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Introduction. During the last decade a school of Russian mathematicians
including Krein [l, 2, 3](2), Krein and Krasnoselskiï [l], Livshitz [l], and
Neumark [l] have made contributions to the theory of moments and related
problems(3) by the methods of operators in Hubert space. Before this Carle-
man [l] had used the theory of integral equations to develop the theory
and Stone [l] had connected the theory with infinite Jacobi matrices, which
method has been elaborated by various other authors.

In this paper we make systematic use of the theory of reproducing
kernels, as developed by N. Aronszajn [l, 2], to obtain integral representa-
tions for positive definite functions. A function K(x, y), defined over a
Cartesian product set EXP, was termed by E. H. Moore a positive Hermitian
matrix if for every finite set, [ati, ■ ■ ■ , «„}, of complex numbers and points
{yu ■ ■ ■ , Jn}QE, XX/=i oijöiiK(yi, y,)ïïO. This terminology has been
shortened by N. Aronszajn [2] to positive matrix, which we shall use here.
A positive definite function shall be defined as a complex-valued function
f(x, y), with domain a set E = SXG, where 5 is a semi-group and G is a group,
such that K((xi, yi), (x2, y2)) =/(xi-x2, yi-yî1) is a positive matrix.

Here, we shall be concerned only with the case in which S is a semi-group
and G is a group in Euclidean space. Our main theorem (Theorem 5) contains
extensions, to higher dimensions, of results which have already been ob-
tained, in a different way, for the one-dimensional case and also contains
results which are new.

The readers of this paper are expected to have some acquaintance with
the papers of N. Aronszajn [l, 2] and with the general theory of Hubert
space. The notations used in this paper for the general theory of Hubert space
have been taken from the excellent book by Bêla v. Sz. Nagy [l].

1. Preliminaries. If K(x, y) is a positive matrix (p.m.), defined on
EXE, then there exists a Hubert space J, of functions defined on E, for which
K(x, y) acts as a reproducing kernel (r.k.) (i.e./(y) = (/(x), K(x, y)) for every
/£7). The space J will be called a reproducing kernel space (r.k.s.). J is the

Presented to the Society, November 24, 1950; received by the editors December 26, 1951.
(') Parts of this paper are taken from the author's Harvard dissertation. I would like to

express my appreciation to Prof. N. Aronszajn for allowing me to read his paper Theory of
reproducing kernels [2] before it was published.

(2) Numbers in brackets refer to the references at the end.
(3) For an extensive bibliography of such problems see Shohat and Tamarkin [l].
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closure of the set J' of functions of the form g(x) = T^Li a,P(x, y,), where
a,-, * = 1, •••,«, is a complex number. In the future J will always denote the
r.k.s. of the p.m. we are considering at that time and J' will always denote the
set as given above for that p.m.

Aronszajn [2] has shown that if T is a bounded linear operator defined on
J, then there exists a function M(x, y), defined over EXE, which, for every
y££, belongs to J and such that for every/£7, Tf(y) = (f(x), M(x, y)). The
function M(x, y) is given by T*K(x, y). The operator T is said to correspond
to the function M(x, y) and we shall denote this by T=M(x, y).

The following facts are given by Aronszajn [2] and may be checked
without too much difficulty:

(a) T*^M*(x,y)=M(y,x).
(b) If Ti2£Mi(x, y), T2^M2(x, y), then

TiT2^M(x, y) = Mt(e, y),M2*(z, *)).

(c) If T=M(x, y), then the symmetry of T is equivalent to the Hermitian
symmetry of M(x, y) (i.e. M(y, x) = M(x, y)).

(d) If T=M(x, y), then T is positive if and only if M (x, y) is a p.m.
We find it necessary to extend the concept of correspondence between

operators and kernels to unbounded operators. Let T denote an arbitrary
operator in J, Dt its domain, and M(x, y) £J for every y in E.

Definition 1. T is said to correspond to the kernel M(x, y), in symbol
T~M(x, y), if for every /£Dr, Tf(y) = (f(x), M(x, y)). T is said to correspond
to M(x, y) in the maximal sense, in symbol T=M(x, y), if Dt consists of all the
elements f in J such that (f(x), M(x, y)) is again an element ofy, when considered
as a function of y and for every /£Dr, Tf(y) = (f(x), M(x, y)).

Let us notice that, according to this definition, to a given kernel there
may correspond many operators. However, to any given kernel there exists
one and only one linear operator which corresponds to it in the maximal
sense. Bounded linear operators always correspond to kernels in the maximal
sense.

The question arises as to which operators correspond to kernels. To
answer this we consider an operator Pi with DrxÇ.y. An operator T2 is said
to be adjoint to Pi, in symbol Ti/\T2, if for every/£i>r1 and g£-Drs we
have (TV, g) = (/, T2g)(*).

Theorem 1. Necessary and sufficient conditions that an operator Tx cor-
responds to the kernel M(x, y) are that there exists a T2 such that Tif\T2, the
r.k. K(x, y) of y belongs to DTifor every y of E, and M(x, y) = T2K(x, y). If
T^M(x, y), a sufficient condition that T have an inverse is that the linear
manifold determined by the functions M(x, y) be dense in y. If T=.M(x, y), the
condition is also necessary.

(«) Cf. Stone [l, p. 41].
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Proof. That the conditions of the first statement are sufficient is quite
obvious. For Tif(y) = (Tif(x), K(x, y)) = (f(x), T2K(x, y)) and consequently
Ti~M(x, y) = T2K(x,y).

For the necessity, we suppose/£Z?rl and we have Tif(y) = (f(x), M(x, y))
= (Tif(x), K(x, y)). Consequently, we define a transformation T2, with Dt2
equal to the class {K(x, y)}, by the condition T2K(x, y) = M(x, y). Since
Ti/\T2 the necessity is proved.

To prove the sufficiency of the second statement we suppose Tfi=Tf2.
It follows that Tfi(y)-Tf2(y)=(fi(x)-f2(x), M(x, y))=0. Since the linear
manifold determined by the class {M(x, y)}  is dense in y we must have

/i=/2.
For the third statement, we notice that if the linear manifold determined

by the class {M(x, y)} is not dense in y, there exists a nonzero /£ y such that
(f(x), M(x, y)) =0. Since T^M(x, y)JEDT and Tf=0. This contradicts the
fact that T has an inverse.

In §4 we have occasion to consider the restriction of a r.k. K(x, y), de-
fined over a set EXE, to a set E1XE1Ç.EXE. The restriction of K(x, y) to
E1XE1 is of course a p.m. Ki(x, y) and the r.k.s. 7i which is associated with
Ki(x, y) is obtained in the following way. Let y0 be the subspace of all/£7
such that/(x) =0 for x££x. If J¿- is the orthogonal complement of y0, then to
every/£7 there exists an/0£7¿- such that the restriction of/ and/o to Ei
are the same. Consequently, define Ji as the set of functions in y restricted
to Ei with the norm of any element /i£5fi given by the norm of that element
/o in 5Ï for which the restriction of/0 to Ei is/i. The pertinent theorem here
is as follows.

Theorem A(6). If K is the reproducing kernel of the space y of functions de-
fined on the set E with norm || ||, then K restricted to the subset E1XE1QEXE
is the reproducing kernel of the class ^i of all restrictions of functions of y to the
subset Ei. For any such restriction, /i£7i, the norm \\fi\\i is the minimum of \\f\\
for all f^J whose restriction to Ei isfi.

2. Semi-bounded and real operators. In this section we wish to extend a
theorem of Aronszajn to semi-bounded operators and, for spaces which cor-
respond to real spaces(6), to unbounded operators. Following Aronszajn we
write Afi(x, y)<KM2(x, y) if M2(x, y) — Mx(x, y) is a p.m. In the following two
theorems K(x, y) is the r.k. of the r.k.s. J.

Theorem 2. Let M(x, y) be a Hermitian symmetric function (i.e. M(x, y)
= M(y, x)) defined over EXE which belongs to y when considered as a function
of x, for every y ££.

(a) // T=M(x, y), then T* and T** exist and T** = T. T* is a symmetric

(6) Aronszajn [2, p. 373].
(') These are spaces for which the r.k. is real. Cf. Aronszajn [2, p. 354].
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operator and is the closure of the restriction of T toy'; every self-adjoint operator
which corresponds to M(x, y) is an extension of T*. A necessary and sufficient
condition that T be self-adjoint is that the linear manifold determined by the class
{ M(x, y) -\-iK(x, y) ] is dense in y.

(b) A necessary and sufficient condition that there exists a self-adjoint
operator H~M(x, y) which is bounded below (above) by the finite number c is
that M(x, y)»c.K(x, y) (M(x, y)<&cK(x, y)). A necessary and sufficient condi-
tion that there exists a self-adjoint H=M(x, y) with lower bound Sï\> — »
and upper bound ^ A < + co is that

\K(x, y)«M(x, y)«AK(x, y)(7).

Proof. To prove (a) we consider the operator T=M(x, y). From the fact
that M(z,y) = (K(x, z), M(x, y)) =M(y, z) we conclude that (K(x, z), M(x, y))
is an element of y, when considered as a function of y, for every z££, and
consequently J'Ç£>r. Therefore, DT is dense in 7, which implies T* exists.

Since T=:M(x, y), it follows that T is a closed linear operator and from
the fact that Dt is dense in y, it follows that T** — T(s). Therefore,

T*~M*(x,   y) = TK(x,y) = (TK(z,   y),   K(z,   x)) = (K(z,   y),

T*K(z,   x)) = (M(z,   x),  K(z, y))=M(y, x)=M(x,   y).

This shows T*QT and consequently T* is a closed symmetric operator.
Let now T' be the restriction of T to y. We have, by Theorem 1, T'Ç.T*

ÇT1. Therefore ^ÇiTÇ^T'*, which implies T'** exists. Since T'çzT'**, we
get, by Theorem 1, T'*~M(x, y). It follows that T= T'*. If 7" is the closure
of T', then by general Hubert space theory, T' = T'**. This shows that
T' = T*. Further, if H is any self-adjoint operator such that H~M(x, y),
then HQT and consequently T*C^H.

Consider now the Cayley transform, V, of T*. The domain of F consists
of elements of the form (T*+H)g, where g£Z?r*- Since T* is the closure of
T', the domain of V is the closure of the linear manifold determined by the
set {M(x, y)+iK(x, y)}. Consequently, T* is self-adjoint if and only if the
linear manifold determined by this set is dense in y. Since T** = T, T* is self-
adjoint if and only if T is self-adjoint.

Let us now prove part (b) for the semi-bounded case. The bounded case
will follow by similar reasoning. Suppose then that H is self-adjoint, H
~M(x, y), and H^cl. Then, the self-adjoint operator Hi=H—cIis positive.
Since Hi is self-adjoint and Hi~Mi(x, y) = M(x, y) —cK(x, y), by Theorem 1,
y'QDH¡ and consequently,

(7) The case of the bounded operator has been given by Aronszajn [2, p. 373].
(8) This remark is due to the referee. It slightly simplifies the original proof. For the perti-

nent theorem see Nagy [l, p. 29].
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n n

Yl   otiäjMi(yj, y,) = X) aiâj(HiK(x, y,), K(x, y,))
i.i-l i,i=l

= (#i¿ a>K(x, y<), ¿ «,£(*, y*)) ^ 0.
\ i=l t=l /

This establishes the necessity of (b).
To prove the sufficiency of (b) suppose that g£J' is given by g(x)

= XXi o¿iK(x, y i). If T^M(x, y), then by hypothesis,
n n

(T*g, g) =   X)  aiájT*K(yi, y,-) =   X)  «,5yM(yy, y,-)
«\/=l î , J=1

n

^cE  a&sK(yj, y i) = c(g,#).
!,y=i

By part (a) we know that for any /£J9r« there exists a sequence {/„} CJ'
such that/„-»/and T*fn-*T*f. Therefore, for any/£ZV, (T* f, f)^c(f,f),
which shows that T* is bounded below by c. Since T* is closed and symmetric,
by a well known theorem of the general theory of Hilbert space, it may be
extended to a self-adjoint operator H with the same lower bound(9).

Theorem 3. Let y be a space which corresponds to a real spaced). Let
M(x, y) be a real symmetric function defined over EXE, which for every y££
belongs to J, when considered as a function of x.

(a) The same statement-as in Theorem 2(a) is true here.
(b) There exists a real self-adjoint operator H such that H~M(x, y).

Proof. The proof of part (a) is the same as in Theorem 2.
To prove (b), we notice that since y corresponds to a real space, g£7

implies |£7- Consider then T==M(x, y); T is a real operator. For sup-
pose gGDT; then Tg(y) = (g(x), M(x, y)) is an element of y and consequently

Tg(y)ey.
Further,

Tg(y) = (g(x), M(x, y)) = (g(x), M(x, y)) = Tg(y).

Since T is real T* is a real closed symmetric operator and consequently
may be extended to a real self-adjoint operator(10) H, with H~M(x, y).

3. Positive matrices represented by integrals. N. Aronszajn [2, pp. 368-
371 ] has shown that given any p.m. K(x, y), for which y is either a finite-
dimensional space or a separable Hilbert space, there always exists a resolu-
tion of the identity {.Ex}, a set of functions {fc(x, X)}, and an element

(•) Cf. Nagy [1, p. 35].
(10) Cf. Nagy [l, p. 40].
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/„£7such that/| k(x, X)| 2á(£x/o,/o) < * (») and

K(x, y) =McTY)k(y, \)d (£*/„,/0)(12).
The problem in which we are interested here is to determine the space y

associated with the p.m. given by the integral A(x, y) =fa(x, \)a(y, \)dV(X),
where f\a(x, X)|2dF(X)<°o and F(X) is a bounded monotone increasing
function which may be normed by the relations V(— °°) =0, F(X+0) = F(X).
The function F(X) gives rise to a measure and we are considering the integral
in the Lebesgue-Radon-Stieltjes sense.

Designate by J^2(V) the Hilbert space which consists of equivalence
classes of complex-valued measurable functions /(X) (with respect to the
measure generated by V) such that /|/(X)| 2dV(\) < °°. We shall designate
any equivalence class in J^2( V) by any one of its elements. An inner product
in /ji(V) is then of course given by (/, g) =Jf(\)g(\)dV(\).

Let /j) be the subspace of „£2( V) which consists of those elements <j> such
that fa(x, \)<p(\)dV(\) =0 for every x££. Let ^¿ be the orthogonal comple-
ment of £o-

Theorem 4. Let A(x, y) have an integral representation as above. Then,
the space y associated with A (x, y) is given by all functions of the form

f(x) = J a(x, \)<¡>(\)dV(\), <p £ JZ2(V).

Further,

U/H2 = min J* |0(X)|W(X),

where the minimum is taken over alltp £*£2( V) such thatf(x) =fa(x, \)<f>(K)d F(X).
Necessary and sufficient conditions that J^0 consists of the zero element only

are that there exists a resolution of the identity {E\} over y and an element /o£7
such that V(X) = (Ex/o, /o) and A(x, y) =fa(y, ~K)dE\fB(x).

Proof. Consider the space Ji given by all functions of the form f(x)
= /¿(x7Y)F(X)¿F(X), with F(\)GJZo- If g(x) =Ja^X)GÇK)dVÇK), with G(X)
£^o. define an inner product by (/, g) = fF(\)G(\)dV(\). This defines (/, g)
uniquely.

(u) Here and in what follows there will be no loss in generality if we assume that the
functions being integrated are Borel measurable and finite at every real number so that the
statements we shall make about integration with respect to a resolution of the identity have
meaning. Absence of limits of integration shall always indicate that the integral is being taken
from — » to + °°.

(u) This was also later established by the author [l] in his thesis, by a different method.
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By the very definition of the class £q it is clear that a(x, X) £=£o f°r every
x££. Therefore, A(x, y) =fa(x, \)a(y, \)dV(\) belongs toji for all y and if
feji,f(y) =Ja^cT\)F(\)dV(\) = (f(x), A(x, y)). Since J'C^Ç? and A(x, y)
acts as a r.k. for J and Ji we must have yi=y. The first part of our theorem
is now an immediate consequence of this fact.

To prove the necessity of the second part of the theorem we suppose „£0
consists only of the zero element. If g(x) =fa(x, \)G(X)dV(\), with G(X)
&G(F), define

Erg(x) = J a(x, \)GT(\)dV(X),

where

(G(\)    for    - oo g X g T,
Gr(\)   =    <

I 0       for T < X ^ oo.

It is easy to verify that {ET} is a resolution of the identity. Now, if F0(X) =1,
then since V(\) is bounded, F0(\)(E.J^2(V). Consequently, if we set /o(x)
=fa^cT\)FoC\)dV(\), then (Erf0, /.) = F(X) and A(x, y)=fa(y, X)¿Ex/o(x).

To prove the sufficiency, we suppose that F(X) = (£x/o, fo). Let 0(X) £^o
and consider the normal operator T=f<j>(\)dE\. We know that/0£X>r since
/| 0(X) 12d(E\f0, /o) < «5. Consider also the Abelian system of normal oper-
ators(13) Tx = fa(x, \)dE\. It is clear that foGDTx and further, by hy-
potheses, Tyfa(x)=A(x, y). We have then, for every x££, (Tf0, Txf0)
= fa(x,\)<t>Wd(E\fo,fo)=0. It follows that since the linear manifold de-
termined by the set {Tifo} is dense in y, Tf0 = 0. Consequently, if Xi<X2,
((£x2 —Exjr/o, fo)=fi4>(\)d(Exfo, fo)=0, where I is the half open interval
(Xi, X2]. This means that^(X) must be zero almost everywhere (with respect to
the measure generated by V(t)).

4. The main theorem. In this section we shall work with special types of
positive matrices, namely positive definite functions which we described in the
introduction. Before we state and prove our main theorem we shall say a few
words about the notations used.

We shall designate vectors in an w-dimensional Euclidean space, En(u),
by the lower case latin letters a, b, c, d and s, t, u, x, y and the components by
corresponding latin letters with superscripts (e.g. xm = (x^', x®, • • • , x^')).
The "unit" vectors uk will be those for which ut1) = bjk, where S/4 is the
Kronecker symbol. Real numbers will be designated either by the lower case
latin letters given above the superscripts (as for the components) or by lower

(ls) An Abelian system of normal operators is a set of normal operators which commute
with each other.

(u) For convenience we shall include those points which have one or more of their com-
ponents at —» or + ».
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case greek letters. The scalar or dot product of two vectors we shall designate
by xy and shall write xgy if x(i) áy(í) for /=1, ■ • ■ , n. If t is the vector
t = (/(1), • • • , tM), by t* we shall mean the product Il"=i (tw)*m.

If V(t) = V(tll), • • • , /c">) is a real-valued function with domain E„, we
shall say that V(t) is monotone increasing if for any interval /, defined by all
/ such that a<t<b, we have

n,-- -,r„~l,2

where ¿C—a^, c'£) = b<-i). The interval function i»(7) is an additive function
of an interval and consequently it defines a corresponding Lebesgue-Radon -
Stieltjes measure(15). When we write fçF(t)d V(t) we shall mean the Lebesgue-
Radon-Stieltjes integral with respect to this measure over some measurable
set Q. When we write fbaF(t)dV(t) we shall always mean that the integral is
taken over the closed interval a^t^b. We shall say that two monotone in-
creasing functions are substantially equal if they both generate the same
measure function. The spectrum of the function V(t) is the set of points
/££„ such that v(I)9*0 for every open interval I containing t.

In §2 we used the notation Mi(x, y)<KM2(x, y). In this section we shall
have occasion to use the condition aK(x, y)<£M(x, y)<£LßK(x, y). Let us
agree that if a,= — «s or /3= + <x>, then the respective inequalities aK(x, y)
<s.M(x, y) or M(x, y)<£.ßK(x, y) are always true regardless of the functions
K and M.

For the following considerations we find it convenient to consider a cer-
tain subspace of the (n + m) -dimensional unitary space with elements
w = (w(-1\ • • • , w<-n+m)), wU),j = \, • • ■ , n-\-m, a complex number. As before
the scalar or dot product of two such vectors v and w will be indicated by
v-w. We first consider the vectors x = (x(1), • • • , x(n), 0, • • • , 0) and
y = (0, ■ • • , 0, y("+1>, • • • , -y(»+»)). We shall then consider the subspace
which consists of elements of the form z = x-\-iy, i=( —1)1/2. Using the
terminology of the complex number system we shall call x the real part of
z, y the imaginary part of z, and write R(z) =x, I(z) =y, z = x — iy.

In the theorem which follows we use the following notation: a
= (a<», • • ■ , ttw, -á<»+«, ■ • • , -d<»-h»>), ¿ = (i»), • ■ • , iw, d<»+», • • • ,
d<»+»>), c = (c™, ■ •'•', cW, 0, ■ • ■ , 0), d=(0, ■ • • , 0, ¿<«+», • • ■ , d(»+«)),
i,-'(0, • • • , 0, ^n+1', • • • , srn+m)), í = (í«>, • • • , /<"+""), where ¿<»^0 and
aU) gj(j). The numbers a(i) may take on the value — », &''' and d(i) the value
+ oo, and — oo gc(,><0. The numbers m and « may take on any positive
value or 0. The vector z shall be as described above.

Theorem 5. Let f(z) be a continuous complex-valued function defined for
R(z)>c and  — co</(s)<co.  Necessary and sufficient conditions that there

(15) For a discussion of such functions see J. V. Neumann [l, pp. 160-172].
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exists a bounded monotone increasing function V(t) whose spectrum is contained
in the interval a^t^b and such that

(4.1) f(z)=  f
J a

>dV(t)

are:
(1) /(2l+22)»0.
(2) «••«*/(*i+2»)«/(*i+Si+«*)«el-*/(«i+2i)./<»' k = l,2, ■ ■ ■ ,n.
(3) There exists a sequence sr—K) such that srb)>0 if d(k)<*>, sTk) = 0 if

¿m = „_ sW¿w<7r(i6)> and,forr = \, 2, • • • , and, k=n + l, ■ ■ ■ , n+m,

f(zi + Z2 —  iSr-ttk) + f(zi + Z2 + iSrUk) » 2 COS (sT    d     )f(zi + Z2).

If there exists another bounded monotone function Vx(t) whose spectrum is
contained in the interval a^t^b and which satisfies (4.1), then Vi(t) and V(t)
are substantially equal.

The proof of this theorem will be constructed from a number of lemmas.
In the first five of the following lemmas we shall be working in the 1-dimen-
sional case.

Lemma 1. Let f(m) be a function defined on the positive integers and zero.
Necessary and sufficient conditions that there exists a bounded monotone increas-
ing function, V(t), whose spectrum is contained in the interval a^t¿b (a may
take the value (— *>),b the value (+<»)) and such that

f(m) = f  tmdV(t)
are:

(1) f(m+n)»0.
(2) a-ujf(m+n)<£f(m +« +1 )<Û>• u¡f(m+n).
If T=f(m-\-n-\-l), the transformation T* has either the deficiency index

(1, 1) or (0, 0). In case the deficiency index is (0, 0) the function V(t) is sub-
stantially unique.

Proof. The necessity of conditions (1) and (2) is quite clear.
To prove the sufficiency of these conditions we note that since f(m-\-n)

and/(m-|-w-|-l) are real, then by either Theorem 2 or Theorem 3 there exists
a self-adjoint operator H~f(m-\-n-\-\) such that a-UiI^H^buiI, where I
is the identity operator. Let {Et} be the canonical resolution of the identity
which corresponds to H. We may then write

H"S.b tmdEt

(16) Define 0- oo =0
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for any integer m.
By Theorem 1, 7'ÇII?ff. Further, since Hf(p-\-q) £J' for every q, it follows

that y'QDHm and that Hmf(p + q) =f(p + q + m). Consequently, since f(p+q)
is a r.k., we have

f(m) = (H™j(p),f(p)) =   f   t™d(Etf,f).
J a

This completes the proof of the first part of the lemma(17).
To prove the second part of the lemma we note that the deficiency spaces

of T* are given respectively by the elements g and h oí y for which Tg = ig
or Th= —ih. Since T* is real, the dimensions of the deficiency spaces must
be the same. For the case where Tg=ig we get g(m) =img(0). This shows that
the deficiency index can at most be (1,1).

Suppose now that the deficiency index of T* is (0, 0), that is, T is self-
adjoint. We wish to show that the V(t) of the lemma is substantially unique.
Suppose then that V(t) is such a function and f(m) has the representation

f(m) =  f tmdV(t).

We may further suppose, without loss of generality, that V(t) is normed by
the conditions V(t + 0) = V(t) and F(- oo) =0.

By Theorem 4 we know that J^2(V) may be written as /j¿(V) =o£0©o£¿
and that every element g of y is given by

(4.2) g(m) - f t"G(t)dV(t),

where G(í)£-0j. Consider the class O, of elements G(/)£„£0 such that
/G(/)£«(^o- By means of the integral in (4.2) this class D gives rise to a class
DHÇ^y which certainly contains the linear manifold y.

If gÇzDH is given by (4.2), define the operator H by the relation

Hg(m) = f tmtG(t)dV(t).

It is clear that HQT and that H is symmetric. Further H is closed. For
suppose there exists a sequence {gr} Ç^Dh such that gr—>g£J and Hgr con-
verges. We have

gr{m) = J t"Gr(t)dV(t), Grit) £ j¿,

(17) The proof of representation presents familiar arguments in the application of Hubert
space theory to moment problems. Cf. Krein and Krasnoselskiï [l]. We give the proof here for
completeness.
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g(m) = j t™G(t)dV(t), G(t) £ £o.

Therefore,

\\gr~g\V= j   \Gr(t)-G(t)\*dV(t)^0 as r

0     as p, q—> oo.

and

\\H(g„ - fc)||* = / I tGp(t) - tGq(t) |W(/)

Consequently, there exists a $(t) £^¿ such that

J \tGr(t) - $(t)\2dV(t)->0.

It is clear that

J | lGr(l) - #(/) [W(0 = J | tGr(t) - Ht) \2dV(t),

where R is the whole real axis minus the point t = 0. On R consider the func-
tion \p(t) =<&(t)/t. Let r;>0 and Rv be the union of the intervals [— °o, — t}]
and [t], oo ]. It follows that

„2 f  \Gr(t) - H0\2dV(t) ̂  f  \tGr(t) - *(0|W(<).

Consequently, /K,|Gr(/)-^W1W(/)-K) which implies that fRv\^(t)\ HV(t)
< oo. Further, since fRn\Gr(t) —G(t)\2dV(t)^0, we must have that \j/(t) and
G(t) differ only on a set of measure (generated by V) zero on i?,. Since 77
is arbitrary, this must also be true for R.

Define \[/(0)=G(0). With this definition ^OO&G- Now, t>p(t) = <S>(t) for
t9*0. If 7(0+0)-7(0-0)^0, $(0)=0, ^(0) is finite and therefore txp(t)
= <í>(¿) for all t. Consequently, ^(¿)£-Co- Therefore, gE.DH and Hgr-*Hg.
This proves that ii is closed. Further, since y'QDH, we must have T* = T
Ç.H which means T = H.

Let g(w) be given as in (4.2). Define

Bxg(m) = f f»G,(t)dV(t),

where Gx(i) =G(t) for - 00 gi ^X, and Gx(t) =0 for X <i g 00. It is easily
checked that the set \B\], — oo<X<oo,isa monotone increasing set of
bounded self-adjoint operators such that
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5x+o = -Bx, limx—. 5x = 0, limx_« BX = I, and (B*f,f) = F(X).

We have (Tg, h)=fhd(B\g, h), and consequently we may write, sym-
bolically, T=J\dBx. Dt = Dh is the set of all g£J such that /|X| 2d(B^g, g)
< oo. It is clear that if m is an integer, (Tmg, h) = f\md(B\g, h).

Any operator B\ commutes with T. For, if g££>r, B\Tg(m)
=ftmtG*(t)dV(t). Therefore, BxTg(m) is 5xg evaluated at the point m + l. But
since T^f(p+q+l), BxgGDT and TBxg=BxTg.

Since T is self-adjoint, there exist orthogonal subspaces "M.k, k
= 1,2, • ■ • , such that "M.k reduces T and T may be considered as JJ" XTk
where Tk is a bounded self-adjoint operator on Wtk and is the restriction of T
to %(18). Since .Bx commutes with T, Jttk reduces B\. Let B^} be the restric-
tion of Bx to %. We may then write, symbolically, Tü=J\mdBf>.

Suppose that ßk is the upper and ak the lower bound of Tk. Suppose further
that ri>vt:ßk; then since Bf—B1^ is positive and commutes with Tk, we
have

0 é (BT - Blk))(vl - Tk) = J („ - X)rf' ^ 0,

where J is the interval (v, ju]. Consequently, the only possibility is that Bf*
-B® = 0. Similarly, if v<ak, B™=0. Therefore,

C ßk    m        (k) Cß"    rn        <*)=   I     X dßl    =   I     X dEi \

where  JE*'}  is the resolution of the identity associated with Tk. If we
apply the Weierstrass approximation theorem we get B^ = £x*\ k = \,2, • •
Since B\ may be considered as JJ" XB*\ we have B\=E\, where {-Ex} is
the canonical resolution of the identity of T. Consequently V(\) =(E\f, f),
which completes the proof of the lemma.

Now, let K(x, y) —f(x-\-y) be a positive matrix defined for O^x, y < oo
and such that/(x) is continuous for x>0.

Lemma 2. There exists an analytic function F(z) defined in the half-plane
R(z)>0 which coincides with f(x) for x > 0 and such that F(z+ w)»0.

Proof. Denote by S„ the semi-groups {m/2n}m'=Q and Iet/„(»i) =f(m/2").
Since fn(m-\-q+l)^>0, by Lemma 1, there exists a bounded monotone in-
creasing function Vn(t) so that

/»(*) =/(«/2") =   fXt^ndVn(t).
Jo

The function

(") Cf. Nagy [1, pp. 48^9].
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Fn(z)   =     f     t*dVn(t)
J 0

clearly exists and is analytic for R(z)>0. Also, it coincides with/(x) on Sm
for m^n and £„(z+w)^>0. Further, if p is any integer and 0<x^p, where
x=-R(z), we have

/•   <X> S*   1 r%   CO*w»(0 è  I    /'¿7»(0 + I    tpdVn(t)
o •/ 0 •/ 0

/»CO |*   DO
¿F„(0 +  I    /'¿FB(0 =/(0)+/(#).

0 «^ 0

This implies that the sequence {Fn(z)} is uniformly bounded in this strip.
Also, for any rational number of the form p/29, Fn(p/2") converges to f (p/2").
Therefore by the Vitali theorem(19) Fn(z) converges to an analytic function
F(z) for R(z)>0. Clearly, F(z-\-w)^>0, and since F(z) coincides with/(x) on
the rational points of the form p/2", by the continuity of f(x) we must have
F(x)=f(x) for allx>0.

Lemma 3. The operators -ffx0=/(x+y+Xo) are self-adjoint for x0 —0. If
f(x) is continuous at the origin, every operator Hx¡¡ has an inverse.

Proof. Let y be the r.k.s. corresponding to/(x+y) for x, y = 0, Jo be the
r.k.s. corresponding to/(x+y) for x, y>0, and Ji the r.k.s. corresponding to
F(z+w) of the previous lemma.

Suppose Xo>0 and that there exists an element g in y which is in the
domain of HXt and such that HXog = ig, that is, g(x+x0) =ig(x) for x^O. Let
go(x) be the restriction of g(x) to the positive real axis, x>0. By Theorem A,
go£yo and also there exists an element gi in Ji such that the restriction of
gi to the positive part of the real axis is go.

Since F(z) is analytic, from the fact that y{ is dense in Ji and that strong
convergence in Ji implies uniform convergence in every set where F(z-\-z) is
bounded (see N. Aronszajn [2, p. 344(5)]), gi(z) is analytic for R(z)>0.
Therefore since gi(x+x0) =¿gi(x) for x>0, we must have gi(3+x0) =igi(z)
for all R(z) >0. Now, gi(z) is periodic of period 4x0 and consequently may be
extended analytically to the whole plane (less oo). Further, since

I gi{z) I = | (*i(«0, F(w + -z))i | á \\gi\\i(f(2R(z))yi\
gi(z) is bounded in any strip 0<Xi = i?(z) =x2< oo. By Liouville's theorem
gi(z) must be a constant, which must of course be zero. Therefore, the ele-
ment go(x) must be zero for x>0. Since g(x0) =ig(0), we must have g(0) =0.

We have consequently proved that for Xo>0 the deficiency index of H*0
is (0, 0), which means Hx<¡ is self-adjoint. Since H0 is the identity operator,

(19) See L. Bieberbach, Lehrbuch der Funktionentheorie, vol. I, Leipzig, 1934, p. 168.
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we have shown that every operator HXo is self-adjoint.
Suppose now that f(x) is continuous at the origin. Then every element of

y is continuous for x = 0(20). We shall show that the linear manifold de-
termined by the functions /(x+y+Xo) is dense in y, which by Theorem 1
will mean that HXf¡ has an inverse.

Let y be the set of all elements in J which are zero for xS:x0. The linear
manifold determined by the functions {/(x+y+xo)} is dense in the orthog-
onal complement of 7°. If Ä£J°, then from the facts that h is continuous at
the origin and is the restriction of an element of Ji for x>0, we must have
h(x)=0 for x = 0. Therefore, 7° consists only of the zero element.

Lemma 4. There exists a resolution of the identity, {Et}, defined on y, such
that(21)

f(x) =  Ct*d(Etf,f).
J o

The function V(t) = (Etf, f) is substantially unique and is continuous at the
origin if f(x) is continuous there. The operators HXo=f(x-\-y-\-Xt)) are given by

fdE,.
0

Proof. Let {Et} be the canonical resolution of the identity of the self-
adjoint operator Hi. Since Hf/2QHi and since both H\¡2 and Hi are self-
adjoint, it follows that Hl/2=Hi. Further, since/(x+y+l/2)^>0, by Theo-
rem 2, i7i/2sí0 and therefore

#i/2 =   f   I'^dEt.
Jo

Similarly, Hm/2n;=f^tm'2ndE,. Therefore,

/(«/2») = (Hm/2«f,f) =  f   t^d(Etf,f).

For x in the open interval (0, oo), by the continuity of the function on
the left and the integral on the right, we get

fix) =   Ct*d(Etf,f).
J o

Since it is clear that /(0) =fôt0d(Etf, /), we have the representation for all

(20) The relèvent general theorem is given in N. Aronszajn [l, p. 140].
(21) The integral representation for these types of functions was first given by S. Bernstein

[l], where they were called exponentially convex. Also cf. D. V. Widder [2] and [3, p. 273].
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The uniqueness of V(t) = (E(f, f) follows by an argument similar to the
uniqueness proof of Lemma 1. If f(x) is continuous at the origin, then
lim(„o £¡ = 0, which implies the continuity of V(t) at the origin.

Consider now the operators

/I 00

t*°dEt.
0

The operators Tm/2» certainly coincide with Hm/2", where m and n take on
the values 0, 1, 2, ■ ■ • . Since fy(x) =/(x-r-y)£Z?i/m/2», A£i,rXo for every
Xo^O. Therefore,

/»  00

t^d(E tfx,h).
o

If we choose a sequence of the m/2n which approach any Xo>0, we get

f(x+ y+ xo) =   f   l*>d(Etfx, fy) = (TxJx,fy).
J o

Therefore, TxJy(x) =f(x-\-y-\-x0), which means ^^/(x+y+Xo). Conse-
quently, TXoQHXf¡ and since both of these operators are self-adjoint we
must have Tx<l = HXo.

Remark. With the help of Theorem 4 and Lemma 4, we see that for any
bounded monotone increasing function V(t) such that Jo txdV(t) < oo for x^O,
the linear manifold generated by the set of functions {gx(t)} = {tx}, for ¿2:0
and x^O, is dense in J^(V).

Lemma 5. Let {Uv}, — <*> <y < <x>, be a group of unitary operators in the
sense that Ux Uy = Ux+y and U* — U-y. Further suppose ( Uyf, g) is a continuous
function of y for every fand g in the Hilbert space. Let Hy = 2~l(Uy-\- U*) and d a
finite positive real number.

Necessary and sufficient conditions that there exists a resolution of the identity
{Et} such that Et = 0 for t<—d, Et = I for t^d, and such that

*% d

Uy =  I    e'^dE,,
J -d

are that there exists a sequence of positive numbers yn\ 0 such that ynd^ir and
Hy^cos (ynd)I, n = l, 2, ■ ■ ■ .

Proof(22). To prove the necessity, suppose that { Uy} has a representation
as above. There exists an integer «0 such that n0ir>d. Choose yn = l/(«+«0).

(22) I am indebted to the referee for a suggestion which materially simplified the original
proof.
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For any such y„ we have

H«n = I    cos (yJ)dEt.
J -A

It follows immediately that Hyn^cos (ynd)I, n = l, 2, • ■
To prove the sufficiency we first note that by a well known theorem of

M. H. Stone(23) there exists a resolution of the identity {Et} such that for
every y,

■/■■
Uy =  | eil"dEt.

It follows that

Hy =  J cos (yt)dEt.

From the fact that Hyn^cos (ynd)I it follows that {Et} has no spectrum in
the intervals where cos (ynt) <cos (ynd), in particular in d <t < (27r/y„) —d and
( — 2ir/yn)-\-d<t < —d. For y„\ 0 we get that there is no spectrum outside of
-dútúd.

Let us now consider these problems over higher-dimensional spaces. Let x,
for x ^0, and h, for — oo ̂ ¿t^ oo, be generic symbols for vectors in «-dimen-
sional Euclidean space and y, for — oo <y< oo, and t2, for -» g;2g », be
generic symbols for vectors in w-dimensional Euclidean space. Further let
f(x, y) be a continuous positive definite function as defined in the introduc-
tion, i.e., ]£y_i a&jfiXj+Xi, yy-y,-)^0.

Lemma 6. There exists a bounded monotone increasing function, V(h, t2),
whose spectrum is contained in the set 0^h< oo, — oo </2< °o and such that

fix, y) =  Í        hexp (it2-y)dV(h, l2).
J E»±~En+n

The function Vih, t2) is substantially unique.

Proof. Consider the operators TUk^f(xi+x2+uk, yx — y2), k = \,2, ■ ■ ■ , n.
These operators are self-adjoint. For if Tuit is not self-adjoint there exists a
nonzero g £7 such that TUkg = ig. Since g is not zero, there exists a vector y o
and vectors x(*<*>) -ix§\ • ■ ■ , x*"1', *»>, x0t+1), • • • , x0n)), xg> fixed, 0
gx(i)< oo, such that the restriction of g(x, y) to the set (x(x(i)), y0) is not
zero. We have then g(x(x(*')-l-Mi, y0) =ig(x(x(k)), y0). But if we consider the
restriction of the elements of y to the set (x(x(k)), y0), then Lemma 3 tells
us that g cannot satisfy this relation.

(») Cf. Nagy [1, p. 69].
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Let {Ex*} be the resolution of the identity associated with TUk. Since
f(xi+x2-\-uk, yi—y2)5i>0, the spectrum of {Ex'} lies in the interval [0, oo].
Consider the operators Tx.Uk — /¿°Xx,"*¿E>f). By methods similar to those used
in Lemma 4 we may prove that Tx.Uk=f(xi-\-x2-\-x-uk, yi—yi).

Let us now prove that the operators TUj and TU]C commute. It is clear
that Tx.Uj and Tx.Uk commute on y for every x^O. We have, therefore, for
any g, hEJ',

/i oo
\   U'd(E¿ Tx.ykg,

0

•/ 0
\"Uid(E^g, Tx.Ukl

Consequently,

J o
\'Uid[iE[ñTx.Ukg, h) - (£x\ Tx.Ukh)] = 0.

Let us write

(ElJ)Tx.Ukg, h) - (E^g, Tx.Ukh) = Fi(X) - V[(\) + i[V2(\) - F2(X)1

where, e.g.,

Fi(X) = 1 [¡{E^iT^a + A)||2 + \\EÍJ\g - Tx.Ukh)\\*]4

and F/(X),  F2(X), and VI (X) have similar forms. The functions F,(X) and
VI (X), r = l, 2, are bounded monotone increasing functions.

We get

f Y'"'¿7r(X)   =     C\'""dVri\),
Jo Jo

r = 1, 2.

Since Fr(X) and V'T (X) are normed in the same way, by Lemma 4 they must
be equal and, consequently,

(ElJ)Tx.Ukg, h) = (E^g, Tx.Ukh).

From this it follows that

p      d(Ex £„  g, h) =   I ß      d(El¡  Ex   g, h).

By the same reasoning as employed before we get

(Ex  Eß  g, h) = (£„  Ex g, h).
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Since y is dense in y we have that {E^} commutes with {Eik)}.
Consider now the operators Uy.Uk=f(xi+x2, yx— y2+y-uk), for k = 1, • • • ,

m, — oo <y< oo. These are unitary operators which for fixed k form a group.
It is clear that (Uy.uJ, g) is a continuous function of y-uk for every/, g£J.
Consequently, there exists a resolution of the identity {F^} such that

f     *'»•"* JD(*}

Since the operators {rut}ï=1 commute with one another and all of the
operators { Uv.Uk}^i commute with one another and with every TUk, the
operator

n m

Ftt.ti = W.Etl.Uk II Fh.Uk
k=l k=l

is a projection and the set {£t1,i2J is a resolution of the identity. Therefore,
if we write

n m

TX=H Tx-uk,     Uy = II Uy.Uk,    and    V(h, h) = (EhttJ,f)
*=i fe=i

we have

/(*. y) = (TxUyf,f) =   f      i'exp (it2-y)dV(h, l2).
J »«+»

It remains to prove the uniqueness of V(ti, t2). We write

/exp iit2-y)t¡dViti, l2) =  I    exp iit2-y)dh I    /i¿í,F(¿i,/2).

If Fi(/i, ¿2) is another monotone function as described in Lemma 6, we may
assume without loss of generality that Fi(<i, t2) is normed in the same manner
as F(/i, t2). We have then(24)

/("" x r r °° xexp iit2-y)dh I    tidhVih, t2) =   I    exp iit2-y)dh I    /i¿tlFi(/i, fs).
•Bm J 0 J JS!m «J 0

It follows quite easily(25) that for every t2,

/I  00 /*  °°hdtlViti, t2) =  I    íá(l7i(/i, h).
o •/ o

(24) The iterations which we are performing on these multiple integrals may be easily
verified, at least for the simple functions used here, by measure-theoretic methods.

Í26) Cf., e.g., E. Hopf, Ergodentheorie, Ergibnisse der Mathematic und ihrer Grenzgebiete,
vol. 5, no. 5, 1937, Berlin, Springer, p. 11.
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We may now write
/»OO /» 00 /» 00 /»OO

I     (k-Ui)X Uldi I    tTdkV(h, t2) =   I     (¿i-Mi)1 "'¿i I    /i'áfcFi^i, t2),
Jo Jo Jo Jo

where the ¿i indicates we are integrating with respect to ¿P, the dk indicates
we are integrating with respect to the variables tf\ • • • , tf1 and Xi = x
— (x-Mi)«i. By Lemma 4 we must have

/I CO n 00tTdkVih, t2) =  j    tidkViih, t2).
0 •'0

Proceding in this way we get Vih, t2) = Fi(/i, t2). This completes the proof of
the lemma.

We are now in a position to prove the sufficiency of Theorem 5. Choose
c<Ci<0 and consider the transformation z'=z — Ci for £(z)^ci. Consider
then the function /Cl(z') =f(z);fCl(zi +z2 )5î>0 and the inequalities (2) and (3)
of Theorem 5 carry over for /«,.

By Lemma 6 we may write

fci(z') =  I        tí exp (íT2-y')¿Fc',(ri, t2),
J En+m

where V'a is a bounded monotone increasing function whose spectrum lies
in the set 0¿n< oo, — oo ̂ r2^ oo. If we make the transformation ¿i=log n,
t2—r2, we get

U(z') =  f      e>'-'dV'c[it),
J E„j-m

where / = (/i, *)-(#»', • • • , if, 4°, • • • , 4"") and V»(0 = Fc',(e", /2).
Furthermore, by virtue of the method of proof of Lemma 6, conditions (2)
and (3) of Theorem 5, Lemma 5, and Theorem 2 we have

Liz1) = j   e^'dV'^t).

Therefore, for Riz) ïîci,

fiz) =  f  e'-'dVeiit),
J a

where

VHit)=   C e-^dV/lir).
J a

Since Ci<0, Vei is a bounded monotone increasing function.
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Choose now c<c2<Ci. By the same argument as used above we get

fiz) =  f   e>-'dVc¿t),
J a

for Riz) =^c2. By Lemma 6 it follows that VCl and VCi are substantially equal.
Therefore, there exists a bounded monotone increasing function F(/) such
that for Riz) >f,

, b
e'-'dVit).*»-£

This proves the sufficiency of our main theorem.
The necessity of conditions (1) and (2) of Theorem 5 follow immediately

by simple calculations. The necessity of condition (3) follows from the unique-
ness of Vit) in (4.1), Lemma 5, and Theorem 2. This concludes the proof of
the theorem.

Let us notice now that for n =0, d= », this is the well known theorem of
Bochner [l, p. 76]. For m=0, a= — oo, and b = 0 we have new conditions for
the S. Bernstein-Hausdorff-Widder theorem on completely monotone func-
tions. For m = 0, n = l, a= — oo, and b = oo this is a result of S. Bernstein on
exponentially convex functions. Further, for m = l, n — 1, a= — °°, b— oo, as
far as the theorem goes, it gives a corrected version of an incorrect theorem
stated by M. Livshitz [l, Theorem 3].

5. Moment problems. Let us consider the vectors r = ir<-1), • • • , r(n)),
5 = (s(1), • • • , 5<m)), where rm, k = l, • ■ ■ , n, ranges over the positive integers
and zero and s(i;), k = \, ■ ■ ■ , m, ranges over the positive and negative
integers and zero. Further, let ai, bi, and h, with ai, bi finite and bi — fli^O, be
vectors in «-dimensional Euclidean space and a2, b2, t2, with a2, b2 finite and
O^b^ — a^^T, be vectors in ra-dimensional Euclidean space. With these
notations we have the following theorem.

Theorem 6. Let {jUr,»} be a sequence of numbers with r and s as defined
above. Necessary and sufficient conditions that there exists a bounded monotone
increasing function F(Zi, t2) whose spectrum vanishes outside of the interval I
given by a¡^tj^bj, j = i, 2, and such that

Hr.* =  j hexp iil2-s)dViti, t2),

are:

(1) JKri+r,,.!-«, » 0.

(2) «i ■ Wfc¿tri+r2lJl_S2 <ÍC /iri+r2+„ilSl_a2 <3C ¿>i • Ukttri+n.ti-tt

for k = 1, • • • , n.
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exp ( —2~1i(a2 + b2))rlrl+r.i,n-s2+uh + eXP (2~li(a2 + ¿O^i+r..»!-.,-«*.

(3) ^> 2 cos 2_1(62 — a2)/iri+r2,,1_»2

for k = l, • ■ • , m.
The function V(h, t2) is substantially unique.

The proof of this theorem follows the same pattern as the proof of
Theorem 5, but is much easier. For m = 0 we have the Hausdorff moment
problem. For n =0, m = \, we have a result of Achieser and Krein [l, p. 130].

For to =0 and n = 1, the usual solutions of the moment problems involving
infinite domains of integration have been obtained in Lemma 1. For the
higher-dimensional cases of these problems there is difficulty in obtaining the
solutions by these methods because of the difficulty in proving the permut-
ability of the unbounded operators which arise.
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