v^{j}(x+i y)$ is nowhere zero. Since

$$
\beta(x+i y, t)=b^{3}(x+i y, t) / v^{s}(x+i y),
$$

we see that $\beta(z, t)$ can be extended as a holomorphic function to such a neighborhood. Letting

$$
\eta \rightarrow \sup _{|s|<T} \beta\left(x_{0}, s\right)
$$

proves the assertion in Lemma 2.1. Q.E.D.
Remark 2.1. Actually $\beta(x+i y, t)$ is a C^{∞} function of $t,|t|<T$, valued in the space of holomorphic functions of $x+i y$ in the set (2.8).

Remark 2.2. We have also shown that $|\boldsymbol{v}(z+i y)| \geqslant 1$ in the set (2.8) provided that $x>0$ is small enough.

Assume, as we may, that $T \leqslant \frac{1}{2}$. Then (cf. (1.2)):

$$
\begin{equation*}
r(x)=\left\{\int_{-T}^{T}|\boldsymbol{b}(x, s)|^{2} d s\right\}^{\xi} \leqslant \sup _{|s| \leqslant T}|\boldsymbol{b}(x, s)| . \tag{2.18}
\end{equation*}
$$

Lemma 2.2. If $x>0$ is small enough, the holomorphic function $\int_{-T}^{T} \beta(x+i y, s)^{2} d s$ does not vanish at any point $x+i y$ such that

$$
\begin{equation*}
x \in U_{0} \backslash \mathcal{N}_{0}, \quad|y|<x r(x) . \tag{2.19}
\end{equation*}
$$

Proof. We have $\beta(z, s)^{2}=\sigma(z, s)$ (see (2.3)). We have (cf. (2.4) and (2.5)):

$$
\begin{equation*}
\left|\int_{-T}^{T} \sigma(x+i y, s) d s-\int_{-T}^{T} \sigma(x, s) d s\right| \leqslant M \nsim r(x) \int_{-T}^{T} \beta(x, s) d s+2 T M_{1} \varkappa^{2} r(x)^{2} . \tag{2.20}
\end{equation*}
$$

On the other hand,

$$
\int_{-T}^{T} \beta(x, s) d s \leqslant \sqrt{2 T} r(x)
$$

whence, by (2.20),

$$
\begin{equation*}
\left|\int_{-T}^{T} \sigma(x+i y, s) d s-r(x)^{2}\right| \leqslant M_{2} \nsim r(x)^{2} . \tag{2.21}
\end{equation*}
$$

Lemma 2.2 follows from the fact that $r(x)>0$ if $x \in U_{0} \backslash \mathcal{N}_{0}$. Q.E.D.
Remark 2.3. Actually, as we see in (2.21) where we take $M_{2} x<\frac{1}{2}$, that is,

$$
\begin{equation*}
\left|\int_{-T}^{T} \sigma(x+i y, s) d s-r(x)^{2}\right| \leqslant \frac{1}{2} r(x)^{2} \tag{2.22}
\end{equation*}
$$

we may define the square-root,

$$
\begin{equation*}
r(x+i y)=\left\{\int_{-T}^{T} \beta(x+i y, s)^{2} d s\right\}^{\frac{1}{2}} \tag{2.23}
\end{equation*}
$$

which is holomorphic in the open set (2.19).
We are now going to study a Cauchy problem

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+i \sum_{k=1}^{n} b^{k}(z, t) \frac{\partial \varphi}{\partial z^{k}}=g(z, t) \tag{2.24}
\end{equation*}
$$

in a region

$$
\begin{equation*}
x \in U_{0} \backslash \mathcal{N}_{0}, \quad|y|<\varkappa r(x), \quad|t|<T^{\prime} \leqslant T \tag{2.25}
\end{equation*}
$$

with initial condition,

$$
\begin{equation*}
\left.\varphi\right|_{t=0}=0 \tag{2.26}
\end{equation*}
$$

where g will be eventually chosen, but in any event, is a C^{∞} function of (x, y, t) in the region

$$
\begin{equation*}
x \in U_{0} \backslash \mathcal{N}_{0}, \quad|y|<\varkappa r(x), \quad|t|<T \tag{2.27}
\end{equation*}
$$

holomorphic with respect to $x+i y$.

Let $x_{0} \in U_{0} \backslash \mathcal{N}_{0}$ be arbitrary. We denote by $E_{s}(0<s<1)$ the space of continuous functions in the ball $\left\{z \in \mathbb{C}^{n} ;\left|z-x_{0}\right| \leqslant s \chi_{0} r\left(x_{0}\right)\right\}$, holomorphic in the interior. Here x_{0} is chosen so as to have, if $z=x+i y$,

$$
\begin{equation*}
\left|z-x_{0}\right| \leqslant \mu_{0} r\left(x_{0}\right) \Rightarrow y<\varkappa r(x) \tag{2.28}
\end{equation*}
$$

where x is the number in Lemma 2.2. Such a choice is indeed possible, for $\left|z-x_{0}\right| \leqslant \chi_{0} r\left(x_{0}\right)$ implies $\left|x-x_{0}\right| \leqslant \varkappa_{0} r\left(x_{0}\right)$ and $|y| \leqslant \varkappa_{0} r\left(x_{0}\right) \quad(z=x+i y)$, therefore $\left|r(x)-r\left(x_{0}\right)\right| \leqslant\left(\int_{-T}^{T}\left|\boldsymbol{b}(x, s)-\boldsymbol{b}\left(x_{0}, s\right)\right|^{2} \boldsymbol{d} s\right)^{\frac{1}{2}} \leqslant M\left|x-x_{0}\right| \leqslant M \varkappa_{0} r\left(x_{0}\right) \leqslant \frac{1}{2} r\left(x_{0}\right)$ if $M x_{0} \leqslant \frac{1}{2}$, and thus it implies $r\left(x_{0}\right) \leqslant 2 r(x)$, whence $|y|<x r(x)$ if $2 \varkappa_{0}<\varkappa$.

We shall denote by $h \mapsto\|h\|_{s}$ the (maximum) norm in E_{s}. We solve (2.24)-(2.26) by the standard iteration method: we set

$$
\begin{equation*}
\varphi(z, t)=\sum_{\nu=0}^{\infty} \varphi_{\nu}(z, t) \tag{2.29}
\end{equation*}
$$

with

$$
\begin{gather*}
\varphi_{0}(z, t)=\int_{0}^{t} g(z, s) d s \tag{2.30}\\
\varphi_{\nu}(z, t)=-\int_{0}^{t} \sum_{k=1}^{n} b^{k}(z, s) \frac{\partial \varphi_{\nu-1}}{\partial z^{t}}(z, s) \mathrm{d} s, \quad \text { for } v>0 \tag{2.31}
\end{gather*}
$$

We shall prove that the series (2.29) converges in $E_{s_{0}}$ provided that s_{0} is small enough (and that the same is true of the t-derivatives of the series). We are going to use the notation

$$
\begin{equation*}
B(x, t)=\int_{\mathbf{0}}^{t}\{|\boldsymbol{b}(x, s)|+\operatorname{Mr}(x)\} d s \tag{2.32}
\end{equation*}
$$

where $M>0$ is chosen so as to have

$$
\begin{equation*}
|\boldsymbol{b}(z, t)| \leqslant \beta(x, t)+M r(x) \tag{2.33}
\end{equation*}
$$

if $|z-x| \leqslant \kappa_{0} r(x)$ (cf. (2.21)).
We shall prove by induction on $\nu=0,1, \ldots$, that for suitable constants $C_{0}, C>0$, and all $s, 0<s<1$,

$$
\begin{equation*}
\left\|\varphi_{v}(\cdot, t)\right\|_{s} \leqslant C_{0}\left(\frac{C B\left(x_{0}, t\right)}{1-s}\right)^{v}, \quad|t|<T \tag{2.34}
\end{equation*}
$$

For $\nu=0$, (2.34) holds trivially. By Cauchy's inequalities and (2.33), we have for $\nu>0$,
(2.35) $\quad\left\|\varphi_{v}(\cdot, t)\right\|_{s} \leqslant$

$$
\begin{aligned}
& \leqslant \frac{1}{\varepsilon x_{0} r\left(x_{0}\right)}\left|\int_{0}^{t}\left[\beta\left(x_{0}, t\right)+M r\left(x_{0}\right)\right]\left\|\varphi_{\nu-1}\left(\cdot, t^{\prime}\right)\right\|_{s+\varepsilon} \mathrm{d} t^{\prime}\right| \leqslant \\
& \leqslant C_{0} \frac{C^{\nu-1}}{x_{0} r\left(x_{0}\right)} \frac{1}{\varepsilon} \frac{1}{(1-s-\varepsilon)^{\nu-1}}\left|\int_{0}^{t} B\left(x_{0}, t^{\prime}\right)^{\nu-1} \frac{\partial B}{\partial t}\left(x_{0}, t^{\prime}\right) d t^{\prime}\right| \leqslant \\
& \leqslant C_{0} \frac{C^{v-1}}{x_{0} r\left(x_{0}\right)} \frac{1}{\nu \varepsilon(1-s-\varepsilon)^{\nu-1}} B\left(x_{0}, t\right)^{\nu} .
\end{aligned}
$$

We take $\varepsilon=(1-s) /(\nu+1)$. Then

$$
\begin{equation*}
\left\|\varphi_{v}(\cdot, t)\right\|_{s} \leqslant C_{0}\left(\frac{C B\left(x_{0}, t\right)}{1-s}\right)^{v} \frac{1}{C x_{0} r\left(x_{0}\right)}\left(\frac{v+1}{v}\right)^{v} \tag{2.36}
\end{equation*}
$$

and we take

$$
\begin{equation*}
C \geqq \frac{e}{\chi_{0} r\left(x_{0}\right)} . \tag{2.37}
\end{equation*}
$$

This proves (2.34).
We note now that

$$
B(x, t) \leqslant \sqrt{|t|}\left(\int_{0}^{t}|\boldsymbol{b}(x, s)|^{2} d s\right)^{\frac{t}{t}}+M r(x)|t| \leqslant(1+M \sqrt{T}) r(x) \sqrt{|t|}
$$

hence, by (2.34) and (2.37),

$$
\begin{equation*}
\left\|\varphi_{\nu}(\cdot, t)\right\|_{s} \leqslant C_{0}\left[\frac{e(1+M \sqrt{T})}{(1-s) \varkappa_{0}}\right]^{v}|t|^{/ / 2} \tag{2.38}
\end{equation*}
$$

Finally we take $s \leqslant \frac{1}{2}$, and

$$
\begin{equation*}
|t| \leqslant T^{\prime}=\inf \left(T,\left[\frac{x_{0}}{2 e(1+M \sqrt{T})}\right]^{2}\right) \tag{2.39}
\end{equation*}
$$

and conclude that the series (2.29) converges in $C_{0}\left(\left[-T^{\prime}, T^{\prime}\right] ; E_{s}\right)$. From this and from the eq. (2.24) we derive easily that

$$
\varphi(z, t) \in C^{\infty}\left(\left[-T^{\prime}, T^{\prime}\right] ; E_{s}\right)
$$

We apply what precedes to the case where $g(z, t)=\beta(z, t) / i r(z)$. By virtue of Lemma 2.1 (if $T \leqslant \frac{1}{2}$) we know that $\beta(z, t)$ is holomorphic in the set (2.19), and depends smoothly on $(z, t)(|t| \leqslant T)$. By Lemma 2.2 and Remark 2.3 we know that $r(z)$ is holomorphic and nowhere zero in (2.19). We may state:

Lemma 2.3. Suppose that $\varkappa>0$ and $0<T^{\prime} \leqslant T$ are small enough. Then, in the region

$$
\begin{equation*}
x \in U_{0} \backslash \mathcal{N}_{0}, \quad|y|<\varkappa r(x), \quad|t|<T^{\prime} \tag{2.40}
\end{equation*}
$$

the Cauchy problem

$$
\begin{gather*}
\frac{\partial \varphi}{\partial t}+i \sum_{k=1}^{n} b^{k}(z, t) \frac{\partial \varphi}{\partial z^{k}}=\frac{1}{i} \frac{\beta(z, t)}{r(z)} \tag{2.41}\\
\left.\varphi\right|_{t=0}=0 \tag{2.42}
\end{gather*}
$$

has a unique solution which is C^{∞} with respect to (x, y, t) and holomorphic with respect to $z=x+i y$. It satisfies in (2.40), for $y=0$,

$$
\begin{equation*}
r(x)\left|\sum_{k=1}^{n} v^{k}(x) \frac{\partial \varphi}{\partial x^{k}}(x, t)\right| \leqslant C_{1}|t|^{\frac{1}{2}} \tag{2.43}
\end{equation*}
$$

and if t^{\prime} is any other point in the interval $]-T^{\prime}, T^{\prime}[$,

$$
\begin{equation*}
\left|\varphi(x, t)-\varphi\left(x, t^{\prime}\right)-\frac{1}{i r(x)} \int_{t^{\prime}}^{t}\right| \boldsymbol{b}(x, s)|d s| \leqslant C_{1} \sup _{s \in\left[t t^{\prime}\right]}\left(|s|^{\frac{1}{2}}\right)\left|\int_{\boldsymbol{t}^{\prime}}^{t} \frac{|\boldsymbol{b}(x, s)|}{r(x)} d s\right| . \tag{2.44}
\end{equation*}
$$

We recall that $\beta(x, t)=|\boldsymbol{b}(x, t)|$ and $\boldsymbol{v}(x, t)=\boldsymbol{b}(x, t)| | \boldsymbol{b}(x, t) \mid$ (see (2.10)).
Proof. The existence has already been proved; the uniqueness is standard. We shall prove (2.43) and (2.44).

If we apply (2.30) and the estimates (2.38) we see that

$$
\left|\varphi(z, t)-\frac{1}{i} \int_{0}^{t} \frac{\beta(z, s)}{r(z)} d s\right| \leqslant C^{\prime}|t|^{\frac{1}{2}}
$$

If $\left|z-x_{0}\right|<\varkappa_{0} r\left(x_{0}\right)$ and if \varkappa_{0} is small enough, we have

$$
\begin{gathered}
|\beta(z, s)| \leqslant \beta\left(x_{0}, s\right) \leqslant M^{\natural} r\left(x_{0}\right), \\
|r(z)| \geqslant \frac{1}{2} r\left(x_{0}\right),
\end{gathered}
$$

whence:

$$
|\varphi(z, t)| \leqslant 2\left|\int_{0}^{t} \frac{\beta\left(x_{0}, s\right)}{r\left(x_{0}\right)} d s\right|+2 M^{\natural}|t|+C^{\prime}|t|^{\xi} .
$$

But $\left|\int_{0}^{t} \beta\left(x_{0}, s\right) d s\right| \leqslant \sqrt{|t|} r\left(x_{0}\right)$, and therefore:

$$
\begin{equation*}
|\varphi(z, t)| \leqslant C^{\prime \prime}|t|^{\frac{1}{2}} . \tag{2.45}
\end{equation*}
$$

By Cauchy's inequalities:

$$
\left|\sum_{k=1}^{n} v^{k}(x) \frac{\partial \varphi}{\partial x^{k}}(x, t)\right| \leqslant \frac{1}{\kappa_{0} r(x)} \sup _{|z-x| \leqslant x_{0}(x)}|\varphi(z, t)|,
$$

and if χ_{0} is small enough, we derive (2.43) from (2.45).
Let us denote by $w(x, t)$ the left-hand side in (2.43). By integration of (2.41) with respect to t, between t^{\prime} and t, we derive:

$$
\left|\varphi(x, t)-\varphi\left(x, t^{\prime}\right)+i \int_{t^{\prime}}^{t} \frac{\beta(x, s)}{r(x)} d s\right| \leqslant \int_{t^{\prime}}^{t} \frac{\beta(x, s)}{r(x)} w(x, s) d s
$$

Since, by (2.43), we have $w(x, s) \leqslant C_{1}| |^{\frac{1}{2}}$, we get indeed (2.44). Q.E.D.

Appendix to Section 2

Estimates for later use.

Lemma 2.4. To every $\alpha \in \mathbb{Z}_{+}^{n}$ there is a constant $C_{\alpha}>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} v(x)\right| \leqslant C_{\alpha} r(x)^{-|x|}, \quad \forall x \in U_{0} \backslash \mathcal{N}_{0} . \tag{2.46}
\end{equation*}
$$

Proof. Let $x_{0} \in U_{0} \backslash \mathcal{N}_{0}$ be arbitrary. By the mean value theorem there is $t_{0},\left|t_{0}\right|<T$, such that $\left|\boldsymbol{b}\left(x_{0}, t_{0}\right)\right|=(1 / \sqrt{2 T}) r\left(x_{0}\right)(\neq 0)$.

For x sufficiently near x_{0} we may write $\boldsymbol{v}(x)=\boldsymbol{b}\left(x, t_{0}\right) /\left|\boldsymbol{b}\left(x, t_{0}\right)\right|$. The numerator, and the square of the denominator are C^{∞} functions in an open neighborhood of \bar{U}_{0}. Consequently, there is a constant $G_{\alpha}^{\prime}>0$, depending only on the derivatives of these functions (and not on x_{0}), such that, for x near x_{0},

$$
\begin{equation*}
\left|\partial^{\alpha} \boldsymbol{v}(x)\right| \leqslant C_{\alpha}^{\prime}\left|\boldsymbol{b}\left(x, t_{0}\right)\right|^{-|x|} \tag{2.47}
\end{equation*}
$$

Making $x=x_{0}$ in (2.47) yields (2.46) with $C_{\alpha}=C_{\alpha}^{\prime}(2 T)^{\mid \alpha / 2}$. \quad Q.E.D.

Lemma 2.5. To every $\alpha \in \mathbb{Z}_{+}^{n}$ there is a constant $\tilde{C}_{\alpha}>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} r(x)\right| \leqslant \tilde{C}_{\alpha} r(x)^{1-|\alpha|}, \quad \forall x \in U_{\mathbf{0}} \backslash \mathcal{N}_{0} . \tag{2.48}
\end{equation*}
$$

In particular, r is uniformly Lipschitz continuous in U_{0}.
Indeed, $r^{2} \in C^{\infty}\left(\bar{U}_{0}\right)$.
Corollary 2.1. Given any $\alpha \in \mathbb{Z}_{+}^{n}$ there is a constant $\widetilde{\widetilde{O}}_{\alpha}>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}[r(x) \boldsymbol{v}(x)]\right| \leqslant \widetilde{C}_{\alpha} r(x)^{1-|\alpha|}, \quad \forall x \in U_{0} \backslash \mathcal{N}_{0} \tag{2.49}
\end{equation*}
$$

In particular, the function equal to $r(x) v(x)$ in $U_{0} \backslash \mathcal{N}_{0}$ and to zero in \mathcal{N}_{0} is uniformly Lipschitz continuous in U_{0}.

In the statements below φ stands for the solution of (2.41)-(2.42).
Lemma 2.6. Given any $\alpha \in \mathbb{Z}_{+}^{n}$, there is a constant $C_{\alpha}^{\prime}>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\{X \varphi(x, t)\}\right| \leqslant C_{\alpha}^{\prime}|t|^{\frac{1}{2}} r(x)^{-\alpha-1}, \quad \forall x \in U_{0} \backslash \mathcal{N}_{0},|t|<T \tag{2.50}
\end{equation*}
$$

Proof. By Cauchy's inequalities and (2.45) we have (provided that \varkappa_{0} is small enough):

$$
\begin{equation*}
\frac{1}{\alpha!}\left|\partial_{x}^{\alpha} \varphi(x, t)\right| \leqslant\left[\varkappa_{0} r(x)\right]^{-|\alpha|} \sup _{|z-x| \leqslant \varkappa_{0} r(x)}|\varphi(z, t)| \leqslant C^{\prime \prime} \varkappa_{0}^{-|\alpha|}|t|^{\frac{1}{2}} r(x)^{-|\alpha|} \tag{2.51}
\end{equation*}
$$

Combining (2.46) and (2.51) yields (2.50).
Corollary 2.2. $-\forall \alpha \in \mathbb{Z}_{+}^{n}$, there is a constant $\tilde{C}_{\alpha}^{\prime}>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha}\{r(x) X \varphi(x, t)\}\right| \leqslant C_{\alpha}^{\prime}|t|^{\frac{1}{2}} r(x)^{-|x|}, \quad \forall x \in U_{0} \backslash \mathcal{N}_{0},|t|<T \tag{2.52}
\end{equation*}
$$

Indeed, combine Lemmas 2.5 and 2.6.
Corollary 2.3. Whatever $f \in \mathscr{D}_{\text {r-flat }}(U)$, we also have $(r X \varphi) f \in \mathbb{D}_{r \text {-fat }}(U)$.

3. - Solution on the individual leaves.

In $U_{0} \backslash \mathcal{N}_{0}$ the vector field X defined in (1.7), Ch. I ,

$$
\begin{equation*}
X=\sum_{j=1}^{n} v^{j}(x) \frac{\partial}{\partial x^{j}} \tag{3.1}
\end{equation*}
$$

is analytic and nowhere zero (see proof of Lemma 2.1). For any $x_{0} \in U_{0} \backslash \mathcal{N}_{0}$ we denote by $\Gamma_{x_{0}}$ the connected integral curve of X through x_{0}, by $\Sigma_{x_{0}}$ the
two-dimensional «leaf» $\left.\Gamma_{x_{0}} \times\right]-T, T\left[\right.$. Writing $v=\left(v^{1}, \ldots, v^{n}\right)$ as before, let us denote by $x\left(\chi, x_{0}\right)$ the solution of the problem

$$
\begin{equation*}
\frac{d x}{d \chi}=r(x) \boldsymbol{v}(x),\left.\quad x\right|_{\chi=0}=x_{0} \tag{3.2}
\end{equation*}
$$

The function r is defined in (1.2). The mapping

$$
\begin{equation*}
\chi \mapsto x\left(\chi, x_{0}\right) \tag{3.3}
\end{equation*}
$$

is a C^{∞} mapping and, in fact, a local diffeomorphism of an open interval $J\left(x_{0}\right)$ of \mathbb{R}^{1} onto $\Gamma_{x_{0}}$. Conversely we may regard χ as a smooth function in a sufficiently small open arc in $\Gamma_{x_{0}}$, centered at x_{0}, specifically the solution of

$$
\begin{equation*}
r(x) X \chi=1,\left.\quad \chi\right|_{x=x_{0}}=0 \tag{3.4}
\end{equation*}
$$

Let us recall the standard relations, valid if $x, x_{1} \in \Gamma_{x_{0}}$:

$$
\begin{align*}
& \chi\left(x_{0}, x_{1}\right)=-\chi\left(x_{1}, x_{0}\right) \tag{3.5}\\
& \chi\left(x, x_{1}\right)=\chi\left(x, x_{0}\right)+\chi\left(x_{0}, x_{1}\right) \tag{3.6}
\end{align*}
$$

It is perhaps worth distinguishing the various possibilities:
(I) $\Gamma_{x_{0}}$ is a compact subset of $U_{0} \backslash \mathcal{N}_{0}$. This means that $x\left(\chi, x_{0}\right)$ is periodic with respect to χ; then $J\left(x_{0}\right)=\mathbb{R}^{1}$ and (3.3) is a covering map;
(II) $\Gamma_{x_{0}}$ is noncompact in $U_{0} \backslash \mathcal{N}_{0}$; then (3.3) is a global diffeomorphism of $J\left(x_{0}\right)$ onto $\Gamma_{x_{0}}$.

In Case (II), $J\left(x_{0}\right)$ might have one finite boundary point in \mathbb{R}^{1}, two of them or none. But:

Lemma 3.1. If $J\left(x_{0}\right)$ has a finite boundary point χ_{0}, then as $\chi \rightarrow \chi_{0}, x\left(\chi, x_{0}\right)$ goes to the boundary of U_{0} (i.e., exits from every compact subset of U_{0}).

Proof. By Cor. 2.1 we know that $\left|r(x) \boldsymbol{v}(x)-r\left(x^{\prime}\right) \boldsymbol{v}\left(x^{\prime}\right)\right| \leqslant K\left|x-x^{\prime}\right|$ for some $K<+\infty$ and all $x, x^{\prime} \in U_{0}$. By the Picard iteration method applied to (3.2) we obtain

$$
\begin{equation*}
\left|x_{1}-x_{0}\right| \leqslant r\left(x_{1}\right)\left(\exp \left[K\left|\chi\left(x_{0}, x_{1}\right)\right|\right]-1\right) \tag{3.7}
\end{equation*}
$$

(we have tacitly exploited (3.5)). Suppose then that $\chi\left(x_{0}, x_{1}\right) \rightarrow \chi_{0} \in \partial J\left(x_{0}\right)$, $\left|\chi_{0}\right|<+\infty$; clearly we cannot have $r\left(x_{1}\right) \rightarrow 0$. On the other hand, since $r(x) X$ does not vanish in $U_{0} \backslash \mathcal{N}_{0}, x_{1}$ must go to the boundary of $U_{0} \backslash \mathcal{N}_{0}$, whence the conclusion.

An equivalent interpretation of Lemma 3.1 is that taking χ as the parameter on an integral curve $\Gamma_{x_{0}}$ of X amounts to changing the metric along $\Gamma_{x_{0}}$ in such a way that the distance (for the new metric) from x_{0} to x tends to $+\infty$ whenever x tends to \mathcal{N}_{0}. Actually the reasons for using $\begin{array}{r}r(x) \\ T\end{array}$ are even subtler than this, for using $\int_{-T}^{T}|\boldsymbol{b}(x, s)| d s$ instead of $r(x)=\left(\int_{-T}^{T}|\boldsymbol{b}(x, s)|^{2} d s\right)^{\frac{1}{2}}$ would also have had the preceding implication, but would not have had the consequence, repeatedly needed (cf., e.g., (2.43) and its proof), that

$$
\begin{equation*}
\frac{1}{r(x)} \int_{-T}^{T}|\boldsymbol{b}(x, s)| d s \tag{3.8}
\end{equation*}
$$

converges to zero with T.
Let then φ be the phase-function of Lemma 2.3. We set

$$
z(x, t)=\chi\left(x, x_{0}\right)+\varphi(x, t), \quad x \in \Gamma_{x_{0}},|t|<T .
$$

(We should rather write $z\left(x, x_{0}, t\right)$ for indeed z depends on x_{0}). Let us also write

$$
\omega(x, t)=|\boldsymbol{b}(x, t)| \mid r(x),
$$

whence

$$
\begin{equation*}
L=\frac{\partial}{\partial t}+i \omega(x, t) r(x) X . \tag{3.9}
\end{equation*}
$$

If we take (2.41) and (3.4) into account we see that

$$
\begin{equation*}
L z=0 \tag{3.10}
\end{equation*}
$$

and by (2.42), that

$$
\begin{equation*}
\left.z\right|_{t=0}=\chi\left(x, x_{0}\right) . \tag{3.11}
\end{equation*}
$$

We consider then the mapping

$$
\begin{equation*}
(\chi, t) \mapsto z=\chi+\varphi\left(x\left(\chi, x_{0}\right), t\right) . \tag{3.12}
\end{equation*}
$$

It is a C^{∞} mapping of the "slab"

$$
\begin{equation*}
\left.S\left(x_{0}\right)=J\left(x_{0}\right) \times\right]-T, T[\tag{3.13}
\end{equation*}
$$

into \mathbb{R}^{2}. The following result provides, in a sense, another interpretation of the local solvability condition (P):

Lemma 3.2. If $T>0$ is small enough, the mapping (3.12) is a homeomorphism of $S\left(x_{0}\right)$ onto an open subset of \mathbb{R}^{2}. Its Jacobian determinant is given by

$$
\begin{equation*}
\frac{D(\operatorname{Re} x, \operatorname{Im} z)}{D(\chi, t)}=-\omega|1+r X \varphi|^{2} \tag{3.14}
\end{equation*}
$$

Proof. By (3.10) we have $z_{t}=-i|\boldsymbol{b}| X z$, hence $\bar{z}_{t}=i|\boldsymbol{b}| X \bar{z}$, and therefore

$$
\begin{equation*}
(\operatorname{Re} z)_{t}=|\boldsymbol{b}| X(\operatorname{Im} z), \quad(\operatorname{Im} z)_{t}=-|\boldsymbol{b}| X(\operatorname{re} z) \tag{3.15}
\end{equation*}
$$

By (3.4) we have $r(x) X=\partial / \partial \chi$, hence

$$
\begin{equation*}
(\operatorname{Re} z)_{t}=\omega \frac{\partial}{\partial \chi}(\operatorname{Im} z), \quad(\operatorname{Im} z)_{t}=-\omega \frac{\partial}{\partial \chi}(\operatorname{Re} z) \tag{3.16}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{D(\operatorname{Re} z, \operatorname{Im} z)}{D(\chi, t)}=-\omega\left|\frac{\partial z}{\partial \chi}\right|^{2} \tag{3.17}
\end{equation*}
$$

By (3.8), $\partial z / \partial \chi=1+r \bar{X} \varphi$, whence (3.14).
In order to prove that (3.12) is a homeomorphism, it suffices to prove that it is injective. Suppose that

$$
\begin{equation*}
\chi+\varphi\left(x\left(\chi, x_{0}\right), t\right)=\chi^{\prime}+\varphi\left(x\left(\chi^{\prime}, x_{0}\right), t^{\prime}\right), \tag{3.18}
\end{equation*}
$$

that is:

$$
\begin{align*}
\left(\chi-\chi^{\prime}\right)+\left[\varphi\left(x\left(\chi, x_{0}\right), t\right)-\varphi(\right. & \left.\left.\left(\chi^{\prime}, x_{0}\right), t\right)\right]+ \tag{3.19}\\
& +\left[\varphi\left(x\left(\chi^{\prime}, x_{0}\right), t\right)-\varphi\left(x\left(\chi^{\prime}, x_{0}\right), t^{\prime}\right)\right]=0 .
\end{align*}
$$

By (3.4) and (2.43) we have:

$$
\begin{equation*}
\left|\varphi\left(x\left(\chi, x_{0}\right), t\right)-\varphi\left(x\left(\chi^{\prime}, x_{0}\right), t\right)\right| \leqslant\left|\int_{\chi^{\prime}}^{\chi}(r X \varphi)\left(x\left(s, x_{0}\right), t\right) d s\right| \leqslant C_{1}|t|^{\frac{1}{2}}\left|\chi-\chi^{\prime}\right| \tag{3.20}
\end{equation*}
$$

Concerning the third term in the left－hand side of（3．19）we apply（2．44）with $x=x\left(\chi^{\prime}, x_{0}\right)$ ，obtaining

$$
\left|\varphi(x, t)-\varphi\left(x, t^{\prime}\right)-\frac{1}{i} \int_{t^{\prime}}^{t} \omega(x, s) d s\right| \leqslant C_{1} \sqrt{ } \bar{T}\left|\int_{t^{\prime}}^{t} \omega(x, s) d s\right|,
$$

which，combined with（3．19）and（3．20），yields

$$
\begin{equation*}
\left|\left(\chi-\chi^{\prime}\right)+i \int_{t^{\prime}}^{t} \omega(x, s) d s\right| \leqslant C_{1} \sqrt{T}\left\{\left|\chi-\chi^{\prime}\right|+\left|\int_{t^{\prime}}^{t} \omega(x, s) d s\right|\right\} \tag{3.21}
\end{equation*}
$$

Therefore，if $C_{1} \sqrt{T}<\frac{1}{2}$ ，we must have：

$$
\begin{equation*}
\chi=\chi^{\prime}, \quad \int_{t^{\prime}}^{t} \omega(x, s) d s=0 \tag{3.22}
\end{equation*}
$$

But（by definition of $U_{0} \backslash \mathcal{N}_{0}$ and by the analyticity of $\boldsymbol{b}(x, t)$ with respect to $t) \omega(x, s)>0$ in any compact subinterval of $]-T, T[$ ，except possibly at a finite number of points．Therefore the second equation in（3．22）implies $t=t^{\prime}$ ．Q．E．D．

We look now at the effect of the mapping（3．12）on the operator L ．Since $L=(L z) \partial_{z}+(L \bar{z}) \partial_{\bar{z}}$, hence，by（3．10），

$$
\begin{equation*}
L=(L \bar{z}) \partial_{\bar{z}} \tag{3.23}
\end{equation*}
$$

But（cf．（3．8）－（3．16）），$L \bar{z}=-2 i \omega X \bar{z}$ ，hence

$$
\begin{equation*}
L=-2 i \omega(1+r X \bar{\varphi}) \partial_{\bar{z}} \tag{3.24}
\end{equation*}
$$

Consider now an arbitrary function $f \in \mathscr{D}_{r \text {－fiat }}(U)$ ．If $x_{0} \in U_{0} \backslash \mathcal{N}_{0}$ ，by re－ striction f defines a smooth function $f^{\hbar}\left(x, t ; x_{0}\right)$ on the leaf Σ_{x} ．Via the mapping（3．3），$\chi \mapsto x\left(\chi, x_{0}\right), f^{\natural}\left(x, t ; x_{0}\right)$ defines a function $f^{\text {म月 }}\left(\chi, t ; x_{0}\right)$ in the slab（3．13），$\left.S\left(x_{0}\right)=J\left(x_{0}\right) \times\right]-T, T\left[\right.$ ．We observe that $f^{\text {能 }} \in C^{\infty}\left(S\left(x_{0}\right)\right)$ and we list a number of properties of $f^{\text {an }}$ ：
（3．25）the projection of the support of $f^{\text {月h }}$ on the t－axis is contained in a compact subset of $]-T, T[$ ；

$$
\begin{equation*}
\sup _{(\chi, t) \in S\left(x_{0}\right)} \mid f \text { मी }\left(\chi, t ; x_{0}\right) \mid<+\infty ; \tag{3.26}
\end{equation*}
$$

（3．27）if $J\left(x_{0}\right)$ has a finite boundary point $\chi_{0}, f^{\text {朋 }} \equiv 0$ in a full neigh－ borhood of $\left.\left\{\chi_{0}\right\} \times\right]-T, T[$ ．

Suppose now that x_{1} is another point on the orbit $\Gamma_{x_{0}}$ of x_{0} ：In view of（3．7）we have：

$$
\begin{equation*}
f^{\text {䶺 }}\left(\chi, t ; x_{1}\right)=f^{\text {吅 }}\left(\chi+\chi\left(x_{0}, x_{1}\right), t ; x_{0}\right) . \tag{3.28}
\end{equation*}
$$

Let now $O\left(x_{0}\right)$ be the open subset of \mathbb{C} which is the image of the slab $S\left(x_{0}\right)$（in（3．13））under the mapping（3．12）．By Lemma 3.1 we may define a continuous bounded function in $O\left(x_{0}\right)$ ，

$$
\begin{equation*}
\tilde{f}\left(z ; x_{0}\right)=f^{\text {朐 }}\left(\chi, t ; x_{0}\right) \tag{3.29}
\end{equation*}
$$

where $(\chi, t) \in S\left(x_{0}\right)$ corresponds to z by the inverse homeomorphism of（3．12）． We come now to the solution，in the leaf $\Sigma_{x_{0}}$ ，of the equation

$$
\begin{equation*}
L u=f \in \mathfrak{D}_{r \cdot \mathrm{ffat}}(U) \tag{3.30}
\end{equation*}
$$

Let us set $u(x, t)=v(x, t)+\int_{-T}^{t} f(x, s) d s$ ．The function v must be a solution of

$$
\begin{equation*}
L v=-i \sum_{j=1}^{n} b^{j}(x, t) \int_{-T}^{t} \frac{\partial f}{\partial x^{j}}(x, s) d s \tag{3.31}
\end{equation*}
$$

We observe that the right－hand side in（3．31）belongs to $\mathcal{E}_{r-\mathrm{flat}}(U)$（it might fail to have a compact support with respect to t ）but also that it vanishes wherever $|\boldsymbol{b}(x, t)|$ does．After multiplication by a cut－off function of t ，we may assume that，in（3．31），the right－hand side is equal to

$$
\begin{equation*}
|\boldsymbol{b}| X g, \quad g \in \mathscr{D}_{r-\mathrm{flat}}(U) \tag{3.32}
\end{equation*}
$$

We switch now to the coordinates $(\operatorname{Re} z, \operatorname{Im} z)$ on the leaf $\Sigma_{x_{0}}$ ．By virtue of（3．24）we must now solve

$$
\begin{equation*}
\partial_{\bar{z}} \tilde{v}=\frac{i}{2}\left[(1+r X \tilde{\varphi})^{-1}(r X g)\right]^{\sim} \quad \text { in } O\left(x_{0}\right) \tag{3.33}
\end{equation*}
$$

It follows at once from Cor． 2.3 that the right－hand side in（3．33）is of the form $\widetilde{F}\left(z ; x_{0}\right)$ for an obvious $F \in \mathscr{D}_{r \text {－flat }}(U)$ ．We shall therefore write the in－ tegral expression of a solution \tilde{v} of（3．33），that is，of

$$
\begin{equation*}
\partial_{\bar{z}} \tilde{v}=\tilde{F} \quad \text { in } O\left(x_{0}\right) \tag{3.34}
\end{equation*}
$$

In order to handle in a «uniform» manner all possible kinds of righthand sides \widetilde{F}, periodic, almost-periodic (at one end or at both), fastly decaying at infinity (also at one end or at both), etc., corresponding to the various kinds of orbits $\Gamma_{x_{0}}$ (cf. Fig. 1), we shall use a special fundamental solution

Fig. 1. - Examples of orbits of the vector field X in two space dimension.
of $\partial / \partial \bar{z}$. This will be possible thanks to Property (3.25) and to the fact that the open set $O\left(x_{0}\right)$ is contained in a slab $|\operatorname{Im} z| \leqslant$ const. T. We observe that, if $h(z)$ is any entire function such that $h(0)=1$, we have

$$
\begin{equation*}
\left.\frac{\partial}{\partial \bar{z}}\left(\frac{h(z)}{\pi z}\right)=\delta \quad \text { (the Dirac measure in } \boldsymbol{R}^{2}\right) \tag{3.35}
\end{equation*}
$$

and we choose

$$
h(z)=\exp \left[-z^{2}\right],
$$

solving then (3.34) by

$$
\begin{equation*}
\tilde{v}\left(z ; x_{0}\right)=\frac{1}{\pi} \iint \frac{\exp \left[-\left(z-z^{\prime}\right)^{2}\right]}{z-z^{\prime}} \tilde{F}\left(z^{\prime} ; x_{0}\right) d\left(\operatorname{Re} z^{\prime}\right) d\left(\operatorname{Im} z^{\prime}\right) \tag{3.36}
\end{equation*}
$$

1) Convergence of the integral in (3.36).

We take a closer look at the open set $O\left(x_{0}\right)$, image of $S\left(x_{0}\right)=J\left(x_{0}\right) \times$ $\times]-T, T$ [under the map $(\chi, t) \mapsto z=\chi+\varphi\left(x\left(\chi, x_{0}\right), t\right)$. From (2.44) (where we take $t^{\prime}=0$) we derive

$$
\begin{equation*}
\left|\varphi(x, t)+i \int_{0}^{t} \omega(x, s) d s\right| \leqslant C_{1} \sqrt{|t|}\left|\int_{0}^{t} \omega(x, s) d s\right| \tag{3.37}
\end{equation*}
$$

Note also that, whatever $x \in U_{0} \backslash \mathcal{N}_{0}$ and $t, 0<|t|<T$,

$$
\begin{equation*}
0<\left|\int_{0}^{t} \omega(x, s) d s\right| \leqslant \sqrt{|t|}\left(\int_{-T}^{T} \omega(x, s)^{2} d s\right)^{\frac{t}{2}}=\sqrt{|t|} \tag{3.38}
\end{equation*}
$$

We reach easily the following conclusions:
$O\left(x_{0}\right)$ is contained in the slab $\left\{z ;|\operatorname{Im} z| \leqslant \sqrt{T}+C_{1} T\right\} ;$
(3.40) If $\left.J\left(x_{0}\right) \subset\right] \chi_{0},+\infty\left[, O\left(x_{0}\right)\right.$ is contained in a half-space
$\operatorname{Re} z>\tilde{\chi}_{0}>-\infty$; if $\left.J\left(x_{0}\right) \subset\right]-\infty, \chi_{0}\left[, O\left(x_{0}\right) \subset\left\{z ; \operatorname{Re} z<\tilde{\chi}_{0}<+\infty\right\}\right.$.
(3.41) If $J\left(x_{0}\right)=\mathbb{R}^{1}, O\left(x_{0}\right)$ is an open neighborhood of the real axis in the z-plane.

Suppose that z tends to the boundary of $O\left(x_{0}\right)$; this means (by Lemma 3.2) that (χ, t) tends to the boundary of $S\left(x_{0}\right)$. If then $F \in \mathscr{D}_{r \text {.flat }}(U)$ and $|t| \rightarrow T$, $F(x(\chi, t), t)$ will eventually be zero. If $|t|$ remains $\leqslant T^{\prime}<T$ then χ must tend either to $\pm \infty$ or to a finite boundary point χ_{0} of $J\left(x_{0}\right)$. By (3.27) we see that, also in the latter case, $F(x(\chi, t), t)$ will eventually be zero. This is not necessarily so when $\chi_{0} \rightarrow \pm \infty$ for then $x\left(\chi, x_{0}\right)$ might very well remain in a compact subset of $U_{0} \backslash \mathcal{N}_{0}$. But at any rate, if we denote by $\partial O\left(x_{0}\right)$ the boundary of $O\left(x_{0}\right)$ in the complex plane, that is, excluding the points at infinity, we see that
(3.42) whatever $F \in \mathcal{D}_{r \text {-fiat }}(U), \tilde{F}(z, t)$ vanishes in a neighborhood of $\partial O\left(x_{0}\right)$.

We see that \tilde{F} can then be extended as a C^{∞} function in \mathbb{R}^{2}, which is bounded. Since $\exp \left[-z^{2}\right] / \pi z$ is integrable in every slab $|\operatorname{Im} z|<$ const. the convolu-
tion at the right in（3．36）defines a C^{∞} function in \mathbb{R}^{2} ，which is bounded in every horizontal slab．

2）Formula（3．36）defines a function on the leaf $\Sigma_{x_{0}}$ ．
In the double integral at the right，in（3．36），we switch from the co－ ordinates $(\operatorname{Re} z, \operatorname{Im} z)$ to (χ, t) ．We set $\chi=\chi\left(x, x_{0}\right), \chi^{\prime}=\chi\left(x^{\prime}, x_{0}\right)$ ．The Jacobian determinant is given by（3．14）and we have $F=-(1 / 2 i)$ ． $\cdot(1+r X \bar{\varphi})^{-1}(r X g)$ ；the integral under consideration can be rewritten as

$$
\begin{align*}
\frac{-1}{2 \pi i} \iint \frac{\exp \left[-\left(z-z^{\prime}\right)^{2}\right]}{z-z^{\prime}}(r X g) \text { 印 }\left(\chi^{\prime},\right. & \left.t^{\prime} ; x_{0}\right) \tag{3.43}\\
\cdot & {\left[1+(r X g)\left(x\left(\chi^{\prime}, x_{0}\right), t^{\prime}\right)\right] d \chi^{\prime} d t^{\prime} }
\end{align*}
$$

where

$$
\begin{equation*}
z=\chi+\varphi\left(x\left(\chi, x_{0}\right), t\right), \quad z^{\prime}=\chi^{\prime}+\varphi\left(x\left(\chi^{\prime}, x_{0}\right), t^{\prime}\right) \tag{3.44}
\end{equation*}
$$

The integration in（3．43）is performed over $S\left(x_{0}\right)$ or，which amounts to the same，over \mathbb{R}^{2}（since（ $\left.r X g\right)^{\text {国 }}$ vanishes identically in a neighborhood of $\partial S\left(x_{0}\right)$ ）． Let us denote by $v^{\natural \emptyset}\left(\chi, t ; x_{0}\right)$ the transfer of $\tilde{v}\left(z ; x_{0}\right)$ under the homeomor－ phism（3．12）；it is equal to（3．43）．We must check that $v^{\text {朋 }}\left(\chi, t ; x_{0}\right)$ is indeed the image，under the map（3．3），of a function $v^{\natural}\left(x, t ; x_{0}\right)$ on the leaf $\Sigma_{x_{0}}$ ．

For simplicity let us set

$$
\begin{equation*}
E(z)=\frac{1}{2 \pi i} \frac{\exp \left[-z^{2}\right]}{z}, \quad x=x\left(\chi, x_{0}\right), \quad x^{\prime}=x\left(\chi^{\prime}, x_{0}\right) \tag{3.45}
\end{equation*}
$$

We have：

$$
\begin{align*}
& v^{\text {朋 }}\left(\chi, t ; x_{0}\right)= \tag{3.46}\\
& -\iint E\left[\chi-\chi^{\prime}+\varphi(x, t)-\varphi\left(x^{\prime}, t^{\prime}\right)\right](r X g)\left(x^{\prime}, t^{\prime}\right)\left[1+r\left(x^{\prime}\right) X \varphi\left(x^{\prime}, t^{\prime}\right)\right] d \chi^{\prime} d t^{\prime} .
\end{align*}
$$

We apply（3．5）－（3．6）：

$$
\begin{equation*}
\chi-\chi^{\prime}=\chi\left(x, x^{\prime}\right) \tag{3.47}
\end{equation*}
$$

We may also write

$$
\begin{equation*}
d \chi^{\prime}=-d\left[\chi\left(x, x^{\prime}\right)\right] \tag{3.48}
\end{equation*}
$$

regarding x as fixed（or as a parameter）．Since $\Sigma_{x_{0}}=\Sigma_{x}$ in what precedes， we may define the following function of $(x, t), x \in U_{0} \backslash \mathcal{N}_{0},|t|<T$ ：

$$
\begin{align*}
& v(x, t)=\int_{\Sigma_{x}} \int E\left[\chi\left(x, x^{\prime}\right)+\varphi(x, t)-\varphi\left(x^{\prime}, t^{\prime}\right)\right](r X g)\left(x^{\prime}, t^{\prime}\right) \tag{3.49}\\
& \cdot {\left[1+r\left(x^{\prime}\right) X \varphi\left(x^{\prime}, t^{\prime}\right)\right] d \chi\left(x, x^{\prime}\right) d t^{\prime} }
\end{align*}
$$

Then $v^{\natural \natural}\left(\chi, t ; x_{0}\right)$ is the image under (3.3) of the restriction $v^{\natural}\left(x, t ; x_{0}\right)$ of $v(x, t)$ to $\Sigma_{x_{0}}$.

In the next section we prove that, after setting $v(x, t)=0$ when $x \in \mathcal{N}_{0}$, we have $v \in \mathcal{E}_{r \text { rfat }}(U)$. By taking then, in (3.49),

$$
g(x, t)=-i \zeta(t) \int_{-T}^{t} f(x, s) d s
$$

$\left[\zeta \in \mathbb{C}^{\infty}\left(\mathbb{R}^{1}\right), \zeta(t)=1\right.$ if $t \leqq T^{\prime}<T, \zeta(t)=0$ if $\left.t>\frac{1}{2}\left(T+T^{\prime}\right)\right]$, we obtain the solution $u=v+g$ of (3.30) in $\left.U^{\prime}=U_{0} \times\right]-T^{\prime}, T^{\prime}[$, with the required properties $\left(f \mapsto u\right.$ defines a linear operator $\mathscr{D}_{r \text {-flat }}\left(U^{\prime}\right) \rightarrow \mathcal{E}_{r \text {-flat }}\left(U^{\prime}\right)$, which can be given an explicit integral representation; the estimates in Sect. 4 easily imply the continuity of this operator).

4. - Smoothness and flatness of the solution.

We begin by simplifying the expression (3.49). We take $\chi=\chi\left(x, x^{\prime}\right)$ as one of the two integration variables at the right (the other remains t^{\prime}), and regard x^{\prime} as a function of (χ, x), defined as the solution of

$$
\begin{equation*}
\frac{d x^{\prime}}{d \chi}=-r\left(x^{\prime}\right) \boldsymbol{v}\left(x^{\prime}\right),\left.\quad x^{\prime}\right|_{\chi=0}=x \tag{4.1}
\end{equation*}
$$

It is convenient to let $\left(\chi, t^{\prime}\right)$ vary in the whole plane, although x^{\prime} is not defined for all χ but only for those belonging to $-J(x)$. But we have seen (Lemma 3.1) that if $J(x) \neq \mathbf{R}^{1}$ and if χ_{0} is a boundary point of $J(x)$, then as $\chi \rightarrow-\chi_{0}$ (while x remains fixed), x^{\prime} will exit from any compact subset of U_{0}, in particular from the support of $g(\cdot, t)$. And by the standard results on ODES, as long as x^{\prime} remains away from the boundary of U_{0}, it is a C^{∞} function of (χ, x) (x remains in $U_{0} \backslash \mathcal{N}_{0}$). Let us set

$$
\begin{equation*}
w=W(x ; \chi, t)=\left[1+r\left(x^{\prime}\right) X \varphi\left(x^{\prime}, t\right)\right] r\left(x^{\prime}\right) X g\left(x^{\prime}, t\right) ; \tag{4.2}
\end{equation*}
$$

also

$$
\begin{equation*}
Z=Z\left(x, t ; \chi, t^{\prime}\right)=\chi+\varphi(x, t)-\varphi\left(x^{\prime}, t^{\prime}\right) \tag{4.3}
\end{equation*}
$$

With this notation (3.49) reads

$$
\begin{equation*}
v(x, t)=\iint E\left[Z\left(x, t ; \chi, t^{\prime}\right)\right] \mathfrak{W}\left(x ; \chi, t^{\prime}\right) d \chi d t^{\prime} \tag{4.4}
\end{equation*}
$$

The integration in (4.4) is performed over $\mathbb{R}^{2} ;(x, t)$ ranges over $\left(U_{0} \backslash \mathcal{N}_{0}\right) \times$ $\times]-T, T$.

We avail ourselves of the following facts:
(4.5) W is a C^{∞} function of (x, χ, t) in $\left.\left(U_{0} \backslash \mathcal{N}_{0}\right) \times \mathbb{R}^{1} \times\right]-T, T[$;
(4.6) W is bounded;
(4.7) the projection on the t-axis of supp \mathfrak{W} is contained in a compact subinterval of $]-T, T[$.

On the other hand, we derive from (2.43)

$$
\begin{equation*}
\left|\varphi\left(x, t^{\prime}\right)-\varphi\left(x^{\prime}, t^{\prime}\right)\right| \leqslant C_{0}^{\prime}|t|^{\frac{1}{2}} \chi\left(x, x^{\prime}\right) \tag{4.8}
\end{equation*}
$$

where $x \in U_{0} \backslash \mathcal{N}_{0}, x^{\prime} \in \Gamma_{x},\left|t^{\prime}\right|<T$; we may rewrite (2.44) as

$$
\begin{equation*}
\left|\varphi(x, t)-\varphi\left(x, t^{\prime}\right)+i \int_{i^{\prime}}^{t} \omega(x, s) d s\right| \leqslant C_{1} \sqrt{ } \bar{T}\left|\int_{i^{\prime}}^{t} \omega(x, s) d s\right| \tag{4.9}
\end{equation*}
$$

(here $|t|<T$), and by combining (4.8) and (4.9) we see that

$$
\begin{equation*}
\left|Z-\left\{\chi-i \int_{i^{\prime}}^{t} \omega(x, s) d s\right\}\right| \leqslant C \sqrt{T}\left|\chi-i \int_{i^{\prime}}^{t} \omega(x, s) d s\right| \tag{4.10}
\end{equation*}
$$

From all this it follows easily that v, given by (4.4), is a continuous function of (x, t) in $\left.\left(U_{0} \backslash \mathcal{N}_{0}\right) \times\right]-T, T[$ (provided that $C \sqrt{T}$, in (4.10), be <1, which we may assume). We are now going to prove that it is a C^{∞} function of (x, t) in that set and, at the end, that it is r-flat.

We shall need the following:
Lemma 4.1. To every $\alpha \in \mathbb{Z}_{+}^{n}, k \in \mathbb{Z}_{+}$, there are constants $C_{\alpha, k}, M_{\alpha, k}>0$ and an integer $d_{\alpha, k} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\chi}^{k} x^{\prime}\right| \leqslant C_{\alpha, k} r\left(x^{\prime}\right)^{-d_{\alpha, k}} \exp \left(M_{\alpha, k}|\chi|\right) \tag{4.11}
\end{equation*}
$$

for all $x \in U_{0} \backslash \mathcal{N}_{0}, \chi \in-J(x)$.
Proof. The case $\alpha=0, k=0$ follows at once from (3.7), since

$$
\begin{equation*}
\left|x^{\prime}-x\right| \leqslant r\left(x^{\prime}\right)(\exp [K|\chi|]-1) \tag{4.12}
\end{equation*}
$$

Let us differentiate (4.1) with respect to χ and to x. If we set $\theta_{\alpha, k}=\partial_{x}^{\alpha} \partial_{\chi}^{k} x^{\prime}$, we obtain

$$
\begin{equation*}
\partial_{\chi} \theta_{\alpha, k}=\left[\partial_{x}(r \boldsymbol{v})\right]\left(x^{\prime}\right) \theta_{\alpha, k}+\sum_{|\beta| \leqslant|\alpha|+k}\left[\partial_{x}^{\beta}(r v)\right]\left(x^{\prime}\right) \mathscr{T}_{\alpha, \beta, k}(\theta), \tag{4.13}
\end{equation*}
$$

where $\int_{x, \beta, k}(\theta)$ denotes a polynomial with respect to the variables $\theta_{\gamma, l}$ with $\gamma_{j} \leqslant \alpha_{j}(j=1, \ldots, n), l \leqslant k$, and $|\gamma|+l<|\alpha|+k$. We apply Cor. 2.1, obtaining

$$
\begin{equation*}
\left|\partial_{\chi} \theta_{\alpha, k}\right| \leqslant C\left|\theta_{\alpha, k}\right|+\sum_{|\beta| \leqslant|\alpha|+k} \widetilde{\widetilde{C}} r\left(x^{\prime}\right)^{1-|\beta|}\left|T_{\alpha, \beta, k}(\theta)\right| \tag{4.14}
\end{equation*}
$$

We shall reason by induction on $|\alpha|$ and on k. First assume $k=0$. Then to (4.14) we may adjoin the initial conditions

$$
\begin{equation*}
\left.\theta_{\alpha, 0}\right|_{x=0}=\partial_{x}^{\alpha} x \tag{4.15}
\end{equation*}
$$

Thus, if $|\alpha|=1$ (in which case $\mathcal{T}_{\alpha, \beta, 0}(\theta) \equiv 0$), we obtain at once

$$
\begin{equation*}
\left|\theta_{\alpha, 0}\right| \leqslant \exp [C|\chi|] \tag{4.16}
\end{equation*}
$$

For $|\alpha|>1$, the right-hand side in (4.15) is zero. By induction on $|\alpha|$ we derive from (4.14)

$$
\begin{equation*}
\left|\partial_{\chi} \theta_{\alpha, 0}\right| \leqslant C\left|\theta_{\alpha, 0}\right|+C_{\alpha}^{\prime} r\left(x^{\prime}\right)^{-d_{\alpha}} \exp \left[M_{\alpha}|\chi|\right] \tag{4.17}
\end{equation*}
$$

We apply then Gronwall's inequality and obtain

$$
\begin{equation*}
\left|\theta_{\alpha, 0}\right| \leqslant C_{\alpha, 0} r\left(x^{\prime}\right)^{-d_{\alpha, 0}} \exp \left[M_{\alpha, 0}|\chi|\right] \tag{4.18}
\end{equation*}
$$

It suffices now to observe that the left-hand side in (4.14) can be rewritten as $\left|\theta_{\alpha . k+1}\right|$ and to reason by induction on k. Q.E.D.

We shall now differentiate v (given by (4.4)) with respect to (x, t). But since

$$
\begin{equation*}
\partial_{t} v-i|\boldsymbol{b}(x, t)| X v=|\boldsymbol{b}(x, t)| X g \tag{4.19}
\end{equation*}
$$

(see (3.31), (3.32)), it suffices to consider the derivatives of v with respect to x. We have

$$
\begin{equation*}
\partial_{x}^{\alpha} v=\sum_{\alpha^{\prime} \leqslant \alpha}\binom{\alpha}{\alpha^{\prime}} \iint \partial_{\alpha^{\prime}}^{x}[E(Z)] \partial_{x}^{\alpha-\alpha^{\prime}} w\left(x ; \mathbb{Z}, t^{\prime}\right) d \chi d t^{\prime} \tag{4.20}
\end{equation*}
$$

where $\alpha^{\prime} \leqslant \alpha$ means $\alpha_{j}^{\prime} \leqslant \alpha_{j}$ for all $j=1, \ldots, n$. First, if $\left|\alpha^{\prime}\right| \geqslant 1$,

$$
\begin{equation*}
\partial_{x}^{\alpha^{\prime}} E(Z)=\sum_{j=1}^{\left|\alpha^{\prime}\right|} E^{(j)}(Z) \mathscr{T}_{j}\left(\partial_{x}^{\beta} Z\right) \tag{4.21}
\end{equation*}
$$

where $\mathscr{T}_{j}\left(\partial_{x}^{\beta} Z\right)$ is a polynomial with respect to the derivatives of Z with respect to x, of order $\beta, 0<|\beta| \leqslant\left|\alpha^{\prime}\right|$. Since $Z=\chi+\varphi(x, t)-\varphi\left(x^{\prime}, t^{\prime}\right)$, we have

$$
\begin{equation*}
\partial_{x}=\left[1-\partial_{x} \varphi\left(x^{\prime}, t^{\prime}\right)\right] \partial_{z} \tag{4.22}
\end{equation*}
$$

and, by (4.1),

$$
\partial_{x} \varphi\left(x^{\prime}, t^{\prime}\right)=\varphi_{x}\left(x^{\prime}, t^{\prime}\right) \frac{\partial x^{\prime}}{\partial \chi}=-r\left(x^{\prime}\right) \sum v^{j}\left(x^{\prime}\right) \frac{\partial \varphi}{\partial x^{j}}\left(x^{\prime}, t^{\prime}\right)
$$

We apply once again (2.43); if $T>0$ is small enough,

$$
\begin{equation*}
\left|\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)\right| \leqslant C_{1} \sqrt{T}<1 \tag{4.23}
\end{equation*}
$$

and $\left[1-\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)\right]$ is invertible. Thus, by iteration,

$$
\begin{equation*}
E^{(j)}(Z)=\left(\frac{1}{1-\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)} \frac{\partial}{\partial \chi}\right)^{j} E(Z) \tag{4.24}
\end{equation*}
$$

and thus, after integration by parts [which is legitimate: see remark following (4.33)], we see that $\partial_{x}^{\alpha} v$ is a linear combination of terms of the form

$$
\begin{equation*}
\iint E(Z)\left\{\frac{\partial}{\partial \chi}\left[\frac{-1}{1-\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)}\right]\right\}^{j}\left[\mathscr{T}_{j}\left(\partial_{x}^{\beta} Z\right) \partial_{x}^{\alpha-\alpha^{\prime}} \mathscr{W}\left(x ; \chi, t^{\prime}\right)\right] d \chi d t^{\prime} \tag{4.25}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\partial_{x}^{\beta} Z=\partial_{x}^{\beta} \varphi(x, t)-\sum_{\gamma \leqslant \beta}\left(\partial_{x}^{\gamma} \varphi\right)\left(x^{\prime}, t^{\prime}\right) \mathcal{Q}_{\gamma}\left(\partial_{x}^{2} x^{\prime}\right) \tag{4.26}
\end{equation*}
$$

where \mathcal{Q}_{γ} is a polynomial with respect to the derivatives $\partial_{x}^{\lambda} x^{\prime}$ of x^{\prime} with respect to x of appropriate orders λ. If $k>0$,

$$
\begin{equation*}
\partial_{x}^{\beta} \partial_{x}^{k} \boldsymbol{Z}=-\sum_{|\gamma| \leqslant|\beta|+k}\left(\partial_{x}^{\gamma} \varphi\right)\left(x^{\prime}, t^{\prime}\right) \mathcal{Q}_{\gamma, k}\left(\partial_{x}^{\lambda} \partial_{\chi}^{l} x^{\prime}\right) \tag{4.27}
\end{equation*}
$$

Applying Leibniz formula in (4.25) and taking (4.26)-(4.27) into account
shows that (4.25), hence also $\partial_{x}^{\alpha} v$, is a linear combination of terms of the form

$$
\begin{align*}
\iint E(Z) & \mathcal{R}_{\mu, j}\left[\partial_{x}^{\beta} \varphi(x, t),\left(\partial_{x}^{\gamma} \varphi\right)\left(x^{\prime}, t^{\prime}\right), \partial_{x}^{\lambda} \partial_{x}^{l} x^{\prime}\right] \tag{4.28}\\
\cdot & \partial_{x}^{\mu} w\left(x ; \chi, t^{\prime}\right)\left[1-\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)\right]^{-2 j} d \chi d t^{\prime}
\end{align*}
$$

in (4.28), $\mathcal{R}_{\mu, j}$ is a polynomial with respect to the indicated arguments. Let us rewrite (4.28) as

$$
\begin{equation*}
v_{\mu, j}(x, t)=\iint E(Z) w_{\mu, j}\left(x, t ; \chi, t^{\prime}\right) d \chi d t^{\prime} \tag{4.29}
\end{equation*}
$$

Note that $w_{\mu, j}$ is a C^{∞} function of $\left(x, t, \chi, t^{\prime}\right)$ in the region

$$
\begin{equation*}
\left.x \in U_{0} \backslash \mathcal{N}_{0}, \quad t, t^{\prime} \in\right]-T, T\left[, \quad \chi \in \mathbb{R}^{1}\right. \tag{4.30}
\end{equation*}
$$

(cf. the remarks following (4.1)). The t^{\prime}-projection of $\operatorname{supp} w_{\mu, j}$ is contained in a compact subinterval of $]-T, T[$. Furthermore, as inspection of (4.28) shows, by virtue of (2.51) and (4.11), for suitable constants $C_{\mu, j}^{\prime}$, $M_{\mu, j}^{\prime}>0$ and an integer $d_{\mu, j}^{\prime} \geqslant 0$,

$$
\begin{align*}
& \left|w_{\mu, j}\left(x, t ; \chi, t^{\prime}\right)\right| \leqslant \tag{4.31}\\
& \leqslant C_{\mu, j}^{\prime}\left[1+\frac{1}{r(x)}+\frac{1}{r\left(x^{\prime}\right)}\right]^{a_{\mu, 3}^{\prime}} \exp \left[M_{\mu, j}^{\prime}|\chi|\right]\left|\partial_{x}^{\mu} w\left(x ; \chi, t^{\prime}\right)\right|
\end{align*}
$$

By (4.2) and the results of the appendix of Sect. 2, we see immediately that W is $r\left(x^{\prime}\right)$-flat. If we combine this fact with Lemma 4.1 we deduce that, for a suitable constant $M_{\mu}>0$ (depending only on μ), for any $\nu \in \mathbb{Z}_{+}$and a suitable constant $C_{\mu, \nu}^{\prime \prime}>0$,

$$
\begin{equation*}
\left|\partial_{x}^{\mu} w\left(x ; \chi, t^{\prime}\right)\right| \leqslant C_{\mu, \nu}^{\prime \prime} r\left(x^{\prime}\right)^{\nu} \exp \left[M_{\mu}|\chi|\right] \tag{4.32}
\end{equation*}
$$

Combining this with (4.31) yields

$$
\begin{equation*}
\left|w_{\mu, j}\left(x, t ; \chi, t^{\prime}\right)\right| \leqslant C_{\mu, v, j}^{\prime \prime \prime} r\left(x^{\prime}\right)^{\nu}\left[1+\frac{1}{r(x)}\right]^{a_{\mu, s}^{\prime}} \exp \left[M_{\mu, j}^{\prime \prime}|\chi|\right] \tag{4.33}
\end{equation*}
$$

In (4.33) $\boldsymbol{v} \in \mathbb{Z}_{+}$is arbitrary.
The estimate (4.33) allows us to change slightly the integral representation (4.29) of $v_{\mu, j}$. Indeed, by (4.22),

$$
\frac{1}{Z}=\left(\frac{1}{1-\partial_{\chi} \varphi\left(x^{\prime}, t^{\prime}\right)} \frac{\partial}{\partial \chi}\right)^{2}[Z(\log \pm Z-1)]
$$

where $\log ^{ \pm}$denotes suitable branches of the logarithmic function. Since $w_{\mu, j}$ grows at most exponentially with $|\chi|$, whereas $E(Z)$ behaves like $\exp \left[-\chi^{2}\right]$ at infinity, we may integrate by parts, obtaining

$$
\begin{equation*}
v_{\mu, j}(x, t)=\iint \exp \left[-Z^{2}\right]\left[Z\left(\log ^{ \pm} Z-1\right] w_{\mu, j}^{\boxminus}\left(x, t ; \chi, t^{\prime}\right) d \chi d t^{\prime},\right. \tag{4.34}
\end{equation*}
$$

where $w_{\mu, j}^{\natural}$ is a function analogous to $w_{\mu, j}$ (cf. (4.25) and subsequent reasoning), in particular satisfies an inequality similar to (4.33):

$$
\begin{equation*}
\left|w_{\mu, j}^{\natural}\left(x, t ; \chi, t^{\prime}\right)\right| \leqslant C_{\mu, \nu, j}^{\natural} r\left(x^{\prime}\right)^{v}\left[1+\frac{1}{r(x)}\right]^{d_{\mu, j}^{\natural}} \exp \left[M_{\mu, j}^{\frac{1}{\natural}}|\chi|\right] \tag{4.35}
\end{equation*}
$$

($\boldsymbol{v} \in \mathbb{Z}_{+}$arbitrary).
For any $M>0$ we denote by $v_{\mu, j}^{M}(x, t)$ the value of the integral at the right in (4.34), when the integration with respect to χ is restricted to the region

$$
\begin{equation*}
|\chi|>2 \sqrt{M}(1+|\log r(x)|)^{\frac{1}{2}} \tag{4.36}
\end{equation*}
$$

If we choose M large enough, we see, by (4.10), that

$$
\begin{equation*}
\operatorname{Re} Z^{2} \geqq \frac{3}{4} \chi^{2}-\text { const. } \geqslant \frac{1}{2} \chi^{2}+M|\log r(x)| \tag{4.37}
\end{equation*}
$$

in the region (4.36), whatever $x \in U_{0} \backslash \mathcal{N}_{0},|t|<T$. Thus, there,

$$
\begin{equation*}
\left|\exp \left[-Z^{2}\right]\right| \leqslant r(x)^{\varepsilon M} \exp \left[-\chi^{2} / 2\right], \tag{4.38}
\end{equation*}
$$

where $\varepsilon=+1$ if $r(x) \leqslant 1, \varepsilon=-1$ if $r(x)>1$.
Suppose first that x remains in a compact subset K of $U_{0} \backslash \mathcal{N}_{0}$. We have, by (4.34), (4.35), (4.38),

$$
\begin{equation*}
\left|v_{\mu, j}^{M}(x, t)\right| \leqslant \text { const. } \int_{|\gamma|>2 \sqrt{M}} \exp \left[-\frac{1}{2} \chi^{2}+M_{\mu, j}^{\natural}|\chi|\right] \chi^{2} d \chi . \tag{4.39}
\end{equation*}
$$

Of course μ, j are fixed and so is $M_{\mu, j}^{\natural}$. We may choose M so large that the right-hand side in (4.39) will not exceed any number $\delta>0$ given in advance. Thus, in order to study the continuity of $v_{\mu, j}(x, t), x \in K,|t|<T$, it suffices to study that of $\left(v_{\mu, j}-v_{\mu, j}^{M}\right)(x, t)$. But the latter continuity is evident, as the integrand and the domain of integration, in the integral expression of $\left(v_{\mu, j}-v_{\mu, j}^{M}\right)(x, t)$, depend continuously on (x, t), and the integrand is uniformly L^{1} with respect to χ, t^{\prime}.

This proves that v is a C^{∞} function in $\left.\left(U_{0} \backslash \mathcal{N}_{0}\right) \times\right]-T, T$. In order to complete the proof of Th. 1.2 we must prove that v is r-flat.

We suppose now that x is close to \mathcal{N}_{0}, in particular that $r(x)<1$. Using once more (4.35) and (4.38) we get

$$
\begin{equation*}
\left|v_{\mu, j}^{M}(x, t)\right| \leqslant \text { const. } r(x)^{M-d_{\mu, j}^{\natural}} \int_{\chi \mid>2 \sqrt{M}} \exp \left[-\frac{1}{2} \chi^{2}+M_{\mu, j}^{\natural}\right] \chi^{2} d \chi \tag{4.40}
\end{equation*}
$$

thus:

$$
\begin{equation*}
\left|v_{\mu, j}^{M}(x, t)\right| \leqslant C(M, \mu, j) r(x)^{M^{\prime}} \quad \text { if } M \geqslant M^{\prime}+a_{\mu, j}^{\nmid} \tag{4.41}
\end{equation*}
$$

We shall now estimate $v_{\mu, j}-v_{\mu, j}^{M}$. This difference is equal to the integral at the right in (4.34) but where the integration with respect to χ is restricted to the interval

$$
\begin{equation*}
|\chi| \leqslant 2 \sqrt{M}(1+|\log r(x)|)^{\frac{1}{2}} \tag{4.42}
\end{equation*}
$$

Lemma 4.2. There is a constant $O>0$ such that, for all $M>0$, if (4.42) holds, then

$$
\begin{equation*}
1-\Theta \leqslant\left|\frac{\log r\left(x^{\prime}\right)}{\log r(x)}\right| \leqslant 1+\Theta \tag{4.43}
\end{equation*}
$$

where $x^{\prime}=x^{\prime}(\chi, x)$ and $\Theta=2 \sqrt{M}(1+|\log r(x)|)^{\frac{1}{2}} /|\log r(x)|$.
Proof. We have (Lemma 2.5) $\left|\partial_{\chi} r\right|=|r X r| \leqslant C r$, hence

$$
\left|\log r(x)-\log r\left(x^{\prime}\right)\right|=\left|\int_{0}^{\chi} \frac{1}{r} \frac{\partial r}{\partial \chi} d \chi\right| \leqslant C|\chi|
$$

Combining this with (4.42) yields (4.43). Q.E.D.
Keeping M fixed, we may find a neighborhood ϑ_{0} of \mathcal{N}_{0} such that if $x \in \mathcal{V}_{0} \backslash \mathcal{N}_{0}, r(x)$ is so small that $\Theta<\frac{1}{2}$. But then, from the first inequality (4.43), we draw

$$
\begin{equation*}
r\left(x^{\prime}\right) \leqslant r(x)^{\frac{1}{2}} \quad \text { if } x^{\prime}=x^{\prime}(\chi, x) \text { and (4.42) holds } \tag{4.44}
\end{equation*}
$$

By (4.35) we see that, in the region (4.42), we have

$$
\begin{equation*}
\left|w_{\mu, j}^{\natural}\left(x, t ; \chi, t^{\prime}\right)\right| \leqslant C_{\mu, v, j}^{\natural \emptyset} \boldsymbol{q}^{\natural} r(x)^{\frac{z^{v} p-d_{\mu, j}}{\natural}} \exp \left[M_{\mu, j}^{\natural}|\chi|\right] . \tag{4.45}
\end{equation*}
$$

Reporting this in the integral at the right of (4.34), where the integration in χ is restricted to (4.42), we obtain

$$
\begin{align*}
& \left|v_{\mu, j}(x, t)-v_{\mu, j}^{M}(x, t)\right| \leqslant \tag{4.46}\\
& \leqslant \mathrm{const} . r(x)^{\frac{1}{2} \nu-d_{\mu, j}} \int_{-\infty}^{+\infty} \exp \left[-\chi^{2}+M_{\mu, j}^{\natural}|\chi|\right] \chi^{2} d \chi \\
& \leqslant C^{\natural}(\mu, j) r(x)^{M^{\prime}} \quad \text { if } v \geqslant 2\left(M^{\prime}+d_{\mu, j}^{\natural}\right) . \quad \text { Q.E.D. }
\end{align*}
$$

BIBLIOGRAPHICAL REFERENCES

[1] R. Beals - Ch. Fefferman, On local solvability of linear partial differential equations, Ann. of Math., 97 (1973), 482-498.
[2] R. Hermann, - The Differential Geometry of Foliations, II. Jr. of Math. and Mech., 2 (1972), 303-315.
${ }_{\text {L }}$ 3] J. N. Mather, Proceedings of Liverpool Singularities, Symposium 1, Lecture Notes in Mathematics 192, Springer-Verlag.
[4] L. Nirenberg - F. Treves, Solvability of a linear first order partial differential equation, Comm. Pure Appl. Math., 16 (1963), 331-351.
[5] L. Nirenberg - F. Treves, On local solvability of linear partial differential equations. Part II: Sufficient conditions, Comm. Pure Appl. Math., 924 (1971), 279-288.
[6] F. Treves, Solutions of Cauchy problems modulo flat functions, Sémin. Equat. Dér. Part. Ecole Polytechnique Paris (1974-75).
[7] F. Treves, Solutions élémentaires d'équations linéaires aux dérivées partielles du premier ordre, Sémin. Equat. Dér. Part. Ecole Polytechnique Paris (1974-75).

[^0]: (*) Work partly supported by NSF Grant No. MPS 75-07064.
 (**) Rutgers University, New Brunswick, N. J.
 Pervenuto alla Redazione il 28 Aprile 1975.

 1 - Annali della Scuola Norm. Sup. di Pisa

