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Integral Representation of Solutions
of First-Order Linear Partial Differential Equations, I (*).

FRANÇOIS TREVES (**)

dedicated to Hans Lewy

Introduction.

Until now the proofs of the local solvability of the linear PDEs with

simple real characteristics satisfying Condition (P) are strictly « existential »

and based on a priori estimates (see [1], [5]). In the present paper we give
an integral representation of solutions (in a small open set) of the equation

in the (very) particular case where L is a first-order linear partial differential
operator with analytic coefficients, nondegenerate, satisfying Condition (P)
(which, in these circumstances, is equivalent to being locally solvable). The
right-hand side f is assumed to be 000 and the found solution u is also C°°

(all this is local, in a fixed open neighborhood of the central point). Thus

we answer, in this particular case, the question of the solvability within
C°°-still open in the more general cases.
The techniques introduced in the present paper compel us to look at the

local solvability of first-order linear PDEs from a new viewpoint, and to
analyze in finer detail its geometric implications (see Ch. I). I believe they
should lead to interesting results in more general set-ups. An outline of the
main ideas of the paper can be found in [7].

(*) Work partly supported by NSF Grant No. MPS 75 - 07064.
(**) Rutgers University, New Brunswick, N. J.
Pervenuto alla Redazione il 28 Aprile 1975.
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CHAPTER I

GENERAL CONSIDERATIONS

1. - A new formulation of the solvability condition (P) for first-order

linear PDEs.

Let SZ be an open subset of (N ~ 2 ) ; the coordinates in Rv are denoted
(at least for the moment) by yl, ..., yN. We consider a first-order linear partial
differential operator

where the are complex-valued C°° functions in S~. We make

throughout the hypothesis that L is nowhere degenerate, that is,

We denote by Lo the principal part of L, that is,

Let then yo be an arbitrary point of Q. There is an open neighborhood
of yo and local coordinates in U, xl, ... , xn,t (we set n = N -1 and

write x = (xl, ..., such that, in U,

where C, bi (1 ~ j c n), c are C°° functions in U; furthermore, ~ does not
vanish at any point of U and the bi are real-valued. We may in fact suppose
that U is a product-set

where Uo is an open neighborhood of the origin and T a number &#x3E; 0 (we
are assuming, for simplicity, that the coordinates xl, ..., xn, t all vanish at yo).
We set: b(x, t) = (bl(x, t), ..., bn(x, t)) (E Rn).
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DEFINITION 1.1. We say that L satisfies Condition (P) at the point y, if
there is an open neighborhood V c U o f yo such that the following is true :

(1.5) I n V, the vector field b(x, t)llb(x, t)1 is independent of t.

Although we have formulated (P) at Yo in terms of particular coordinates,
it can be proved (see [4]) that it does not depend on our choice of the
coordinates (provided that the expression of L be of the kind (1.3)). We
say that L satisfies Condition (P) in SZ if it so does at every point of 92.

Let us assume that (P) holds at yo and take the neighborhood U equal
to V in Def. 1.1. Let us introduce the singular set

In is a C°° vector field, nowhere zero ; we shall regard it as a
first-order linear partial differential operator, without zero-order term, which
we denote by

We extend v = (v1, ... , vn) as an arbitrary unit-vector in X,, (in general,
v will not be smooth throughout Ua). In U we may then write

We find ourselves in the following situation: U is the union of the

« vertical » lines x = xo E $0’ along which = and of the cyl-
where r is any integral curve of X in 

cylinders on which C-’L() = alat -~- ilb(x, t) IX.
Assuming now that (P) holds at every point of Q, this leads to a foliation

of Q, which is best seen when the coefficients of Lo are analytic. Let us

write Lo = A + V2013 1B, where A and B are real vector fields. Let us denote
by g(A, B) the real Lie algebra generated by A and B (for the commutation
bracket [A, B] = AB - BA). When A and B are analytic vector fields, it

is known (see [2]) that each point yo of SZ belongs to one, and only one,
subset X of S~ having the following properties:

(1.9) A is ac connected analytic submanifold o f Q;

(1.10) the tangent space to A at anyone of its points, y, is exactly equal to the
« f reezing » o f g (A, B ) at y ;

(1.11) A is maximal for Properties (1.9) and (1.10).
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We shall refer to the submanifolds A as the leaves defined by L. When the
coefficients of Lo are analytic, Condition (P) is equivalent with the local

solvability of L (here, at each point of Q) . It can be subdivided into two parts:

(PI) the dimension of each leaf A, defined by L, is either one or two.

Observe that (P1 ) is always true when the dimension of the surrounding
space, i.e. , of SZ, is ,2-even when L is not locally solvable.
On an arbitrary two-dimensional leaf vi(, the complex vector field Lo defines

a skew-symmetric real two-tensor, which it is natural to denote by

(If we set x~ = Reyi, ~8~ = =1, ..., N, the coordinates of AAB on
the canonical basis a /ayi /B a/ayk, 1 c j  k  N, are rx.3 fJk - Locally on A,
we may always find a generator of the line bundle A 2TA (in the co-

ordinates x, t used earlier we may take Let 0 be such a generator,
say over an open subset 0 of A. Then A A B = 00, where e is a real-

valued (analytic) function in 0. Observe that the property that e does not
change sign in a is independent of our choice of 0 ; observe also that the zero-
set of e is a proper analytic subset of (9. This gives a meaning to the second
« part » of Property (P) :

(P2) Restricted to any two-dimensional leaf JL (defined by L) in Q,
- (1/2i)Lo/BLo does not change sign.

Indeed, in the form (1. 7 ), we have

There is no need to point out that (P), stated as the conjunction of (Pl)
and (P2), is invariant under coordinates changes and also under multiplica-
tion of L by nowhere vanishing complex-valued (analytic) functions.

Along any one-dimensional leaf (parametrized by t) the principal part Lo
is essentially a/at. We shall see, in the course of the proof of our main result,
that, by virtue of (P2), on any two-dimensional leaf, Lo can be transformed
(up to a scalar factor) into the « Cauchy-Riemann operator » 8f8t + iX,
via a homeomorphism naturally associated with .Lo .

In the case of C°° coefficients, the reformulation of Property (P) is more

delicate. First of all it is not true, in general, that through each point yo
of Q passes a unique C°° submanifold ~ with property (1.10). There is another
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consequential difference: let us return to the local representation (1.8) and
consider the restriction of L to a cylinder £ = rx]- T, T[, where 1 is an
integral curve of X in When the coefficients of L are analytic,

t) I is an analytic function on ~; its zero-set intersects any vertical line
x = only on a locally finite set, otherwise Ib ] would vanish identically
on such a line and we should have Xo E Xo, contrary to the definition of 1~’.
In particular the zero-set of lb is a proper analytic subset of ~. In the case
of C°° coefficients the zero-set of Ibl I might have a nonempty interior. It is

submitted to the sole condition of not containing any vertical segment
X ] - T, T[. Requirement which is of course dependent on the length T

of the «time interval ».

Nevertheless we may formulate (P) as the conjunction of (P1 ) and (P2),
provided we incorporate to (P1 ) a statement as to the existence of the folia-
tion Leaves cannot anymore be required to have property (1.10)
(example : L = 8 f8t + ib(x, )(3/3.r), where b E is real-valued and does

not vanish anywhere, except at the origin, where all derivatives of b vanish;
there can be but one leaf, the whole plane, although g(A, B) is one-dimensional
at the origin).

DEFINITION 1.2. Let k be any integer such that 0  k  N. A k-dimensional
leaf, defined by L in Q, is ac subset k of Q having the following properties :

(1.14) A is a connected C submanifold (*) of Q, of dimension k;

(1.15) the tangent space to fl at anyone of its points, y, contains the « freezing »
of 9 (A, B) at y ;

(1.16) the boundary (**) of ~ is a union of leaves defined by L in Q whose
dimension is  k;

(1.17) ~ does not contain any leaf defined by L in Q whose dimension is  k.

With this definition we may now state:

(P1 ) Q is the union of leaxes defined by L, whose dimension is either one or two.

Observe that, because of Hypothesis (1.2), the dimension of g(A, B) at
every point is at least one; consequently there are no zero-dimensional leaves

(*) It is perhaps worth recalling what a Coo submanifold ~ of S2 is: every

point of J6 (and not necessarily every point of 0!) has a neighborhood in which
J6 is defined by the vanishing of a number of smooth functions whose differentials
are linearly independent.

(**) We use the word « boundary» as in « manifold with boundary », not with
its point-set topology meaning.
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and, in virtue of (1.16), the one-dimensional leaves defined by L must be
without a boundary.

Let us prove that (P) is equivalent with the conjunction of (P1 ) and (P2).
First, suppose (P) holds at every point of Q. Let denote a connected

one-dimensional 000 submanifold of Q, having property (1.15), and also the
following one:

(1.18) Let (~7,~,...,~,~) be a local chart in Q, yielding the representa-
(1.8) of L. Any segment X ] - T, T[, xo c- Uo, which intersects

fl r1 U is contained in fl.

The manifold A cannot have any boundary point yo in Q, as one sees by
taking a local chart (~7,~,...,~,~) as in (1.18), containing yo . Thus, by
Def. 1.2, fl is a leaf of L in ,~; and every one-dimensional leaf of L must
have property (1.18). Let 1~ denote the union of all the one-dimensional

leaves of L in Q. Since, in any local chart like the one in (1.18), such leaves
are unions of vertical segments with xo E No 9 every point
yo E U which belongs to the closure of F must lie on such a segment, from
which it follows at once that I’ must be closed.

Let now A denote a connected two-dimensional C°° submanifold of 

satisfying (1.15) and (1.18), and maximal for these properties. Its boundary
8fl in ,~ (see footnote (**) to p. 5) must also have property (1.18). By
the maximality of A, at no point of 0.At, can the Lie algebra g (A, B) be
two-dimensional. Thus 8fl must be a union of one-dimensional leaves of L,
in fact of at most two of them, since fl is connected, and possibly of only
one or of none. Thus.At, is a two-dimensional leaf of L. A moment of thought
shows that, conversely, every two-dimensional leaf of L in Q is such a sub-
manifold of QEF. Note that every submanifold of QEF, of dimen-
sion 2, satisfying (1.15), must be entirely contained in some such leaf;
and that any two such leaves cannot intersect without being identical. In

particular, every point of is contained in one, and only one, two-
dimensional leaf of L.

That (P2) is a consequence of (P) has already been explained.
Suppose now that (P1 ) holds. Let yo be an arbitrary point of SZ. By (1.2)

we may assume that L has the representation (1.3) in a local chart

( U, x1, ..., xn, t) centered at yo. This also implies that every leaf vi(, defined

by L in SZ (according to Def. 1.2), is equal, in U, to the union of vertical
lines x = xo : As a consequence, every two-dimensional leaf X intersects the

piece of « hyperplane » {(.r, t) e U; t = 0) along a smooth curve r c Uo; and
JtC is the cylinder ;E =1~’ X ] - T, T[. Let 1 be a smooth vector field tangent
to .f and nowhere vanishing on h. From what we have just seen it follows
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that, on E, alat + i~,(x, t)X, and (P2) means exactly that A does

not change sign in 27 (if X is a unit vector-field and if A is nonnegative, in
the notation of (1.8) we have A = I and .X = X).

A final remark: in the C~ case, in contrast with what happens in the

analytic case, the foliation defined by L in a proper open subset of S~ can be

strictly finer than the one induced by the foliation of Q.

2. - Reduction to flat right-hand sides.

We shall systematically use the following terminology:

DEFINITION 2.1. Let M be a C°° nonnegative continuous f unc-
tion in M. W e say that a f unction in M if given any
differential operator (with C°° coefficients) P in M and any integer ~k ~ 0, 
is a continuous function in M, and we write then f 7 0.

It is convenient to introduce the notation:

We shall comply throughout with the notation of Sect. 1. In particular,
we reason locally, in the neighborhood U given by (1.4). We assume that
the «central point &#x3E;&#x3E; is the origin in and that .L is given by (1.3);
we may even divide by ~ and take L = Lo + c(x, t), with

We suppose that b = (bl, ..., bn) and c are C°° functions in an open neigh-
borhood of U (which is compact), valued in and C respectively.

The f unction o we use (in a neighborhood of U ) is the following:

Following a suggestion of L. Nirenberg we begin by proving

THEOREM 2.1. If U is small enough, there is a continuous linear operator
E: C~° ( U) -~ C°° ( U) such that maps C~°( U) into 

REMARK 2.1. In Th. 2.1 it is not assumed that L is locally solvable.
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REMARK 2.2. By Def. 2.1 it is clear that carries a natural

Fréchet space topology: the coarsest one which renders all the mappings
continuous, from into C°(M), as k and P vary freely.

The space 0,,-fl.t(M) carries the derived ET-topology. It will be obvious

that the operator .R is continuous for these topologies.

PROOF. We apply Th. 1 of [6] (or else use almost-analytic extensions).
If U is small enough, for each j == 1, ..., n, there is a complex-valued C°°

function zi = t’ ) such that

(2.5) Lozi 0 in an open neighborhood of U ,

(2.6) 

(t’ E [- T, T]). If the coefficients of Lo are analytic, the equivalence (2.5)
can be replaced by an exact equality (because of the Cauchy-
Kovalevska theorem). Furthermore (according to Th. 1 of [6])

I

(where C - 0 with T).
Application of Th. 1 of [6] yields (2.5) and (2.7) with Q(x, t) replaced by

t

I f but if - the latter quantity clearly does not exceed
t,

Q(x, t). We write z = (ZI, ..., zn) and set, for arbitrary f E C~(!7),

where f($, t) is the Fourier transform of f with respect to the x-variables,
and g E =1 for l’ &#x3E; -1, g(1) = 0 for -r  - 2. It is checked at

once that .Eo maps continuously OC;( U) into C~(~7). Furthermore, if

Ro = I, we have

(*) This formula mimicks the construction of continuous almost-analytic exten-
sions by Mather ([3]).
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with

Whatever for a suitable

whence, combining (2.7) and (2.11),

On the other hand, by (2.5), we have

Since on the support of g(~ ~ Im x), we have we see that

An analogous inequality can be obtained for every derivative of Ro f with
respect to (x, t), which shows that Rot is e-flat.

Let now c,(x, t) E C§°(U) equal c(x, t) in a subneighborhood Ul of the

origin, and set

We have, in U,,

which shows that the statement of Th. 2.1 is verified, if Ul is substituted
for ZT and if we define .R by
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CHAPTER II

CONSTRUCTION OF FUNDAMENTAL SOLUTIONS

WHEN THE COEFFICIENTS ARE ANALYTIC

1. - Statement of the theorem.

We use the notation of Ch. I. In particular, L = Lo -E- c(x, t) and Lo has
the form (2.3), Ch. I. The coefficients of Lo are now analytic in an open
neighborhood of the origin in which we take to be S~. In this chapter
we prove:

THEOREM 1.1. There is an open neighborhood of the origin in 1ltn+I
and a continuous linear operator K: C~°( U) -~ C°°( U) such that LK = I, the
identity of C~° ( U).

Let us note right-away that it suffices to prove the result when c(x, t) - 0.
For if Lo Ko = I and h = Kocl, with CIE O’;(U), C1 = c in an open neigh-
borhood U’ c U of 0, we may take K = which yields LK = I
in U’. From now on we assume that L = Lo, i.e.

in Q.

If we take Th. 2.1, Ch. I, into account, we see that Th. 1.1 will follow from
the result below. We introduce and shall use throughout the following
function:

If we compare with the function e(x, t) defined in (2.4), Ch. I, we see that

for (x, t) E S~, Thus if we regard r as a function in Q, we see that
any e-flat (Def. 2.1, Ch. I) C°° function is also r-fiat. In particular (see (2.1),
Ch. I), C We shall prove the following result:
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THEOREM 1.2. 1 f the open neighborhood U cc SZ of the origin is small

enough, there is a linear operator gl: (see (2.1), (2.2),
Ch. 1) such that LKl = I, the identity of 

Let then C(x, t) E C~° ( U), C(x, t) = 1 in an open subneighborhood U’ of 0.
Let .R be the operator in Th. 2.1, Ch. I, and set, for any f E 0,,(U),

where E is the operator in Th. 2.1, Ch. I. Obviously I~ satisfies the require-
ments of Th. 1.1, if we substitute U’ for U (inspection of the proofs shows
easily that KI, as well as .R, are continuous when Ðr-flat( U) and 
carry their natural topologies, and this implies the continuity of .K) .

2. - Determination of an across-the-board phase function.

From now on we suppose that

recalling that U = T[. We also recall that

Let us set

where z = x -~- iy varies in an open neighborhood of U + i{y E Rn; Iyl ·

Since a(x, t) &#x3E; 0 (for in a neighborhood of U), there is a constant

M&#x3E; 0 such that

Of course, Ý a(x, t) = lb(x, t)1. We may write

where lí2(X, y, t) c MlByB2. If x &#x3E; 0 is small enough and if
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we obtain:

LEMMA 2.1. I f x &#x3E; 0 is small enough, t) = t) can be extended as
a holomorphic function of z = x + iy in the region :

for all t, itl  T (m is independent of t).

PROOF. According to what precedes the statement of Lemma 2.1, in
the region

we may (see (2.7)) set fl(z, t) = Ýa(z, t) (the second inequality in (2.9)
demands t) 10 0~. If we set, in (2.9),

we see, by analytic continuation from z = x real, that atv(z, t) = 0, and we
may write v(z) instead of v(z, t) :

Let xo E be arbitrary. Consider any number q &#x3E; 0 such that

There is to, such that to) &#x3E; 17. Actually, we may find 0

such that

We apply (2.7) or, rather, its consequence, namely that

hence:
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implies

But then, in the region (2.15),

is holomorphic and, since lfl(z, nowhere vanishes. In particular,
every point in the set (2.15) has an open neighborhood in which, for some

j = 1, ..., n, + iy) is nowhere zero. Since

we see that t) can be extended as a holomorphic function to such a neigh-
borhood. Letting

proves the assertion in Lemma 2.1. Q.E.D.

REMARK 2.1. Actually + iy, t) is a C~ function of t, itl C T, valued
in the space of holomorphic functions of x -f- iy in the set (2.8).

REMARK 2.2. We have also shown that [v(z -~- iy) I&#x3E; 1 in the set (2.8)
provided that x &#x3E; 0 is small enough.

Assume, as we may, that T c 2 . Then (cf. (1.2)) :

LEMMA 2.2. I f x &#x3E; 0 is small enough, the holomorphic function
T

+ iy, s)2 ds does not vanish at any point x + iy such that
-T

PROOF. We have = a(z, s) (see (2.3)). We have (cf. (2.4) and (2.5)~ :
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On the other hand,

whence, by (2.20),

Lemma 2.2 follows from the fact that r(x) &#x3E; 0 if x E UoBJY’o. Q.E.D.

REMARK 2.3. Actually, as we see in (2.21) where we take 
that is,

we may define the square-root,

which is holomorphic in the open set (2.19).
We are now going to study a Cauchy problem

in a region

with initial condition,

where g will be eventually chosen, but in any event, is a C°° function of

(x, y, t ) in the region

holomorphic with respect to x + iy.
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Let Xo E UOEJWO be arbitrary. We denote by Es (0  s  1 ) the space
of continuous functions in the ball iz c- C-; iz - xol holomorphic
in the interior. Here xo is chosen so as to have, if z = x + iy,

where" is the number in Lemma 2.2. Such a choice is indeed possible, for
implies (z = x -E- iy ), there-

T

fore if

-T

and thus it implies whence ~y ~  xr(x) if 

We shall denote by S the (maximum) norm in Es . We solve
(2.24)-(2.26) by the standard iteration method : we set

with

We shall prove that the series (2.29) converges in .Eso provided that so is

small enough (and that the same is true of the t-derivatives of the series).
We are going to use the notation

where M &#x3E; 0 is chosen so as to have

if (cf. (2.21)).
We shall prove by induction on v = 0, 1, ... , that for suitable constants

Co , C &#x3E; 0, and all s, 
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For v = 0, (2.34) holds trivially. By Cauchy’s inequalities and (2.33), we
have f or v &#x3E; 0,

We take Then

and we take

This proves (2.34).
We note now that

hence, by (2.34) and (2.37),

Finally we take s c 2 , and

and conclude that the series (2.29) converges in Co([- T’, T’]; From

this and from the eq. (2.24) we derive easily that
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We apply what precedes to the case where g(z, t) = t)lir(z). By virtue
of Lemma 2.1 (if T c 2 ) we know that /3(z, t) is holomorphic in the set (2.19),
and depends smoothly on (z, t) c T). By Lemma 2.2 and Remark 2.3
we know that r(z) is holomorphic and nowhere zero in (2.19). We may state :

LEMMA 2.3. Suppose that x &#x3E; 0 and 0  T’ c T are small enough. Then,
in the region

the Cauchy problem

has a unique solution which is 000 with respect to (x, y, t) and holomorphic with
respect to z = x + iy. It satisfies in (2.40), for y = 0,

and if t’ is any other point in the interval ] - T’, T’[,

We recall that t) == t) I and v(x, t) = b(x, t)lib(x, t) I (see (2.10)),

PROOF. The existence has already been proved; the uniqueness is standard.
We shall prove (2.43) and (2.44).

If we apply (2.30) and the estimates (2.38) we see that

If Iz - Xo and if xo is small enough, we have

2 - Annali della Scuola Norm. Sup. di Pisa



18

whence:

But , and therefore :

By Cauchy’s inequalities:

and if xo is small enough, we derive (2.43) from (2.45).
Let us denote by t) the left-hand side in (2.43). By integration of (2.41)

with respect to t, between t’ and t, we derive:

Since, by (2.43), we have s) c we get indeed (2.44). Q.E.D.

APPENDIX TO SECTION 2

Estimates for later use.

LEMMA 2.4. To every there is a constant C,, &#x3E; 0 such that

PROOF. Let xo E be arbitrary. By the mean value theorem there
is to, such that lb(xo, to) _ r(xo) (=A 0).

For x sufficiently near xo we may write v (x) = b (x, The nu-

merator, and the square of the denominator are C°° functions in an open

neighborhood of Uo. Consequently, there is a constant C~&#x3E;0y depending
only on the derivatives of these functions (and not on xo), such that, for x
near xo,

Making x = xo in (2.47) yields (2.46) with C~ = C~(2T)’~. . Q.E.D.
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LEMMA 2.5. To every (X E 7~+ there is a constant Õa. &#x3E; 0 such that

In particular, r is unifornlly Lipschitz continuous in U 0 .
Indeed, r2 E OOO(Uo).
COROLLARY 2.1. Given any there is a constant C,,, &#x3E; 0 such that

In particular, the function equal to r(x)v(x) in UoBJ1i a and to zero in Xo is

2cni f orml y Lipschitz continuous in Uo.
In the statements below 99 stands for the solution of (2.41)-(2.42).

LEMMA 2.6. Given any a E Z’ , there is a constant &#x3E; 0 such that

PROOF. By Cauchy’s inequalities and (2.45) we have (provided that xo
is small enough):

Combining (2.46) and (2.51) yields (2.50).

COROLLARY 2.2. - da E Z’ , , there is a constant &#x3E; 0 such that

Indeed, combine Lemmas 2.5 and 2.6.

COROLLARY 2.3. Whatever f E we also have (rxgg) f E U)~

3. - Solution on the individual leaves.

In the vector field X defined in (1.7), Ch. I,

is analytic and nowhere zero (see proof of Lemma 2.1). For any xo E Uo"’Jfo
we denote by Fxo the connected integral curve of X through xo, by the



20

two-dimensional  leaf » X ] - T, T[. Writing v = (VI, ..., vn) as before, let
us denote by x(x, xo) the solution of the problem

The function r is defined in (1.2). The mapping

is a C°° mapping and, in fact, a local diffeomorphism of an open interval
J(xo) of RI onto rxo. Conversely we may regard X as a smooth function in a
sufficiently small open arc in centered at x,,, specifically the solution of

Let us recall the standard relations, valid if x, X, E v

It is perhaps worth distinguishing the various possibilities:

(I) hxo is a compact subset of This means that x(x, xo) is

periodic with respect to y; then J(xo) = RI and (3.3) is a cov-

ering map;

(II) hxo is noncompact in then (3.3) is a global diffeomorphism
of J(xo) onto 

In Case (II), J(xo) might have one finite boundary point in R’, two of
them or none. But:

LEMMA 3.1. If J(xo) has a finite boundary point xo, then as X --&#x3E;- xo, x(X, xo)
goes to the boundary of Uo (1’~’? exits from every compact subset of Uo).

PROOF. By Cor. 2.1 we know that [ for

some  + oo and all Uo. By the Picard iteration method applied
to (3.2) we obtain
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(we have tacitly exploited (3.5)). Suppose then that X(x,, x,) - xo E aJ(x,),
~ xo ~ C -~- oo ; clearly we cannot have r(xl) ~ 0. On the other hand, since

r(x) X does not vanish in zi must go to the boundary of 
whence the conclusion.

An equivalent interpretation of Lemma 3.1 is that taking X as the
parameter on an integral curve rxo of X amounts to changing the metric
along T,,, in such a way that the distance (for the new metric) from ro
to x tends to + oo whenever x tends to $0. Actually the reasons for

T

using r(x) are even subtler than this, for using instead of
T -T

r(x) = f lb (x, s) ~ 2 ds 2 would also have had the preceding implication, but
-T

would not have had the consequence, repeatedly needed (cf., e.g., (2.43) and
its proof), that

converges to zero with T.

Let then 99 be the phase-function of Lemma 2.3. We set

(We should rather write z(x, xo, t) for indeed z depends on xo). Let us also write

whence

If we take (2.41) and (3.4) into account we see that

and by (2.42), that

We consider then the mapping
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It is a 000 mapping of the « slab »

into R2. The following result provides, in a sense, another interpretation of
the local solvability condition (P) :

LEMMA 3.2. If T &#x3E; 0 is small enough, the mapping (3.12) is a homeo-

morphism of S(Xo) onto an open subset of lfg2. Its Jacobian determinant is given by

PROOF. By (3.10) we have hence and therefore

By (3.4) we have r(x) X = alax, hence

and therefore

By (3.8), = 1 -E- rxgg, whence (3.14).
In order to prove that (3.12) is a homeomorphism, it suffices to prove

that it is injective. Suppose that

that is:

By (3.4) and (2.43) we have:
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Concerning the third term in the left-hand side of (3.19) we apply (2.44) with
x = x(X’, obtaining 

- -

which, combined with (3.19) and (3.20), yields

Therefore, 1 if 01 1/T C 2 , 7 we must have:

But (by definition of and by the analyticity of b(x, t) with respect
to t) m(z, s) &#x3E; 0 in any compact subinterval of ]- T, T[, except possibly at
a finite number of points. Therefore the second equation in (3.22) implies
t = t’. Q.E.D.

We look now at the effect of the mapping (3.12) on the operator L. Since

L = (Lz) Oz + (Lz) 0;, hence, by (3.10 ),

But (cf. (3.8)-(3.16)), L~ = - hence

Consider now an arbitrary function f E If Xo E UOEJWO, by re-
striction f defines a smooth on the leaf Ex. Via the

mapping (3.3), X ~-* x (X, xo), f ~ (x, t; xo) defines a function fqq(x, t; xo) in the
slab (3.13), S(xo) = J(xo) X ]- T, T[. We observe that f ~~ E and

we list a number of properties of fqq:

(3.25) the projection of the support of fq q on the t-axis is contained in a

compact subset of ] - T, T[;

(3.27) i f J(xo) has a f inite boundary point xo, = 0 in a full neigh-
borhood of x ] - T, T[.
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Suppose now that x, is another point on the orbit hxo of xo : In view

of (3.7) we have:

Let now 0(.To) be the open subset of C which is the image of the slab

(in (3.13)) under the mapping (3.12). By Lemma 3.1 we may define a
continuous bounded function in 0(xo),

where (X, t) E S(xo) corresponds to z by the inverse homeomorphism of (3.12).
We come now to the solution, in the leaf of the equation

t

Let us set t) = t) 8) ds. The function v must be a solution of
- T

We observe that the right-hand side in (3.31) belongs to Er-flat( U) (it might
fail to have a compact support with respect to t) but also that it vanishes

wherever lb(x, t) I does. After multiplication by a cut-off function of t, we

may assume that, in (3.31), the right-hand side is equal to

We switch now to the coordinates (Re z, Im z) on the leaf By
virtue of (3.24) we must now solve

It follows at once from Cor. 2.3 that the right-hand side in (3.33) is of the
form for an obvious We shall therefore write the in-

tegral expression of a solution v of (3.33), that is, of
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In order to handle in a « uniform» manner all possible kinds of right-
hand sides periodic, almost-periodic (at one end or at both), fastly decaying
at infinity (also at one end or at both), etc., corresponding to the various
kinds of orbits (cf. Fig. 1), we shall use a special fundamental solution

Fig. 1. - Examples of orbits of the vector field X in two space dimension.

of This will be possible thanks to Property (3.25) and to the fact that
the open set 0(xo) is contained in a slab const. T. We observe

that, if h(z) is any entire function such that h(O) = 1, we have

(the Dirac measure in R2) ,

and we choose
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solving then (3.34) by

1) Convergence of the integral in (3.36 ).

We take a closer look at the open set 0(xo), image of S(xo) = J(xo) X
X ] - T, T[ under the map (X, t) ~ z = x + t). From (2.44) (where
we take t’ = 0 ) we derive

Note also that, whatever x E and t, 0 C T,

We reach easily the following conclusions:

(3.39) 0(xo) is contained in the slab Iz; 

(3.40) If J(xo) c ]xo, + oo[, 0(xo) is contained in a half-space

(3.41) If J(x.) =1~1, an open neighborhood of the real axis in the
z-plane.

Suppose that z tends to the boundary of 0 (xo) ; this means (by Lemma 3.2)
that (x, t) tends to the boundary of S(xo). If then .F’ E J)r-,att(U) and It - T,
F(x(X, t), t) will eventually be zero. If I remains  T’ T then X must
tend either to ~ oo or to a finite boundary point Xo of J(xo) . By (3.27)
we see that, also in the latter case, F(x(X, t), t) will eventually be zero.
This is not necessarily so when Xo ~ ~ oo for then xo) might very well
remain in a compact subset of But at any rate, if we denote by

the boundary of 0 (xo) in the complex plane, that is, excluding the
points at infinity, we see that

(3.42) whatever F E 5),-fl.t(U), F(z, t) vanishes in a neighborhood of aO(x,,).

We see that can then be extended as a C°° function in R2, which is bounded.
Since exp [- is integrable in every slab 11m zl  const. the convolu-
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tion at the right in (3.36) defines a C°° function in R2, which is bounded in

every horizontal slab.

2) .F’ormuta (3.36) defines a f unction on the leaf 

In the double integral at the right, in (3.36), we switch from the co-
ordinates (Re z, Im z) to (x, t). We set v = X(x, xo), X’= X(x’, xo). The

Jacobian determinant is given by (3.14) and we have .F = - (1/2i) -
. (1 + the integral under consideration can be rewritten as

where

The integration in (3.43) is performed over or, which amounts to the

same, over R2 (since (rXg)~~ vanishes identically in a neighborhood of aS(x,,)).
Let us denote by the transfer of under the homeomor-

phism (3.12); it is equal to (3.43). We must check that vqq(X, t; xo) is indeed
the image, under the map (3.3), of a function vb (x, t; xo) on the leaf 

For simplicity let us set

We have:

We apply (3.5)-(3.6):

We may also write

regarding x as fixed (or as a parameter). Since in what precedes,
we may define the following function of (x, t), x c- UoBJY’o, It C T :
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Then is the image under (3.3) of the restriction x(z, t; xo) of

V(X, t) to 
In the next section we prove that, after setting v(x, t) = 0 when 

we have v E 6r-flat( U). B~% taking then, in (3.49),

~(t) = 1 if t  T’C T, ~(t) = 0 if t &#x3E; 2(T -~- T’)], we obtain the
solution u = v + g of (3.30) in U’ = Uo X ] - T’, T’[, with the required prop-
erties ( f u defines a linear operator 0,,-,.t(Ul) - 8r-flat( U’), which can be
given an explicit integral representation; the estimates in Sect. 4 easily
imply the continuity of this operator).

4. - Smoothness and flatness of the solution.

We begin by simplifying the expression (3.49). We take X = x(x, x’)
as one of the two integration variables at the right (the other remains t’),
and regard x’ as a function of (x, x), defined as the solution of

It is convenient to let (X, t’) vary in the whole plane, although x’ is not

defined for all Z but only for those belonging to - J(x). But we have seen

(Lemma 3.1) that if J(x) 0 IEgI and if xo is a boundary point of J(x), then
as z - - zo (while x remains fixed), x’ will exit from any compact subset
of Uo, in particular from the support of g( ~ , t). And by the standard results
on ODES, as long as x’ remains away from the boundary of Uo, it is a C°~ func-
tion of (X, x) (x remains in Let us set

also

With this notation (3.49) reads
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The integration in (4.4) is performed over R2 ; (x, t) ranges over ( UOEJVO) x
T, T[.

We avail ourselves of the following facts :

(4.5) ‘LU is a C°° function of (x, x, t) in XRI x]- T, T [;

(4.6) 9X is bounded;

(4.7) the projection on the t-axis o f supp i0 is contained in a compact sub-
interval of ]- T, T[.

On the other hand, we derive from (2.4.3)

where ~, we may rewrite (2.44) as

(here and by combining (4.8) and (4.9) we see that

From all this it follows easily that v, given by (4.4), is a continuous

function of (x, t ) in [ (provided that 0 vip, in (4.10),
be C 1, which we may assume). We are now going to prove that it is a

C°° function of (x, t) in that set and, at the end, that it is r-flat.
We shall need the following:

LEMMA 4.1. To every there are constants C«.k, I X,,,.k &#x3E; 0
and an integer such that

f or all x c- Uo",Xo, XE-J(X).

PROOF. The case (x=0y k = 0 follows at once from (3.7), since
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Let us differentiate (4.1) with respect to v and to x. If we set = 
I

we obtain

where denotes a polynomial with respect to the variables with

(~==1?-"?~)? and (y ~ -~- Z C ~a ~ -E- k. We apply Cor. 2.1, ob-

taining

We shall reason by induction on lal and on k. First assume k = 0.

Then to (4.14) we may adjoin the initial conditions

Thus, if Joel = 1 (in which case 0), we obtain at once

For the right-hand side in (4.15) is zero. By induction I we
derive from (4.14)

We apply then Gronwall’s inequality and obtain

It suffices now to observe that the left-hand side in (4.14) can be rewritten
as ( and to reason by induction on k. Q.E.D.

We shall now differentiate v (given by (4.4)) with respect to (x, t).
But since

(see (3.31), (3.32)), it suffices to consider the derivatives of v with respect
to x. We have
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where a’ c a means cxl  a~ for all j = 1, ..., n. First, if 1,

where is a polynomial with respect to the derivatives of Z with

respect to x, of order fl, 0  ItX’l. Since Z = x + t) - t’ ), we

have

and, by (4.1 ),

We apply once again (2.43); if T &#x3E; 0 is small enough,

and [1- t’)] is invertible. Thus, by iteration,

and thus, after integration by parts [which is legitimate: see remark fol-

lowing (4.33)], we see that is a linear combination of terms of the form

We note that

where (I is a polynomial with respect to the derivatives 8fz’ of x’ with
respect to x of appropriate orders ~. If k &#x3E; 0,

Applying Leibniz formula in (4.25) and taking (4.26)-(4.27) into account
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shows that (4.25), hence also is a linear combination of terms of the

form

in (4.28), is a polynomial with respect to the indicated arguments.
Let us rewrite (4.28) as

Note that wp.i is a C~ function of (x, t, x, t’ ) in the region

(cf. the remarks following (4.1)). The t’-projection of supp wll.i is con-

tained in a compact subinterval of ]- T, T[. Furthermore, as inspection
of (4.28) shows, by virtue of (2.51) and (4.11), for suitable constants C~~,~, I

0 and an integer d;l,i &#x3E; 0,

By (4.2) and the results of the appendix of Sect. 2, we see immediately
that yV is r(x’)-flat. If we combine this fact with Lemma 4.1 we deduce that,
for a suitable constant .lVl,~ &#x3E; 0 (depending only on p), for any v E Z+ and
a suitable constant eff &#x3E; 0,

Combining this with (4.31) yields

In (4.33) v c Z+ is arbitrary.
The estimate (4.33) allows us to change slightly the integral representa-

tion (4.29) of Indeed, by (4.22),
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where log’ denotes suitable branches of the logarithmic function. Since 

grows at most exponentially with whereas E(Z) behaves like exp [- X2]
at infinity, we may integrate by parts, obtaining

where is a function analogous to Wjl,i (cf. (4.25) and subsequent reasoning), y
in particular satisfies an inequality similar to (4.33) :

(v E Z+ arbitrary).
For any ~f &#x3E; 0 we denote by v:;(x, t) the value of the integral at the

right in (4.34), when the integration with respect to X is restricted to the
region

If we choose M large enough, we see, by (4.10), that

in the region (4.36), whatever x E UOEJVO, It C T. Thus, there,

where E = -~-1 if r(x) c 1, E = -1 if r(x) &#x3E; 1.
Suppose first that x remains in a compact subset K of We

have, by (4.34), (4.35), (4.38),

Of course fl, j are fixed and so is lVl ~,~ . We may choose 31 so large that
the right-hand side in (4.39) will not exceed any number ~ &#x3E; 0 given in
advance. Thus, in order to study the continuity of t), It C T,
it suffices to study that of - v,,"f,) (x, t). But the latter continuity is

evident, as the integrand and the domain of integration, in the integral
expression of - t), depend continuously on (x, t), and the in-

tegrand is uniformly El with respect to X, t’.
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This proves that v is a Ceo function in In order

to complete the proof of Th. 1.2 we must prove that v is r-flat.

We suppose now that x is close to in particular that r(x)  1.

Using once more (4.35) and (4.38) we get

thus :

We shall now estimate ~.j" v~s~ . This difference is equal to the integral
at the right in (4.34) but where the integration with respect to x is restricted
to the interval

LEMMA 4.2. There is a constant C &#x3E; 0 such that, for all ~VI &#x3E; 0, i f (4.42)
holds, then

where ) and

PROOF. We have hence

Combining this with (4.42) yields (4.43). Q.E.D.
Keeping If fixed, we may find a neighborhood of such that if

x E r(x) is so small that S i. But then, from the first in-

equality (4.43), we draw

By (4.35) we see that, in the region (4.42), we have
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Reporting this in the integral at the right of (4.34), where the integration in X
is restricted to (4.42 ), we obtain
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