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INTEGRAL REPRESENTATIONS
FOR THE ALTERNATING GROUPS

UDO RIESE

(Communicated by Stephen D. Smith)

Abstract. We show that every complex representation of an alternating group
can be realized over the ring of integers of a “small” abelian number field.

1. Introduction

By a well-known theorem of R. Brauer every (irreducible) complex character χ
of a finite group G can be written in the g-th cyclotomic field Q(ζg) where g denotes
the exponent of G. It remains a problem as to whether this can be done integrally,
i.e. if there exists a matrix representation with entries in the ring of integers Z[ζg]
affording χ.

For solvable groups G this was shown to be true by Cliff, Ritter and Weiss [1].
In general, Clifford theory reduces the question to representations of quasi-simple
groups (stable under some automorphisms) (Knapp-Schmid [4]). So far, integral
representations for all irreducible characters of simple groups have been constructed
for the sporadic groups, some small alternating groups, some groups of Lie-type of
small order [4] and for the groups SL(2, p) over the prime field [6].

Theorem 1. Every irreducible complex representation of the alternating group An
can be realized over the ring of integers of the field

Q(
√
p∗ | p odd prime, p ≤ n),

where p∗ = (−1)
p−1

2 p for any odd prime p.

Obviously, the field given in the theorem is contained in the g-th cyclotomic field
(g = exp(An)). The proof of the theorem is based on a capitulation theorem for
ideal classes by Terada [8] which enables us to realize all characters by the same
argument. Our method also gives partial results for the covering groups Ãn of the
alternating groups but a complete answer for these groups seems to require a more
specific approach.

2. Ambiguous ideal classes

Let K/k be a cyclic Galois extension of an algebraic number field k. We denote
by τ a generator of the Galois group. An ideal class [I] in the (finite) class group
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CK of K is called ambiguous if it is fixed by τ , that is, if it is contained in the
kernel of the homomorphism

φ : CK → CK : [I] 7→ [I]1−τ .

The image of φ is the principal genus; the genus field KΓ of K/k is the class field
corresponding to the principal genus. An ideal I in an ambiguous class [I] is an
ambiguous class ideal. It is itself ambiguous if I1−τ = (1). Note that in general
not every ambiguous class can be represented by ambiguous ideals, the latter might
form a subgroup of index 2 in the group of ambigous class ideals.

Proposition 1 (Terada [8]). Every ambiguous ideal class of a cyclic Galois exten-
sion K/k becomes trivial in the genus field KΓ of K/k.

3. Lattices over Dedekind domains

Let K be an algebraic number field and let R = RK be the ring of algebraic
integers in K. Let G be a finite group and W an absolutely irreducible KG-module
affording the character χ. There exists a (torsion-free, finitely generated) RG-
lattice U in W such that W = KU ∼= K⊗R U (by taking all R-linear combinations
of the G-images of a K-basis of W ). Every RG-lattice of this type is isomorphic
to such a full RG-lattice in W . We wish to find a lattice which is R-free (not just
R-projective).

Let U be a full RG-lattice in W . As an R-module U is the direct sum of s = χ(1)
(nonzero) ideals Ji of R. By a well known theorem of Steinitz this rank s together
with the Steinitz class

[U ] = [
∏
i

Ji] =
∏
i

[Ji] ∈ CK

in the class group of the Dedekind domain R determine the R-isomorphism type of
U . The genus γ(U) of U consists, in the present situation, of all RG-lattices of the
form JU for some fractional ideal J of R. We have

[JU ] = [J ]s[U ],

and there are exactly |CK | different isomorphism types of RG-lattices in γ(U) (see
[2], (31.26)).

4. Proof of the theorem

Every irreducible (complex) character of a symmetric group Sn has trivial Schur-
index over the rationals (cf. [3], Theorem 2.1.12). Furthermore, every character of
Sn has its values in Q, thus every irreducible character of an alternating group has
trivial Schur-index over the rationals (cf. [7], Example 3). In particular, there are
integral representaions over the principal ideal ring Z for all irreducible characters
of Sn.

Lemma 1. Let χ ∈ Irr(An) be an irreducible (complex) character. Then either
Q(χ) = Q or Q(χ) = Q(

√
d) for some odd square-free integer d 6= 1 with d ≡ 1

(mod 4).

Proof. By [3], Theorem 2.5.13, either Q(χ) = Q or Q(χ) is a quadratic number
field. In fact, if Q(χ) 6= Q, then χ belongs to a self-associated partition α of n
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(with diagram [α] symmetric with respect to the main diagonal). Furthermore, for
g ∈ An either χ(g) is an integer or

χ(g) =
1
2

(ε±
√
ε
∏
i

hαii),

where ε = (−1)
n−k

2 , k being the length of the main diagonal of the diagram [α],
and where the hαii are the lengths of the main hooks of [α]. All the hook lengths
hαii are odd. Now use that χ(g) is an algebraic integer, and use that odd squares
are congruent to 1 mod 4.

Observe that in the lemma d is the (absolute) discriminant of the quadratic
number field K = Q(

√
d) and that d ≤ n!. We have a unique ∗-decomposition (see

Leopoldt [5] or Terada [8], Section 2)

d =
∏

p∗

where p∗ = (−1)
p−1

2 p and the product is taken over all (odd) prime divisors p of d
(so that p ≤ n). The field

K∗ = Q(
√
p∗| p divides d)

is the so-called genus field in the narrow sense which always contains the genus field
KΓ of K/Q with degree [K∗ : KΓ] ≤ 2. It follows from Terada’s theorem that every
ambiguous ideal class in CK becomes trivial in CK∗ .

By Clifford the restriction to An of an irreducible character of Sn remains irre-
ducible or decomposes into the sum of two conjugate irreducibles. Since all Schur
indices of the characters involved are trivial, the rational valued characters of An
are realizable over the integers (as every torsion-free, finitely generated Z-module
is free). The theorem thus is an immediate consequence of the following:

Proposition 2. Let χ be an irreducible character of An such that Q(χ) = Q(
√
d) 6=

Q where d is a (odd) square-free integer. Let R∗ be the ring of algebraic integers in

K∗ = Q(
√
p∗ | p divides d).

Then there is a R∗-free R∗An-module V affording the character χ.

Proof. We know that d ≡ 1 (mod 4) is odd (Lemma 1). Let W be an absolutely
irreducible QSn-module affording the (irreducible) character χSn . Then W , as a
QAn-module, is irreducible but not absolutely irreducible. In fact, since the Schur
index m(χ) = 1,

K = EndQAn(W )

is a quadratic number field with discriminant d = p∗1 · · · p∗t . Thus K ∼= Q(χ) ⊆ C
and we choose this isomorphism in such a way that W , regarded as an absolutely
irreducible (right) KAn-module, affords the character χ.

Let R be the integral closure of Z in K, and let U ⊆ W be a full (right) RAn-
lattice. Then

EndRAn(U) = R.

Let τ denote the element of EndQ(W ) induced by the transposition (12). Then τ
induces the non-trivial automorphism on K which we denote by τ as well.
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Both U and Uτ are (right) full RAn-lattices in the KAn-module W . Suppose
{wi}si=1 is a K-basis of W (so that s = χ(1)). Then

U =
s⊕
i=1

wiJi

for certain fractional ideals Ji of R. Now {wiτ}si=1 is also a K-basis of W , and

Uτ =
s⊕
i=1

(wiJi)τ =
s⊕
i=1

wiτJ
τ
i .

Consequently the Steinitz class [Uτ ] = [
∏
Jτi ] = [U ]τ where τ acts naturally on the

class group CK (by inversion, [U ]τ = [U ]−1).
Now put V = U + Uτ . This is again a full RAn-lattice in W and as τ2 = 1 it

is τ -invariant. Thus [V ] = [V ]τ is an ambiguous ideal class in CK . By Terada’s
theorem (Proposition 1), and since KΓ ⊆ K∗, the ideal class [V ] becomes trivial in
CK∗ , that is, it is in the kernel of the natural map CK → CK∗ . Here for convenience
we identify K = Q(

√
d). Now W ∗ = K∗ ⊗K W is an absolutely irreducible K∗An-

module affording χ, and V ∗ = R∗ ⊗R V is a full R∗An-lattice in W ∗. The Steinitz
class [V ∗] ∈ CK∗ is the image of [V ] under the natural map. Thus V ∗ is R∗-free,
as desired.
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