PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 12, Pages 3515-3518 S 0002-9939(02)06518-8 Article electronically published on May 1, 2002

INTEGRAL REPRESENTATIONS FOR THE ALTERNATING GROUPS

UDO RIESE

(Communicated by Stephen D. Smith)

ABSTRACT. We show that every complex representation of an alternating group can be realized over the ring of integers of a "small" abelian number field.

1. INTRODUCTION

By a well-known theorem of R. Brauer every (irreducible) complex character χ of a finite group G can be written in the g-th cyclotomic field $\mathbb{Q}(\zeta_g)$ where g denotes the exponent of G. It remains a problem as to whether this can be done integrally, i.e. if there exists a matrix representation with entries in the ring of integers $\mathbb{Z}[\zeta_g]$ affording χ .

For solvable groups G this was shown to be true by Cliff, Ritter and Weiss [1]. In general, Clifford theory reduces the question to representations of quasi-simple groups (stable under some automorphisms) (Knapp-Schmid [4]). So far, integral representations for all irreducible characters of simple groups have been constructed for the sporadic groups, some small alternating groups, some groups of Lie-type of small order [4] and for the groups SL(2, p) over the prime field [6].

Theorem 1. Every irreducible complex representation of the alternating group A_n can be realized over the ring of integers of the field

 $\mathbb{Q}(\sqrt{p^*} \mid p \text{ odd } prime, p \leq n),$

where $p^* = (-1)^{\frac{p-1}{2}}p$ for any odd prime p.

Obviously, the field given in the theorem is contained in the g-th cyclotomic field $(g = \exp(A_n))$. The proof of the theorem is based on a capitulation theorem for ideal classes by Terada [8] which enables us to realize all characters by the same argument. Our method also gives partial results for the covering groups \tilde{A}_n of the alternating groups but a complete answer for these groups seems to require a more specific approach.

2. Ambiguous ideal classes

Let K/k be a cyclic Galois extension of an algebraic number field k. We denote by τ a generator of the Galois group. An ideal class [I] in the (finite) class group

©2002 American Mathematical Society

Received by the editors May 3, 2001 and, in revised form, July 30, 2001.

 $^{2000\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 20C10,\ 20C30.$

 C_K of K is called ambiguous if it is fixed by τ , that is, if it is contained in the kernel of the homomorphism

$$\phi: C_K \to C_K : [I] \mapsto [I]^{1-\tau}.$$

The image of ϕ is the principal genus; the genus field K_{Γ} of K/k is the class field corresponding to the principal genus. An ideal I in an ambiguous class [I] is an ambiguous class ideal. It is itself ambiguous if $I^{1-\tau} = (1)$. Note that in general not every ambiguous class can be represented by ambiguous ideals, the latter might form a subgroup of index 2 in the group of ambiguous class ideals.

Proposition 1 (Terada [8]). Every ambiguous ideal class of a cyclic Galois extension K/k becomes trivial in the genus field K_{Γ} of K/k.

3. LATTICES OVER DEDEKIND DOMAINS

Let K be an algebraic number field and let $R = R_K$ be the ring of algebraic integers in K. Let G be a finite group and W an absolutely irreducible KG-module affording the character χ . There exists a (torsion-free, finitely generated) RGlattice U in W such that $W = KU \cong K \otimes_R U$ (by taking all R-linear combinations of the G-images of a K-basis of W). Every RG-lattice of this type is isomorphic to such a full RG-lattice in W. We wish to find a lattice which is R-free (not just R-projective).

Let U be a full RG-lattice in W. As an R-module U is the direct sum of $s = \chi(1)$ (nonzero) ideals J_i of R. By a well known theorem of Steinitz this rank s together with the Steinitz class

$$[U] = [\prod_i J_i] = \prod_i [J_i] \in C_K$$

in the class group of the Dedekind domain R determine the R-isomorphism type of U. The genus $\gamma(U)$ of U consists, in the present situation, of all RG-lattices of the form JU for some fractional ideal J of R. We have

$$[JU] = [J]^s[U],$$

and there are exactly $|C_K|$ different isomorphism types of *RG*-lattices in $\gamma(U)$ (see [2], (31.26)).

4. Proof of the theorem

Every irreducible (complex) character of a symmetric group S_n has trivial Schurindex over the rationals (cf. [3], Theorem 2.1.12). Furthermore, every character of S_n has its values in \mathbb{Q} , thus every irreducible character of an alternating group has trivial Schur-index over the rationals (cf. [7], Example 3). In particular, there are integral representations over the principal ideal ring \mathbb{Z} for all irreducible characters of S_n .

Lemma 1. Let $\chi \in Irr(A_n)$ be an irreducible (complex) character. Then either $\mathbb{Q}(\chi) = \mathbb{Q}$ or $\mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{d})$ for some odd square-free integer $d \neq 1$ with $d \equiv 1 \pmod{4}$.

Proof. By [3], Theorem 2.5.13, either $\mathbb{Q}(\chi) = \mathbb{Q}$ or $\mathbb{Q}(\chi)$ is a quadratic number field. In fact, if $\mathbb{Q}(\chi) \neq \mathbb{Q}$, then χ belongs to a self-associated partition α of n

(with diagram [α] symmetric with respect to the main diagonal). Furthermore, for $g \in A_n$ either $\chi(g)$ is an integer or

$$\chi(g) = \frac{1}{2} (\varepsilon \pm \sqrt{\varepsilon \prod_i h_{ii}^{\alpha}}),$$

where $\varepsilon = (-1)^{\frac{n-k}{2}}$, k being the length of the main diagonal of the diagram $[\alpha]$, and where the h_{ii}^{α} are the lengths of the main hooks of $[\alpha]$. All the hook lengths h_{ii}^{α} are odd. Now use that $\chi(g)$ is an algebraic integer, and use that odd squares are congruent to 1 mod 4.

Observe that in the lemma d is the (absolute) discriminant of the quadratic number field $K = \mathbb{Q}(\sqrt{d})$ and that $d \leq n!$. We have a unique *-decomposition (see Leopoldt [5] or Terada [8], Section 2)

$$d = \prod p^*$$

where $p^* = (-1)^{\frac{p-1}{2}}p$ and the product is taken over all (odd) prime divisors p of d (so that $p \leq n$). The field

$$K^* = \mathbb{Q}(\sqrt{p^*} | p \operatorname{divides} d)$$

is the so-called genus field in the narrow sense which always contains the genus field K_{Γ} of K/\mathbb{Q} with degree $[K^*:K_{\Gamma}] \leq 2$. It follows from Terada's theorem that every ambiguous ideal class in C_K becomes trivial in C_{K^*} .

By Clifford the restriction to A_n of an irreducible character of S_n remains irreducible or decomposes into the sum of two conjugate irreducibles. Since all Schur indices of the characters involved are trivial, the rational valued characters of A_n are realizable over the integers (as every torsion-free, finitely generated Z-module is free). The theorem thus is an immediate consequence of the following:

Proposition 2. Let χ be an irreducible character of A_n such that $\mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}$ where d is a (odd) square-free integer. Let R^* be the ring of algebraic integers in

$$K^* = \mathbb{Q}(\sqrt{p^*} \mid p \text{ divides } d)$$

Then there is a R^* -free R^*A_n -module V affording the character χ .

Proof. We know that $d \equiv 1 \pmod{4}$ is odd (Lemma 1). Let W be an absolutely irreducible $\mathbb{Q}S_n$ -module affording the (irreducible) character χ^{S_n} . Then W, as a $\mathbb{Q}A_n$ -module, is irreducible but not absolutely irreducible. In fact, since the Schur index $m(\chi) = 1$,

$$K = \operatorname{End}_{\mathbb{Q}A_n}(W)$$

is a quadratic number field with discriminant $d = p_1^* \cdots p_t^*$. Thus $K \cong \mathbb{Q}(\chi) \subseteq \mathbb{C}$ and we choose this isomorphism in such a way that W, regarded as an absolutely irreducible (right) KA_n -module, affords the character χ .

Let R be the integral closure of \mathbb{Z} in K, and let $U \subseteq W$ be a full (right) RA_n lattice. Then

$$\operatorname{End}_{RA_n}(U) = R.$$

Let τ denote the element of $\operatorname{End}_{\mathbb{Q}}(W)$ induced by the transposition (12). Then τ induces the non-trivial automorphism on K which we denote by τ as well.

UDO RIESE

Both U and $U\tau$ are (right) full RA_n -lattices in the KA_n -module W. Suppose $\{w_i\}_{i=1}^s$ is a K-basis of W (so that $s = \chi(1)$). Then

$$U = \bigoplus_{i=1}^{s} w_i J_i$$

for certain fractional ideals J_i of R. Now $\{w_i\tau\}_{i=1}^s$ is also a K-basis of W, and

$$U\tau = \bigoplus_{i=1}^{s} (w_i J_i)\tau = \bigoplus_{i=1}^{s} w_i \tau J_i^{\tau}.$$

Consequently the Steinitz class $[U\tau] = [\prod J_i^{\tau}] = [U]^{\tau}$ where τ acts naturally on the class group C_K (by inversion, $[U]^{\tau} = [U]^{-1}$).

Now put $V = U + U\tau$. This is again a full RA_n -lattice in W and as $\tau^2 = 1$ it is τ -invariant. Thus $[V] = [V]^{\tau}$ is an ambiguous ideal class in C_K . By Terada's theorem (Proposition 1), and since $K_{\Gamma} \subseteq K^*$, the ideal class [V] becomes trivial in C_{K^*} , that is, it is in the kernel of the natural map $C_K \to C_{K^*}$. Here for convenience we identify $K = \mathbb{Q}(\sqrt{d})$. Now $W^* = K^* \otimes_K W$ is an absolutely irreducible K^*A_n module affording χ , and $V^* = R^* \otimes_R V$ is a full R^*A_n -lattice in W^* . The Steinitz class $[V^*] \in C_{K^*}$ is the image of [V] under the natural map. Thus V^* is R^* -free, as desired.

References

- G. Cliff, J. Ritter and A. Weiss, Group representations and integrality, J. Reine Angew. Math. 426 (1992), 193-202. MR 93f:20011
- C.W. Curtis and I. Reiner, Methods of representation theory, I, Wiley, New York, 1981. MR 82i:20001; reprint MR 90k:20001
- G. James and A. Kerber, The representation theory of the symmetric groups, Addison-Wesley, London, 1981. MR 83k:20003
- W. Knapp and P. Schmid, An extension theorem for integral representations, J. Austral. Math. Soc. (Series A) 63 (1997), 1-15. MR 98m:20014
- H. Leopoldt, Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachrichten 9 (1953), 351-362. MR 15:14d
- 6. U. Riese, On integral representations for SL(2,q), J. Algebra 242 (2001), 729–739.
- U. Riese and P. Schmid, Schur indices and Schur groups, II, J. Algebra 182 (1996), 183-200. MR 97e:20009
- F. Terada, A principal ideal theorem in the genus fields, Tôhoku Math. J. 23 (1971), 697-718. MR 46:5285

UNIVERSITÄT TÜBINGEN, MATHEMATISCHES INSTITUT, AUF DER MORGENSTELLE 10, D-72076 TÜBINGEN, GERMANY

E-mail address: udo.riese@uni-tuebingen.de

3518