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INTEGRAL TRANSFORMS OF FUNCTIONALS
IN L2(C0[0, T ])

BYOUNG SOO KIM AND DAVID SKOUG

ABSTRACT. In this paper we give a necessary and suffi-
cient condition that a functional F (x) in L2(C0[0, T ]) has an
integral transform Fα,βF (x) which also belongs to L2(C0[0, T ]).

1. Introduction. Let C0[0, T ] denote one-parameter Wiener space;
that is, the space of all R-valued continuous functions x(t) on [0, T ]
with x(0) = 0. LetM denote the class of all Wiener measurable subsets
of C0[0, T ], and let m denote Wiener measure. (C0[0, T ],M,m) is a
complete measure space, and we denote the Wiener integral of a Wiener
integrable functional F by∫

C0[0,T ]

F (x)m(dx).

Let L2(C0[0, T ]) be the space of all real or complex-valued functionals
F satisfying

(1.1)
∫

C0[0,T ]

|F (x)|2m(dx) < ∞.

Let K = K[0, T ] be the space of C-valued continuous functions
defined on [0, T ] which vanish at t = 0. Next we state the definition
of the integral transform Fα,β introduced in [6] and used in [5], for
functionals F defined on K.

Definition 1. Let F be a functional defined on K. For each pair of
nonzero complex numbers α and β, the integral transform Fα,βF of F
is defined by

(1.2) Fα,βF (y) =
∫

C0[0,T ]

F (αx+ βy)m(dx), y ∈ K,
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if it exists.

Remark 1. (i) When α = 1 and β = i, Fα,βF is the Fourier-Wiener
transform introduced by Cameron in [1] and used by Cameron and
Martin in [2].

(ii) When α =
√
2 and β = i, Fα,βF is the modified Fourier-Wiener

transform introduced by Cameron and Martin in [3].

In this paper we give a necessary and sufficient condition that a
functional F (x) in L2(C0[0, T ]) has an integral transform Fα,βF also
belonging to L2(C0[0, T ]).

2. Integral transforms of the Fourier-Hermite functionals.
For n = 0, 1, 2, . . . , let Hn(u) denote the Hermite polynomial

(2.1) Hn(u) = (−1)n(n!)−1/2eu2/2 dn

dun
(e−u2/2).

Then, as is well known, the set

(2.2) {(2π)−1/4Hn(u)e−u2/4 : n = 0, 1, 2, . . . }
is a CON set on R.

Let {ap(t) : p = 1, 2, . . . } be a CON set of functions of bounded
variation on [0, T ]. Define

(2.3)

Φn,p(x) = Hn

( ∫ T

0

ap(t) dx(t)
)
, n = 0, 1, 2, . . . , p = 1, 2, . . . ,

and

(2.4) Ψn1,... ,np
(x) = Ψn1,... ,np,0,... ,0(x) = Φn1,1(x) · · ·Φnp,p(x).

The functionals in (2.4) are called the Fourier-Hermite functionals.

In [4], Cameron and Martin showed that the Fourier-Hermite func-
tionals form a CON set in L2(C0[0, T ]). That is to say that every func-
tional F (x) in L2(C0[0, T ]) has a Fourier-Hermite development which
converges in the L2(C0[0, T ]) sense to F (x); namely, that

(2.5) F (x) = l.i.m.
N→∞

N∑
n1,... ,nN=0

AF
n1,... ,nN

Ψn1,... ,nN
(x),
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where AF
n1,... ,nN

is the Fourier-Hermite coefficient,

(2.6) AF
n1,... ,nN

=
∫

C0[0,T ]

F (x)Ψn1,... ,nN
(x)m(dx).

Throughout this paper, in order to ensure that various integrals exist,
we will assume that β = a+ bi is a nonzero complex number satisfying
the inequality

(2.7) Re (1− β2) = 1 + b2 − a2 > 0.

Note that Re (1−β2) = 1+b2−a2 > 0 if and only if the point (a, b) ∈ R2

lies in the open region, determined by the hyperbola a2 − b2 = 1,
containing the b-axis. Hence, for all |β| ≤ 1, β �= ±1, Re (1− β2) > 0.
Next we define

(2.8) α ≡
√
1− β2, −π/4 < arg(α) < π/4

and note that α2 + β2 = 1 and Re (α2) = Re (1− β2) > 0.

Our first lemma plays a key role in finding the integral transform of
the Fourier-Hermite functionals.

Lemma 1. Let β be a nonzero complex number satisfying inequality
(2.7) and let α be defined by equation (2.8). Let r ∈ R. Then, for
n = 0, 1, 2, . . . ,

(2.9)
∫
R

Hn(u) exp
{
− 1

2α2
(u− rβ)2

}
du = α

√
2π βnHn(r).

Proof. SinceHn(u) is a polynomial of degree n and, since Re (α2) > 0,
the integral exists and

In ≡
∫
R

Hn(u) exp
{
− 1

2α2
(u− rβ)2

}
du

= (−1)n(n!)−1/2

∫
R

eu2/2 dn

dun
(e−u2/2) exp

{
− 1

2α2
(u− rβ)2

}
du

= (−1)n(n!)−1/2er2/2

∫
R

exp
{
− β2

2α2

(
u− r

β

)2}
dn

dun
(e−u2/2) du.
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Then, integrating by parts n times, we obtain

In = (n!)−1/2er2/2

∫
R

e−u2/2 dn

dun

(
exp

{
− β2

2α2

(
u− r

β

)2})
du

= (n!)−1/2(−β)ner2/2

∫
R

e−u2/2 dn

drn

(
exp

{
− β2

2α2

(
u− r

β

)2})
du

= (n!)−1/2(−β)ner2/2 dn

drn

( ∫
R

exp
{
− 1

2α2
+

rβ

α2
u− r2

2α2

}
du

)

= (n!)−1/2(−β)nα
√
2π er2/2 dn

drn
(e−r2/2)

= α
√
2π βnHn(r),

which completes the proof of Lemma 1.

Remark 2. Equation (2.9) holds for all r ∈ C since Hn(r) is a
polynomial of degree n and so both sides of equation (2.9) are analytic
functions of r throughout C.

Next, using Lemma 1, we obtain a formula for the integral transform
of the Fourier-Hermite functionals given by equation (2.4).

Theorem 2. Let α and β be as in Lemma 1. Then, for each y ∈ K,

(2.10) Fα,βΨn1,... ,np
(y) = βn1+···+npΨn1,... ,np

(y).

Proof. For j = 1, 2, . . . , let rj ≡ ∫ T

0
aj(t) dy(t) = 〈aj , y〉, which we

know exists for all y ∈ K since aj is of bounded variation on [0, T ].
Then for every y ∈ K,

Fα,βΨn1,... ,np
(y) =

∫
C0[0,T ]

Ψn1,... ,np
(αx+ βy)m(dx)

=
∫

C0[0,T ]

Hn1(α〈a1, x〉+ β〈a1, y〉) · · ·

· · ·Hnp
(α〈ap, x〉+ β〈ap, y〉)m(dx)

=
p∏

j=1

[
(2π)−1/2

∫
R

Hnj
(αuj + βrj)e−u2

j/2 duj

]
.
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Note that for all positive α and all β ∈ C,∫
R

Hn(αu+ βr)e−u2/2 du =
1
α

∫
R

Hn(u)e−(u−rβ)2/2α2
du.

But each side of the above expression is an analytic function of α
throughout the region {α ∈ C : Re (α2) > 0}. Hence, by the uniqueness
theorem for analytic functions, the above equality holds for all α with
Re (α2) > 0 and all β ∈ C and so

Fα,βΨn1,... ,np
(y) =

p∏
j=1

[
(2πα2)−1/2

∫
R

Hnj
(uj)e−(uj−rjβ)2/2α2

duj

]
.

Then, using Lemma 1, we obtain equation (2.10), the desired result.

Our first corollary follows immediately from equation (2.10) and the
fact that ‖Ψn1,... ,np

‖2 = 1.

Corollary 3. Let α and β be as in Lemma 1. Then

(2.11) ‖Fα,βΨn1,... ,np
‖2 = |β|n1+···+np .

Corollary 4. Choosing α =
√
2 and β = i in equation (2.10) we

obtain Lemma 5.1 [3, p. 104]; namely, that

(2.12) F√
2,i Ψn1,... ,np

(y) = in1+···+npΨn1,... ,np
(y)

for all y ∈ K.

3. Integral transforms of functionals belonging to L2(C0[0, T ]).

For F ∈ L2(C0[0, T ]) let (2.5) denote the Fourier-Hermite expres-
sion of F (x) with the Fourier-Hermite coefficients AF

n1,... ,nN
given by

equation (2.6). For N = 1, 2, . . . , let

(3.1) FN (x) =
N∑

n1,... ,nN=0

AF
n1,... ,nN

Ψn1,... ,nN
(x).
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Then, by Theorem 2, we know that for each N = 1, 2, . . . , Fα,βFN

exists for all α and β as in Lemma 1, Fα,βFN is an element of
L2(C0[0, T ]) such that, for each y ∈ K,

(3.2) Fα,βFN (y) =
N∑

n1,... ,nN=0

AF
n1,... ,nN

βn1+···+nNΨn1,... ,nN
(y).

Furthermore,

(3.3) ‖Fα,βFN‖2
2 =

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···nN |2.

Definition 2. Let F ∈ L2(C0[0, T ]) be given by (2.5). Then, for each
nonzero complex numbers α and β, we define the integral transform
Fα,βF of F to be
(3.4) Fα,βF (x) = l.i.m.

N→∞
Fα,βFN (x), x ∈ C0[0, T ]

if it exists; that is to say, if

(3.5) lim
N→∞

∫
C0[0,T ]

|Fα,βF (x)−Fα,βFN (x)|2m(dx) = 0.

Lemma 5. Let F ∈ L2(C0[0, T ]) be given by equation (2.5) with
Fourier-Hermite coefficients given by (2.6). Let α and β be as in
Lemma 1 and assume that Fα,βF exists and is in L2(C0[0, T ]). Then

(3.6) A
Fα,βF
n1,... ,nN = AF

n1,... ,nN
βn1+···+nN

for each N = 1, 2, . . . .

Proof. Fix N = 1, 2, . . . . For any given ε > 0, take a natural number
M satisfying ‖Fα,βF −Fα,βFM‖2 < ε and M ≥ N . Then we have

|AFα,βF
n1,... ,nN −AF

n1,... ,nN
βn1+···+nN |

=
∣∣∣∣
∫

C0[0,T ]

Fα,βF (x)Ψn1,... ,nN
(x)m(dx)−AF

n1,... ,nN
βn1+···+nN

∣∣∣∣
≤

∣∣∣∣
∫

C0[0,T ]

[Fα,βF (x)−Fα,βFM (x)]Ψn1,... ,nN
(x)m(dx)

∣∣∣∣
+

∣∣∣∣
∫

C0[0,T ]

Fα,βFM (x)Ψn1,... ,nN
(x)m(dx)−AF

n1,... ,nN
βn1+···+nN

∣∣∣∣.
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But, by the Hölder inequality,∣∣∣∣
∫

C0[0,T ]

[Fα,βF (x)−Fα,βFM (x)]Ψn1,... ,nN
(x)m(dx)

∣∣∣∣
≤ ‖Fα,βF −Fα,βFM‖2 < ε

and from (3.2) we know that∫
C0[0,T ]

Fα,βFM (x)Ψn1,... ,nN
(x)m(dx) = AF

n1,... ,nN
βn1+···+nN .

Hence
|AFα,βF

n1,... ,nN −AF
n1,... ,nN

βn1+···+nN | < ε

which establishes equation (3.6).

The following theorem is our main result. It gives a necessary and
sufficient condition that a functional F in L2(C0[0, T ]) has an integral
transform Fα,βF belonging to L2(C0[0, T ]).

Theorem 6. Let F ∈ L2(C0[0, T ]) be given by equation (2.5) with
Fourier-Hermite coefficients given by (2.6). Let α and β be as in
Lemma 1. Then Fα,βF exists and is an element of L2(C0[0, T ]) if
and only if

(3.7) lim
N→∞

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2 < ∞.

Furthermore, if (3.7) holds, then the Fourier-Hermite expression of
Fα,βF is given by

(3.8) Fα,βF (y) = l.i.m.
N→∞

N∑
n1,... ,nN=0

AF
n1,... ,nN

βn1+···+nNΨn1,... ,nN
(y).

Proof. Assume that Fα,βF exists and is an element of L2(C0[0, T ]).
By (3.5) we have that, for any given ε > 0,∫

C0[0,T ]

|Fα,βF (x)−Fα,βFN (x)|2m(dx) < ε
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for sufficiently large N , and so

( N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2
)1/2

= ‖Fα,βFN‖2

≤ ‖Fα,βF‖2 + ‖Fα,β −Fα,βFN‖2

≤ ‖Fα,βF‖2 + ε.

Hence we have

lim
N→∞

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2 ≤ ‖Fα,βF‖2
2 < ∞.

To prove the converse, suppose that (3.7) holds. Let M > N , let

IM = {(n1, . . . , nM ) : n1, . . . , nM = 0, 1, . . . ,M},
and let

IN = {(n1, . . . , nM ) : n1, . . . , nN = 0, 1, . . . , N
and nN+1 = · · · = nM = 0}.

Then∫
C0[0,T ]

|Fα,βFM (x)−Fα,βFN (x)|2m(dx)

=
∫

C0[0,T ]

∣∣∣ ∑
IM−IN

AF
n1,... ,nM

βn1+···+nMΨn1,... ,nM
(x)

∣∣∣2m(dx)

=
∑

IM−IN

|AF
n1,... ,nM

βn1+···+nM |2

=
M∑

n1,... ,nM=0

|AF
n1,... ,nM

βn1+···+nM |2 −
N∑

n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2

which goes to 0 as M,N → ∞. Hence {Fα,βFN} is a Cauchy sequence
in L2(C0[0, T ]) and, since L2(C0[0, T ]) is complete,

Fα,βF (x) = l.i.m.
N→∞

Fα,βFN (x), x ∈ C0[0, T ]
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exists and is an element of L2(C0[0, T ]).

Corollary 7. Let F, α and β be as in Theorem 6. Furthermore,
assume that |β| ≤ 1. Then Fα,βF exists, belongs to L2(C0[0, T ]), and

(3.9)

‖Fα,βF‖2
2 = lim

N→∞

N∑
n1,... ,nN =0

|AF
n1,... ,nN

βn1+···+nN |2

≤ lim
N→∞

N∑
n1,... ,nN =0

|AF
n1,... ,nN

|2 = ‖F‖2
2.

In addition,

(3.10) ‖Fα,βF‖2 = ‖F‖2

if and only if |β| = 1.

Corollary 8. Let p be a fixed positive integer, and let F (x) =
f(〈a1, x〉, . . . , 〈ap, x〉) where f is such that

(3.11) f(u1, . . . , up) exp
{
− 1

4

p∑
j=1

u2
j

}
∈ L2(Rp).

Let α and β be as in Lemma 1. Then the integral transform Fα,βF
exists and is an element of L2(C0[0, T ]). (Note that in this case we
don’t need the restriction |β| ≤ 1).

Proof. Since zero is an admissible value for each nj in the Fourier-
Hermite coefficient AF

n1,... ,nN
of F , we need only consider the two cases

N = p and N > p. Then, using (2.2), (2.3), (2.4) and (2.6), a direct
calculation shows that, for all nonnegative indices n1, . . . , nN ,

AF
n1,... ,nN

=




0 N > p and nN > 0,( 1
2π

)p/2
∫
Rp

f(u1, . . . , up)Hn1(u1) . . .

Hnp
(up) exp

{
− 1

2

p∑
j=1

u2
j

}
d#u N = p.
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Moreover, by (3.11), we know that |AF
n1,... ,np

| < ∞ for all nonnegative
indices n1, . . . , np. Hence,

lim
N→∞

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2

≤ |β|2p2
p∑

n1,... ,np=0

|AF
n1,... ,np

|2 < ∞,

and so, by Theorem 6, Fα,βF exists and is an element of L2(C0[0, T ]).

Next, choosing α =
√
2 and β = i, we obtain the main theorem of

[3].

Corollary 9. Every functional F (x) ∈ L2(C0[0, T ]) has a Fourier-
Wiener transform G(y) ∈ L2(C0[0, T ]). The functional G(y) has
F (−x) as its transform and F and G satisfy Plancherel’s relation

(3.12)
∫

C0[0,T ]

|F (x)|2m(dx) =
∫

C0[0,T ]

|G(y)|2m(dy).

Proof. Using Corollary 7 and Theorem 6, we obtain that G(y) ∈
L2(C0[0, T ]) is given by

G(y) = l.i.m.
N→∞

N∑
n1,... ,nN =0

AF
n1,... ,nN

in1+···+nNΨn1,... ,nN
(y),

and that

F√
2,iG(y) = l.i.m.

N→∞

N∑
n1,... ,nN=0

AF
n1,... ,nN

(−1)n1+···+nNΨn1,... ,nN
(y).

But it is easy to see that

(−1)n1+···+nNΨn1,... ,nN
(y) = Ψn1,... ,nN

(−y)
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and so F√
2,iG(y) = F (−y). Equation (3.12) then follows immediately

from the Fourier-Hermite expressions for F (x) and G(y) and the fact
that {Ψn1,... ,nN

} is an orthonormal set.

Remark 3. In [7], Lee, for the abstract Wiener space (H,B, p1) (also
see [5]) and the class Ea(B) of the restrictions to B of exponential type
analytic functionals on [B], the complexification of B, established the
following theorem [7, Theorem 2.6].

Theorem 2.6 [7]. For F ∈ Ea(B),

∫
B

|Fα,βF (y)|2p1(dy) =
∫

B

|F (y)|2p1(dy)

if and only if α2 + β2 = 1 and |β| = 1.

He then pointed out that Theorem 2.6 ensures that Fα,β can be
extended from Ea(B) to L2(p1) as a unitary operator.

4. Further results. Recall that, throughout this paper, we have
assumed that β = a + bi was a nonzero complex number satisfying
inequality (2.7); namely, that Re (1 − β2) > 0. Furthermore, in
Corollary 7, we showed that if β also satisfies the inequality |β| ≤ 1,
then Fα,β exists as an element of L2(C0[0, T ]) for all F ∈ L2(C0[0, T ])
with α given by (2.8). In the example below we show that for any
complex number β with |β| > 1 and Re (1 − β2) > 0, there exists
a functional F ∈ L2(C0[0, T ]) (of course F depends on β) such that
Fα,βF doesn’t exist as an element of L2(C0[0, T ]).

Example 10. Let β = a + bi be such that |β| = k > 1 and
Re (1 − β2) > 0. Let α be given by (2.8). Let Ψ(0)(x) ≡ Ψ0(x),
Ψ(1)(x) ≡ Ψ1(x), Ψ(2)(x) ≡ Ψ1,1(x), Ψ(3)(x) ≡ Ψ1,1,1(x), etc. For
N = 1, 2, . . . , let

(4.1) FN (x) =
N∑

n=0

k−nΨ(n)(x).
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Then, since {Ψ(n) : n = 0, 1, 2, . . . } is an orthonormal set of functionals
in L2(C0[0, T ]),

∫
C0[0,T ]

|FN (x)|2m(dx) =
N∑

n=0

k−2n =
k2

k2 − 1

[
1−

(
1
k2

)N+1]
,

and so

lim
N→∞

‖FN‖2
2 =

k2

k2 − 1
.

But, for N > M ,

‖FN − FM‖2
2 =

N∑
n=M+1

1
k2n

−→ 0

as M,N → ∞. Hence {FN}∞N=1 is a Cauchy sequence in L2(C0[0, T ])
and, since L2(C0[0, T ]) is complete,

F (x) ≡ l.i.m.
N→∞

FN (x)

is an element of L2(C0[0, T ]). In fact,

F (x) =
∞∑

n=0

k−nΨ(n)(x)

is the Fourier-Hermite series for F ; i.e., the Fourier-Hermite coefficients
for F are AF

0 = 1, and for np �= 0,

(4.2) AF
n1,... ,np

=
{
0 n1n2 . . . np �= 1
k−p n1n2 . . . np = 1.

Next, using (4.2) and the fact that |β| = k, we observe that

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN |2 = |AF
0 β0|2 + |AF

1 β1|2 + |AF
1,1β

2|2

+ · · ·+ |AF
1,... ,1β

N |2
= 1 + 1 + 1 + · · ·+ 1 = N + 1.
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Hence, by Theorem 6, Fα,βF doesn’t exist as an element of L2(C0[0, T ]).
However, note that Fα,βF does exist as an element of L2(C0[0, T ]) if
|β| < k with Re (1− β2) > 0 and α =

√
1− β2.

Our final results in this paper involve the inverse transform of Fα,β .
In order to ensure the existence of the inverse transform of Fα,β , we
need to put an additional assumption on β = a+ bi; namely, that

(4.3) Re
(
1− 1

β2

)
> 0.

But Re [1 − (1/β2)] > 0 ⇔ (a2 + b2)2 − (a2 − b2) > 0. But the graph
of (a2 + b2)2 − (a2 − b2) = 0 is the lemniscate r2 = cos(2θ). Hence
Re [1− (1/β2)] > 0 if and only if the point (a, b) ∈ R2 lies outside the
lemniscate (a2 + b2)2 − (a2 − b2) = 0.

Theorem 11. Let F, β and α be as in Theorem 6, and assume
that (3.7) holds. Furthermore, assume that β satisfies inequality (4.3).
Then, for α′ ≡ √

1− 1/β2 and β′ = ±1/β, we have that

(4.4) Fα′,β′Fα,βF (y) = F (ββ′y), y ∈ C0[0, T ].

That is to say,

Fα′,1/βFα,βF (y) = F (y), y ∈ C0[0, T ],

and
Fα′,−1/βFα,βF (y) = F (−y), y ∈ C0[0, T ].

Proof. Since Fα,βF exists, the Fourier-Hermite expression of it is
given by

Fα,βF (y) = l.i.m.
N→∞

N∑
n1,... ,nN=0

AF
n1,... ,nN

βn1+···+nNΨn1,... ,nN
(y).

Now

lim
N→∞

N∑
n1,... ,nN=0

|AF
n1,... ,nN

βn1+···+nN (β′)n1+···+nN |2

= lim
N→∞

N∑
n1,... ,nN=0

|AF
n1,... ,nN

|2 = ‖F‖2
2 < ∞.
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Hence, by Theorem 6, Fα′,β′Fα,βF exists and is given by

Fα′,β′Fα,βF (y) = l.i.m.
N→∞

N∑
n1,... ,nN=0

AF
n1,... ,nN

(ββ′)n1+···+nNΨn1,... ,nN
(y)

= F (ββ′y)

which completes the proof of Theorem 11.

Remark 4. Some special cases of Theorem 11:

F√
2,−i F√

2,i F (y) = F (y),

F√
2,i F√

2,i F (y) = F (−y),

F(7−4
√

2i)1/2/3,(2+
√

2i)/3 F1+i/
√

2,1−i/
√

2 F (y) = F (y).
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