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Abstract. We give a necessary and sufficient condition that a square integrable func-

tional F (x) on Yeh-Wiener space has an integral transform F̂α,βF (x) which is also square

integrable. This extends the result by Kim and Skoug for functional F (x) in L2(C0[0, T ]).

1. Introduction and definitions

Let C(Q) denote Yeh-Wiener space; that is the space of all real-valued continu-
ous functions x(s, t) on Q = [0, S]× [0, T ] with x(s, 0) = x(0, t) = 0 for all 0 ≤ s ≤ S
and 0 ≤ t ≤ T . Yeh [14] defined a Gaussian measure mY on C(Q) (later modified in
[16]) such that as a stochastic process {x(s, t) : (s, t) ∈ Q} has mean E[x(s, t)] = 0
and covariance E[x(s, t)x(u, v)] = min{s, u}min{t, v}.

Let M denote the class of all Yeh-Wiener measurable subsets of C(Q) and we
denote the Yeh-Wiener integral of a Yeh-Wiener integrable functional F by∫

C(Q)

F (x)mY (dx).

Let L2(C(Q)) be the space of all real or complex valued functionals F satisfying∫
C(Q)

|F (x)|2mY (dx) <∞.

Let K(Q) be the space of complex valued continuous functions defined on Q and
satisfying x(s, 0) = x(0, t) = 0 for all 0 ≤ s ≤ S and 0 ≤ t ≤ T . Let α and β be
nonzero complex numbers. Next we state the definitions of the integral transform
Fα,βF introduced in [12] and studied in [6],[9],[10] and [11].

Definition 1.1. Let F be a functional defined on K(Q). Then the integral trans-
form Fα,βF of F is defined by

(1.1) Fα,βF (y) =
∫
C(Q)

F (αx+ βy)mY (dx), y ∈ K(Q)
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if it exists.

Remark 1.2. (1) When α = 1 and β = i, Fα,βF is a Yeh-Wiener space version of
the Fourier-Wiener transform introduced by Cameron in [2] and used by Cameron
and Martin in [3].
(2) When α =

√
2 and β = i, Fα,βF is a Yeh-Wiener space version of the modified

Fourier-Wiener transform introduced by Cameron and Martin in [4].
(3) Equation (1.1) implies that

(1.2) Fα,ββ′F (y) = Fα,βF (β′y), y ∈ K(Q)

for any nonzero complex number β′.
(4) For a detailed survey of previous work on integral transform, Fourier-Wiener
transform and Fourier-Feynman transform [5], see [13].

Recently Kim and Skoug [11] established a necessary and sufficient condition
that a functional F (x) in L2(C0[0, T ]) has an integral transform Fα,βF (x) which
also belong to L2(C0[0, T ]). In this paper we extend this result for square integrable
functionals on Yeh-Wiener space, that is, we give a necessary and sufficient condition
that a functional F (x) in L2(C(Q)) has an integral transform F̂α,βF (x), which will
be defined in Section 3, also belonging to L2(C(Q)).

Now we introduce a concept of the function of bounded variation of two vari-
ables. The concept of bounded variation for a function of two variables is surpris-
ingly complex. In this paper we will use the definition used by Hardy and Krause
[1],[8] which we now review.

Let R = [a, b]× [c, d] and let P be a partition of R given by

a = s0 < s1 < · · · < sn = b, c = t0 < t1 < · · · < tm = d.

A function f(s, t) is said to be of bounded variation on R in the sense of Hardy and
Krause provided the following three conditions hold.

(1) There is a constant B such that

(1.3)
n∑
i=1

m∑
j=1

|f(si, tj)− f(si, tj−1)− f(si−1, tj) + f(si−1, tj−1)| ≤ B

for all partitions P .
(2) For each t ∈ [c, d], f(·, t) is a function of bounded variation on [a, b].
(3) For each s ∈ [a, b], f(s, ·) is a function of bounded variation on [c, d].
The total variation Var(f,R) of f over R is defined to be the supremum of the

sums in (1.3) over all partitions P of R. Var(f(·, t), [a, b]) and Var(f(s, ·), [c, d])
will denote the total variation of f(·, t) on [a, b] and f(s, ·) on [c, d], respectively, as
functions of single variable.

The definition of bounded variation by Hardy and Krause has the important
property that if g is continuous on R and f is of bounded variation on R then the
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Riemann-Stieltjes integrals
∫
R
g(s, t) df(s, t) and

∫
R
f(s, t) dg(s, t) both exist and

satisfy an integration by parts formula [7].
Let {θ1, θ2, · · · , θn} be an orthonormal set of real-valued functions in L2(C(Q)).

Furthermore assume that each θj is of bounded variation in the sense of Hardy
and Krause on Q. Then for each y ∈ K(Q) and j = 1, 2, · · · , the Riemann-
Stieltjes integral 〈θj , y〉 ≡

∫
Q
θj(s, t) dy(s, t) exists. We finish this section by in-

troducing a well-known Yeh-Wiener integration formula for functionals f(〈~θ, x〉) ≡
f(〈θ1, x〉, · · · , 〈θn, x〉):

(1.4)
∫
C(Q)

f(〈~θ, x〉)mY (dx) = (2π)−n/2
∫

Rn
f(~u) exp

{
−1

2
‖~u‖2

}
d~u,

where ‖~u‖2 =
∑n
j=1 u

2
j and d~u = du1 · · · dun.

2. Integral transforms of the Fourier-Hermite functionals

For n = 0, 1, 2, · · · , let Hn(u) denote the Hermite polynomial

Hn(u) = (−1)n(n!)−1/2eu
2/2 d

n

dun
(e−u

2/2).

Then, as is well known, the set

(2.1) {(2π)−1/4Hn(u)e−u
2/4 : n = 0, 1, 2, · · · }

is a complete orthonormal(CON) set on R.
Let {θp(s, t) : p = 1, 2, · · · } be a CON set of functions of bounded variation on

Q. Define
Φn,p(y) = Hn(〈θp, y〉), n = 0, 1, 2, · · · , p = 1, 2, · · · ,

and

(2.2) Ψn1,··· ,np(y) = Ψn1,··· ,np,0,··· ,0(y) = Φn1,1(y) · · ·Φnp,p(y)

for y ∈ K(Q). The functionals in (2.2) are called the Fourier-Hermite functionals
on Yeh-Wiener space.

In [15], Yeh showed that the Fourier-Hermite functionals form a CON set in
L2(C(Q)). That is to say that every functional F (x) in L2(C(Q)) has a Fourier-
Hermite development which converges in the L2(C(Q)) sense to F (x); namely that

(2.3) F (x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nNΨn1,··· ,nN (x),

where AFn1,··· ,nN is the Fourier-Hermite coefficient

(2.4) AFn1,··· ,nN =
∫
C(Q)

F (x)Ψn1,··· ,nN (x)mY (dx).
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Throughout this paper, in order to insure that various integrals exist, we will assume
that β = a+ bi is a nonzero complex number satisfying the inequality

(2.5) Re(1− β2) = 1 + b2 − a2 > 0.

Note that Re(1 − β2) = 1 + b2 − a2 > 0 if and only if the point (a, b) ∈ R2 lies in
the open region, determined by the hyperbola a2 − b2 = 1, containing the b-axis.
Hence for all |β| ≤ 1, β 6= ±1, Re(1− β2) > 0. Next we define

(2.6) α ≡
√

1− β2, −π/4 < arg(α) < π/4

and note that α2 + β2 = 1 and Re(α2) = Re(1− β2) > 0.
The following lemma is introduced in [11] and will be needed to find the integral

transform of the Fourier-Hermite functionals on Yeh-Wiener space.

Lemma 2.1. Let β be a nonzero complex number satisfying inequality (2.5) and let
α be defined by equation (2.6). Let r be a complex number. Then for n = 0, 1, 2, · · · ,

(2.7)
∫

R
Hn(u) exp

{
− 1

2α2
(u− rβ)2

}
du =

√
2παβnHn(r).

Next, using Lemma 2.1, we obtain a formula for the integral transform of the
Fourier-Hermite functionals given by equation (2.2).

Theorem 2.2. Let α and β be as in Lemma 2.1. Then for each y ∈ K(Q),

(2.8) Fα,βΨn1,··· ,np(y) = βn1+···+npΨn1,··· ,np(y).

Proof. For j = 1, 2, · · · , let rj = 〈θj , y〉 which we know exists for all y ∈ K(Q) since
θj is of bounded variation on Q. Then for every y ∈ K(Q), by the Yeh-Wiener
integration formula (1.4),

Fα,βΨn1,··· ,np(y) =
∫
C(Q)

Ψn1,··· ,np(αx+ βy)mY (dx)

=
p∏
j=1

[
(2π)−1/2

∫
R
Hnj (αuj + βrj)e−u

2
j/2 duj

]
.

Note that for all positive α and all β ∈ C,∫
R
Hn(αu+ βr)e−u

2/2 du =
1
α

∫
R
Hn(u)e−(u−rβ)2/2α2

du.

But each side of the above expression is an analytic function of α throughout the
region {α ∈ C : Re(α2) > 0}. Hence by the uniqueness theorem for analytic
functions, the above equality holds for all α with Re(α2) > 0 and all β ∈ C and so

Fα,βΨn1,··· ,np(y) =
p∏
j=1

[
(2πα2)−1/2

∫
R
Hnj (uj)e

−(uj−rjβ)2/2α2
duj

]
.
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Then using Lemma 2.1, we obtain equation (2.8), the desired result. �

Our first corollary follows immediately from equation (2.8) and the fact that
‖Ψn1,··· ,np‖2 = 1.

Corollary 2.3. Let α and β be as in Lemma 2.1. Then

(2.9) ‖Fα,βΨn1,··· ,np‖2 = |β|n1+···+np .

By (1.2) and Theorem 2.2, we obtain the following corollary.

Corollary 2.4. Let α and β be as in Lemma 2.1 and let γ be any nonzero complex
number. Then for each y ∈ K(Q),

(2.10) Fα,γΨn1,··· ,np(y) = βn1+···+npΨn1,··· ,np

(γy
β

)
.

3. Integral transforms of functionals belonging to L2(C(Q))

For F ∈ L2(C(Q)) let (2.3) denote the Fourier-Hermite expression of F (x) with
the Fourier-Hermite coefficients AFn1,··· ,nN given by equation (2.4). ForN = 1, 2, · · · ,
let

(3.1) FN (x) =
N∑

n1,··· ,nN=0

AFn1,··· ,nNΨn1,··· ,nN (x).

Then by Theorem 2.2, we know that for each N = 1, 2, · · · , the integral transform
Fα,βFN exists for all α and β as in Lemma 2.1, and Fα,βFN is an element of
L2(C(Q)) such that for each y ∈ K(Q),

(3.2) Fα,βFN (y) =
N∑

n1,··· ,nN=0

AFn1,··· ,nNβ
n1+···+nNΨn1,··· ,nN (y).

Furthermore,

(3.3) ‖Fα,βFN‖22 =
N∑

n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2.

Definition 3.1. Let F ∈ L2(C(Q)) be given by (2.3). Then for each pair of nonzero
complex numbers α and β, we define the integral transform F̂α,βF of F to be

(3.4) F̂α,βF (x) = l. i.m.
N→∞

Fα,βFN (x), x ∈ C(Q)

if it exists; that is to say if

(3.5) lim
N→∞

∫
C(Q)

|F̂α,βF (x)−Fα,βFN (x)|2mY (dx) = 0.
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Suppose that F is a functional defined on K(Q) and has the integral transform
Fα,βF (y) for y ∈ K(Q) in the sense of Definition 1.1. Further assume that F , as a
function of x ∈ C(Q), belongs to L2(C(Q)) and has the integral transform F̂α,βF
for x ∈ C(Q) in the sense of Definition 3.1. The following example shows that the
two integral transforms Fα,βF (x) and F̂α,βF (x) for x ∈ C(Q) need not coincide.

Example 3.2. Let F be a functional defined on K(Q) by

F (y) =

{
0, if y ∈ C(Q)
1, if y ∈ K(Q) \ C(Q).

Then F belongs to L2(C(Q)) and for x ∈ C(Q), we have

F√2,iF (x) =
∫
C(Q)

F (
√

2z + ix)mY (dz) = 1.

On the other hand, for any nonnegative integers n1, · · · , nN ,

AFn1,··· ,nN =
∫
C(Q)

F (x)Ψn1,··· ,nN (x)mY (dx) = 0

and so FN (y) = 0 for y ∈ K(Q) and for all N = 1, 2, · · · . Now

F√2,iFN (x) =
∫
C(Q)

FN (
√

2z + ix)mY (dz) = 0, x ∈ C(Q)

and so
F̂√2,iF (x) = l. i.m.

N→∞
F√2,iFN (x) = 0, x ∈ C(Q).

Hence we conclude that
F√2,iF (x) 6= F̂√2,iF (x)

for x ∈ C(Q).

Theorem 3.3. Let F ∈ L2(C(Q)) be given by (2.3). Let α and β be nonzero
complex numbers and let c be a nonzero real number. Then

(3.6) F̂α,cβF (x) = F̂α,βF (cx)

for x ∈ C(Q).

Proof. By (1.2) for each N = 1, 2, · · · ,

Fα,cβFN (x) = Fα,βFN (cx)

and so

F̂α,cβF (x) = l. i.m.
N→∞

Fα,cβFN (x) = l. i.m.
N→∞

Fα,βFN (cx) = F̂α,βF (cx)
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as desired. �

The following lemma gives us a relationship between the Fourier-Hermite coef-
ficients of F̂α,βF and F .

Lemma 3.4. Let F ∈ L2(C(Q)) be given by (2.3) with Fourier-Hermite coefficients
given by (2.4). Let α and β be as in Lemma 2.1 and assume that F̂α,βF exists and
is in L2(C(Q)). Then

(3.7) A
F̂α,βF
n1,··· ,nN = AFn1,··· ,nNβ

n1+···+nN

for each N = 1, 2, · · · .
Proof. Fix N = 1, 2, · · · . For any given ε > 0, take a natural number M satisfying
‖F̂α,βF −Fα,βFM‖2 < ε and M ≥ N . Then we have

|AF̂α,βFn1,··· ,nN −AFn1,··· ,nNβ
n1+···+nN |

=
∣∣∣∫
C(Q)

F̂α,βF (x)Ψn1,··· ,nN (x)mY (dx)−AFn1,··· ,nNβ
n1+···+nN

∣∣∣
≤
∣∣∣∫
C(Q)

[F̂α,βF (x)−Fα,βFM (x)]Ψn1,··· ,nN (x)mY (dx)
∣∣∣

+
∣∣∣∫
C(Q)

Fα,βFM (x)Ψn1,··· ,nN (x)mY (dx)−AFn1,··· ,nNβ
n1+···+nN

∣∣∣.
But by the Hölder inequality and the fact that {Ψn1,··· ,nN } is an orthonormal set,∣∣∣∫

C(Q)

[F̂α,βF (x)−Fα,βFM (x)]Ψn1,··· ,nN (x)mY (dx)
∣∣∣ ≤ ‖F̂α,βF −Fα,βFM‖2 < ε

and from (3.2) we know that∫
C(Q)

Fα,βFM (x)Ψn1,··· ,nN (x)mY (dx) = AFn1,··· ,nNβ
n1+···+nN .

Hence
|AF̂α,βFn1,··· ,nN −AFn1,··· ,nNβ

n1+···+nN | < ε

which establishes equation (3.7). �

The following theorem is our main result. It gives a necessary and sufficient
condition that a functional F in L2(C(Q)) has an integral transform F̂α,βF belong-
ing to L2(C(Q)).

Theorem 3.5. Let F ∈ L2(C(Q)) be given by (2.3) with Fourier-Hermite coeffi-
cients given by (2.4). Let α and β be as in Lemma 2.1. Then F̂α,βF exists and is
an element of L2(C(Q)) if and only if

(3.8) lim
N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2 <∞.
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Furthermore if (3.8) holds, then the Fourier-Hermite expression of F̂α,βF is given
by

(3.9) F̂α,βF (x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nNβ
n1+···+nNΨn1,··· ,nN (x)

for x ∈ C(Q).

Proof. Assume that F̂α,βF exists and is an element of L2(C(Q)). For any given
ε > 0, we have ‖F̂α,βF −Fα,βFN‖2 < ε for sufficiently large N , and so

( N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2

)1/2

= ‖Fα,βFN‖2 ≤ ‖F̂α,βF‖2 + ε.

Hence we have

lim
N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2 ≤ ‖F̂α,βF‖22 <∞.

To prove the converse, suppose that (3.8) holds. Let M > N , let

IM = {(n1, · · · , nM ) : n1, · · · , nM = 0, 1, · · · ,M},

and let

IN = {(n1, · · · , nM ) : n1, · · · , nN = 0, 1, · · · , N and nN+1 = · · · = nM = 0}.

Then

‖Fα,βFM −Fα,βFN‖22

=
∥∥∥ ∑
IM−IN

AFn1,··· ,nMβ
n1+···+nMΨn1,··· ,nM

∥∥∥2

2

=
∑

IM−IN

|AFn1,··· ,nMβ
n1+···+nM |2

=
M∑

n1,··· ,nM=0

|AFn1,··· ,nMβ
n1+···+nM |2 −

N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2

which goes to 0 as M,N →∞. Hence {Fα,βFN} is a Cauchy sequence in L2(C(Q))
and since L2(C(Q)) is complete,

F̂α,βF (x) = l. i.m.
N→∞

Fα,βFN (x), x ∈ C(Q)

exists and is an element of L2(C(Q)) and is given by (3.9). �
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Our first corollary follows immediately from Theorem 3.5.

Corollary 3.6. Let F , α and β be as in Theorem 3.5. Furthermore assume that
|β| ≤ 1. Then F̂α,βF exists, belongs to L2(C(Q)), and

‖F̂α,βF‖22 = lim
N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN |2

≤ lim
N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nN |
2 = ‖F‖22.

(3.10)

In addition,

(3.11) ‖F̂α,βF‖2 = ‖F‖2

if and only if |β| = 1.

The following corollary is immediate from Theorems 3.3 and 3.5.

Corollary 3.7. Let F , α and β be as in Theorem 3.5 and let c be a nonzero real
number. Then

(3.12) F̂α,cβF (x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nNβ
n1+···+nNΨn1,··· ,nN (cx)

for x ∈ C(Q).

Next choosing α =
√

2 and β = i, we obtain a Yeh-Wiener space version of the
main theorem of [4].

Corollary 3.8. Every functional F (x) ∈ L2(C(Q)) has a Fourier-Wiener trans-
form G(x) ∈ L2(C(Q)). The functional G(x) has F (−x) as its transform and F
and G satisfies Plancherel’s relation

(3.13)
∫
C(Q)

|F (x)|2mY (dx) =
∫
C(Q)

|G(x)|2mY (dx).

Proof. Using Corollary 3.6 and Theorem 3.5, we obtain that G(x) ∈ L2(C(Q)) is
given by

G(x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nN i
n1+···+nNΨn1,··· ,nN (x),

and that

F̂√2,iG(x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nN (−1)n1+···+nNΨn1,··· ,nN (x).
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But since the Hermite polynomial Hn is an even function if n is even and an odd
function if n is odd, it is easy to see that

(−1)n1+···+nNΨn1,··· ,nN (x) = Ψn1,··· ,nN (−x)

and so F̂√2,iG(x) = F (−x). Finally equation (3.13) follows immediately from
(3.11). �

Recall that throughout this paper we have assumed that β = a + bi was a
nonzero complex number satisfying inequality (2.5); namely that Re(1 − β2) >
0. Furthermore, in Corollary 3.6 we showed that if β also satisfies the inequality
|β| ≤ 1, then F̂α,βF exists as an element of L2(C(Q)) for all F ∈ L2(C(Q)) with
α given by (2.6). In Example 10 of [11], Kim and Skoug showed that for any
complex number β with |β| > 1 and Re(1 − β2) > 0, there exists a functional
F ∈ L2(C0[0, T ]) such that Fα,βF , F̂α,βF in our notation, doesn’t exist as an
element of L2(C0[0, T ]). Using the same idea as in Example 10 of [11], we can
construct a functional F ∈ L2(C(Q)) such that F̂α,βF doesn’t exist as an element
of L2(C(Q)) when β is a complex number with |β| > 1 and Re(1− β2) > 0.

Our final results involves the inverse transform of F̂α,β . In order to insure the
existence of the inverse transform of F̂α,β we need to put an additional assumption
on β = a+ bi; namely that

(3.14) Re
(

1− 1
β2

)
> 0.

Now Re(1 − 1/β2) > 0 if and only if (a2 + b2)2 − (a2 − b2) > 0. But the graph of
(a2 + b2)2− (a2− b2) = 0 is the lemniscate r2 = cos(2θ). Hence Re(1− 1/β2) > 0 if
and only if the point (a, b) ∈ R2 lies outside the lemniscate (a2 +b2)2−(a2−b2) = 0.

Theorem 3.9. Let F , α and β be as in Theorem 3.5 and assume that (3.8) holds.
Furthermore assume that β satisfies inequality (3.14). Then for α′ ≡

√
1− 1/β2

and β′ = ±1/β, we have that

(3.15) F̂α′,β′F̂α,βF (x) = F (ββ′x), x ∈ C(Q).

That is to say,

(3.16) F̂α′,1/βF̂α,βF (x) = F (x), x ∈ C(Q)

and

(3.17) F̂α′,−1/βF̂α,βF (x) = F (−x), x ∈ C(Q).

Proof. Since F̂α,βF exists, the Fourier-Hermite expression of it is given by

F̂α,βF (x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nNβ
n1+···+nNΨn1,··· ,nN (x)
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for x ∈ C(Q). Now since ββ′ = ±1, we have

lim
N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nNβ
n1+···+nN (β′)n1+···+nN |2 = lim

N→∞

N∑
n1,··· ,nN=0

|AFn1,··· ,nN |
2

=‖F‖22 <∞.

Hence by Theorem 3.5, F̂α′,β′F̂α,βF exists and is given by

F̂α′,β′F̂α,βF (x) = l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nN (ββ′)n1+···+nNΨn1,··· ,nN (x)

= l. i.m.
N→∞

N∑
n1,··· ,nN=0

AFn1,··· ,nNΨn1,··· ,nN (ββ′x)

=F (ββ′x),

for x ∈ C(Q), where the second equality holds since ββ′ = 1 or −1, and this
completes the proof of Theorem 3.9. �

The following corollary is immediate from Theorems 3.3 and 3.9.

Corollary 3.10. Let F, α, β, α′ and β′ be as in Theorem 3.9. Let c and c′ be
nonzero real numbers. Then

(3.18) F̂α′,c′β′F̂α,cβF (x) = F (cc′ββ′x)

for x ∈ C(Q).
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