
ar
X

iv
:2

20
8.

09
65

4v
1 

 [
m

at
h.

FA
] 

 2
0 

A
ug

 2
02

2

Integral transforms characterized by convolution

Mateusz Krukowski

Institute of Mathematics, Łódź University of Technology,

Wólczańska 215, 90-924 Łódź, Poland

e-mail: mateusz.krukowski@p.lodz.pl

August 23, 2022

Abstract

Inspired by Jaming’s characterization of the Fourier transform on specific groups via the convolution

property, we provide a novel approach which characterizes the Fourier transform on any locally compact

abelian group. In particular, our characterization encompasses Jaming’s results. Furthermore, we

demonstrate that the cosine transform as well as the Laplace transform can also be characterized via

a suitable convolution property.
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1 Introduction

It is well-known that the Fourier transform satisfies the convolution property. More precisely, let G be
a locally compact abelian group with a Haar measure µ and a dual group pG. The Fourier transform is a
map F : L1pGq ÝÑ C0p pGq given by the formula

@fPL1pGq

χP pG
Fpfqpχq :“

ż

G

fpxqχpxq dµpxq, (1)

whereas the Fourier convolution ‹F : L1pGq ˆ L1pGq ÝÑ L1pGq is given by

@f,gPL1pGq
xPG

f ‹F gpxq :“

ż

G

fpuqgpx ´ uq dµpuq. (2)

For the sake of convenience, from this point onwards we will write dx and du instead of “dµpxq” and
“dµpuq”, respectively. The following Fourier convolution property (see Lemma 1.7.2 in [4], p. 30) holds:

@f,gPL1pGq Fpf ‹F gq “ FpfqFpgq.
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Jaming proved that the convolution property characterizes (to a certain degree) the Fourier transform
if G “ R, S1,Z or Zn (see [6]). His paper inspired Lavanya and Thangavelu to show that any continuous *-
homomorphism of L1pCdq (with twisted convolution as multiplication) into BpL2pRdqq is essentially a Weyl
transform and deduce a similar characterization for the group Fourier transform on the Heisenberg group
(see [9] and [10]). Furthermore, Kumar and Sivananthan went on to demonstrate that the convolution
property characterizes the Fourier transform on compact groups (see [7]), while Alesker, Artstein-Avidan,
Faifman and Milman studied the Fourier transform in terms of product preserving maps (see [1]).

Studying the topic we realized two things that prompted us to write this paper. Firstly, Jaming’s
characterization of the Fourier transform need not be restricted to particular cases G “ R, S1,Z or Zn.
There is a unified approach for all locally compact abelian groups, which we demonstrate in the first part
of Section 2.

Secondly, we discovered that the Fourier transform is not the only one that can be characterized via
the convolution property. In the second part of Section 2 and in Section 3 we explain that cosine and
Laplace convolutions characterize cosine and Laplace transforms, respectively.

2 Fourier and cosine transform

As we have agreed in the Introduction, let G stand for a locally compact abelian group with Haar
measure µ and dual group pG. The formula for the Fourier transform and Fourier convolution are given by
(1) and 2, respectively.

Lemma 1. For every function g P L1pGq and x, y P G the following equality holds

Lxg ‹F Lyg “ g ‹F Lx`yg,

where for every z P G the operator Lz : L1pGq ÝÑ L1pGq is given by

@uPG Lzfpuq :“ fpu ´ zq.

Proof. For every u P G we have

Lxg ‹F Lygpuq “

ż

G

LxgpvqLygpu ´ vq dv “

ż

G

gpv ´ xqgpu ´ v ´ yq dv

v ÞÑv`x
“

ż

G

gpvqgpu ´ v ´ px ` yqq dv “

ż

G

gpvqLx`ygpu ´ vq dv “ g ‹F Lx`ygpuq,

which completes the proof.

The following theorem generalizes Theorems 2.1 and 3.1 in Jaming’s paper (see [6]).

Theorem 2. Let T : L1pGq ÝÑ L8p pGq be a linear and bounded operator. If it satisfies the Fourier
convolution property

@f,gPL1pGq T pf ‹F gq “ T pfqT pgq

then there exists a function θF : pG ÝÑ pG Y t0u such that

@fPL1pGq T pfq “ Fpfq ˝ θF (3)

where θF pφq “ 0 if and only if T pfqpφq “ 0 for every f P L1pGq.
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Proof. We pick φ P pG. If T pfqpφq “ 0 for every f P L1pGq, then we define θF pφq :“ 0 so that the equality
(3) holds. Suppose then that φ is such that T pfqpφq ‰ 0 for some f P L1pGq. We consider a nonzero,
linear functional Tφ : L1pGq ÝÑ C given by Tφpfq :“ T pfqpφq. We pick g˚ P L1pGq such that Tφpg˚q “ 1
and define a function χφ : G ÝÑ C by the formula

χφpxq :“ TφpLxg˚q.

Let us remark, that the choice of g˚ need not be unique, so there might be many functions χφ corresponding
to φ.

We will now focus on proving various properties of the function χφ. To begin with, we observe that

@x,yPG TφpLxg˚qTφpLyg˚q “ TφpLxg˚‹F Lyg˚q
Lemma 1

“ Tφpg˚‹FLx`yg˚q “ Tφpg˚qTφpLx`yg˚q “ TφpLx`yg˚q.

Taking the complex conjugate reveals the equation

@x,yPG χφpxqχφpyq “ χφpx ` yq.

Furthermore, since Tφ is a continuous linear functional, then Lemma 1.4.2 in [4], p. 18 implies that χφ

is continuous. It is also nonzero (as χφp0q “ 1) and bounded, since

@xPG |χφpxq| ď |TφpLxg˚q| ď }Tφ} ¨ }Lxg˚} “ }Tφ} ¨ }g˚}. (4)

Finally we argue that |χφpxq| “ 1 for every x P G. Indeed, suppose there exists x̄ P G such that |χφpx̄q| ‰ 1.

Since
1 “ |χφp0q| “ |χφpx̄ ´ x̄q| “ |χφpx̄q||χφp´x̄q|

then either |χφpx̄q| ą 1 or |χφp´x̄q| ą 1. Without loss of generality, we may assume that the former is
true. Consequently, we have

lim
nÑ8

|χφpnx̄q| “ |χφpx̄q|n “ 8,

which contradicts boundedness of χφ. Hence, we conclude that |χφpxq| “ 1 for every x P G. This means

that χφ P pG.

Finally, using Lemma 11.45 in [2], p. 427 (or Proposition 7 in [5], p. 123) we compute

ż

G

fpxqχφpxq dx “

ż

G

fpxqTφpLxg˚q dx “ Tφ

ˆż

G

fpxqLxg˚ dx

˙

“ Tφpf ‹F g˚q “ TφpfqTφpg˚q “ Tφpfq,

which concludes the proof if we put θF pφq :“ χφ.

We move on to show that the cosine transform admits a similar convolution characterization. The
cosine transform is a map C : L1pGq ÝÑ C0p pGq given by the formula

@f,gPL1pGq
χPCOSpGq

Cpfqpχq :“

ż

G

fpxqχpxq dx, (5)

where

COSpGq :“

"
χ P CbpGq : χ ‰ 0, @x,yPG χpxqχpyq “

χpx ` yq ` χpx ´ yq

2

*
. (6)
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Functions in COSpGq are called cosine functions on group G, since for G “ R we have

COSpGq “

"
x ÞÑ cospyxq : y P R

*
.

The cosine convolution ‹C : L1pGq ˆ L1pGq ÝÑ L1pGq is given by

@xPG f ‹C gpxq :“

ż

G

fpuq ¨
gpx ` uq ` gpx ´ uq

2
du. (7)

Let us recall a property of the cosine convolution which will be crucial in the sequel (see Theorem 2 in
[8]):

Lemma 3. Let x, y P G. If g P L1pGq is an even function, then

Lyg ‹C Lxg “ g ‹C

Lx`yg ` Lx´yg

2
. (8)

Before we present a characterization of the cosine transform we need one more technical result:

Lemma 4. Let T : L1pGq ÝÑ L8pCOSpGqq be a linear and bounded operator, which satisfies the cosine
convolution property

@f,gPL1pGq T pf ‹C gq “ T pfqT pgq. (9)

If φ P COSpGq is such that T pf˚qpφq ‰ 0 for some f˚ P L1pGq, then there exists an even function
g˚ P L1pGq such that T pg˚qpφq ‰ 0.

Proof. Let ι : G ÝÑ G be the inverse function ιpxq :“ ´x and let Tφ : L1pGq ÝÑ C be a nonzero, linear
functional given by Tφpfq :“ T pfqpφq. Then

@fPL1pGq pf ˝ ιq ‹C fpxq “

ż

G

f ˝ ιpuq ¨
fpx ` uq ` fpx ´ uq

2
du

uÞÑ´u
“

ż

G

fpuq ¨
fpx ´ uq ` fpx ` uq

2
du “ f ‹C f,

which leads to

@fPL1pGq Tφpf ˝ ιqTφpfq “ Tφppf ˝ ιq ‹C fq “ Tφpf ‹C fq “ Tφpfq2.

Consequently, we have Tφpf˚ ˝ ιq “ Tφpf˚q. Finally, we put g˚ :“ f˚ ` f˚ ˝ ι and observe that

Tφpg˚q “ Tφpf˚ ` f˚ ˝ ιq “ Tφpf˚q ` Tφpf˚ ˝ ιq “ 2Tφpf˚q ‰ 0,

which concludes the proof.

We are now ready to demonstrate a counterpart of Theorem 2 for the cosine transform:
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Theorem 5. Let T : L1pGq ÝÑ L8pCOSpGqq be a linear and bounded operator. If it satisfies the cosine
convolution property (9), then there exists a function θC : COSpGq ÝÑ COSpGq Y t0u such that

@fPL1pGq T pfq “ Cpfq ˝ θC (10)

where θCpφq “ 0 if and only if T pfqpφq “ 0 for every f P L1pGq.

Proof. The proof follows the same lines as the proof of Theorem 2. We pick φ P COSpGq and check
if T pfqpφq “ 0 for every f P L1pGq. If so, we define θCpφq :“ 0. Otherwise, if T pfqpφq ‰ 0 for some
f P L1pGq, then we consider a nonzero, linear functional Tφ : L1pGq ÝÑ C given by Tφpfq :“ T pfqpφq. By
Lemma 4 there exists an even function g˚ P L1pGq such that Tφpg˚q “ 1. We may thus define a function
χφ : G ÝÑ C by the formula

χφpxq :“ TφpLxg˚q.

As in Theorem 2 we study the properties of χφ and see that

• it is nonzero due to χφp0q “ 1,

• it is bounded due to (4),

• it is continuous due to Lemma 1.4.2 in [4], p. 18.

Furthermore, we have

@x,yPG TφpLxg˚qTφpLyg˚q “ TφpLxg˚ ‹c Lyg˚q
Lemma 3

“ Tφ

ˆ
g˚ ‹C

Lx`yg˚ ` Lx´yg˚

2

˙

“ Tφpg˚q ¨
TφpLx`yg˚q ` TφpLx´yg˚q

2
“

TφpLx`yg˚q ` TφpLx´yg˚q

2
,

which can be written as

@x,yPG χφpxqχφpyq “
χφpx ` yq ` χφpx ´ yq

2
.

We conclude that χφ P COSpGq, which in particular means that

@yPG χφpyq “
χφpyq ` χφp´yq

2
. (11)

Finally, using Lemma 11.45 in [2], p. 427 (or Proposition 7 in [5], p. 123) we compute

ż

G

fpxqχφpxq dx
(11)
“

ż

G

fpxq ¨
χφpxq ` χφp´xq

2
dx “

ż

G

fpxq ¨
TφpLxg˚q ` TφpL´xg˚q

2
dx

“ Tφ

ˆż

G

fpxq ¨
Lxg˚ ` L´xg˚

2
dx

˙
“ Tφpf ‹C g˚q “ TφpfqTφpg˚q “ Tφpfq,

which concludes the proof if we put θCpφq :“ χφ.

5



3 Laplace transform

In the previous section we focused on Fourier and cosine transforms and characterized them via suitable
convolution properties. The purpose of the current section is to demonstrate that the Laplace transform
enjoys a similar characterization. Let us recall that the Laplace transform is a map L : L1pR`q ÝÑ C0pR`q
given by

@fPL1pR`q
yPR`

Lpfqpyq :“

ż 8

0

e´yxfpxq dx,

whereas the Laplace convolution ‹L : L1pR`q ˆ L1pR`q ÝÑ L1pR`q is given by

@f,gPL1pR`q
xPR`

f ‹L gpxq :“

ż x

0

fpuqgpx ´ uq du. (12)

It is well-known that the Laplace transform satisfies the equality (see Theorem 2.39 in [13], p. 92):

@f,gPL1pR`q Lpf ‹L gq “ LpfqLpgq. (13)

Similarly to the previous section, our goal is to “reverse the implication” and ask whether there are any
other operators satisfying (13). A (almost) negative answer will constitute a characterization of the Laplace
transform in terms of the Laplace convolution (12). To this end, we need the following auxilary lemma:

Lemma 6. Let pΩ, Σ, µq be a measure space, g P L8pΩq and let D be a dense subset in L1pΩq. If

@fPD

ż

Ω

fpxqgpxq dx “ 0

then g “ 0.

Proof. We define a linear and bounded functional T : L1pΩq ÝÑ C with the formula

T pfq :“

ż

Ω

fpxqgpxq dx.

Since D is dense in L1pΩq and T |D “ 0 then by Theorem 1.7 in [11], p. 9 we conclude that T pfq “ 0 for
every f P L1pΩq. In particular, T pgq “ 0, which implies that g “ 0.

At last, we are ready to characterize the Laplace transform in terms of the Laplace convolution property:

Theorem 7. Let T : L1pR`q ÝÑ L8pR`q be a linear and bounded operator. If it satisfies the Laplace
convolution property

@f,gPL1pGq T pf ‹L gq “ T pfqT pgq (14)

then there exists a function θL : R` ÝÑ C such that

@fPL1pR`q T pfq “ Lpfq ˝ θL

where θLpyq “ 0 if and only if T pfqpyq “ 0 for every f P L1pR`q.
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Proof. We pick y P R` and check whether T pfqpyq “ 0 for every f P L1pR`q. If so, we define θLpyq :“ 0.

Otherwise, if T pfqpyq ‰ 0 for some f P L1pR`q, then we consider a nonzero, linear functional Ty :
L1pR`q ÝÑ C given by Typfq :“ T pfqpyq. By Theorem 5.2.16 in [3], p. 161 there exists a function
χy P L8pR`q such that

@fPL1pGq Typfq “

ż 8

0

fpxqχypxq dx.

By Fubini’s theorem (see Theorem B.3.1 in [4], p. 287 or Theorem 8.8 in [12], p. 164) we have

@f,gPL1pR`q Typf ‹L gq “

ż 8

0

f ‹L gpuqχypuq du “

ż 8

0

ż u

0

fpvqgpu ´ vqχypuq dvdu

“

ż 8

0

ż 8

v

fpvqgpu ´ vqχypuq dudv
uÞÑu`v

“

ż 8

0

ż 8

0

fpvqgpuqχypu ` vq dudv.

Since Ty is nonzero we pick g˚ P CcpR`q such that Typg˚q “ 1. By the Laplace convolution property (14)
we have

@fPL1pR`q Typf ‹L g˚q “ TypfqTypg˚q “ Typfq,

so

@fPL1pR`q

ż 8

0

ż 8

0

fpvqg˚puqχypu ` vq dudv “

ż 8

0

fpvqχypvq dv,

which we rewrite as

@fPL1pR`q

ż 8

0

fpvq

ˆż 8

0

g˚puqχypu ` vq du ´ χypvq

˙
dv “ 0.

Since v ÞÑ
ş8

0
g˚puqχypu ` vq du ´ χypvq is a L8´function then by Lemma 6 we conclude that

@vPR`
χypvq “

ż 8

0

g˚puqχypu ` vq du.

We use this integral functional equation to establish continuity of χy. For a fixed v˚ P R` and h P p´v˚, v˚q
we have

|χypv˚ ` hq ´ χypv˚q| “

ˇ̌
ˇ̌
ż 8

0

g˚puqχypu ` v˚ ` hq du ´

ż 8

0

g˚puqχypu ` v˚q du

ˇ̌
ˇ̌

“

ˇ̌
ˇ̌
ż 8

v˚`h

g˚pu ´ v˚ ´ hqχypuq du ´

ż 8

v˚

g˚pu ´ v˚qχypuq du

ˇ̌
ˇ̌

ď

ż 8

v˚`h

|g˚pu ´ v˚ ´ hq ´ g˚pu ´ v˚q||χypuq| du `

ż v˚`h

v˚

|g˚pu ´ v˚q||χypuq| du

ď }χy}8

ˆż 8

v˚`h

|g˚pu ´ v˚ ´ hq ´ g˚pu ´ v˚q| du ` }g˚}8h

˙
.

Since

lim
hÑ0

ż 8

v˚`h

|g˚pu ´ v˚ ´ hq ´ g˚pu ´ v˚q| du “ 0

7



due to the dominated convergence theorem, then

lim
hÑ0

|χypv˚ ` hq ´ χypv˚q| “ 0,

establishing the continuity of χy.
For the second time we use the Laplace convolution property (14) to obtain

@f,gPL1pR`q

ż 8

0

ż 8

0

fpvqgpuqχypu ` vq dudv “

ż 8

0

ż 8

0

fpvqgpuqχypvqχypuq dudv,

which we rewrite as

@f,gPL1pR`q

ż 8

0

ż 8

0

fpvqgpuq

ˆ
χypu ` vq ´ χypvqχypuq

˙
dudv “ 0.

Since pu, vq ÞÑ χypu ` vq ´ χypvqχypuq is a L8´function, then by Lemma 6 we have

@u,vPR`
χypu ` vq “ χypvqχypuq.

This functional equation proves that if χypūq “ 0 for some ū P R` then χy “ 0 and consequently, Ty “ 0.

We have already dealt with this case at the beginning of the proof, so we assume that χypuq ‰ 0 for every
u P R`. By Theorem 1.6.11 in [3], p. 36 (and boundedness of χy) we obtain χypuq “ e´zu for some z P R`

(which is dependent on y). This concludes the proof if we put θLpyq :“ z.
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