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INTEGRAL REPRESENTATION WITHOUT ADDITIVITY

DAVID SCHMEIDLER1

ABSTRACT. Let J be a norm-continuous functional on the space B of bounded

E-measurable real valued functions on a set S, where S is an algebra of subsets

of S. Define a set function v on £ by : v(E) equals the value of I at the indicator

function of E. For each a in B let

/0 coo
(v(a > a) - v(S)) da+ v(a > a) da.

-oo Jo

Then / = J on B if and only if I(b + c) = 1(b) + 1(c) whenever

(b(s) - b(t))(c(s) - c(t)) > 0 for all s and t in S.

1. Introduction. Let E denote a nonempty algebra of subsets of a set S,

let B(S, E), or B for short, denote the set of bounded, real valued, ^-measurable

functions on S, and let v denote a monotonie real valued function on S with v(<p) =

0. Monotonicity means here that for any E and F in E, E C F implies v(E) < v(F).

Since S is in E, it is assumed without loss of generality that v(S) = 1.

Choquet [1955] defined an integration operation with respect to the nonneces-

sarily additive set function v. Given a nonnegative valued function a in B let

(1) I(a)= i adv= [    v({s G S\a(s) > a}) da
Js Jo

where the integral on the right side is the extended Riemann integral. Choquet was

interested in capacities and he imposed several additional restrictions on E and on

v. He dealt with a sigma algebra generated by the compact subsets of a metrisable

compact topological space S, and with a strongly subadditive, and continuous at

countable monotonie unions and intersections, set function v.   These additional

conditions are omitted here.

If every subset E of 5 is identified with its indicator function E*, then the

functional / extends v from E to B+ the nonnegative functions in B. This extension

is monotonie and positively homogeneous of degree one (i.e., a > b on S implies

1(a) > 1(b) and I(Xa) = XI(a) for A > 0). Two functions a and b in B are said

to be comonotonic if (a(s) — a(t))(b(s) — b(t)) > 0 for all s and t in S. Dellacherie

[1970] proved that I (a + b) = 1(a) + 1(b) for comonotonic a and b in B+. (There

is a correctable mistake in his proof.)

In this paper we investigate the opposite direction, i.e., when a monotonie

functional, say /, which is additive on comonotonic functions, can be represented
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through an integration operation as in (1) with respect to a monotonie set function

v, defined by v(E) = I(E*) on E. Our motivation stems from the foundations

of Bayesian decision theory and subjective probability. Within this framework an

element a in B is interpreted as an uncertain payoff; a(s) is the payoff or utility to

the decision maker if the "state of nature" s in S occurs. The primitive concept is a

binary relation over B, the decision maker's preferences between uncertain payoffs.

Such a preference relation can be represented by a functional, say /, on B; i.e., a

stands in the binary relation to b iff 1(a) > 1(b). Formula (1) is interpreted as an

expectation operation with respect to not necessarily additive probabilities.

The main result is stated and proved in the next section. §3 presents a variant

of the main result useful for applications and a generalization to nonmonotonic set

functions.

2. The main result.

THEOREM. Let I:B^>R satisfying I(S*) = 1 be given. Suppose also that the

functional I satisfies

(i) Comonotonic additivity. a and b comonotonic imply I(a + b) = 1(a) + 1(b).

(Hence 1(0) = 0.)

(ii) Monotonicity. a> b on S implies 1(a) > 1(b). Then, defining v(E) = I(E*)

on E we have for all a in B

(2)

roo /•O

1(a) = /     v(a > a) da + /     (v(a > a) - 1) da.
Jo J -oo

REMARK 1. A functional on B satisfying comonotonic additivity and mono-

tonicity also satisfies homogeneity (of degree 1). For a positive rational number a,

I(aa) = al(a) is implied by comonotonic additivity. The monotonicity assumption

which is also a continuity assumption implies, in turn, the above equality for an

arbitrary nonnegative number a.

REMARK 2. The number 1 appearing in formula (2) stands for v(s) = I(S*).

It is 1 only because of our normalization, which can be done w.l.o.g. because of

homogeneity of /.

REMARK 3. The integrand in (2) can be referred to as the distribution of a

w.r.t. v. Formally we define for a in B its distribution a*: R —» R by

ü (a) - \ v(a > a) - v(S),        a<0.

If a is nonnegative then a* (a) = 0 for all negative a, and formulas (1) and (2)

coincide. If 0 is a negative lower bound of a then a* (a) = 0 for a < 9. If p is an

upper bound of a then formula (2) is equivalent to 1(a) = f[j a* (a) da. We show

now that (2) is implied by (1).

Since a and any constant function are comonotonic we have

I(a-6S*) = I(a) + I(-0S*).

On the other hand we claim that

/      (a-eS*)*(a)da= f   a*(ß)dß-6
Jo Je
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because (a - 6S*)*(a) — v(a — 6 > a) = v(a > a + 6), and denoting a + 8 = ß,

v(a >ß) = a*(ß) for ß > 0 and v(a > ß) - 1 = a*(ß) for ß < 0. So, formula (2) is

implied by formula (1).

PROOF OF THE THEOREM. As a conclusion of the remarks above it suffices

to prove formula (1) for nonnegative functions. Suppose that (1) holds for all

finite step functions and we prove it for an arbitrary nonnegative E-measurable

function a bounded by, say A. For n = 1,2,... and 1 < k < 2™ define Ek — {s G

S\X(k -1)/2" < a(s) < Afc/2"}, and define an(s) = X(k - l)/2n and bn(s) = Xk/2n
for s in Ek. So

an(s) < an+i(s) < a(s) < bn+i(s) < bn(s)

for all s and n. By monotonicity assumption I(an) < 1(a) < I(bn) and by comono-

tonic additivity, 0 < I(bn) — I(an) = A/2n —► 0 with n-*oo. By our assumption

about step functions I(an) = J0 v(an > a) da and I(bn) — f0 v(bn > a) da for all

n. Hence in order to prove that 7(a) = /0 v(a > a) da it is enough to show the

inequality below for all n:

rX fX rX

/   v(an > a) da <  /   v(a > a) da <  /    v(bn > a) da.
Jo Jo Jo

However this inequality follows from

v(an > a) < v(a > a) < v(bn > a)

which in turn follows from the monotonicity of v and the definitions of an and bn

for n = 1,2,_

PROOF FOR STEP FUNCTIONS. The proof is carried out by induction on the

number of steps different from zero. Every nonnegative step function a in B, which

is not identically zero, has a unique representation a = J2i=i aiE* f°r some k where

a\ > 6*2 > • • ■ > QA: > 0 and the sets E{, i = l,...,k, are pairwise disjoint and

nonempty. For such a step function a we have, defining a^+i = 0,

rcti k I    l

(3) /     v(a>a)da = z~2(al-ai+1)v    V-E?J° i=i V=i

The induction hypothesis is that for k < n

k (   i

(4) I(a) = y¿2(al-at+1)v¡Y,EJ

and we prove it for k — n. Note that for k = 1 it says I(aE*) — av(E) which holds

because of the homogeneity of / and the definition of the set function v.

Given a — J2i=i aiE* ■> above, a — b + c where b = J2i=i (Q¿ _ ak)E* and

c = ak(J2i=i Ei)*- By tne induction hypothesis (k - 1 < n),

fc-i / %       \      fe-i / i

!(b) = ¿Z^ai * Qfc) " (Ql+! ~ ak^v    XIEA = Z!(Qî ~ ai+^v    HEi
i=i \j=i    J    ¿=i V-?=1

and 1(c) = akVr£kj=1 E3). So, 1(b) + 1(c) = Eti(^ " «í+i>(E}=i E-). On the

other hand, since b and c are comonotonic, 7(a) = 1(b) + 1(c) and formula (4) for

k — n has been proved.    Q.E.D.
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REMARK 4. The opposite direction to the Theorem asserts that if a functional

I is defined by formula (2) with respect to some monotonie set function, then it

satisfies conditions (i) and (ii) of the Theorem. The proof of this direction is quite

easily obtained by reversing the proof of the Theorem.

More specifically: If a functional I on B(S, E) is defined by (2) for some mono-

tonic v one has to prove that it is comonotonically additive and monotonie. Mono-

tonicity of I is obvious since, a > b on S implies a* > b* on R.

Comonotonic additivity is first shown for finite step functions in B. To see this

and for future reference two immediate claims are stated without proofs.

Claim 1. Two finite step functions b and c in B(S, E) are comonotonic iff there

are an integer k, a partition of S into k pairwise disjoint elements of E, (Ei)k=1

and two fc-lists of numbers ß\ > ß% > • • • > /?* and 71 > 72 > • • ■ > Ik sucn that

Claim 2. Let (Ei)k=x be a E-measurable finite partition of S (i ^ j then ElEj =

<f>), and let a = J2i=i aiE* w'th ai > Q2 > • • ■ > Ofc. Then for any set function

v. E -> R with v((p) = 0

/oo fc /    i \

a;(a)do = ^(aî-Qt+1)t;   Y,EJ \ ■

i = l \j=l J

(The distribution of a w.r.t. v, a*, is defined in Remark 3 above and ak=\ = 0.)

Clearly if 1(a) is defined by the left side of (5) for finite step functions, then (5)

and Claim 1 imply additivity for comonotonic finite step functions. The extension

to any comonotonic functions in B is done as usual by computing appropriate limits.

REMARK 5. It is obvious that the Theorem and its converse hold if B is sub-

stituted with Bo, the set of all finite step functions in B.

REMARK 6. If I: Bo —► R satisfies comonotonic additivity and monotonicity

it has a unique extension to all of B which satisfies comonotonic additivity and

monotonicity on B.

The proof is immediate since B is the (sup) norm closure of Bo in R° (see

Dunford and Schwartz [1957, p. 240]), and monotonicity implies norm continuity.

3. Extensions. Let B(S,T,,K), B(K) for short, denote the set of functions

in B with values in K C R, and suppose that [—1,1] C K and K convex. A

corollary to the Theorem is now stated. It is applicable to the neo-Bayesian model

(Schmeidler [1984]).

COROLLARY.  Let I: B(K) -+ R be given such that

(i) for all X inK:I(XS*) = X,
(ii) if a, b and c are pairwise comonotonic, 0 < a < 1 and 1(a) > 1(b), then

I(aa + (1 - a)c) > I(ab + (1 - a)c),

(iii) if a> b on S then 1(a) > 1(b).
Then, defining v(E) = I(E*) on E, we have for all a in B(K), as in (2),

/0 /-oo
(v(a > a) - 1) da + /     v(a > a)

■00 ./o

da.

PROOF. The idea of the proof is to extend I to all of B and to show that the

conditions of the Theorem are satisfied.
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Because of (i) I is homogeneous on B(K) and, by homogeneity, it can be uniquely

extended to a homogeneous functional on B. The extension is also denoted by I.

Once again by homogeneity (and by (iii)) the extended functional I satisfies (iii),

i.e. monotonicity on all of B. Comonotonic additivity of I on B is implied by the

following Lemma and, it goes without saying, by homogeneity.

LEMMA. Given the conditions of the Corollary, let a and b in B(K) be comono-

tonic with values in [—1 + e, 1 — s] for some e > 0 and let 0 < A < 1. Then

I(Xa + (1 - A)6) = XI(a) + (1 - X)I(b).

PROOF. Denote 1(a) = a and 1(b) = ß. By a condition of the Lemma, and

by (i) and (iii) (of the Corollary), aS* and ßS* are in B(k), I(aS*) = a and

I(ßS*) = ß-
We have to prove that I(Xa+(l — X)b) = Aq + (1 — X)ß. Suppose, per absurdum,

that I(Xa + (1 — X)b) > Xa + (1 — X)ß. (The case of the other inequality is treated

similarly.)

Let 0 < S < s. Then by (i), 1(a) < I((a + 6)S*) and 1(b) < I((ß + 6)S*). Now,

Xa + (l-X)ß + 8 = I(X(a + 6)S* + (1 - X)(ß + S)S*)

> 7(Aa + (1 - X)(ß + 6)S*) > I(Xa + (1 - X)b).

The equality holds by (i) and each of the two inequalities is implied by (ii). Since

the inequality above holds for any 6 (0 < 6 < e), we get the required contradic-

tion.    Q.E.D.
REMARK 1. The Corollary holds if B(K) is replaced by B0(K), the set of

bounded, E-measurable finite step functions on S with values in K. The same is

true for the Lemma.

PROPOSITION 1. Suppose that I:Bo-^R satisfies comonotonic additivity and

positive homogeneity of degree 1. Then, defining v(E) = I(E*) on E, we have for

all a in Bo

/0 /-oo
(v(a > a) - v(S)) da +        v(a>a)da.

-co Jo

PROPOSITION 2. Suppose that P.B^R satisfies comonotonic additivity and

norm continuity.  Then (6) above holds for all a in B.

PROOFS. Remark 3 in §2 and the proof for (finite) step functions do not use

monotonicity of I or v, except to obtain homogeneity of I, which is assumed in

Proposition 1 and implied by the continuity assumed in Proposition 2. Hence

Proposition 1 holds and in order to prove Proposition 2 we have to extend it from

finite step functions to bounded functions in B. We cannot use directly the proof of

the Theorem because it heavily relies on montonicity. However, because of Remark

3 we can restrict the proof to nonnegative functions.

So, let a in B be given with values in the interval [0, A].

First it is proved that the Riemann integral fQ a* (a) da exists. Otherwise there

is an s > 0 such that for every n there is a partition of [0, A] to kn intervals

A = Ao > Ai > A2 > • ■ • > Xkn = 0 with A¿_i - Xz < 1/2™, A¿ and A¿ in ]A¿_i, A¿]
and a*(Xi) > a*(A¿) for all i such that

£V(AíXaí-i - A,) - ^a*(Aî)(Al_1)(A,_1 - A,) > s.
i i
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For every n two step functions are defined on S:an(s) = A¿ and bn(s) = A¿ for

s s.t. a(s) is in ]A¿_i,A¿] for i = l,2,...,kn. Hence an(s) — a(s) < 2/2™ and

bn(s) - a(s) < 2/2™ on S. Continuity of I implies then that I(an) —> 1(a) and

I(bn) — 1(a), that is I(an) - I(bn) -» 0.

On the other hand by Proposition 1 and by definition of an

rX

I(an) = /   v(an >a)da = Va*(A¿)(A¿_i - A¿)
Jo Y

and similarly I(bn) = J0 v(bn > a)da = 5Z¿a*(Al)(A¿_i - A¿). Thus |/(an) -

I(bn)\ > £ for all n, a contradiction.

As a conclusion we get that f0 a*(a) da exists. Furthermore, for every e > 0

there is n£ such that for all n > ne: | £V a*(AJ(A¿_i — A¿) — /0 a*(a) da\ < e, i.e.

|/(an) - /0 a*(a)da| < e. Since continuity of I implies I(an) —► /(a), /(a) =

/0V(a)da.    Q.E.D.
An additional result is needed for applications. It characterizes a subclass of

functionals on B. A monotonie real valued function v on E with v(<j>) — 0 is said

to be convex (or strongly supperadditive) if for all E and F in E: v(E) + v(F) <

v(EF) + v(E + F). The core of v is, by definition, the set {p: E -» R\p(S) = v(S),

p additive and for all E in E, p(E) > v(E)}.

PROPOSITION 3. Suppose that I: B —> R satisfies the conditions of the Theorem

and v on E is defined as in the Theorem. Then the following three conditions are

equivalent:

(i)    v is convex,

(7) (ii)    for all a in B: 1(a) — min{/adp\p G core(t;)},

(iii)    for all b and c in B: I(b + c) > 1(b) + 1(c).

PROOF. Suppose that v is convex and let a G Bo be given. Then there exists a

unique chain <f> = Eo C E\ C E-i C ■ ■ ■ C Ek = S with all the inclusions being strict

and a unique list (ai)k=x with a% > 0 for i = 1,2,..., k - 1 s.t. a = E¿=i aiE*-

Clearly, by our Theorem, 1(a) = E¿=i cíív(Eí). Let T be any finite subalgebra of

E with Ei in T for i — 1,..., k. Shapley [1965] proved that there exists an additive
real valued function p on T s.t. for all E in T, p(E) > v(E) and p(£¿) = «(•£»)

for i = 1,2,..., k. Hence, / a dp = 1(a). By the Hahn-Banach theorem p can be

extended to all of E s.t. p £ core(v). Since core(u) is compact in the weak star

topology, (i) implies (ii) for all a in B.

To prove that (ii) implies (iii) assume first that b and c are in Bo- Let p in the core

of v be such that 1(a) = / a dp where a = b+c Using (7) again we get 1(b) < J bdp

and 1(c) < Jcdp. But fa dp — fbdp + fcdp and the inequality in (iii) holds.
Using, as previously, the compactness argument we obtain the implication for all b

and c in B.

Finally (i) is a special case of (iii).    Q.E.D.

Proposition 3 can also be proved by using Choquet's results for strongly subad-

ditive v (see Dellacherie [1970]).
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