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1. Introduction

In this chapter we will study the robust performance control based-on integral sliding-mode
for system with nonlinearities and perturbations that consist of external disturbances and
model uncertainties of great possibility time-varying manner. Sliding-mode control is one
of robust control methodologies that deal with both linear and nonlinear systems, known for
over four decades (El-Ghezawi et al., 1983; Utkin & Shi, 1996) and being used extensively from
switching power electronics (Tan et al., 2005) to automobile industry (Hebden et al., 2003),
even satellite control (Goeree & Fasse, 2000; Liu et al., 2005). The basic idea of sliding-mode
control is to drive the sliding surface s from s �= 0 to s = 0 and stay there for all future
time, if proper sliding-mode control is established. Depending on the design of sliding
surface, however, s = 0 does not necessarily guarantee system state being the problem of
control to equilibrium. For example, sliding-mode control drives a sliding surface, where
s = Mx − Mx0, to s = 0. This then implies that the system state reaches the initial state,
that is, x = x0 for some constant matrix M and initial state, which is not equal to zero.
Considering linear sliding surface s = Mx, one of the superior advantages that sliding-mode
has is that s = 0 implies the equilibrium of system state, i.e., x = 0. Another sliding
surface design, the integral sliding surface, in particular, for this chapter, has one important
advantage that is the improvement of the problem of reaching phase, which is the initial
period of time that the system has not yet reached the sliding surface and thus is sensitive to
any uncertainties or disturbances that jeopardize the system. Integral sliding surface design
solves the problem in that the system trajectories start in the sliding surface from the first
time instant (Fridman et al., 2005; Poznyak et al., 2004). The function of integral sliding-mode
control is now to maintain the system’s motion on the integral sliding surface despite model
uncertainties and external disturbances, although the system state equilibrium has not yet
been reached.
In general, an inherent and invariant property, more importantly an advantage, that all
sliding-mode control has is the ability to completely nullify the so-called matched-type
uncertainties and nonlinearities, defined in the range space of input matrix (El-Ghezawi et al.,
1983). But, in the presence of unmatched-type nonlinearities and uncertainties, the
conventional sliding-mode control (Utkin et al., 1999) can not be formulated and thus is
unable to control the system. Therefore, the existence of unmatched-type uncertainties has
the great possibility to endanger the sliding dynamics, which identify the system motion on the
sliding surface after matched-type uncertainties are nullified. Hence, another control action
simultaneously stabilizes the sliding dynamics must be developed.
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Next, a new issue concerning the performance of integral sliding-mode control is addressed,
that is, we develop a performance measure in terms of L2-gain of zero dynamics. The
concept of zero dynamics introduced by (Lu & Spurgeon, 1997) treats the sliding surface
s as the controlled output of the system. The role of integral sliding-mode control is to
reach and maintain s = 0 while keeping the performance measure within bound. In short,
the implementation of integral sliding-mode control solves the influence of matched-type
nonlinearities and uncertainties while, in the meantime, maintaining the system on the
integral sliding surface and bounding a performance measure without reaching phase.
Simultaneously, not subsequently, another control action, i.e. robust linear control, must be
taken to compensate the unmatched-type nonlinearities, model uncertainties, and external
disturbances and drive the system state to equilibrium.
Robust linear control (Zhou et al., 1995) applied to the system with uncertainties has been
extensively studied for over three decades (Boyd et al., 1994) and reference therein. Since
part of the uncertainties have now been eliminated by the sliding-mode control, the
rest unmatched-type uncertainties and external disturbances will be best suitable for the
framework of robust linear control, in which the stability and performance are the issues to
be pursued. In this chapter the control in terms of L2-gain (van der Schaft, 1992) and H2

(Paganini, 1999) are the performance measure been discussed. It should be noted that the
integral sliding-mode control signal and robust linear control signal are combined to form a
composite control signal that maintain the system on the sliding surface while simultaneously
driving the system to its final equilibrium, i.e. the system state being zero.
This chapter is organized as follows: in section 2, a system with nonlinearities, model
uncertainties, and external disturbances represented by state-space is proposed. The
assumptions in terms of norm-bound and control problem of stability and performance issues
are introduced. In section 3, we construct the integral sliding-mode control such that the
stability of zero dynamics is reached while with the same sliding-mode control signal the
performance measure is confined within a bound. After a without reaching phase integral
sliding-mode control has been designed, in the section 4, we derive robust control scheme
of L2-gain and H2 measure. Therefore, a composite control that is comprised of integral
sliding-mode control and robust linear control to drive the system to its final equilibrium is
now completed. Next, the effectiveness of the whole design can now be verified by numerical
examples in the section 5. Lastly, the chapter will be concluded in the section 6.

2. Problem formulation

In this section the uncertain systems with nonlinearities, model uncertainties, and
disturbances and control problem to be solved are introduced.

2.1 Controlled system

Consider continuous-time uncertain systems of the form

ẋ(t) = A(t)x(t) + B(t)(u(x, t) + h(x)) +
N

∑
i=1

gi(x, t) + Bdw(t) (1)

where x(t) ∈ R
n is the state vector, u(x, t) ∈ R

m is the control action, and for some prescribed
compact set S ∈ R

p, w(t) ∈ S is the vector of (time-varying) variables that represent
exogenous inputs which includes disturbances (to be rejected) and possible references (to be
tracked). A(t) ∈ R

n×n and B(t) ∈ R
n×m are time-varying uncertain matrices. Bd ∈ R

n×p
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is a constant matrix that shows how w(t) influences the system in a particular direction. The
matched-type nonlinearities h(x) ∈ R

m is continuous in x. gi(x, t) ∈ R
n, an unmatched-type

nonlinearity, possibly time-varying, is piecewise continuous in t and continuous in x. We
assume the following:

1. A(t) = A+ ΔA(t) = A+ E0F0(t)H0, where A is a constant matrix and ΔA(t) = E0F0(t)H0

is the unmatched uncertainty in state matrix satisfying

‖F0(t)‖ ≤ 1, (2)

where F0(t) is an unknown but bounded matrix function. E0 and H0 are known constant
real matrices.

2. B(t) = B(I + ΔB(t)) and ΔB(t) = F1(t)H1. ΔB(t) represents the input matrix uncertainty.
F1(t) is an unknown but bounded matrix function with

‖F1(t)‖ ≤ 1, (3)

H1 is a known constant real matrix, where

‖H1‖ = β1 < 1, (4)

and the constant matrix B ∈ R
n×m is of full column rank, i.e.

rank(B) = m. (5)

3. The exogenous signals, w(t), are bounded by an upper bound w̄,

‖w(t)‖ ≤ w̄. (6)

4. The gi(x, t) representing the unmatched nonlinearity satisfies the condition,

‖gi(x, t)‖ ≤ θi‖x‖, ∀ t ≥ 0, i = 1, · · · , N, (7)

where θi > 0.

5. The matched nonlinearity h(x) satisfies the inequality

‖h(x)‖ ≤ η(x), (8)

where η(x) is a non-negative known vector-valued function.

Remark 1. For the simplicity of computation in the sequel a projection matrix M is such that MB = I
for rank(B) = m by the singular value decomposition:

B =
(
U1 U2

)
(

Σ

0

)

V,

where (U1 U2) and V are unitary matrices. Σ = diag(σ1, · · · , σm). Let

M = VT
(
Σ−1 0

)
(

UT
1

UT
2

)

. (9)

It is seen easily that
MB = I. (10)
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2.2 Control problem

The control action to (1) is to provide a feedback controller which processes the full
information received from the plant in order to generate a composite control signal

u(x, t) = us(t) + ur(x, t), (11)

where us(t) stands for the sliding-mode control and ur(x, t) is the linear control that
robustly stabilize the system with performance measure for all admissible nonlinearities,
model uncertainties, and external disturbances. Taking the structure of sliding-mode control
that completely nullifies matched-type nonlinearities is one of the reasons for choosing the
control as part of the composite control (11). For any control problem to have satisfactory
action, two objectives must achieve: stability and performance. In this chapter sliding-mode
controller, us(t), is designed so as to have asymptotic stability in the Lyapunov sense and the
performance measure in L2 sense satisfying

∫ T

0
‖s‖2dt ≤ ρ2

∫ T

0
‖w‖2dt, (12)

where the variable s defines the sliding surface. The mission of us(t) drives the system to
reach s = 0 and maintain there for all future time, subject to zero initial condition for some
prescribed ρ > 0. It is noted that the asymptotic stability in the Lyapunov sense is saying
that, by defining the sliding surface s, sliding-mode control is to keep the sliding surface
at the condition, where s = 0. When the system leaves the sliding surface due to external
disturbance reasons so that s �= 0, the sliding-mode control will drive the system back to
the surface again in an asymptotic manner. In particular, our design of integral sliding-mode
control will let the system on the sliding surface without reaching phase. It should be noted
that although the system been driven to the sliding surface, the unmatched-type nonlinearities
and uncertainties are still affecting the behavior of the system. During this stage another part
of control, the robust linear controller, ur(x, t), is applied to compensate the unmatched-type
nonlinearities and uncertainties that robust stability and performance measure in L2-gain
sense satisfying

∫ T

0
‖z‖2dt ≤ γ2

∫ T

0
‖w‖2dt, (13)

where the controlled variable, z, is defined to be the linear combination of the system state,
x, and the control signal, ur, such that the state of sliding dynamics will be driven to the
equilibrium state, that is, x = 0, subject to zero initial condition for some γ > 0. In addition
to the performance defined in (13), the H2 performance measure can also be applied to the
sliding dynamics such that the performance criterion is finite when evaluated the energy
response to an impulse input of random direction at w. The H2 performance measure is
defined to be

J(x0) = sup
x(0)=x0

‖z‖2
2. (14)

In this chapter we will study both performance of controlled variable, z. For the composite
control defined in (11), one must aware that the working purposes of the control signals of
us(t) and ur(x, t) are different. When applying the composite control simultaneously, it should
be aware that the control signal not only maintain the sliding surface but drive the system
toward its equilibrium. These are accomplished by having the asymptotic stability in the
sense of Lyapunov.
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3. Sliding-mode control design

The integral sliding-mode control completely eliminating the matched-type nonlinearities and
uncertainties of (1) while keeping s = 0 and satisfying L2-gain bound is designed in the
following manner.

3.1 Integral sliding-mode control

Let the switching control law be

us(t) = −α(t)
s(x, t)

‖s(x, t)‖ . (15)

The integral sliding surface inspired by (Cao & Xu, 2004) is defined to be

s(x, t) = Mx(t) + s0(x, t), (16)

where s0(x, t) is defined to be

s0(x, t) = −M

(

x0 +
∫ t

0
(Ax(τ) + Bur(τ)dτ

)

; x0 = x(0). (17)

The switching control gain α(t) being a positive scalar satisfies

α(t) ≥ 1

1 − β1
(λ + β0 + (1 + β1)η(x) + β1‖ur‖) (18)

where

β0 = κ‖ME0‖‖H0‖+ κ‖M‖
N

∑
i=1

θi + ‖MBd‖w̄. (19)

λ is chosen to be some positive constant satisfying performance measure. It is not difficult to
see from (16) and (17) that

s(x0, 0) = 0, (20)

which, in other words, from the very beginning of system operation, the controlled system is
on the sliding surface. Without reaching phase is then achieved. Next to ensure the sliding
motion on the sliding surface, a Lyapunov candidate for the system is chosen to be

Vs =
1

2
sTs. (21)

It is noted that in the sequel if the arguments of a function is intuitively understandable we will
omit them. To guarantee the sliding motion of the sliding surface, the following differentiation
of time must hold, i.e.

V̇s = sT ṡ ≤ 0. (22)

It follows from (16) and (17) that

ṡ = Mẋ + M(Ax + Bur) (23)

Substituting (1) into (23) and in view of (10), we have

ṡ = MΔA(t)x + (I + ΔB(t))(u + h(x)) + M
N

∑
i=1

gi(x, t) + MBdw − ur. (24)
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Thus the following inequality holds,

V̇s = sT

(

MΔA(t)x + (I + ΔB(t))(u + h(x)) + M
N

∑
i=1

gi(x, t) + MBdw − ur

)

≤ ‖s‖(β0 + (1 + β1)η(x) + β1‖ur‖+ (β1 − 1)α(t)).

(25)

By selecting α(t) as (18), we obtain

V̇s ≤ −‖s‖λ ≤ 0, (26)

which not only guarantees the sliding motion of (1) on the sliding surface, i.e. maintaining
s = 0, but also drives the system back to sliding surface if deviation caused by disturbances
happens. To illustrate the inequality of (25), the following norm-bounded conditions must be
quantified,

sT(MΔA(t)x) ≤ ‖s‖‖MΔA(t)x‖ = ‖s‖‖ME0F0(t)H0x‖
≤ ‖s‖‖ME0F0(t)H0‖‖x‖ ≤ ‖s‖‖ME0‖‖H0‖κ,

(27)

by the assumption (2) and by asymptotic stability in the sense of Lyapunov such that there

exists a ball, B, where B � {x(t) : maxt≥0 ‖x(t)‖ ≤ κ, for ‖x0‖ < δ}. In view of (3), (4), (68),
and the second term of parenthesis of (25), the following inequality holds,

sT(I + ΔB(t))h(x) ≤ ‖s‖‖(I + ΔB)h‖ = ‖s‖‖(I + F1(t)H1)h‖
≤ ‖s‖(1 + ‖H1‖)η(x) = ‖s‖(1 + β1)η(x).

(28)

By the similar manner, we obtain

sTΔB(t)u ≤ ‖s‖‖ΔBu‖ = ‖s‖‖F1(t)H1(us + ur)‖
≤ ‖s‖‖H1‖(‖us‖+ ‖ur‖) = ‖s‖β1(α(t) + ‖ur‖),

(29)

where ‖us‖ = ‖ − α(t) s
‖s‖‖ = α(t). As for the disturbance w, we have

sT MBdw ≤ ‖s‖‖MBdw‖ ≤ ‖s‖‖MBd‖w̄, (30)

by using the assumption of (6). Lastly,

sT M
N

∑
i

gi(x, t) ≤ ‖s‖‖M‖‖
N

∑
i=1

gi(x, t)‖ ≤ ‖s‖‖M‖
N

∑
i=1

‖gi(x, t)‖

≤ ‖s‖‖M‖
(

N

∑
i=1

θi‖x‖
)

≤ ‖s‖‖M‖
(

κ
N

∑
i=1

θi

)

,

(31)

for the unmatched nonlinearity gi(x, t) satisfies (7). Applying (27)-(31) to (22), we obtain the
inequality (25). To guarantee the sliding motion on the sliding surface right from the very
beginning of the system operation, i.e. t = 0, and to maintain s = 0 for t ≥ 0, are proved by
having the inequality (26)

V̇s =
dVs

dt
≤ −λ‖s‖ = −λ

√
Vs ≤ 0.
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This implies that
dVs√

Vs
≤ −

∫ t

0
λdt

Integrating both sides of the inequality, we have

∫ Vs(t)

Vs(0)

dVs√
Vs

= 2
√

Vs(t)− 2
√

Vs(0) ≤ −λt.

Knowing that (20) and thus Vs(0) = 0, this implies

0 ≤ 2
√

Vs(t) = 2
√

sT(x, t)s(x, t) ≤ 0. (32)

This identifies that s = 0, which implies that ṡ = 0 for t ≥ 0, from which and (24), we find

u = −(I + ΔB(t))−1

(

MΔA(t)x + (I + ΔB(t))h(x) +
N

∑
i=1

gi(x, t) + MBdw − ur

)

, (33)

where (4) guarantees the invertibility of (33) to exist. Substituting (33) into (1) and in view of
(6), we obtain the sliding dynamics

ẋ = Ax + G

(

ΔA(t)x +
N

∑
i=1

gi(x, t)

)

+ GBdw + Bur, (34)

where G = I − BM. It is seen that the matched uncertainties, ΔB(t)u and (I + ΔB(t))h(x) are
completely removed.

3.2 Performance measure of sliding-mode control

The concept of zero dynamics introduced by (Lu & Spurgeon, 1997) in sliding-mode control
treats the sliding surface s as the controlled output in the presence of disturbances,
nonlinearities and uncertainties. With regard to (1) the performance measure similar to
(van der Schaft, 1992) is formally defined:
Let ρ ≥ 0. The system (1) and zero dynamics defined in (16) is said to have L2-gain less than
or equal to ρ if

∫ T

0
‖s‖2dt ≤ ρ2

∫ T

0
‖w‖2dt, (35)

for all T ≥ 0 and all w ∈ L2(0, T). The inequality of (35) can be accomplished by appropriately
choosing the sliding variable λ that satisfies

λ ≥ 2ζ + 2ρw̄, (36)

where the parameter ζ is defined in (40). To prove this the following inequality holds,

− (ρw − s)T(ρw − s) ≤ 0. (37)

With the inequality (37) we obtain

‖s‖2 − ρ2‖w‖2 ≤ 2‖s‖2 − 2ρsTw. (38)
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It is noted that
∫ T

0
(‖s‖2 − ρ2‖w‖2)dt ≤

∫ T

0
2(‖s‖2 − ρsTw)dt

≤
∫ T

0

(

2(‖s‖2 − ρsTw) + V̇
)

dt − (V(T)− V(0))

≤
∫ T

0

(

2(‖s‖2 − ρsTw)− λ‖s‖
)

dt

≤
∫ T

0
‖s‖(2‖s‖+ 2ρw̄ − λ)dt

(39)

The above inequalities use the fact (20), (26), and (32). Thus to guarantee the inequality we
require that the λ be chosen as (36). In what follows, we need to quantify ‖s‖ such that finite
λ is obtained. To show this, it is not difficult to see, in the next section, that ur = Kx is so
as to A + BK Hurwitz, i.e. all eigenvalues of A + BK are in the left half-plane. Therefore, for
x(0) = x0

‖s‖ =

∥
∥
∥
∥

Mx − M

(

x0 +
∫ ∞

0
(Ax + Bur)dτ

)∥
∥
∥
∥

≤ ‖M‖‖x − x0‖+ ‖M‖
∥
∥
∥
∥

∫ ∞

0
(A + BK)xdτ

∥
∥
∥
∥

≤ ‖M‖(‖x‖+ ‖x0‖) + ‖M‖‖A + BK‖
∥
∥
∥
∥

∫ ∞

0
xdτ

∥
∥
∥
∥

≤ ‖M‖(κ + ‖x0‖) + ‖M‖‖A + BK‖
∥
∥
∥
∥

∫ T

0
xdτ +

∫ ∞

T
xdτ

∥
∥
∥
∥

≤ ‖M‖(κ + ‖x0‖) + ‖M‖‖A + BK‖
∥
∥
∥
∥

∫ T

0
xdτ

∥
∥
∥
∥

≤ ‖M‖ (κ + ‖x0‖) + ‖A + BK‖κT) � ζ,

(40)

where the elimination of
∫ ∞

T xdτ is due to the reason of asymptotic stability in the sense of
Lyapunov, that is, when t ≥ T the state reaches the equilibrium, i.e. x(t) → 0.

4. Robust linear control design

The foregoing section illustrates the sliding-mode control that assures asymptotic stability of
sliding surface, where s = 0 is guaranteed at the beginning of system operation. In this section
we will reformulate the sliding dynamics (34) by using linear fractional representation such
that the nonlinearities and perturbations are lumped together and are treated as uncertainties
from linear control perspective.

4.1 Linear Fractional Representation (LFR)

Applying LFR technique to the sliding dynamics (34), we have LFR representation of the
following form

ẋ = Ax + Bur + Bp p + Bww

z = Czx + Dzur

and

pi = gi(x, t), i = 0, 1, · · · , N

(41)
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where z ∈ Rnz is an additional artificial controlled variable to satisfy robust performance
measure with respect to disturbance signal, w. In order to merge the uncertainty ΔA(t)x with
nonlinearities ∑

N
i=1 gi(x, t), the variable p0 is defined to be

p0 = g0(x, t) = F0(t)H0x = F(t)q0,

where q0 = H0x. Thus, by considering (2), p0 has a norm-bounded constraint

‖p0‖ = ‖F0(t)q0‖ ≤ θ0‖q0‖, (42)

where θ0 = 1. Let pi = gi(x, t), i = 1, · · · , N and qi = x, then in view of (7)

‖pi‖ = ‖gi(x, t)‖ ≤ θi‖x‖ = θi‖qi‖, ∀ i = 1, · · · , N. (43)

Let the vector p ∈ R(N+1)n and q ∈ R(N+1)nlumping all pis be defined to be

pT =
(

pT
0 pT

1 · · · pT
N

)
, qT =

(
qT

0 qT
1 · · · qT

N

)
,

through which all the uncertainties and the unmatched nonlinearities are fed into the sliding
dynamics. The matrices, Bp, Bw, and Cq are constant matrices as follows,

Bp = G
(
E0 I · · · I

)

︸ ︷︷ ︸

(N+1) matrix

, Bw = GBd and Cq =

⎛

⎜
⎜
⎜
⎝

H0

I
...
I

⎞

⎟
⎟
⎟


.

Since full-state feedback is applied, thus

ur = Kx. (44)

The overall closed-loop system is as follows,

ẋ = Ax + Bp p + Bww

q = Cqx

z = Cx

and

pi = gi(qi, t), i = 0, 1, · · · , N,

(45)

where A = A + BK and C = Cz + DzK. This completes LFR process of the sliding dynamics.
In what follows the robust linear control with performance measure that asymptotically drive
the overall system to the equilibrium point is illustrated.

4.2 Robust performance measure

4.2.1 Robust L2-gain measure

In this section the performance measure in L2-gain sense is suggested for the robust control
design of sliding dynamics where the system state will be driven to the equilibrium. We will
be concerned with the stability and performance notion for the system (45) as follows:
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Let the constant γ > 0 be given. The closed-loop system (45) is said to have a robust L2-gain
measure γ if for any admissible norm-bounded uncertainties the following conditions hold.
(1) The closed-loop system is uniformly asymptotically stable.
(2) Subject to the assumption of zero initial condition, the controlled output z satisfies

∫ ∞

0
‖z‖2dt ≤ γ2

∫ ∞

0
‖w‖2dt. (46)

Here, we use the notion of quadratic Lyapunov function with an L2-gain measure introduced
by (Boyd et al., 1994) and (van der Schaft, 1992) for robust linear control and nonlinear control,
respectively. With this aim, the characterizations of robust performance based on quadratic
stability will be given in terms of matrix inequalities, where if LMIs can be found then the
computations by finite dimensional convex programming are efficient. Now let quadratic
Lyapunov function be

V = xTXxT , (47)

with X ≻ 0. To prove (46), we have the following process
∫ ∞

0
‖z‖2dt ≤ γ2

∫ ∞

0
‖w‖2dt

⇔
∫ ∞

0

(

zTz − γ2wTw
)

dt ≤ 0

⇔
∫ ∞

0

(

zTz − γ2wTw +
d

dt
V

)

dt − V(x(∞)) ≤ 0.

(48)

Thus, to ensure (48), zTz − γ2wTw + V̇ ≤ 0 must hold. Therefore, we need first to secure

d

dt
V(x) + zTz − γ2wTw ≤ 0, (49)

subject to the condition
‖pi‖ ≤ θi‖qi‖, i = 0, 1, · · · , N, (50)

for all vector variables satisfying (45). It suffices to secure (49) and (50) by S-procedure
(Boyd et al., 1994), where the quadratic constraints are incorporated into the cost function via
Lagrange multipliers σi, i.e. if there exists σi > 0, i = 0, 1, · · · , N such that

zTz − γ2wTw + V̇ −
N

∑
i=0

σi(‖pi‖2 − θ2
i ‖qi‖2) ≤ 0. (51)

To show that the closed-loop system (45) has a robust L2-gain measure γ, we integrate (51)
from 0 to ∞, with the initial condition x(0) = 0, and get

∫ ∞

0

(

zTz − γ2wTw + V̇ +
N

∑
i=0

σi

(

θ2
i ‖qi‖2 − ‖pi‖2

)
)

dt − V(x(∞)) ≤ 0. (52)

If (51) hold, this implies (49) and (46). Therefore, we have robust L2-gain measure γ for the
system (45). Now to secure (51), we define

Θ =

⎛

⎜
⎜
⎜
⎝

θ0 I 0 · · · 0
0 θ1 I · · · 0

0 0
. . . 0

0 0 0 θN I

⎞

⎟
⎟
⎟


, Σ =

⎛

⎜
⎜
⎜
⎝

σ0 I 0 · · · 0
0 σ1 I · · · 0

0 0
. . . 0

0 0 0 σN I

⎞

⎟
⎟
⎟


, (53)
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where the identity matrix I ∈ R
nqi

×nqi . It is noted that we require that θi > 0 and σi > 0 for all
i. Hence the inequality (51) can be translated to the following matrix inequalities

Π(X, Σ, γ) ≺ 0, (54)

where

Π(X, Σ, γ) =

⎛

⎝

Ξ XBp XBw

⋆ −Σ 0
⋆ 0 −γ2 I

⎞

 , (55)

with Ξ = ATX + XA+ CTC+CT
q ΘTΣΘCq. Then the closed-loop system is said to have robust

L2-gain measure γ from input w to output z if there exists X > 0 and Σ > 0 such that (54) is
satisfied. Without loss of generality, we will adopt only strict inequality. To prove uniformly
asymptotic stability of (45), we expand the inequality (54) by Schur complement,

ATX + XA+ CTC + CT
q ΘTΣΘCq + X(BpΣ−1BT

p + γ−2BwBT
w)X ≺ 0. (56)

Define the matrix variables

H =

( C
Σ1/2ΘCq

)

, G =
(

BpΣ−1/2 γBw

)
. (57)

Thus, the inequality (56) can be rewritten as

ATX + XA+HTH+ XGGTX ≺ 0. (58)

Manipulating (58) by adding and subtracting jωX to obtain

− (−jω I −AT)X − X(jω I −A) +HTH+ XGGTX ≺ 0. (59)

Pre-multiplying GT(−jω I−AT)−1 and post-multiplying (jω I −A)−1G to inequality (59), we
have

−GTX(jω I −A)−1G − GT(−jω I −AT)−1XG
+ GT(−jω I −AT)−1XGGTX(jω I −A)−1G
+ GT(−jω I −AT)−1HTH(jω I −A)−1G ≺ 0.

(60)

Defining a system

ẋ = Ax + Gw

z = Hx
(61)

with transfer function T(s) = H(sI −A)−1G and thus T(jω) = H(jω I −A)−1G and a matrix
variable M̄(jω) = GTX(jω I −A)−1G . The matrix inequality (60) can be rewritten as

T∗(jω)T(jω)− M̄(jω)− M̄∗(jω) + M̄∗(jω)M̄(jω) ≺ 0,

or

T∗(jω)T(jω) ≺ M̄(jω) + M̄∗(jω)− M̄∗(jω)M̄(jω)

= −(I − M̄∗(jω))(I − M̄(jω)) + I

� I, ∀ ω ∈ R.

(62)
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Hence, the maximum singular value of (62)

σmax(T(jω) < 1, ∀ ω ∈ R.

By small gain theorem, we prove that the matrix A is Hurwitz, or equivalently, the eigenvalues
of A are all in the left-half plane, and therefore the closed-loop system (45) is uniformly
asymptotically stable.
Next to the end of the robust L2-gain measure γ is to synthesize the control law, K. Since (54)
and (56) are equivalent, we multiply both sides of inequality of (56) by Y = X−1. We have

YAT +AY + YCTCY + YCT
q ΘTΣΘCqY + BpΣ−1BT

p + γ−2BwBT
w ≺ 0.

Rearranging the inequality with Schur complement and defining a matrix variable W = KY,
we have ⎛

⎜
⎜
⎝

ΩL YCT
z + WTDT

z YCT
q ΘT Bw

⋆ −I 0 0
⋆ 0 −V 0

⋆ 0 0 −γ2 I

⎞

⎟
⎟


< 0, (63)

where ΩL = YAT + AY+WTBT + BW + BpVBT
p and V = Σ−1. The matrix inequality is linear

in matrix variables Y, W, V and a scalar γ, which can be solved efficiently.

Remark 2. The matrix inequalities (63) are linear and can be transformed to optimization problem,
for instance, if L2-gain measure γ is to be minimized:

minimize γ2

subject to (63), Y ≻ 0, V ≻ 0 and W.
(64)

Remark 3. Once from (64) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 4. It is seen from (61) that with Riccati inequality (56) a linear time-invariant system is
obtained to fulfill ‖T‖∞ < 1, where A is Hurwitz.

Remark 5. In this remark, we will synthesize the overall control law consisting of us(t) and ur(t)
that perform control tasks. The overall control law as shown in (22) and in view of (15) and (44),

u(t) = us(t) + ur(x, t) = −α(t)
s(x, t)

‖s(x, t)‖ + Kx(t) (65)

where α(t) > 0 satisfies (18), integral sliding surface, s(x, t), is defined in (16) and gain K is found
using optimization technique shown in (64).

4.2.2 Robust H2 measure

In this section we will study the H2 measure for the system performance of (45). The
robust stability of which in the presence of norm-bounded uncertainty has been extensively
studied Boyd et al. (1994) and reference therein. For self-contained purpose, we will
demonstrate robust stability by using quadratic Lyapunov function (47) subject to (45) with
the norm-bounded constraints satisfying (7) and (42). To guarantee the asymptotic stability
with respect to (47) (or called storage function from dissipation perspective), we consider the a
quadratic supply function

∫ ∞

0
(wTw − zTz)dt, (66)
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and incorporate the quadratic norm-bounded constraints via Lagrange multipliers σi through
S-procedure, it is then said that the system is dissipative if, and only if

V̇ +
N

∑
i=0

σi(θ
2
i ‖qi‖2 − ‖pi‖2) ≤ wTw − zTz. (67)

It is worth noting that the use of dissipation theory for (47), (69), and (67) is for the
quantification of H2 performance measure in the sequel. It is also shown easily by plugging
(45) into (67) that if there exist X ≻ 0, Σ ≻ 0, then (67) implies

⎛

⎝

ΩH XBp XBw

(XBp)T −Σ 0
(XBw)T 0 −I

⎞

 ≺ 0, (68)

where ΩH = AT X + XA + CTC + CT
q ΘTΣΘCq and Θ and Σ are defined exactly the same

as (53). Then the system is robustly asymptotically stabilized with the norm-bounded
uncertainty if (68) is satisfied. This is shown by the fact, Schur complement, that (68) is
equivalent to

ΩH ≺ 0 (69)

ΩH +
(
XBp XBw

)
(

Σ 0
0 I

)(
BT

p X

BT
wX

)

≺ 0 (70)

If (69) and (70) are both true, then ATX + XA ≺ 0. This implies that A is Hurwitz. In addition
to robust stability, the robust performance of the closed-loop uncertain system (45) on the
sliding surface that fulfils the H2 performance requirement is suggested for the overall robust
design in this section. We will show that the H2 performance measure will also guarantee
using the inequality (68).
Given that the A is stable, the closed-loop map Tzw(gi(qi, t)) from w to z is bounded for all
nonlinearities and uncertainties gi(qi, t); we wish to impose an H2 performance specification
on this map. Consider first the nominal map Tzw0 = Tzw(0), this norm is given by

‖Tzw0‖2
2 =

1

2π

∫ ∞

−∞
trace(Tzw0(jω)∗Tzw0(jω))dω (71)

This criterion is classically interpreted as a measure of transient response to an impulse
applied to w(t) and it gives the bound of output energy of z. The approach of H2 performance
criterion as the evaluation of the energy response to an impulse input of random direction at
w(t) is

‖Tzw(Δ)‖2
2,imp � Ew0 (‖z‖2

2), (72)

where z(t) = Tzw(gi(qi, t))w0δ(t), and w0 satisfies random vector of covariance E(w0w′
0) = I.

The above definition of H2 performance can also be equivalently interpreted by letting the
initial condition x(0) = Bww0 and w(t) = 0 in the system, which subsequently responds
autonomously. Although this definition is applied to the case where gi(x, t) is LTI and
standard notion of (71), we can also apply it to a more general perturbation structure,
nonlinear or time-varying uncertainties. Now to evaluate the energy bound of (72), consider
first the index J(x0) defined to be

J(x0) = sup
x(0)=x0

‖z‖2 (73)
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The next step is to bound J(x0) by an application of so-called S-procedure where quadratic
constraints are incorporated into the cost function (73) via Lagrange Multipliers σi. This leads
to

J(x0) ≤ inf
σi>0

sup
x0

(

‖z‖2 +
i=1

∑
i=0

σi(θ
2
i ‖qi‖2 − ‖pi‖2

)

(74)

To compute the right hand side of (74), we find that for fixed σi we have an optimization
problem,

sup
x(0)=x0,(45)

∫ ∞

0

(

zTz + qTΘTΣΘq − pTΣp
)

dt. (75)

To compute the optimal bound of (75) for some Σ ≻ 0 satisfying (68), the problem (75) can be
rewritten as

J(x0) ≤
∫ ∞

0

(

zTz + qTΘTΣΘq − pTΣp +
d

dt
V(x)

)

dt + V(x0), (76)

for x(∞) = 0. When (68) is satisfied, then it is equivalent to

(
xT pT wT

)

⎛

⎝

Ω XBp XBw

(XBp)T −Σ 0

(XBw)T 0 −I

⎞



⎛

⎝

x
p
w

⎞

 < 0, (77)

or,

(
xT pT wT

)

⎛

⎝

Ω XBp XBw

(XBp)T −Σ 0

(XBw)T 0 0

⎞



⎛

⎝

x
p
w

⎞

 < wTw. (78)

With (78), we find that the problem of performance J(x0) of (76) is

J(x0) ≤
∫ ∞

0
wTwdt + V(x0). (79)

It is noted that the matrix inequality (68) is jointly affine in Σ and X. Thus, we have the index

J(x0) ≤ inf
X≻0,Σ≻0,(77)

xT
0 Xx0, (80)

for the alternative definition of robust H2 performance measure of (71), where w(t) = 0
and x0 = Bww0. Now the final step to evaluate the infimum of (80) is to average over each
impulsive direction, we have

sup
gi(qi,t)

Ew0‖z‖2
2 ≤ Ew0 J(x0) ≤ inf

X
Ew0(x

T
0 Xx0) = inf

X
Tr(BT

wXBw).

Thus the robust performance design specification is that

Tr(BT
wXBw) ≤ ϑ2 (81)

for some ϑ > 0 subject to (77). In summary, the overall robust H2 performance control
problem is the following convex optimization problem:

minimize ϑ2

subject to (81), (68), X ≻ 0, Σ ≻ 0.
(82)
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Next to the end of the robust H2 measure is to synthesize the control law, K. Since (68) and
(70) are equivalent, we multiply both sides of inequality of (70) by Y = X−1. We have

YAT +AY + YCTCY + YCT
q ΘTΣΘCqY + BpΣ−1BT

p + BwBT
w ≺ 0.

Rearranging the inequality with Schur complement and defining a matrix variable W = KY,
we have ⎛

⎜
⎜
⎝

Ω YCT
z + WTDT

z YCT
q ΘT Bw

⋆ −I 0 0
⋆ 0 −V 0
⋆ 0 0 −I

⎞

⎟
⎟


< 0, (83)

where Ω = YAT + AY + WTBT + BW + BpVBT
p and V = Σ−1. The matrix inequality is linear

in matrix variables Y, W, and V, which can be solved efficiently.

Remark 6. The trace of (81) is to put in a convenient form by introducing the auxiliary matrix U as

U ≻ BT
wXBw

or, equivalently,
(

U BT
w

Bw X−1

)

=

(
U BT

w
Bw Y

)

≻ 0. (84)

Remark 7. The matrix inequalities (83) are linear and can be transformed to optimization problem,
for instance, if robust H2 measure is to be minimized:

minimize ϑ2

subject to (83), (84), Tr(U) ≤ ϑ2, Y ≻ 0, V ≻ 0 and W.
(85)

Remark 8. Once from (85) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 9. To perform the robustH2 measure control, the overall composite control of form (65) should
be established, where the continuous control gain K is found by using optimization technique shown in
(85).

5. Numerical example

A numerical example to verify the integral sliding-mode-based control with L2-gain measure
and H2 performance establishes the solid effectiveness of the whole chapter. Consider the
system of states, x1 and x2, with nonlinear functions and matrices:

A(t) =

(
0 1
−1 2

)

+

(
1.4
−2.3

)

0.8 sin(ω0t)
(
−0.1 0.3

)
, B(t) =

(
0
1

)

(1 + 0.7 sin(ω1t)) (86)

Bd =

(
0.04
0.5

)

, g1(x, t) = x1, g2(x, t) = x2, and g1(x, t) + g2(x, t) ≤ 1.01(‖x1‖+ ‖x2‖) (87)

h(x) = 2.1(x2
1 + x2

2) ≤ η(x) = 2.11(x2
1 + x2

2), and w(t) = ε(t − 1) + ε(t − 3), (88)
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where the necessary parameter matrices and functions can be easily obtained by comparison
(86), (87), and (88) with assumption 1 through 5, thus we have

A =

(
0 1
−1 2

)

, E0 =

(
1.4
−2.3

)

, H0 =
(
−0.1 0.03

)
, B =

(
0
1

)

, H1 = 0.7, θ1 = θ2 = 1.01.

It should be noted that ε(t − t1) denotes the pulse centered at time t1 with pulse width 1 sec
and strength 1. So, it is easy to conclude that w̄ = 1. We now develop the integral sliding-mode
such that the system will be driven to the designated sliding surface s(x, t) shown in (16).
Consider the initial states, x1(0) = −0.3 and x2(0) = 1.21, thus, the ball, B, is confined within
κ = 1.2466. The matrix M such that MB = I is M = (0 1), hence, ‖M‖ = 1, ‖ME0‖ = 2.3,
and ‖MBd‖ = 0.5. To compute switching control gain α(t) of sliding-mode control in (18), we
need (19), which β0 = 5.8853. We then have

α(t) =
1

0.3
(5.8853 + λ + 3.587(x2

1 + x2
2) + 0.7‖ur‖), (89)

where λ is chosen to be any positive number and ur = Kx is the linear control law to achieve
performance measure. It is noted that in (89) the factor 1

0.3 will now be replace by a control
factor, α1, which the approaching speed of sliding surface can be adjusted. Therefore, the (89)
is now

α(t) = α1(5.8853 + λ + 3.587(x2
1 + x2

2) + 0.7‖ur‖). (90)

It is seen later that the values of α1 is related to how fast the system approaches the sliding
surface, s = 0 for a fixed number of λ = 0.
To find the linear control gain, K, for performance L2-gain measure, we follow the
computation algorithm outlined in (64) and the parametric matrices of (41) are as follows,

G = I − BM =

(
1 0
0 0

)

, Bw = GBd =

(
0.04

0

)

, Bp = G(E0 I I) =

(
1.4 1 0 1 0
0 0 0 0 0

)

Cq =

⎛

⎜
⎜
⎜
⎜
⎝

−0.1 0.03
1 0
0 1
1 0
0 1

⎞

⎟
⎟
⎟
⎟


, Cz =

(
1 0
0 1

)

, Dz =

(
1
1

)

.

The simulated results of closed-loop system for integral sliding-mode with L2-gain measure
are shown in Fig.1, Fig.2, and Fig.3 under the adjust factor α1 = 0.022 in (90). The linear
control gain K = [−18.1714 − 10.7033], which makes the eigenvalues of (A + BK) being
−4.3517 ± 0.4841j. It is seen in Fig.1(b) that the sliding surface starting from s = 0 at t = 0,
which matches the sliding surface design. Once the system started, the values of s deviate
rapidly from the sliding surface due to the integral part within it. Nevertheless, the feedback
control signals soon drive the trajectories of s approaching s = 0 and at time about t = 2.63 the
values of s hit the sliding surface, s = 0. After that, to maintain the sliding surface the sliding
control us starts chattering in view of Fig.2(b). When looking at the Fig.2(a) and (b), we see
that the sliding-mode control, us, dominates the feedback control action that the system is
pulling to the sliding surface. We also note that although the system is pulling to the sliding
surface, the states x2 has not yet reached its equilibrium, which can be seen from Fig.1(a). Not
until the sliding surface reaches, do the states asymptotically drive to their equilibrium. Fig.3
is the phase plot of states of x1 and x2 and depicts the same phenomenon. To show different
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Fig. 1. Integral sliding-mode-based robust control with L2-gain measure (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.022.
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Fig. 2. The control signals of (a) linear robust control, ur, (b) integral sliding-mode control, us

of integral sliding-mode-based robust control with L2-gain measure. α1 = 0.022.

approaching speed due to control factor α1 = 0.5, we see chattering phenomenon in the Fig.4,
Fig.5, and Fig.6. This is because of inherent property of sliding-mode control. We will draw
the same conclusions as for the case α1 = 0.022 with one extra comment that is we see the
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Fig. 3. The phase plot of state x1 and x2 of integral sliding-mode-based robust control with
L2-gain measure. α1 = 0.022.

trajectory of state x1 is always smoother that of x2. The reason for this is because the state x1

is the integration of the state x2, which makes the smoother trajectory possible.
Next, we will show the integral sliding-mode-based control with H2 performance. The
integral sliding-mode control, us is exactly the same as previous paragraph. The linear control
part satisfying (85) will now be used to find the linear control gain K. The gain K computed is
K = [−4.4586− 5.7791], which makes eigenvalues of (A+ BK) being −1.8895± 1.3741j. From
Fig.7, Fig.8, and Fig.9, we may draw the same conclusions as Fig.1 to Fig.6 do. We should be
aware that the H2 provides closed-loop poles closer to the imaginary axis than L2-gain case,
which slower the overall motion to the states equilibrium.
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Fig. 4. Integral sliding-mode-based robust control with L2-gain measure (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.5.
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Fig. 5. The control signals of (a) linear robust control, ur, (b) integral sliding-mode control, us

of integral sliding-mode-based robust control with L2-gain measure. α1 = 0.5.
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Fig. 6. The phase plot of state x1 and x2 of integral sliding-mode-based robust control with
L2-gain measure. α1 = 0.5.
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Fig. 7. Integral sliding-mode-based robust control with H2 performance (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.06.
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Fig. 8. The control signals of (a) linear robust control, ur, (b) integral sliding-mode control, us

of integral sliding-mode-based robust control with H2 performance. α1 = 0.06.
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Fig. 9. The phase plot of state x1 and x2 of integral sliding-mode-based robust control with
H2 performance. α1 = 0.06.

6. Conclusion

In this chapter we have successfully developed the robust control for a class of uncertain
systems based-on integral sliding-mode control in the presence of nonlinearities, external
disturbances, and model uncertainties. Based-on the integral sliding-mode control where
reaching phase of conventional sliding-mode control is eliminated, the matched-type
nonlinearities and uncertainties have been nullified and the system is driven to the sliding
surface where sliding dynamics with unmatched-type nonlinearities and uncertainties will
further be compensated for resulting equilibrium. Integral sliding-mode control drives
the system maintaining the sliding surface with L2-gain bound while treating the sliding
surface as zero dynamics. Once reaching the sliding surface where s = 0, the robust
performance control for controlled variable z in terms of L2-gain and H2 measure with respect
to disturbance, w, acts to further compensate the system and leads the system to equilibrium.
The overall design effectiveness is implemented on a second-order system which proves the
successful design of the methods. Of course, there are issues which can still be pursued such
as we are aware that the control algorithms, say integral sliding-mode and L2-gain measure,
apply separate stability criterion that is integral sliding-mode has its own stability perspective
from Lyapunov function of integral sliding-surface while L2-gain measure also has its own
too, the question is: is it possible produce two different control vectors that jeopardize the
overall stability? This is the next issue to be developed.
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