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Abstract—We consider the problem of designing an integral sliding
mode controller to reduce the disturbance terms that act on onlinear
systems with state-dependent drift and input matrix. The geeral case
of both, matched and unmatched disturbances affecting theystem is
addressed. It is proved that the definition of a suitable slithg manifold
and the generation of sliding modes upon it guarantees the mimization
of the effect of the disturbance terms, which takes place whe the
matched disturbances are completely rejected and the unmehed ones
are not amplified. A simulation of the proposed technique, aplied to
a dynamically feedback linearized unicycle, illustrates ts effectiveness,
even in presence of nonholonomic constraints.

Index Terms—Sliding mode control, uncertain systems, integral slidig
mode, disturbance reduction.

. INTRODUCTION

Sliding mode control [1], [2] is a robust technique for thetol of
nonlinear systems. The most positive feature of sliding encahtrol
consists in the complete compensation of the so-catietthed dis-
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deeply studied in the last years (see e.qg., [5]-[12] and aferences
therein).
Recently, the problem of analyzing how to minimize the distu

bance terms using ISM has been taken into account for systems

with a nonlinear drift term and a constant input matrix [1Bhis
result has been used also in connection with other contralegfies,
for example with model predictive control in [14], allowinthe
use of less conservative high level controllers. Neveetsl a very
important class of systems have a state-dependent inpuixnag.,
in mechanical systems the control is premultiplied by thesige of
the inertia matrix.

In this technical note, we consider the general class ofimeat
control-affine systems with both, matched and unmatchetuner
tions, and a state-dependent input matrix. Due to the appearof
partial derivatives in the state-dependent input mattie, method-
ology of [13] cannot be directly applied. The contributioh this
work consists in the definition of an integral sliding maidfevhich
leads to the minimization of the effect of the disturbanaentealso
in this case (provided that some integrability conditiome enet).
Moreover, it is proved that in the particular case of systams
the so-calledregular form, it is possible to use a constant matrix
to define the sliding manifold, thus simplifying the desighape.
Note that a preliminary version of the theoretical develepmof
this paper, where only the particular case of systems inlaedorm
are considered, can be found in [15].

The technical note is organized as follows: Section Il idtrces

turbances (i.e. disturbances acting on the control input channel)rwhéhe considered class of systems and the control problenie vl

the system is in thdiding phase and asliding mode is enforced. This
latter takes place when the state is on a suitable subspdhe efate

proposed solution is analyzed in Section Ill. Simulatioaraples are
reported in Section IV, and Section V draws the conclusions.

space, calledliding manifold. The compensated dynamics become

insensitive to matched disturbances and uncertaintiegrusiiting
mode control. The price for this insensitivity is controbttering and
a reaching phase, during which the system dynamics are natilee
to disturbances/uncertainties.

The integral sliding mode (ISM) technique was first proposed
[3], [4] as a solution to the reaching phase problem for sgstevith
matched disturbances only. The ISM control can also be degaas
a way to combine the use of the sliding mode controller witt thf
another controller (calletigh level controller in the following). The
latter aims at stabilizing the nominal system. Systems @sated
with this type of controllers are of full order, i.e., of ordequal to
the order of uncompensated system. When the system is sebjiec
external bounded perturbations, it is natural to try to cengate such
perturbations by means of an auxiliary control that retttieseffect of
the controller designed for the unperturbed system. Thlenglimode-
based auxiliary controller that compensates the pertiotinéitom the
very beginning of the control action, while retaining thel@r of the
uncompensated system, is the ISM controller. This teclenitas been
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Il. PROBLEM STATEMENT
The system taken into consideration is of the form

X(t) = f(x,t) + B(X)u(x,t) + @(x,t) (@)

wherex € IR" is the state of the system with initial conditietty) =
X0, U € IR™ is the control variableg(x,t) € IR" is an unknown vector
representing modeling uncertainties and external diahgés,f
IR" is a known nonlinear function, anfl € IR™™M is a known full
rank state-dependent matrix.

Assumption 1. The uncertain vectop(x,t) is such that

P(xt) €D, PE{ve R" st. [|v|]2 < P}

where®P is a constant scalar value.
The approach used in ISM control consists in splitting thetico
variable into two parts

u(x,t) = up(x,t) +uz(xt) (2)

where the termug(x,t) is generated by the high level controller
(which can be designed according to any suitable designadgth
while up(x;t) is a discontinuous control action designed to reject the
disturbance terms, forcing the system state on a suitaldjguaed
sliding manifold s(x,t) = 0. In the following, the dependence ®f
andx ont is omitted in some cases, when it is obvious, for the sake
of simplicity. The proposed integral sliding manifold cae tefined
as

s(x,t) = g(x) —2(xt) ®)

whereg(x) : IR" — IR™ is a nonlinear function, the total derivative of
which is

9(x) = G(x)x 4
with dg(
G(xX) = gx € RMN )
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representing the Jacobian matrix, and the integral &pt) is In conclusion, the action of the ISM control strategy hasgfarmed
/ the original uncertain ternp(x,t) into a new term
G(x

oD +B6I (D). @ Balx1) 2 (1~ BX)(GXBX) G (D). (14)

First of all, note that the system is in sliding mode at théidhtime  pp, optimal choice of the state-dependent mat@if) would mini-
instant, i.e.5(xo,to) = 0. Also, note that the integral sliding manifold ize this term. The goal of the reminder of this work is thesatve

in (3) is analogous to those proposed in [6] and [13], with th&n following problem.

difference that in our case the matrG(x) is not imposed to be  proplem 1. For system (1) fulfilling Assumptions 1 and 2, find a
constant, and is specifically designed to minimize the eftédhe ,nction g*(x) such that

unmatched disturbances. The following assumption is redui

Assumption 2 G(x) 1s such that 291 2 G0 = argmin @tz (15)
rank(G(x)B(x)) =m, V x€ R". ) G(x)€R

. . . . I1l. THE PROPOSED SLIDING MANIFOLD
The control law is designed relying on thumit vector approach

[2], where one has A. Case 1: system in general form
(G(XB(X) T s(xt) A general result is hereafter introduced for the minimaatiof
up(x,t) = —p(x,t) GOOBOT ’t (8) the equivalent disturbance (14) for system (1), when the t8ktrol
IGX)B(x)) "s(x )ll2 strategy is applied. First of all, consider the distribatigiven by
with p € IR a gain that guarantees the enforcing of the state motion . )
on the sliding manifold, provided that Assumptions 1 and 2iho A(x) = span{ B; (X)}7 i=1..,n—m (16)

In practice, the ideal aim of the ISM strategy would be to kaep
zero the difference between the nominal and perturbed gwokuof
the system. Taking into account that this could be done oriigrw
n=m, in the general casm < n one has that only the projection of

where Bj* stands for thei —th column of B:. We introduce the
following assumption.
Assumption 3: A(X) is involutive, i.e.

the difference between the two state evolutions along tbgegtion 9B+ (x) 0B (x)
onto the span of the rows @(x) can be kept equal to zero. BiL(X),E':jL (X)] = (; B (x) — X BL( X) € A(X) ,

The uncertain vectorp for a system in form (1) can always X Vij=1..n—m (17)
be expressed by separating the matched disturbggcdérom the oo
unmatched oneyy, as follows where[-,-] is the Lie bracket of two vector fields.

Lemma 1: If Assumption 3 is fulfilled, there exists a functigix]
Pt = @u(xt)+@xt) ®)  such that )
am(xt) 2 BXB*(X)e(x1) (10) 96 2 &)~ M(X)BT (X (18)
wxt) 2 BB (o) (11) ox

whereM(x) € IR™M is a full rank matrix. Note that (18) guarantees

where B:(x) € R™(™M is a matrix W|th independent that Assumption 2 holds.
columns that span the null space &x), i.e. B (x)B(x) = Proof: According to Frobenius’ Theorem (see, e.g., [17]), the
O(n—m)xm. rank(B*(x)) =n—m. Moreover,B* (x ) is the left pseudo- jnyolutivity of A(X) is equivalent to the existence of independent
inverse of B(x), i.e., BY(x) £ (BT (x)B(x))"*B'(x). Analogously, functionsg(x) such that
we have B+ (x) £ (BLT(x)BL(x))"1BL"(x). This separation o6
principle relies on Proposition 1 in [13], which ensures ttha Gi()
In = B(X)BT(x) + B-(x)BL*(x) for any full rank B(x), being ox .
In € R™" an identity matrix. Thus, given the rank condition orPr. more compactly3(x)B*(x) = 0. Since them columns ofG (x)

B( ) the decomposition (10)-(11) is without loss of generalifg are independent, they span the orthogonal complemeft>gf That
determine the state equations when the state is confineé liting  is, .
manifold, the equivalent control method [16] is used. Trosigists span{ér(x)} = (span{Bii(x)D . (19)
in forcing the derivative ofs(x,t) equal to zero, then determining
the value of the equivalent control, and finally substitgtin into Recall that the double orthogonal complement of a closedpade
the state equations. In the present case, the derivatigéxd is is equal to the subspace itself [18, p. 118], so (19) is etpmeao
span{GiT (x)} = span{B;(x)}. The columns ofG' (x) andB(x) are
bases of the same subspace and the mirixx) in (18) is simply

Bf()=0 Vi1<i<m,1<j<n-m

§(x 1) =G(X)X— z(x1)

=G(x) [f(x7t) +B(X) (up(%,t) +ug (x,t) + Bt (x)p(x, 1)) the transformation matrix relating them. |
Remark 1: The sufficiency part of the proof of Frobenius Theorem
+ @ (%) = Fxt) = B(X)uo(x,1) is constructive, thus providing an explicit procedure fodfng g(x)

=G(x)B(X)(u(x,t) + B (0e(x.1) +GX)q (xt). (12) [17, pp. 24-26].
) ) ) The main result of the paper is now formulated.
Then, the equivalent control, defined as the continuousr@ont Theorem 1: Consider system (1) fulfilling Assumptions 1 and 3.

variable such thas(x,t) = 0, results being Then, g(x) solves Problem 1. Moreover, the resulting equivalent
1eg (1) = ~BF ()@(x1) — (G(B() *G(x)qu(xt).  (13) disturbance (14) is such that
Substituting this value into the system equation (1), orgethat the e (x0)ll2= (m'};mxn || @ (X 1)z (20)

matched disturbance is eliminated, and the trajectorigheofystem

at the sliding manifold are given by Proof: First of all, note that Assumption 3 leads to the fulfillment

of Lemma 1. Therefore, iG(x) = G(x) = M(x)B" (x), it automati-
Xeq = T(X,t) +B(X)up(x,t) + (I — B(X)(G(X)B(x))"1G(x))q (x,t) . cally follows that Assumption 2 is also fulfilled, becaudgx) is full
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rank. Then, if one setg(x) =
with the given assumptions. Analogously to [13], define

9(xt) £ (G(XB(x) 'Gx)@ (xt) .

Remarking that

[l (x.t) = B9 (x.t)][2 = Il = BX)(G(X)B(x) *G(X)) @ (x.t)||2

we reformulate Problem 1 as the problem of findigg(x,t) such
that

¢"(x.t) = argmin|[qy (x,t) =BO)$ (X 1)z -

d(x)eR™

According to the projection theorem in [18, p. 51], an expbolution
is ¢*(x,t) = BT (X)@ (x,t). Substituting the value oB(x), it yields

9(xt) = (G(X)B(X) G0
(o703 ) M
@ xt) =¢"(x, )

According to Lemma 1, Assumption 3 implies the existencey(
generating the Jacobian matr&(x). Finally, since given a matrix
Ac R™M one has (see, e.g. [13]) — AATA)~1AT||, =1, using
A=B(x) one can see thall —B(x)(B' (X)B(X)) 1BT (x)||2=1, Vxe
IR", which leads to (20). This implies that it is not possible btain
an equivalent disturbance with a 2-norm which is smallenttize
2-norm of the unmatched disturbance. ]

(X t)
@ (1)

B. Case 2: systemin regular form

Hereafter, we focus on the task of finding a simple solution fol’herefore
choosingg(x), when the system structure falls into a precise family,

as follows.

rCthO%II n. For review only

§(x), it makes sense to face Problem dwhere B € IR("™™*("=M is a full rank matrix. If we consider the

i —th and j —th columns ofB+(x), it yields

1
9By (x) B (x) 9B (x) B (x) =
ox ! ox !
- 0B, OBL 7 - o -
o I By
0Ban aBinm BL
5]X1 ’ ¢9an |.r(1)7m
0 0
Lo . o JL O
- 0B BL T ool 4 e
dxll dxnl Bj.,l *
2Bl 84 nl |BE *
| o 0%n bpemy = 0
0 0 0
6 ... o Lol [o

Since the result of any Lie bracket belongs to the span ofthexms
of B, the distribution A(x) is involutive, i.e., Assumption 3 is
fulfilled (and consequently Assumption 2, which again alous to
refer to Problem 1). Theorem 1 can thus be applied, whichsl¢ad
the possibility of explicitly finding an integral sliding méold which
minimizes the equivalent disturbance. In particular, tivectiond(x)
can be chosen such that its Jacobian matriG(g) = M(x)B" (x),
choosingV(x) asM(x) = NB~ T (x), whereN € IR™™ is any constant
full rank matrix. It yields

G(x)=NB""(xB'(x)=NB~"[0 B ]=[0 N]

gx)=Gx=[0 N |x [
Remark 2: This result has a very intuitive meaning: like in the
case analyzed in [13] for a constant valueBgKk), it is clear that the

=G.

Assumption 4: System (1) is such that it can be written in thejiging manifold must be defined such that the ISM controlaact

following regular form

(1)

Xt) + @z (x,t) (22)

wherex € R™™, x; € R™, [fiy) fp]" = f, Be R™™Mis a full

is not trying to compensate the unmatched disturbance ubecany
attempt to do it would increase the norm of the equivalertudignce.
In fact, the functiong(x) can be expressed agX] = Nx(z, which
means that the ISM control variablg(t) only acts ongv (x,t). This
result is possible also in the state-dependent case bettaus®atched
disturbance and the control variable act on the same statpaments

rank matrix, wh||eq;[2] c IR and @y € IR™M are the matched and at any time instant: as a consequence, the unmatched untiega

unmatched disturbances, respectively, clearly separalitgs form.

Such a structure for the system is often found in the slidirglen
control literature, where it is widely used thanks to itseniroperties
(see, e.g. [1]). By virtue of Assumption 4, for the systent the are
considering, it is possible to simply get

%]
0]

m(xt)=[0 0 9,
(%) = [Q, @1, O
In the following corollary it is shown that, for systems ingtgar

form, it is possible to use a simple linear sliding manifoid the
ISM controller design.

T

Corollary 1. For system (1) fulfilling Assumptions 1 and 4, Prob-

lem 1 can be solved by a linear functignx)” = Gx.
Proof: If Assumption 4 holds, one has

0= o |

cannot, in any past, present of future time instant, act enséme
direction of the matched one and this ensures a “separapiaperty
which makes it possible to use a simple sliding manifold ttrojze
the performances.

IV. A CASE STUDY. DYNAMIC FEEDBACK LINEARIZATION
OF THE UNICYCLE
In this section the proposed method will be applied to theyaie,
a very common example of nonholonomic system in mobile iobot
(the reader is referred to [19] for an overview on this kindystems).
Without taking the disturbance terms into account, we thite the
kinematic model of the nominal system as

X1(t) = Wo(t) cosxa(t)
X2(t) = Wyo(t) sinxs(t)
X3(t) = Ueo(t)

where (x1,%2) is the position of the robot in Cartesian coordinates
in the world reference frame, whibe; is its orientation with respect
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to the xq-axis; uy and ugy, represent the translational and rotationabf the disturbance terms can be performed. To define thenglidi
velocities, respectively, which are regarded as inputsteNthat manifold (3), take

Up 2 [Uo Uwo] | is the high level control variable. Therefore, we are X3

pon5|derlng althlrd .order system with stzxté. [X1 X2 Xg}.T and two a(x) = { 1 COS(G + X0 SINXG }

inputs. A possible high level controller for this system wasoduced

in [20] using dynamic feedback linearization. The struetaf the With the corresponding

controller is

G — { 0 0 1 }
&(t) = vy (t) cosxa(t) + va(t) sinxa(t) COSX3  SiNXg  —X1 SINX3 + X2 COSX3
Uo(t) = &(t) Note that, as expected from Lemma 1, this latter can be wrate
—Vysinxz(t) + vo(t) cosxa(t
Ueolt) = —2 3(t) + va(t) cosxs(t) ) = 1 0 o 0 1
&(t) — X1 SiNXg +XpCcoSXg 1 cosxg sinxg O

whereé € IR is the state of the dynamic compensator [20]. As for the
auxiliary control variables; and vy, they can be defined according ) ) )
to the following considerations. It is possible to define avrsst of Where M(x) is full rank for all x. The ISM control variable is

M(x) BT (x)

coordinates as then computed according to (8). As for the disturbance rioluc
exploiting the definition of the unmatched disturbance ib) ((being
z(t) =x(t) B = [—sinx3 cosxz 0]"), it can be computed as
2(t) = x(t) — @ sinxg
z3(t) =X (t) = &(t) cosxa(t) W= @Cosx ]
24(t) = Xp(t) = & (t) sinxg(t) 0

which leads to the possibility of representing the extendgstem leading to||q (X,t)||2 = @(t) and thereforé|q||2 < @. The 2-norm
with two chains of integratorg;(t) = vi(t), Z(t) = vo(t). If the of the equivalent disturbance in (14) is obtained|gg(X)||2 = @(t).
objective is to follow a desired trajectory fag(t) andxx(t), namely As expected, the maximum norm of the equivalent disturbance
X1d(t) and xpq(t), it is possible to design a globally exponentiallycoincides with that of the unmatched disturbance. In caichy
stabilizing feedback controller defining the disturbance term is reduced ® = ¢, that is the strongest
. . . disturbance reduction obtainable with ISM.

V1(t) = X19(t) +kpa (X1 (1) =1 (1)) +kaz (}aa — X (1) (23) In the simulation example shown in the following, the distur

Va(t) = Xoq () + kpa (Xad (t) —X2(t)) +Kaz(%od —%2(t))  (24)  bances are chosen @s(t) = 1.2sin(5t), @ (t) = 0.4sin(2Qt), @s(t) =

with Kp1, Kg1, Kpz, Kg2 > 0. Note that this controller requires that theO'SSin(t)' leading to® ~ 1.5. The high level controller in (23)-

translational velocity of the robot never goes to zero (28§ for a (24) is designed W'tr,kpl :.kpZ = 15, Koy = kap = l',Wh”e the
detailed analysis of this aspect). ISI\! coEtroI law (8) is defined with a constant gain valpe=

If the presence of disturbances is taken into account, thewber /@ + @ ~ 1.45, in order to compensate the matched disturbance
of the unicycle can be quite different than expected, and &M @y = [@ cosxs @ sinxs ¢s]T. Moreover, in order to reduce the so-
be used to reduce the disturbances. The following systerhes t called chattering effect, the well known equivalent cohtnethod [1]
considered is used, applying a linear low-pass filter to the obtainedafiinuous
control variable. First of all, we show (Fig. 1, top) the paththe

)_(10) = (W) +(p1(t))c99<3(t) ~ % (t)sinxg(t) unicycle in thex; —xz plane in case there is no disturbance and the
%a(t) = (W (t) + @ (t)) sinxa(t) + g (t) cosxs(t) high level controller only is used. As expected, after agiamt (since
X3(t) = Ug(t) + @3(t) the initial condition is taken on purpose different from teéerence),
where the unicycle trajectory (solid line) settles on the desioee (dashed
@1(t) cosxa(t) — @y (t) sinxa(t) line). If the disturbances are added, the high level coletrdias a
o(xt) 2 | @(t)sinxs(t) + @(t) cosxa(t) poor performance (Fig. 1, middle), since it is not desigredvork
@(t) in their presence. Using the proposed ISM strategy, the dham

. . the disturbances is reduced ®@= 0.4, and the performance of the

is the dlsturpaqce vector. If we assume that each cor_npo_rI’entleera” control law is improving (Fig. 1, bottom). In thisskacase,

the vectorg is in absolute value sn_1a|IeL thaf a constagt, (@2, we show also (Fig. 2) the time evolution of the control valéshy,

@3, respectively), we obtai® = \/¢f + @ + @ (as required in anduy,, and the two components of the sliding manifsidnamely

Assumption 1), while the control variables are defined as s1 ands,. For the reader’s interest, a simulation example for system
W(t) = Uyo(t) + U (t) in regular form can be found in [15].

Ueo (1) = Uaoo (1) + Uaan (1) V. CONCLUSIONS

Uy andugy being the ISM contributions. Note that this system can This paper introduces the definition of an integral slidingnifold

be written in form (1), withf(x,t) = 0. To apply the ISM control ¢or control-affine nonlinear systems. Two cases are cormideFor

stratggy, we must check if Assumption 3 is fulfilled. The digttion 1,4 general case it is shown that a solution for the miniriuzaof

A(x) is , the disturbance terms (i.e., the matched disturbanceslianmated

—Sinxg and the unmatched ones are not amplified) can be obtainedni so

A(X) = span CoSxX3 involutivity properties of the system are fulfilled. For s®s in

0 regular form, a linear sliding surface can be exploited,aiting

which is involutive since it is spanned by a single vectordfiéds a analogous results. The proposed ISM control law is finalktete
consequence, all the assumptions are fulfilled, and thenmi@ation on a simulation example of a simple nonholonomic system.
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Fig.

disturbances (top), high level controller with disturbesidmiddle) and high
level controller plus ISM with disturbances (bottom). Tleéerence trajectory
is depicted as a dashed line, while the actual ones are esypteesas solid

lines
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Unicycle path — no disturbances

10 12

1. The path of the unicycle in case of high level conamolvith no
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