INTEGRAL TRANSFORMS OF FUNCTIONALS
 IN $L_{2}\left(C_{0}[0, T]\right)$

BYOUNG SOO KIM AND DAVID SKOUG

> ABSTRACT. In this paper we give a necessary and sufficient condition that a functional $F(x)$ in $L_{2}\left(C_{0}[0, T]\right)$ has an integral transform $\mathcal{F}_{\alpha, \beta} F(x)$ which also belongs to $L_{2}\left(C_{0}[0, T]\right)$.

1. Introduction. Let $C_{0}[0, T]$ denote one-parameter Wiener space; that is, the space of all \mathbf{R}-valued continuous functions $x(t)$ on $[0, T]$ with $x(0)=0$. Let \mathcal{M} denote the class of all Wiener measurable subsets of $C_{0}[0, T]$, and let m denote Wiener measure. $\left(C_{0}[0, T], \mathcal{M}, m\right)$ is a complete measure space, and we denote the Wiener integral of a Wiener integrable functional F by

$$
\int_{C_{0}[0, T]} F(x) m(d x) .
$$

Let $L_{2}\left(C_{0}[0, T]\right)$ be the space of all real or complex-valued functionals F satisfying

$$
\begin{equation*}
\int_{C_{0}[0, T]}|F(x)|^{2} m(d x)<\infty \tag{1.1}
\end{equation*}
$$

Let $K=K[0, T]$ be the space of \mathbf{C}-valued continuous functions defined on $[0, T]$ which vanish at $t=0$. Next we state the definition of the integral transform $\mathcal{F}_{\alpha, \beta}$ introduced in [6] and used in [5], for functionals F defined on K.

Definition 1. Let F be a functional defined on K. For each pair of nonzero complex numbers α and β, the integral transform $\mathcal{F}_{\alpha, \beta} F$ of F is defined by

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} F(y)=\int_{C_{0}[0, T]} F(\alpha x+\beta y) m(d x), \quad y \in K \tag{1.2}
\end{equation*}
$$

[^0]if it exists.

Remark 1. (i) When $\alpha=1$ and $\beta=i, \mathcal{F}_{\alpha, \beta} F$ is the Fourier-Wiener transform introduced by Cameron in [1] and used by Cameron and Martin in [2].
(ii) When $\alpha=\sqrt{2}$ and $\beta=i, \mathcal{F}_{\alpha, \beta} F$ is the modified Fourier-Wiener transform introduced by Cameron and Martin in [3].
In this paper we give a necessary and sufficient condition that a functional $F(x)$ in $L_{2}\left(C_{0}[0, T]\right)$ has an integral transform $\mathcal{F}_{\alpha, \beta} F$ also belonging to $L_{2}\left(C_{0}[0, T]\right)$.

2. Integral transforms of the Fourier-Hermite functionals.

 For $n=0,1,2, \ldots$, let $H_{n}(u)$ denote the Hermite polynomial$$
\begin{equation*}
H_{n}(u)=(-1)^{n}(n!)^{-1 / 2} e^{u^{2} / 2} \frac{d^{n}}{d u^{n}}\left(e^{-u^{2} / 2}\right) \tag{2.1}
\end{equation*}
$$

Then, as is well known, the set

$$
\begin{equation*}
\left\{(2 \pi)^{-1 / 4} H_{n}(u) e^{-u^{2} / 4}: n=0,1,2, \ldots\right\} \tag{2.2}
\end{equation*}
$$

is a CON set on \mathbf{R}.
Let $\left\{a_{p}(t): p=1,2, \ldots\right\}$ be a CON set of functions of bounded variation on $[0, T]$. Define

$$
\begin{equation*}
\Phi_{n, p}(x)=H_{n}\left(\int_{0}^{T} a_{p}(t) d x(t)\right), \quad n=0,1,2, \ldots, \quad p=1,2, \ldots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{n_{1}, \ldots, n_{p}}(x)=\Psi_{n_{1}, \ldots, n_{p}, 0, \ldots, 0}(x)=\Phi_{n_{1}, 1}(x) \cdots \Phi_{n_{p}, p}(x) \tag{2.4}
\end{equation*}
$$

The functionals in (2.4) are called the Fourier-Hermite functionals.
In [4], Cameron and Martin showed that the Fourier-Hermite functionals form a CON set in $L_{2}\left(C_{0}[0, T]\right)$. That is to say that every functional $F(x)$ in $L_{2}\left(C_{0}[0, T]\right)$ has a Fourier-Hermite development which converges in the $L_{2}\left(C_{0}[0, T]\right)$ sense to $F(x)$; namely, that

$$
\begin{equation*}
F(x)=\underset{N \rightarrow \infty}{\operatorname{li.i.m.}} \sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} \Psi_{n_{1}, \ldots, n_{N}}(x) \tag{2.5}
\end{equation*}
$$

where $A_{n_{1}, \ldots, n_{N}}^{F}$ is the Fourier-Hermite coefficient,

$$
\begin{equation*}
A_{n_{1}, \ldots, n_{N}}^{F}=\int_{C_{0}[0, T]} F(x) \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x) \tag{2.6}
\end{equation*}
$$

Throughout this paper, in order to ensure that various integrals exist, we will assume that $\beta=a+b i$ is a nonzero complex number satisfying the inequality

$$
\begin{equation*}
\operatorname{Re}\left(1-\beta^{2}\right)=1+b^{2}-a^{2}>0 \tag{2.7}
\end{equation*}
$$

Note that $\operatorname{Re}\left(1-\beta^{2}\right)=1+b^{2}-a^{2}>0$ if and only if the point $(a, b) \in \mathbf{R}^{2}$ lies in the open region, determined by the hyperbola $a^{2}-b^{2}=1$, containing the b-axis. Hence, for all $|\beta| \leq 1, \beta \neq \pm 1, \operatorname{Re}\left(1-\beta^{2}\right)>0$. Next we define

$$
\begin{equation*}
\alpha \equiv \sqrt{1-\beta^{2}}, \quad-\pi / 4<\arg (\alpha)<\pi / 4 \tag{2.8}
\end{equation*}
$$

and note that $\alpha^{2}+\beta^{2}=1$ and $\operatorname{Re}\left(\alpha^{2}\right)=\operatorname{Re}\left(1-\beta^{2}\right)>0$.
Our first lemma plays a key role in finding the integral transform of the Fourier-Hermite functionals.

Lemma 1. Let β be a nonzero complex number satisfying inequality (2.7) and let α be defined by equation (2.8). Let $r \in \mathbf{R}$. Then, for $n=0,1,2, \ldots$,

$$
\begin{equation*}
\int_{\mathbf{R}} H_{n}(u) \exp \left\{-\frac{1}{2 \alpha^{2}}(u-r \beta)^{2}\right\} d u=\alpha \sqrt{2 \pi} \beta^{n} H_{n}(r) \tag{2.9}
\end{equation*}
$$

Proof. Since $H_{n}(u)$ is a polynomial of degree n and, since $\operatorname{Re}\left(\alpha^{2}\right)>0$, the integral exists and

$$
\begin{aligned}
I_{n} & \equiv \int_{\mathbf{R}} H_{n}(u) \exp \left\{-\frac{1}{2 \alpha^{2}}(u-r \beta)^{2}\right\} d u \\
& =(-1)^{n}(n!)^{-1 / 2} \int_{\mathbf{R}} e^{u^{2} / 2} \frac{d^{n}}{d u^{n}}\left(e^{-u^{2} / 2}\right) \exp \left\{-\frac{1}{2 \alpha^{2}}(u-r \beta)^{2}\right\} d u \\
& =(-1)^{n}(n!)^{-1 / 2} e^{r^{2} / 2} \int_{\mathbf{R}} \exp \left\{-\frac{\beta^{2}}{2 \alpha^{2}}\left(u-\frac{r}{\beta}\right)^{2}\right\} \frac{d^{n}}{d u^{n}}\left(e^{-u^{2} / 2}\right) d u
\end{aligned}
$$

Then, integrating by parts n times, we obtain

$$
\begin{aligned}
I_{n} & =(n!)^{-1 / 2} e^{r^{2} / 2} \int_{\mathbf{R}} e^{-u^{2} / 2} \frac{d^{n}}{d u^{n}}\left(\exp \left\{-\frac{\beta^{2}}{2 \alpha^{2}}\left(u-\frac{r}{\beta}\right)^{2}\right\}\right) d u \\
& =(n!)^{-1 / 2}(-\beta)^{n} e^{r^{2} / 2} \int_{\mathbf{R}} e^{-u^{2} / 2} \frac{d^{n}}{d r^{n}}\left(\exp \left\{-\frac{\beta^{2}}{2 \alpha^{2}}\left(u-\frac{r}{\beta}\right)^{2}\right\}\right) d u \\
& =(n!)^{-1 / 2}(-\beta)^{n} e^{r^{2} / 2} \frac{d^{n}}{d r^{n}}\left(\int_{\mathbf{R}} \exp \left\{-\frac{1}{2 \alpha^{2}}+\frac{r \beta}{\alpha^{2}} u-\frac{r^{2}}{2 \alpha^{2}}\right\} d u\right) \\
& =(n!)^{-1 / 2}(-\beta)^{n} \alpha \sqrt{2 \pi} e^{r^{2} / 2} \frac{d^{n}}{d r^{n}}\left(e^{-r^{2} / 2}\right) \\
& =\alpha \sqrt{2 \pi} \beta^{n} H_{n}(r)
\end{aligned}
$$

which completes the proof of Lemma $1 . \quad \square$

Remark 2. Equation (2.9) holds for all $r \in \mathbf{C}$ since $H_{n}(r)$ is a polynomial of degree n and so both sides of equation (2.9) are analytic functions of r throughout \mathbf{C}.

Next, using Lemma 1, we obtain a formula for the integral transform of the Fourier-Hermite functionals given by equation (2.4).

Theorem 2. Let α and β be as in Lemma 1. Then, for each $y \in K$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \ldots, n_{p}}(y)=\beta^{n_{1}+\cdots+n_{p}} \Psi_{n_{1}, \ldots, n_{p}}(y) \tag{2.10}
\end{equation*}
$$

Proof. For $j=1,2, \ldots$, let $r_{j} \equiv \int_{0}^{T} a_{j}(t) d y(t)=\left\langle a_{j}, y\right\rangle$, which we know exists for all $y \in K$ since a_{j} is of bounded variation on $[0, T]$. Then for every $y \in K$,

$$
\begin{aligned}
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \ldots, n_{p}}(y)= & \int_{C_{0}[0, T]} \Psi_{n_{1}, \ldots, n_{p}}(\alpha x+\beta y) m(d x) \\
= & \int_{C_{0}[0, T]} H_{n_{1}}\left(\alpha\left\langle a_{1}, x\right\rangle+\beta\left\langle a_{1}, y\right\rangle\right) \cdots \\
& \cdots H_{n_{p}}\left(\alpha\left\langle a_{p}, x\right\rangle+\beta\left\langle a_{p}, y\right\rangle\right) m(d x) \\
= & \prod_{j=1}^{p}\left[(2 \pi)^{-1 / 2} \int_{\mathbf{R}} H_{n_{j}}\left(\alpha u_{j}+\beta r_{j}\right) e^{-u_{j}^{2} / 2} d u_{j}\right]
\end{aligned}
$$

Note that for all positive α and all $\beta \in \mathbf{C}$,

$$
\int_{\mathbf{R}} H_{n}(\alpha u+\beta r) e^{-u^{2} / 2} d u=\frac{1}{\alpha} \int_{\mathbf{R}} H_{n}(u) e^{-(u-r \beta)^{2} / 2 \alpha^{2}} d u
$$

But each side of the above expression is an analytic function of α throughout the region $\left\{\alpha \in \mathbf{C}: \operatorname{Re}\left(\alpha^{2}\right)>0\right\}$. Hence, by the uniqueness theorem for analytic functions, the above equality holds for all α with $\operatorname{Re}\left(\alpha^{2}\right)>0$ and all $\beta \in \mathbf{C}$ and so

$$
\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \ldots, n_{p}}(y)=\prod_{j=1}^{p}\left[\left(2 \pi \alpha^{2}\right)^{-1 / 2} \int_{\mathbf{R}} H_{n_{j}}\left(u_{j}\right) e^{-\left(u_{j}-r_{j} \beta\right)^{2} / 2 \alpha^{2}} d u_{j}\right]
$$

Then, using Lemma 1, we obtain equation (2.10), the desired result. \square

Our first corollary follows immediately from equation (2.10) and the fact that $\left\|\Psi_{n_{1}, \ldots, n_{p}}\right\|_{2}=1$.

Corollary 3. Let α and β be as in Lemma 1. Then

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, \beta} \Psi_{n_{1}, \ldots, n_{p}}\right\|_{2}=|\beta|^{n_{1}+\cdots+n_{p}} \tag{2.11}
\end{equation*}
$$

Corollary 4. Choosing $\alpha=\sqrt{2}$ and $\beta=i$ in equation (2.10) we obtain Lemma 5.1 [3, p. 104]; namely, that

$$
\begin{equation*}
\mathcal{F}_{\sqrt{2}, i} \Psi_{n_{1}, \ldots, n_{p}}(y)=i^{n_{1}+\cdots+n_{p}} \Psi_{n_{1}, \ldots, n_{p}}(y) \tag{2.12}
\end{equation*}
$$

for all $y \in K$.

3. Integral transforms of functionals belonging to $L_{2}\left(C_{0}[0, T]\right)$.

For $F \in L_{2}\left(C_{0}[0, T]\right)$ let (2.5) denote the Fourier-Hermite expression of $F(x)$ with the Fourier-Hermite coefficients $A_{n_{1}, \ldots, n_{N}}^{F}$ given by equation (2.6). For $N=1,2, \ldots$, let

$$
\begin{equation*}
F_{N}(x)=\sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} \Psi_{n_{1}, \ldots, n_{N}}(x) \tag{3.1}
\end{equation*}
$$

Then, by Theorem 2, we know that for each $N=1,2, \ldots, \mathcal{F}_{\alpha, \beta} F_{N}$ exists for all α and β as in Lemma $1, \mathcal{F}_{\alpha, \beta} F_{N}$ is an element of $L_{2}\left(C_{0}[0, T]\right)$ such that, for each $y \in K$,

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} F_{N}(y)=\sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y) \tag{3.2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2}^{2}=\sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots n_{N}}\right|^{2} \tag{3.3}
\end{equation*}
$$

Definition 2. Let $F \in L_{2}\left(C_{0}[0, T]\right)$ be given by (2.5). Then, for each nonzero complex numbers α and β, we define the integral transform $\mathcal{F}_{\alpha, \beta} F$ of F to be

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta} F(x)=\operatorname{li.im.}_{N \rightarrow \infty} \mathcal{F}_{\alpha, \beta} F_{N}(x), \quad x \in C_{0}[0, T] \tag{3.4}
\end{equation*}
$$

if it exists; that is to say, if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{C_{0}[0, T]}\left|\mathcal{F}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{N}(x)\right|^{2} m(d x)=0 \tag{3.5}
\end{equation*}
$$

Lemma 5. Let $F \in L_{2}\left(C_{0}[0, T]\right)$ be given by equation (2.5) with Fourier-Hermite coefficients given by (2.6). Let α and β be as in Lemma 1 and assume that $\mathcal{F}_{\alpha, \beta} F$ exists and is in $L_{2}\left(C_{0}[0, T]\right)$. Then

$$
\begin{equation*}
A_{n_{1}, \ldots, n_{N}}^{\mathcal{F}_{\alpha, \beta} F}=A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \tag{3.6}
\end{equation*}
$$

for each $N=1,2, \ldots$.

Proof. Fix $N=1,2, \ldots$. For any given $\varepsilon>0$, take a natural number M satisfying $\left\|\mathcal{F}_{\alpha, \beta} F-\mathcal{F}_{\alpha, \beta} F_{M}\right\|_{2}<\varepsilon$ and $M \geq N$. Then we have

$$
\begin{aligned}
& \left|A_{n_{1}, \ldots, n_{N}}^{\mathcal{F}_{\alpha, \beta} F}-A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right| \\
& =\left|\int_{C_{0}[0, T]} \mathcal{F}_{\alpha, \beta} F(x) \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x)-A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right| \\
& \leq\left|\int_{C_{0}[0, T]}\left[\mathcal{F}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{M}(x)\right] \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x)\right| \\
& \quad+\left|\int_{C_{0}[0, T]} \mathcal{F}_{\alpha, \beta} F_{M}(x) \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x)-A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|
\end{aligned}
$$

But, by the Hölder inequality,

$$
\begin{aligned}
\left|\int_{C_{0}[0, T]}\left[\mathcal{F}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{M}(x)\right] \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x)\right| \\
\leq\left\|\mathcal{F}_{\alpha, \beta} F-\mathcal{F}_{\alpha, \beta} F_{M}\right\|_{2}<\varepsilon
\end{aligned}
$$

and from (3.2) we know that

$$
\int_{C_{0}[0, T]} \mathcal{F}_{\alpha, \beta} F_{M}(x) \Psi_{n_{1}, \ldots, n_{N}}(x) m(d x)=A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}
$$

Hence

$$
\left|\mathcal{A}_{n_{1}, \ldots, n_{N}}^{\mathcal{F}_{\alpha, \beta} F}-A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|<\varepsilon
$$

which establishes equation (3.6).

The following theorem is our main result. It gives a necessary and sufficient condition that a functional F in $L_{2}\left(C_{0}[0, T]\right)$ has an integral transform $\mathcal{F}_{\alpha, \beta} F$ belonging to $L_{2}\left(C_{0}[0, T]\right)$.

Theorem 6. Let $F \in L_{2}\left(C_{0}[0, T]\right)$ be given by equation (2.5) with Fourier-Hermite coefficients given by (2.6). Let α and β be as in Lemma 1. Then $\mathcal{F}_{\alpha, \beta} F$ exists and is an element of $L_{2}\left(C_{0}[0, T]\right)$ if and only if

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}<\infty \tag{3.7}
\end{equation*}
$$

Furthermore, if (3.7) holds, then the Fourier-Hermite expression of $\mathcal{F}_{\alpha, \beta} F$ is given by
(3.8) $\mathcal{F}_{\alpha, \beta} F(y)=\underset{N \rightarrow \infty}{\operatorname{li.m} . \mathrm{m}_{n_{1}, \ldots, n_{N}}} \sum_{0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y)$.

Proof. Assume that $\mathcal{F}_{\alpha, \beta} F$ exists and is an element of $L_{2}\left(C_{0}[0, T]\right)$. By (3.5) we have that, for any given $\varepsilon>0$,

$$
\int_{C_{0}[0, T]}\left|\mathcal{F}_{\alpha, \beta} F(x)-\mathcal{F}_{\alpha, \beta} F_{N}(x)\right|^{2} m(d x)<\varepsilon
$$

for sufficiently large N, and so

$$
\begin{aligned}
&\left(\sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}\right)^{1 / 2} \\
&=\left\|\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2} \\
& \leq\left\|\mathcal{F}_{\alpha, \beta} F\right\|_{2}+\left\|\mathcal{F}_{\alpha, \beta}-\mathcal{F}_{\alpha, \beta} F_{N}\right\|_{2} \\
& \leq\left\|\mathcal{F}_{\alpha, \beta} F\right\|_{2}+\varepsilon
\end{aligned}
$$

Hence we have

$$
\lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} \leq\left\|\mathcal{F}_{\alpha, \beta} F\right\|_{2}^{2}<\infty
$$

To prove the converse, suppose that (3.7) holds. Let $M>N$, let

$$
I_{M}=\left\{\left(n_{1}, \ldots, n_{M}\right): n_{1}, \ldots, n_{M}=0,1, \ldots, M\right\}
$$

and let

$$
\begin{aligned}
I_{N}=\{ & \left(n_{1}, \ldots, n_{M}\right): n_{1}, \ldots, n_{N}=0,1, \ldots, N \\
& \text { and } \left.n_{N+1}=\cdots=n_{M}=0\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{C_{0}[0, T]}\left|\mathcal{F}_{\alpha, \beta} F_{M}(x)-\mathcal{F}_{\alpha, \beta} F_{N}(x)\right|^{2} m(d x) \\
& =\int_{C_{0}[0, T]}\left|\sum_{I_{M}-I_{N}} A_{n_{1}, \ldots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}} \Psi_{n_{1}, \ldots, n_{M}}(x)\right|^{2} m(d x) \\
& =\sum_{I_{M}-I_{N}}\left|A_{n_{1}, \ldots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}}\right|^{2} \\
& =\sum_{n_{1}, \ldots, n_{M}=0}^{M}\left|A_{n_{1}, \ldots, n_{M}}^{F} \beta^{n_{1}+\cdots+n_{M}}\right|^{2}-\sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}
\end{aligned}
$$

which goes to 0 as $M, N \rightarrow \infty$. Hence $\left\{\mathcal{F}_{\alpha, \beta} F_{N}\right\}$ is a Cauchy sequence in $L_{2}\left(C_{0}[0, T]\right)$ and, since $L_{2}\left(C_{0}[0, T]\right)$ is complete,

$$
\mathcal{F}_{\alpha, \beta} F(x)=\underset{N \rightarrow \infty}{\operatorname{li.m} .} \mathcal{F}_{\alpha, \beta} F_{N}(x), \quad x \in C_{0}[0, T]
$$

exists and is an element of $L_{2}\left(C_{0}[0, T]\right)$.

Corollary 7. Let F, α and β be as in Theorem 6. Furthermore, assume that $|\beta| \leq 1$. Then $\mathcal{F}_{\alpha, \beta} F$ exists, belongs to $L_{2}\left(C_{0}[0, T]\right)$, and

$$
\begin{align*}
\left\|\mathcal{F}_{\alpha, \beta} F\right\|_{2}^{2} & =\lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} \tag{3.9}\\
& \leq \lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F}\right|^{2}=\|F\|_{2}^{2} .
\end{align*}
$$

In addition,

$$
\begin{equation*}
\left\|\mathcal{F}_{\alpha, \beta} F\right\|_{2}=\|F\|_{2} \tag{3.10}
\end{equation*}
$$

if and only if $|\beta|=1$.

Corollary 8. Let p be a fixed positive integer, and let $F(x)=$ $f\left(\left\langle a_{1}, x\right\rangle, \ldots,\left\langle a_{p}, x\right\rangle\right)$ where f is such that

$$
\begin{equation*}
f\left(u_{1}, \ldots, u_{p}\right) \exp \left\{-\frac{1}{4} \sum_{j=1}^{p} u_{j}^{2}\right\} \in L_{2}\left(\mathbf{R}^{p}\right) \tag{3.11}
\end{equation*}
$$

Let α and β be as in Lemma 1. Then the integral transform $\mathcal{F}_{\alpha, \beta} F$ exists and is an element of $L_{2}\left(C_{0}[0, T]\right)$. (Note that in this case we don't need the restriction $|\beta| \leq 1)$.

Proof. Since zero is an admissible value for each n_{j} in the FourierHermite coefficient $A_{n_{1}, \ldots, n_{N}}^{F}$ of F, we need only consider the two cases $N=p$ and $N>p$. Then, using (2.2), (2.3), (2.4) and (2.6), a direct calculation shows that, for all nonnegative indices n_{1}, \ldots, n_{N},

$$
A_{n_{1}, \ldots, n_{N}}^{F}=\left\{\begin{array}{l}
0 \quad N>p \quad \text { and } \quad n_{N}>0 \\
\left(\frac{1}{2 \pi}\right)^{p / 2} \int_{\mathbf{R}^{p}} f\left(u_{1}, \ldots, u_{p}\right) H_{n_{1}}\left(u_{1}\right) \ldots \\
H_{n_{p}}\left(u_{p}\right) \exp \left\{-\frac{1}{2} \sum_{j=1}^{p} u_{j}^{2}\right\} d \vec{u} \quad N=p
\end{array}\right.
$$

Moreover, by (3.11), we know that $\left|A_{n_{1}, \ldots, n_{p}}^{F}\right|<\infty$ for all nonnegative indices n_{1}, \ldots, n_{p}. Hence,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2} \\
& \leq|\beta|^{2 p^{2}} \sum_{n_{1}, \ldots, n_{p}=0}^{p}\left|A_{n_{1}, \ldots, n_{p}}^{F}\right|^{2}<\infty
\end{aligned}
$$

and so, by Theorem $6, \mathcal{F}_{\alpha, \beta} F$ exists and is an element of $L_{2}\left(C_{0}[0, T]\right)$. -

Next, choosing $\alpha=\sqrt{2}$ and $\beta=i$, we obtain the main theorem of [3].

Corollary 9. Every functional $F(x) \in L_{2}\left(C_{0}[0, T]\right)$ has a FourierWiener transform $G(y) \in L_{2}\left(C_{0}[0, T]\right)$. The functional $G(y)$ has $F(-x)$ as its transform and F and G satisfy Plancherel's relation

$$
\begin{equation*}
\int_{C_{0}[0, T]}|F(x)|^{2} m(d x)=\int_{C_{0}[0, T]}|G(y)|^{2} m(d y) \tag{3.12}
\end{equation*}
$$

Proof. Using Corollary 7 and Theorem 6, we obtain that $G(y) \in$ $L_{2}\left(C_{0}[0, T]\right)$ is given by

$$
G(y)=\operatorname{li.i.m.~}_{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} i^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y),
$$

and that

$$
\mathcal{F}_{\sqrt{2}, i} G(y)=\operatorname{li.i.m.}_{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F}(-1)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y) .
$$

But it is easy to see that

$$
(-1)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y)=\Psi_{n_{1}, \ldots, n_{N}}(-y)
$$

and so $\mathcal{F}_{\sqrt{2}, i} G(y)=F(-y)$. Equation (3.12) then follows immediately from the Fourier-Hermite expressions for $F(x)$ and $G(y)$ and the fact that $\left\{\Psi_{n_{1}, \ldots, n_{N}}\right\}$ is an orthonormal set.

Remark 3. In [7], Lee, for the abstract Wiener space $\left(H, B, p_{1}\right)$ (also see [5]) and the class $\mathcal{E}_{a}(B)$ of the restrictions to B of exponential type analytic functionals on $[B]$, the complexification of B, established the following theorem [7, Theorem 2.6].

Theorem $2.6[7]$. For $F \in \mathcal{E}_{a}(B)$,

$$
\int_{B}\left|\mathcal{F}_{\alpha, \beta} F(y)\right|^{2} p_{1}(d y)=\int_{B}|F(y)|^{2} p_{1}(d y)
$$

if and only if $\alpha^{2}+\beta^{2}=1$ and $|\beta|=1$.

He then pointed out that Theorem 2.6 ensures that $\mathcal{F}_{\alpha, \beta}$ can be extended from $\mathcal{E}_{a}(B)$ to $L_{2}\left(p_{1}\right)$ as a unitary operator.
4. Further results. Recall that, throughout this paper, we have assumed that $\beta=a+b i$ was a nonzero complex number satisfying inequality (2.7); namely, that $\operatorname{Re}\left(1-\beta^{2}\right)>0$. Furthermore, in Corollary 7, we showed that if β also satisfies the inequality $|\beta| \leq 1$, then $\mathcal{F}_{\alpha, \beta}$ exists as an element of $L_{2}\left(C_{0}[0, T]\right)$ for all $F \in L_{2}\left(C_{0}[0, T]\right)$ with α given by (2.8). In the example below we show that for any complex number β with $|\beta|>1$ and $\operatorname{Re}\left(1-\beta^{2}\right)>0$, there exists a functional $F \in L_{2}\left(C_{0}[0, T]\right)$ (of course F depends on β) such that $\mathcal{F}_{\alpha, \beta} F$ doesn't exist as an element of $L_{2}\left(C_{0}[0, T]\right)$.

Example 10. Let $\beta=a+b i$ be such that $|\beta|=k>1$ and $\operatorname{Re}\left(1-\beta^{2}\right)>0$. Let α be given by (2.8). Let $\Psi_{(0)}(x) \equiv \Psi_{0}(x)$, $\Psi_{(1)}(x) \equiv \Psi_{1}(x), \Psi_{(2)}(x) \equiv \Psi_{1,1}(x), \Psi_{(3)}(x) \equiv \Psi_{1,1,1}(x)$, etc. For $N=1,2, \ldots$, let

$$
\begin{equation*}
F_{N}(x)=\sum_{n=0}^{N} k^{-n} \Psi_{(n)}(x) \tag{4.1}
\end{equation*}
$$

Then, since $\left\{\Psi_{(n)}: n=0,1,2, \ldots\right\}$ is an orthonormal set of functionals in $L_{2}\left(C_{0}[0, T]\right)$,

$$
\int_{C_{0}[0, T]}\left|F_{N}(x)\right|^{2} m(d x)=\sum_{n=0}^{N} k^{-2 n}=\frac{k^{2}}{k^{2}-1}\left[1-\left(\frac{1}{k^{2}}\right)^{N+1}\right]
$$

and so

$$
\lim _{N \rightarrow \infty}\left\|F_{N}\right\|_{2}^{2}=\frac{k^{2}}{k^{2}-1}
$$

But, for $N>M$,

$$
\left\|F_{N}-F_{M}\right\|_{2}^{2}=\sum_{n=M+1}^{N} \frac{1}{k^{2 n}} \longrightarrow 0
$$

as $M, N \rightarrow \infty$. Hence $\left\{F_{N}\right\}_{N=1}^{\infty}$ is a Cauchy sequence in $L_{2}\left(C_{0}[0, T]\right)$ and, since $L_{2}\left(C_{0}[0, T]\right)$ is complete,

$$
F(x) \equiv \underset{N \rightarrow \infty}{\operatorname{li.m.} .} F_{N}(x)
$$

is an element of $L_{2}\left(C_{0}[0, T]\right)$. In fact,

$$
F(x)=\sum_{n=0}^{\infty} k^{-n} \Psi_{(n)}(x)
$$

is the Fourier-Hermite series for F; i.e., the Fourier-Hermite coefficients for F are $A_{0}^{F}=1$, and for $n_{p} \neq 0$,

$$
A_{n_{1}, \ldots, n_{p}}^{F}= \begin{cases}0 & n_{1} n_{2} \ldots n_{p} \neq 1 \tag{4.2}\\ k^{-p} & n_{1} n_{2} \ldots n_{p}=1\end{cases}
$$

Next, using (4.2) and the fact that $|\beta|=k$, we observe that

$$
\begin{aligned}
\sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}}\right|^{2}= & \left|A_{0}^{F} \beta^{0}\right|^{2}+\left|A_{1}^{F} \beta^{1}\right|^{2}+\left|A_{1,1}^{F} \beta^{2}\right|^{2} \\
& +\cdots+\left|A_{1, \ldots, 1}^{F} \beta^{N}\right|^{2} \\
= & 1+1+1+\cdots+1=N+1
\end{aligned}
$$

Hence, by Theorem $6, \mathcal{F}_{\alpha, \beta} F$ doesn't exist as an element of $L_{2}\left(C_{0}[0, T]\right)$. However, note that $\mathcal{F}_{\alpha, \beta} F$ does exist as an element of $L_{2}\left(C_{0}[0, T]\right)$ if $|\beta|<k$ with $\operatorname{Re}\left(1-\beta^{2}\right)>0$ and $\alpha=\sqrt{1-\beta^{2}}$.

Our final results in this paper involve the inverse transform of $\mathcal{F}_{\alpha, \beta}$. In order to ensure the existence of the inverse transform of $\mathcal{F}_{\alpha, \beta}$, we need to put an additional assumption on $\beta=a+b i$; namely, that

$$
\begin{equation*}
\operatorname{Re}\left(1-\frac{1}{\beta^{2}}\right)>0 \tag{4.3}
\end{equation*}
$$

But $\operatorname{Re}\left[1-\left(1 / \beta^{2}\right)\right]>0 \Leftrightarrow\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)>0$. But the graph of $\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)=0$ is the lemniscate $r^{2}=\cos (2 \theta)$. Hence $\operatorname{Re}\left[1-\left(1 / \beta^{2}\right)\right]>0$ if and only if the point $(a, b) \in \mathbf{R}^{2}$ lies outside the lemniscate $\left(a^{2}+b^{2}\right)^{2}-\left(a^{2}-b^{2}\right)=0$.

Theorem 11. Let F, β and α be as in Theorem 6, and assume that (3.7) holds. Furthermore, assume that β satisfies inequality (4.3). Then, for $\alpha^{\prime} \equiv \sqrt{1-1 / \beta^{2}}$ and $\beta^{\prime}= \pm 1 / \beta$, we have that

$$
\begin{equation*}
\mathcal{F}_{\alpha^{\prime}, \beta^{\prime}} \mathcal{F}_{\alpha, \beta} F(y)=F\left(\beta \beta^{\prime} y\right), \quad y \in C_{0}[0, T] \tag{4.4}
\end{equation*}
$$

That is to say,

$$
\mathcal{F}_{\alpha^{\prime}, 1 / \beta} \mathcal{F}_{\alpha, \beta} F(y)=F(y), \quad y \in C_{0}[0, T]
$$

and

$$
\mathcal{F}_{\alpha^{\prime},-1 / \beta} \mathcal{F}_{\alpha, \beta} F(y)=F(-y), \quad y \in C_{0}[0, T]
$$

Proof. Since $\mathcal{F}_{\alpha, \beta} F$ exists, the Fourier-Hermite expression of it is given by

$$
\mathcal{F}_{\alpha, \beta} F(y)=\underset{N \rightarrow \infty}{\operatorname{l.i} . \mathrm{m} .} \sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F} \beta^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y)
$$

Now

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N} \mid A_{n_{1}, \ldots, n_{N}}^{F} & \left.\beta^{n_{1}+\cdots+n_{N}}\left(\beta^{\prime}\right)^{n_{1}+\cdots+n_{N}}\right|^{2} \\
& =\lim _{N \rightarrow \infty} \sum_{n_{1}, \ldots, n_{N}=0}^{N}\left|A_{n_{1}, \ldots, n_{N}}^{F}\right|^{2}=\|F\|_{2}^{2}<\infty
\end{aligned}
$$

Hence, by Theorem $6, \mathcal{F}_{\alpha^{\prime}, \beta^{\prime}} \mathcal{F}_{\alpha, \beta} F$ exists and is given by

$$
\begin{aligned}
\mathcal{F}_{\alpha^{\prime}, \beta^{\prime}} \mathcal{F}_{\alpha, \beta} F(y) & =\underset{N \rightarrow \infty}{\operatorname{l.i.m}} \sum_{n_{1}, \ldots, n_{N}=0}^{N} A_{n_{1}, \ldots, n_{N}}^{F}\left(\beta \beta^{\prime}\right)^{n_{1}+\cdots+n_{N}} \Psi_{n_{1}, \ldots, n_{N}}(y) \\
& =F\left(\beta \beta^{\prime} y\right)
\end{aligned}
$$

which completes the proof of Theorem 11.

Remark 4. Some special cases of Theorem 11:

$$
\begin{gathered}
\mathcal{F}_{\sqrt{2},-i} \mathcal{F}_{\sqrt{2}, i} F(y)=F(y) \\
\mathcal{F}_{\sqrt{2}, i} \mathcal{F}_{\sqrt{2}, i} F(y)=F(-y), \\
\mathcal{F}_{(7-4 \sqrt{2} i)^{1 / 2} / 3,(2+\sqrt{2} i) / 3} \mathcal{F}_{1+i / \sqrt{2}, 1-i / \sqrt{2}} F(y)=F(y)
\end{gathered}
$$

Acknowledgments. The first author was supported by the Korea Research Foundation grant (KRF-99-D001) and he gratefully acknowledges the hospitality of the University of Nebraska, Lincoln, and especially the kind help of Professors D. Skoug and G. Johnson.

REFERENCES

1. R.H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488.
2. R.H. Cameron and W.T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507.
3. - Fourier-Wiener transforms of functionals belonging to L_{2} over the space C, Duke Math. J. 14 (1947), 99-107.
4. -, The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals, Ann. of Math. 48 (1947), 385-392.
5. K.S. Chang, B.S. Kim and I. Yoo, Integral transforms and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim. 21 (2000), 97-105.
6. Y.J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164.
7. - Unitary operators on the space of L^{2}-functions over abstract Wiener spaces, Soochow J. Math. 13 (1987), 165-174.

Department of Mathematics, Yonsei University, Seoul, 120-749, Korea
E-mail address: mathkbs@dreamwiz.com
Department of Mathematics and Statistics, University of Nebraska-
Lincoln, Lincoln, NE 68588-0323
E-mail address: dskoug@math.unl.edu

[^0]: 1991 AMS Mathematics Subject Classification. 28C20, 60 J65.
 Key words and phrases. Integral transform, Wiener integral, Fourier-Wiener transform, Fourier-Hermite functionals.

 Received by the editors on January 23, 2001.

