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Abstract - Related momentum and energy equations describing the 

heat and fluid flow of Herschel-Bulkley fluids within concentric 
annular ducts are analytically solved using the classical integral 

transform technique, which permits accurate determination of 
parameters of practical interest in engineering such as friction factors 

and Nusselt numbers for the duct length. In analyzing the problem, 
thermally developing flow is assumed and the duct walls are 

subjected to boundary conditions of first kind. Results are computed 
for the velocity and temperature fields as well as for the parameters 

cited above with different power-law indices, yield numbers and 
aspect ratios. Comparisons are also made with previous work 

available in the literature, providing direct validation of the results 

and showing that they are consistent.  
Keywords: viscoplastic materials, concentric annular ducts, integral 

transform technique. 
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INTRODUCTION 

Concentric annular ducts are important geometric configurations in 
the design of many fluid-flow and heat-transfer devices, the most 

notorious example of which is the double-pipe heat exchanger, 
consisting of two concentric circular tubes. In industry, several 

manufacturing processes such as extrusion, drawing, hot rolling, and 
transport of rock cuttings during the drilling of oil and gas wells 

involve flows of viscoplastic materials in annular geometries. The 
main characteristic of these materials is the existence of a yield 

stress, below which they do not flow. This non-Newtonian behavior is 
found in various materials, such as solutions or melts of polymeric 

materials, oils, greases, cosmetics, toothpaste, soap, detergents, 
paints, cement and drilling muds. The majority of these materials, 

especially the drilling muds, follow the Herschel-Bulkley rheological 

model and their rheological properties are extremely sensitive to the 
temperature field. 

Through the years, few studies dealing with the heat and fluid flow of 

viscoplastic materials within concentric annular ducts have been 
available in the literature, despite their important industrial 

applications such as those listed above. Among these studies can be 
included the work of Laird (1957), Fredrickson and Bird (1958), and 

Hanks and Larsen (1979), in which the authors have determined 
simple equations to determine the complete characteristics of the 

fluid flow. On the other hand, work dealing with heat transfer 

problems involving viscoplastic materials, such as Herschel-Bulkley 
fluids, are mostly concerned with circular and parallel-plate ducts 

geometry. For instance, Blackwell (1985) presented a numerical 
solution for the Graetz problem in laminar flow of Bingham fluids 

within circular ducts subjected to a boundary condition of the first 
kind. 

An experimental and theoretical heat transfer study for Herschel-

Bulkley fluids was conducted by Nouar et al. (1994). In their analysis, 
thermally developing flow in circular ducts was assumed, and an 

interesting discussion regarding the influence of temperature-

dependent rheological properties on the velocity profiles and Nusselt 
numbers can be found. Later, in another article, Nouar et al. (1995) 

numerically analyzed the same problem, this time assuming 
simultaneously developing flow, and presented some correlations for 

local Nusselt number and pressure gradient. 

Mendes and Naccache (1995) analyzed the convective heat transfer 
problem in laminar flow of Herschel-Bulkley fluids within circular 

ducts. In this work, local Nusselt numbers were obtained as a 
function of the yield stress and power-law index. In a similar way, 

Soares et al. (1996, 1997) studied the heat transfer problem in 



laminar flow of Herschel-Bulkley fluids through the entrance region of 

circular ducts. The authors showed that thermal entry length 
decreases when the behavior of the rheological fluid deviates from 

the Newtonian case. 

The thermal entry region in laminar forced convection of Herschel-

Bulkley fluids was analytically solved by Quaresma and Macêdo 
(1998) for both circular and parallel-plate ducts, maintained at either 

prescribed wall temperature or prescribed wall heat flux, using the 
integral transform technique. Highly accurate results were obtained 

for local Nusselt numbers for different power-law indices and yield 
numbers. Recently, Nascimento et al. (2000) employed the same 

approach to analyze the thermal entry region in laminar flow of 
Bingham plastics within concentric annular ducts by adopting 

boundary conditions of the first kind. Nusselt numbers were 

calculated for both the thermal entry and fully developed regions as a 
function of yield numbers and aspect ratios. 

Therefore, in this context, to fill in the gap in the literature for heat 

and fluid flow of Herschel-Bulkley fluids within concentric annular 
ducts, the present work aims at advancing the ideas in the classical 

integral transform technique and the so-called sign-count approach to 
determine the product of the Fanning friction factor-apparent 

Reynolds number and velocity profiles. It also aims at accurately 
computing the Nusselt numbers for both the thermal entry and fully 

developed regions within the range of parameters analyzed, i.e., 

power-law indices, yield numbers and aspect ratios. Comparisons 
with previous work in the literature are also made for typical 

situations in order to validate the numerical code developed here and 
to demonstrate the consistency of results produced. 

  

ANALYSIS 

The problem is geometrically defined by two circular concentric ducts 
between which a time independent non-Newtonian fluid flows, 

obeying the Herschel-Bulkley model for shear stress, according 
to Figure 1. The constitutive equation to describe the rheological 

behavior of this non-Newtonian fluid is given in the following form: 
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where, rz is the shear stress, o is the yield stress,  is the shear 

rate, u is the velocity component in the axial direction z, K is the 
consistency index of the fluid and n is the power-law index which is 

less than unity for pseudoplastic fluids (shear-thinning materials) and 
greater than unity for dilatant fluids (shear-thickening materials). The 

positive sign for0 is used when the transport of momentum is in the 

positive r-direction, and in this case = -du/dr. When the momentum 
is being transported in the negative r-direction, 0 is negative, 

while  = -du/dr. 

  

 

  

For the fully developed region of a concentric annular duct, the 
momentum equation for axial coordinate z is simplified to yield 

 

subject to the following boundary conditions: 

 

Then, substituting Equations (1) into Equation (1.a) with the 

appropriate signs for the yield stress and shear rate, and after the 
integrations are performed, the fully developed velocity profiles in the 

three distinct regions for a Herschel-Bulkley fluid are given by 



 

for riw < r < a* 

 

for a* < r < b* 

 

for b* < r < row 

where a* and b* are the bounds on the plug-flow region and c* is the 

value of the radial coordinate where the shear stress is zero. The 
velocity profile for the plug-flow region, uo(r), is given by either 

Equation (3.b) or (3.c); these equations are obtained by making r = 
a* in Equation (3.a) and r = b* in Equation (3.d), respectively, and 

they give the same values uo(r). 

The velocity profiles given by Equations (3) for a Herschel-Bulkley 
fluid are split into three distinct regions. One is a* < r < b*, which 

denotes the plug-flow region where |rz| < oand the fluid behaves like 

a solid plug, and the other two regions are riw < r < a* and b* < r < 

row, where |rz|  o and refers to those parts of the fluid which are in 

shear flow. 

 

 

 

 



Now, the following dimensionless groups are defined: 

 

where Dh = 2(row - riw) is the hydraulic diameter, Y is the yield 

number, f is the Fanning friction factor and Rea is the apparent 
Reynolds number. 

Substituting the groups defined above by Equations (4) into the fully 
developed velocity profiles given by Equations (3) results in 

 

The dimensionless bounds on the plug-flow region, a and b, and the 

dimensionless radial position where the shear stress is zero, c, are 

obtained by making the integration of Equation (2.a) resulting in a 
linear profile for the shear stress, which is evaluated at the desired 

points r = a*, b* and c*, after that the dimensionless groups given by 
Equations (4) are introduced to yield the following equations: 

 



The average flow velocity is defined as 

 

which in dimensionless form is written as 

 

In the analysis of the thermal problem of a non-Newtonian fluid that 

obeys the Herschel-Bulkley model, described by Equations (1), one 
assumes steady forced convection in thermally developing, 

hydrodynamically developed laminar flow, given by Equations (5), 
within a concentric annular duct, also according to Figure 1. Viscous 

dissipation, free convection, and axial conduction effects are 
neglected, and physical properties are assumed to be constant. The 

duct walls are subject to boundary conditions of the first kind at 
either the inner or outer duct wall, referred to as Case A (Tiw = Te) 

and Case B (Tow = Te), and the fluid enters the duct at a uniform 
temperature, Te. 

The mathematical formulation in dimensionless form for this forced 
convection problem is given by 

 

in  < R < 1, Z > 0 

subject to the following inlet and boundary conditions: 

 

where coefficient m in boundary conditions (10.c,d) identifies Case A 
(m = 1) or Case B(m = 0). 
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In Equations (10) above, the following additional dimensionless 

groups were used: 

 

The problem defined by Equations (10) can be readily solved by the 
classical integral transform technique (Mikhailov and Özisik, 1984; 

Cotta, 1993). However, in order to make the boundary conditions 
(10.c,d) homogeneous and to obtain a convergence acceleration of 

the final solution in such a manner that a better computational 
performance in the series expansion can be obtained, the so-called 

splitting-up procedure (Mikhailov and Özisik, 1984; Mikhailov, 1977) 

is applied to this problem. Thus, a general separation into simpler 
problems is proposed in the following form: 

 

In Equation (12), p(R) represents the separate solution for the 

nonhomogeneous boundary conditions (10.c,d) and h(R,Z) is the 

homogeneous solution of problem (10). After substituting Equation 

(12) into Equations (10), these intermediate potentials are obtained 
from the following formulations: 

 

which is readily integrated to give 

 

and the general homogeneous problem is given by 



 

in  < R < 1, Z > 0 

with the following inlet and boundary conditions: 

 

The homogeneous problem defined by Equations (15) can also be 
solved by the classical integral transform technique. Then, following 

the procedures in the application of this technique, the appropriate 
auxiliary eigenvalue problem needed for its solution is 

 

in  < R < 1 

 

where i(R) and i are the eigenfunctions and eigenvalues, 

respectively. The problem defined by Equations (16) is solved by the 
so-called sign-count method (Mikhailov and Özisik, 1984; Mikhailov 

and Vulchanov, 1983), which offers safe and automatic accurate 

computations of as many eigenvalues and eigenfunctions as desired. 
The eigenvalue problem allows for the development of the following 

integral transform pair: 

 

transform 

 

where Ni, the normalization integral, is given by: 

 



Now, Equations (15) can be integral transformed with i(R)dR to 

yield the following ordinary differential equation for the transformed 

potential, (Z): 

 

with the transformed potential inlet condition given by 

 

The solution of the transformed potential, (Z), is readily obtained 

as 

 

Therefore, substituting Equation(20) into the inversion formula 

(17.b), the solution forh(R,Z) is determined in the following form: 

 

Thus, Equation (21) for h(R,Z) in conjunction with Equation (14) 

for p(R) complete the solution for the potential (R,Z), originally 

formulated in Equation (10), and this solution is written as: 

 

At this point, thermal parameters of practical interest, such as 
average temperature and local Nusselt numbers can be obtained from 

Equation (22) as follows: 

The average flow temperature, av(Z), is defined as: 

 



Thus, substituting Equation (22) into Equation (23), av(Z) is readily 

obtained in the following form: 

 

where 

 

The local Nusselt numbers at the inner and outer duct walls are 

defined as 

 

By taking the derivative of Equation (22) and evaluating it at R 
=  and R = 1 with Equation (24) for the average flow 

temperature, av(Z), the solutions for the local Nusselt numbers at 

the inner and outer duct walls can be readily determined from 

Equations (26) and (27), respectively, in the following form: 

 

  



RESULTS AND DISCUSSION 

Numerical results for the product of the Fanning friction factor-
apparent Reynolds number and velocity profiles were calculated for 

different values of power-law indices, yield numbers and aspect 
ratios. Once these quantities had been computed, the temperature 

field was readily obtained from Equation (22), and consequently 
thermal parameters such as average temperature and local Nusselt 

numbers at the inner and outer duct walls were obtained from 
Equations (24) to (27), respectively. For this purpose, computational 

codes were developed in the FORTRAN programming language and 
implemented on a PENTIUM II 400 MHz computer platform. 

The Fanning friction factor and the dimensionless bounds on the plug-
flow region are functions of the power-law indices and apparent 

Reynolds and yield numbers. These quantities are determined by 
satisfying Equation (9.a) for the average flow velocity and by 

equalizing Equations (5.b) and (5.c), which together with Equation 
(6) provide a system of three equations for finding fRea, a and b. 

Once these quantities have been determined, parameter c is readily 
calculated from Equation (7). 

Table 1 shows some results for the parameters described above 
within the range of the parameters analyzed (power-law index, yield 

number and aspect ratio). It can be noted that for different aspect 
ratios as the power-law index increases, the product, fRea, increases 

as well. This fact can be explained by the rheological behavior of the 
fluid. For n < 1 the fluid presents a shear-thinning behavior, i.e., 

there is a decrease in the apparent fluid viscosity as the velocity 
gradient increases; for n > 1 it behaves as a shear-thickening fluid 

and the apparent fluid viscosity increases with increasing values for 
the velocity gradient, so in these cases higher pressure drops are 

needed to make the fluid flow. 
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In this table, it can also be observed that for higher yield numbers 
the region of plug flow increases, as was expected, since they 

correspond to higher yield stresses. The case of n = 1 and Y = 0 
corresponds to the Newtonian situation, and in this analysis there is 

no plug-flow region, as is verified by finding the same values for 
parameters a, b and c. In addition, at higher values for the aspect 

ratios, for example  = 0.9, fRea is approximately equal to that in the 

case of a parallel-plate channel, i.e., fRea  24. 

 

 

 

 

 

 

 



Table 2 shows a comparison between the values for parameters a, b 

and c calculated in the present analysis and those presented by 
Hanks and Larsen (1979). It can be verified that the values are in 

excellent agreement, providing a direct validation of the numerical 

code developed in the present analysis for the computation of these 
parameters. 

  

 

  

Once fRea and parameters a, b and c were obtained, the velocity 

profiles could be evaluated using Equations (5), which correspond to 
the three distinct regions of the flow field. In Figures 2 to 5 the 

velocity profiles are plotted for different values for power-law indices, 
yield numbers and aspect ratios. The figures represent a longitudinal 

cutaway of the concentric annular duct. According to Figure 2, when 

the value of the power-law index increases, maintaining the other 
parameters fixed, there is an increase in the value for velocity at the 

centerline of the annular duct. This can be explained by a decrease in 
the velocity gradients far from the duct walls, and consequently, a 

decrease in the apparent fluid viscosity for dilatant fluids. 
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In Figure 3, it can be observed that for the case where Y = 0 there is 

no plug-flow region, as was mentioned when Table 1 was analyzed. 
As the yield number is increased, a correspondent enlargement of the 

plug-flow region occurs as well. This results in an increase in the 

velocity gradients close to the duct walls, mainly at the inner wall. 
The effect of duct geometry on the velocity profiles is evidenced 

in Figure 4, where it can be observed that for higher values for the 
aspect ratios, the velocity profile tends to become symmetric; 

consequently, this is expected to affect the heat transfer rates at the 
duct walls, resulting in symmetric distributions for the local Nusselt 

numbers at both duct walls as well. 

In Figure 5, it can be observed that for values of the power-law index 
greater than unity, the increase in the values for the yield number 

does not considerably influence the enlargement of the plug-flow 

region compared with the dimension of the plug-flow region for 
values of n  1 (see Figure 3). This implies in a uniform distribution of 

the local Nusselt numbers for the thermal entry region. 

After the parameters related to the velocity field had been 
determined, quantities related to the eigenvalue problem given by 

Equations (16) were obtained via the sign-count method (Mikhailov 
and Özisik, 1984), i.e., eigenvalues, eigenfunctions, and 

normalization integrals, which are needed to compute important 
thermal parameters such as average temperature av(Z), local Nusselt 

numbers and temperatures at the inner and outer duct walls Nuiw(Z), 

Nuow(Z), (,.Z)  iw(Z) and (1,.Z)  ow(Z), respectively. Here, 

these parameters were calculated for the case of boundary conditions 

of the first kind, split into two fundamental situations, represented by 
cases A and B. 

First, the results for the local Nusselt numbers obtained in the 

present work were validated by comparing them with those given in 
the work by Blackwell (1985), who analyzed thermally developing 

laminar flow of Bingham plastics within circular tubes. For this 
particular case, the velocity profiles given by Equations (5) are 

represented by 

 

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400001&lng=en&nrm=iso#fig03
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400001&lng=en&nrm=iso#tab01
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400001&lng=en&nrm=iso#fig04
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400001&lng=en&nrm=iso#fig05
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000400001&lng=en&nrm=iso#fig03


where C = o/w represents the ratio between the yield stress and the 

wall shear stress. Equations (30) were obtained from Equations (5) 
by making the aspect ratio   0, which represents the situation of a 

circular tube. 

Table 3 provides this comparison, showing the excellent agreement of 

the results. The slight difference between the present results and 
those of Blackwell (1985) for axial positions near the duct inlet, can 

be explained by the fact that this author computed few quantities 
related to the eigenvalue problem (only 60 eigenquantities) which 

were not adequate to compute fully converged results for the Nusselt 
numbers at those axial positions. 
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Table 4 shows the results for parameters Nuiw(Z), Nuow(Z) and av(Z), 

related to cases A and B computed in the present work, and 
comparisons with those obtained by Shah and London (1978) and 

Nascimento et al. (2000) for the thermal entry region in laminar flow 

of Newtonian fluids within concentric annular ducts. In this analysis, 
values of 0.1 and 0.5 were taken for the aspect ratio. The excellent 

agreement between the three sets of results shown in this table also 
validates the numerical code developed in the present work as well as 

indicates the consistency of the present results. 
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Figures 6 and 7 show another comparison of the present results for 
the local Nusselt numbers with those obtained by Quaresma and 

Macêdo (1998), when the concentric annular duct tends towards two-
limit configurations, that is, circular tubes and parallel-plate channels. 

As can be observed in these figures, the results are also in excellent 
agreement, once again validating the computational code developed 

here. 
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In Figures 8 to 13 axial distributions for the local Nusselt numbers for 

the thermal entry region are presented for different power-law 
indices, yield numbers and aspect ratios. An increase in the local 

Nusselt number for increasing yield numbers is verified; this can be 

clarified by higher gradients in the velocity field near the wall when 
the yield number increases. This effect tends to disappear for the fully 

developed region where the curves are practically coincident. It can 
also be noticed that as the power-law index increases, the difference 

in the values of the Nusselt numbers, for different yield numbers, at 
the beginning of the thermal entry region, becomes less substantial, 

when compared with those obtained for the cases of power-law 
indices less than unity. This is due to the fact that the region of plug 

flow remains practically unaffected for dilatant fluids with increasing 
values for the yield number, as previously discussed (see Figure 5). 
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Finally, from these figures, it can also be observed that the local 

Nusselt numbers for the two cases studied here, Nuiw(Z) and Nuow(Z), 
tend towards the same distribution when the aspect ratio increases. 

For example, for the case of aspect ratio  = 0.9, which practically 

represents a parallel-plate channel, this symmetry is clearly 

observed. 

CONCLUSIONS 

The proposed integral transform approach in conjunction with the 

sign-count method provided reliable and cost-effective simulations of 
heat and fluid flow of Herschel-Bulkley fluids within concentric 

annular ducts in laminar regime. Benchmark results for the product of 
the Fanning friction factor-apparent Reynolds number, velocity field 

and Nusselt numbers were systematically tabulated and graphically 

presented for different values for yield numbers, aspect ratios, and 
power-law indices, illustrating the effectiveness of the present 



methodology. Comparisons with previous work in the literature were 

also performed, demonstrating excellent agreement and furnishing 
direct validations of the present results as well as showing that they 

were consistent.  

NOMENCLATURE 

a
*
, a 

lower bounds on the plug-flow region, dimensional and 

dimensionless, respectively 

b
*
, b 

upper bounds on the plug-flow region, dimensional and 

dimensionless, respectively 

c
*
, c 

radial positions where the shear stress is zero, dimensional and 

dimensionless, respectively 

C ratio between the yield stress and the wall shear stress 

cp specific heat 

Dh hydraulic diameter 

f  Fanning friction factor 

hiw(z) local heat transfer coefficient at the inner wall 

how(z) local heat transfer coefficient at the outer wall 

k thermal conductivity 

K consistency index of the fluid 

m coefficient defined in Equations (10.c,d) 

n power-law index 

Ni normalization integral 

Nu(Z) local Nusselt number for the case of a circular tube 

Nuav average Nusselt number 

Nuiw(Z) local Nusselt number at the inner wall 

Nuow(Z) local Nusselt number at the outer wall 

Pra apparent Prandtl number 

r, R radial coordinates, dimensional and dimensionless, respectively 

riw, row inner and outer radii, respectively 

Rea apparent Reynolds number 

s coefficient defined in Equation (4.j) 

Te inlet temperature 

Tiw, Tow prescribed temperatures at the inner and outer walls, respectively 

uav average flow velocity 

u(r), U(R) velocity distributions, dimensional and dimensionless, respectively 

W(R) defined by Equation (11.a) 

Y yield number 

z, Z axial coordinates, dimensional and dimensionless, respectively 

Greek Letters 

  fluid thermal diffusivity 



 

shear rate 

  aspect ratio 

 (R,Z) dimensionless temperature distribution 

av(Z) dimensionless average temperature 

iw(Z) dimensionless temperature at the inner wall 

ow(Z) dimensionless temperature at the outer wall 

i eigenvalues of problem (16) 

  density 

rz shear stress 

0 yield stress 

i(R) eigenfunctions of problem (16) 

  

REFERENCES 

Blackwell, B.F., Numerical Solution of the Graetz Problem for a 
Bingham Plastic in Laminar Tube Flow with Constant Wall 

Temperature, J. Heat Transfer, 107, 466-468 (1985).        [ Links ] 

Cotta, R.M., Integral Transforms in Computational Heat and Fluid 

Flow, CRC Press, Boca Raton (1993).        [ Links ] 

Fredrickson, A.G. and Bird, R.B., Non-Newtonian Flow in Annuli, Ind. 
Eng. Chem., 50, 347-383 (1958).        [ Links ] 

Hanks, R.W. and Larsen, K.M., The Flow of Power-Law Fluids in 
Concentric Annuli, Ind. Eng. Chem. Fundam., 18, 33-35 

(1979).        [ Links ] 

Laird, W.M., Slurry and Suspension Transport, Ind. Eng. Chem., 49, 
138-141 (1957).        [ Links ] 

Mendes, P.R.S. and Naccache, M.F., Heat Transfer to Herschel-
Bulkley Fluids in Laminar Fully Developed Flow through Tubes, Proc. 

of the 13th Brazilian Congress of Mechanical Engineering (XIII 
COBEM), Belo Horizonte, Brazil (1995) (on CD-ROM).        [ Links ] 

Mikhailov, M.D., Splitting Up of Heat-Conduction Problems, Letters 

Heat Mass Transfer, 4, 163-166 (1977).        [ Links ] 

Mikhailov, M.D. and Özisik, M.N., Unified Analysys and Solutions of 

Heat and Mass Diffusion, John Wiley, New York (1984).        [ Links ] 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


Mikhailov, M.D. and Vulchanov, N.L., Computational Procedure for 

Sturm-Liouville Problems, J. Comp. Phys., 50, 323-336 
(1983).        [ Links ] 

Nascimento, U.C.S., Macêdo, E.N. and Quaresma, J.N.N., Solution for 
the Thermal Entry Region in Laminar Flow of Bingham Plastics within 

Annular Ducts via Integral Transformation, Hybrid Methods in 
Engineering, 2, 233-247 (2000).        [ Links ] 

Nouar, C., Devienne, R. and Lebouche, M., Convection Thermique 

pour un Fluide de Herschel-Bulkley dans la Région d'entrée d'une 

Conduit, Int. J. Heat Mass Transfer, 37, 1-12 (1994).        [ Links ] 

Nouar, C., Devienne, R., Lebouche, M. and Riou, C., Numerical 
Analysis of the Thermal Convection for Herschel-Bukley Fluids, Int. J. 

Heat Fluid Flow, 16, 223-231 (1995).        [ Links ] 

Quaresma, J.N.N. and Macêdo, E.N., Integral Transform Solution for 

Forced Convection of Herschel-Bulkley Fluids in Circular Tubes and 
Parallel-Plates Ducts, Brazilian Journal of Chemical Engineering, 15, 

77-89 (1998).        [ Links ] 

Shah, R.K. and London, A.L., Laminar Flow Forced Convection in 
Ducts, Supplement 1 to Advances in Heat Transfer, eds. T. F. Irvine, 

Jr. and J. P. Hartnett, Academic Press, New York 
(1978).        [ Links ] 

Soares, M., Mendes, P.R.S. and Naccache, M.F., Heat Transfer to 
Herschel-Bulkley Fluids in Laminar Flow through Short Tubes, Proc. of 

the VI ENCIT/VI LATCYM, Florianópolis, Brazil, 1575-1580 
(1996).        [ Links ] 

Soares, M., Mendes, P.R.S. and Naccache, M.F., Heat Transfer to 

Viscoplastic Fluids in Laminar Flow through Isothermal Short Tubes, 
J. of the Braz. Soc. Mechanical Sciences, 19, 1-14 

(1997).        [ Links ] 

All the contents of this journal, except where otherwise noted, 

is licensed under a Creative Commons Attribution License 

  Associação Brasileira de Engenharia Química 

Rua Líbero Badaró, 152 , 11. and. 

01008-903 São Paulo SP Brazil 

Tel.: +55 11 3107-8747 

Fax.: +55 11 3104-4649 

Fax: +55 11 3104-4649 

 
rgiudici@usp.br 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
mailto:rgiudici@usp.br

