Integral Transforms of Square Integrable Functionals on Yeh-Wiener Space

Byoung Soo Kim

School of Liberal Arts, Seoul National University of Technology, Seoul 139-743, Korea

 $e ext{-}mail: mathkbs@snut.ac.kr$

ABSTRACT. We give a necessary and sufficient condition that a square integrable functional F(x) on Yeh-Wiener space has an integral transform $\hat{\mathcal{F}}_{\alpha,\beta}F(x)$ which is also square integrable. This extends the result by Kim and Skoug for functional F(x) in $L_2(C_0[0,T])$.

1. Introduction and definitions

Let C(Q) denote Yeh-Wiener space; that is the space of all real-valued continuous functions x(s,t) on $Q=[0,S]\times[0,T]$ with x(s,0)=x(0,t)=0 for all $0\leq s\leq S$ and $0\leq t\leq T$. Yeh [14] defined a Gaussian measure m_Y on C(Q) (later modified in [16]) such that as a stochastic process $\{x(s,t):(s,t)\in Q\}$ has mean E[x(s,t)]=0 and covariance $E[x(s,t)x(u,v)]=\min\{s,u\}\min\{t,v\}$.

Let \mathcal{M} denote the class of all Yeh-Wiener measurable subsets of C(Q) and we denote the Yeh-Wiener integral of a Yeh-Wiener integrable functional F by

$$\int_{C(Q)} F(x) \, m_Y(dx).$$

Let $L_2(C(Q))$ be the space of all real or complex valued functionals F satisfying

$$\int_{C(Q)} |F(x)|^2 \, m_Y(dx) < \infty.$$

Let K(Q) be the space of complex valued continuous functions defined on Q and satisfying x(s,0)=x(0,t)=0 for all $0 \le s \le S$ and $0 \le t \le T$. Let α and β be nonzero complex numbers. Next we state the definitions of the integral transform $\mathcal{F}_{\alpha,\beta}F$ introduced in [12] and studied in [6],[9],[10] and [11].

Definition 1.1. Let F be a functional defined on K(Q). Then the integral transform $\mathcal{F}_{\alpha,\beta}F$ of F is defined by

(1.1)
$$\mathcal{F}_{\alpha,\beta}F(y) = \int_{C(Q)} F(\alpha x + \beta y) \, m_Y(dx), \quad y \in K(Q)$$

Received 24 January 2008; accepted 1 April 2008.

2000 Mathematics Subject Classification: 28C20, 60J65.

Key words and phrases: Yeh-Wiener integral, integral transform, Fourier-Wiener transform, Fourier-Hermite functional.

if it exists.

Remark 1.2. (1) When $\alpha = 1$ and $\beta = i$, $\mathcal{F}_{\alpha,\beta}F$ is a Yeh-Wiener space version of the Fourier-Wiener transform introduced by Cameron in [2] and used by Cameron and Martin in [3].

- (2) When $\alpha = \sqrt{2}$ and $\beta = i$, $\mathcal{F}_{\alpha,\beta}F$ is a Yeh-Wiener space version of the modified Fourier-Wiener transform introduced by Cameron and Martin in [4].
- (3) Equation (1.1) implies that

(1.2)
$$\mathcal{F}_{\alpha,\beta\beta'}F(y) = \mathcal{F}_{\alpha,\beta}F(\beta'y), \quad y \in K(Q)$$

for any nonzero complex number β' .

(4) For a detailed survey of previous work on integral transform, Fourier-Wiener transform and Fourier-Feynman transform [5], see [13].

Recently Kim and Skoug [11] established a necessary and sufficient condition that a functional F(x) in $L_2(C_0[0,T])$ has an integral transform $\mathcal{F}_{\alpha,\beta}F(x)$ which also belong to $L_2(C_0[0,T])$. In this paper we extend this result for square integrable functionals on Yeh-Wiener space, that is, we give a necessary and sufficient condition that a functional F(x) in $L_2(C(Q))$ has an integral transform $\hat{\mathcal{F}}_{\alpha,\beta}F(x)$, which will be defined in Section 3, also belonging to $L_2(C(Q))$.

Now we introduce a concept of the function of bounded variation of two variables. The concept of bounded variation for a function of two variables is surprisingly complex. In this paper we will use the definition used by Hardy and Krause [1],[8] which we now review.

Let $R = [a, b] \times [c, d]$ and let P be a partition of R given by

$$a = s_0 < s_1 < \dots < s_n = b, \quad c = t_0 < t_1 < \dots < t_m = d.$$

A function f(s,t) is said to be of bounded variation on R in the sense of Hardy and Krause provided the following three conditions hold.

(1) There is a constant B such that

(1.3)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} |f(s_i, t_j) - f(s_i, t_{j-1}) - f(s_{i-1}, t_j) + f(s_{i-1}, t_{j-1})| \le B$$

for all partitions P.

- (2) For each $t \in [c, d]$, $f(\cdot, t)$ is a function of bounded variation on [a, b].
- (3) For each $s \in [a, b]$, $f(s, \cdot)$ is a function of bounded variation on [c, d].

The total variation $\operatorname{Var}(f,R)$ of f over R is defined to be the supremum of the sums in (1.3) over all partitions P of R. $\operatorname{Var}(f(\cdot,t),[a,b])$ and $\operatorname{Var}(f(s,\cdot),[c,d])$ will denote the total variation of $f(\cdot,t)$ on [a,b] and $f(s,\cdot)$ on [c,d], respectively, as functions of single variable.

The definition of bounded variation by Hardy and Krause has the important property that if g is continuous on R and f is of bounded variation on R then the

Riemann-Stieltjes integrals $\int_R g(s,t) df(s,t)$ and $\int_R f(s,t) dg(s,t)$ both exist and satisfy an integration by parts formula [7].

Let $\{\theta_1, \theta_2, \dots, \theta_n\}$ be an orthonormal set of real-valued functions in $L_2(C(Q))$. Furthermore assume that each θ_j is of bounded variation in the sense of Hardy and Krause on Q. Then for each $y \in K(Q)$ and $j = 1, 2, \dots$, the Riemann-Stieltjes integral $\langle \theta_j, y \rangle \equiv \int_Q \theta_j(s,t) \, dy(s,t)$ exists. We finish this section by introducing a well-known Yeh-Wiener integration formula for functionals $f(\langle \vec{\theta}, x \rangle) \equiv f(\langle \theta_1, x \rangle, \dots, \langle \theta_n, x \rangle)$:

(1.4)
$$\int_{C(Q)} f(\langle \vec{\theta}, x \rangle) \, m_Y(dx) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(\vec{u}) \exp\left\{-\frac{1}{2} ||\vec{u}||^2\right\} d\vec{u},$$

where $\|\vec{u}\|^2 = \sum_{i=1}^n u_i^2$ and $d\vec{u} = du_1 \cdots du_n$.

2. Integral transforms of the Fourier-Hermite functionals

For $n = 0, 1, 2, \dots$, let $H_n(u)$ denote the Hermite polynomial

$$H_n(u) = (-1)^n (n!)^{-1/2} e^{u^2/2} \frac{d^n}{du^n} (e^{-u^2/2}).$$

Then, as is well known, the set

$$\{(2\pi)^{-1/4}H_n(u)e^{-u^2/4}: n=0,1,2,\cdots\}$$

is a complete orthonormal (CON) set on \mathbb{R} .

Let $\{\theta_p(s,t): p=1,2,\cdots\}$ be a CON set of functions of bounded variation on Q. Define

$$\Phi_{n,p}(y) = H_n(\langle \theta_p, y \rangle), \quad n = 0, 1, 2, \dots, p = 1, 2, \dots,$$

and

(2.2)
$$\Psi_{n_1,\dots,n_p}(y) = \Psi_{n_1,\dots,n_p,0,\dots,0}(y) = \Phi_{n_1,1}(y) \cdots \Phi_{n_p,p}(y)$$

for $y \in K(Q)$. The functionals in (2.2) are called the Fourier-Hermite functionals on Yeh-Wiener space.

In [15], Yeh showed that the Fourier-Hermite functionals form a CON set in $L_2(C(Q))$. That is to say that every functional F(x) in $L_2(C(Q))$ has a Fourier-Hermite development which converges in the $L_2(C(Q))$ sense to F(x); namely that

(2.3)
$$F(x) = \lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^{N} A_{n_1, \dots, n_N}^F \Psi_{n_1, \dots, n_N}(x),$$

where A_{n_1,\dots,n_N}^F is the Fourier-Hermite coefficient

(2.4)
$$A_{n_1,\dots,n_N}^F = \int_{C(Q)} F(x) \Psi_{n_1,\dots,n_N}(x) \, m_Y(dx).$$

Throughout this paper, in order to insure that various integrals exist, we will assume that $\beta = a + bi$ is a nonzero complex number satisfying the inequality

(2.5)
$$\operatorname{Re}(1-\beta^2) = 1 + b^2 - a^2 > 0.$$

Note that $\text{Re}(1-\beta^2)=1+b^2-a^2>0$ if and only if the point $(a,b)\in\mathbb{R}^2$ lies in the open region, determined by the hyperbola $a^2-b^2=1$, containing the *b*-axis. Hence for all $|\beta|\leq 1$, $\beta\neq\pm 1$, $\text{Re}(1-\beta^2)>0$. Next we define

(2.6)
$$\alpha \equiv \sqrt{1 - \beta^2}, \quad -\pi/4 < \arg(\alpha) < \pi/4$$

and note that $\alpha^2 + \beta^2 = 1$ and $Re(\alpha^2) = Re(1 - \beta^2) > 0$.

The following lemma is introduced in [11] and will be needed to find the integral transform of the Fourier-Hermite functionals on Yeh-Wiener space.

Lemma 2.1. Let β be a nonzero complex number satisfying inequality (2.5) and let α be defined by equation (2.6). Let r be a complex number. Then for $n = 0, 1, 2, \dots$,

(2.7)
$$\int_{\mathbb{R}} H_n(u) \exp\left\{-\frac{1}{2\alpha^2}(u-r\beta)^2\right\} du = \sqrt{2\pi}\alpha\beta^n H_n(r).$$

Next, using Lemma 2.1, we obtain a formula for the integral transform of the Fourier-Hermite functionals given by equation (2.2).

Theorem 2.2. Let α and β be as in Lemma 2.1. Then for each $y \in K(Q)$,

(2.8)
$$\mathcal{F}_{\alpha,\beta}\Psi_{n_1,\dots,n_p}(y) = \beta^{n_1+\dots+n_p}\Psi_{n_1,\dots,n_p}(y).$$

Proof. For $j=1,2,\cdots$, let $r_j=\langle \theta_j,y\rangle$ which we know exists for all $y\in K(Q)$ since θ_j is of bounded variation on Q. Then for every $y\in K(Q)$, by the Yeh-Wiener integration formula (1.4),

$$\mathcal{F}_{\alpha,\beta}\Psi_{n_1,\dots,n_p}(y) = \int_{C(Q)} \Psi_{n_1,\dots,n_p}(\alpha x + \beta y) \, m_Y(dx)$$
$$= \prod_{j=1}^p \left[(2\pi)^{-1/2} \int_{\mathbb{R}} H_{n_j}(\alpha u_j + \beta r_j) e^{-u_j^2/2} \, du_j \right].$$

Note that for all positive α and all $\beta \in \mathbb{C}$.

$$\int_{\mathbb{R}} H_n(\alpha u + \beta r) e^{-u^2/2} du = \frac{1}{\alpha} \int_{\mathbb{R}} H_n(u) e^{-(u-r\beta)^2/2\alpha^2} du.$$

But each side of the above expression is an analytic function of α throughout the region $\{\alpha \in \mathbb{C} : \operatorname{Re}(\alpha^2) > 0\}$. Hence by the uniqueness theorem for analytic functions, the above equality holds for all α with $\operatorname{Re}(\alpha^2) > 0$ and all $\beta \in \mathbb{C}$ and so

$$\mathcal{F}_{\alpha,\beta}\Psi_{n_1,\dots,n_p}(y) = \prod_{j=1}^p \left[(2\pi\alpha^2)^{-1/2} \int_{\mathbb{R}} H_{n_j}(u_j) e^{-(u_j - r_j\beta)^2/2\alpha^2} du_j \right].$$

Then using Lemma 2.1, we obtain equation (2.8), the desired result.

Our first corollary follows immediately from equation (2.8) and the fact that $\|\Psi_{n_1,\dots,n_p}\|_2=1$.

Corollary 2.3. Let α and β be as in Lemma 2.1. Then

(2.9)
$$\|\mathcal{F}_{\alpha,\beta}\Psi_{n_1,\dots,n_p}\|_2 = |\beta|^{n_1+\dots+n_p}.$$

By (1.2) and Theorem 2.2, we obtain the following corollary.

Corollary 2.4. Let α and β be as in Lemma 2.1 and let γ be any nonzero complex number. Then for each $y \in K(Q)$,

(2.10)
$$\mathcal{F}_{\alpha,\gamma}\Psi_{n_1,\dots,n_p}(y) = \beta^{n_1+\dots+n_p}\Psi_{n_1,\dots,n_p}\left(\frac{\gamma y}{\beta}\right).$$

3. Integral transforms of functionals belonging to $L_2(C(Q))$

For $F \in L_2(C(Q))$ let (2.3) denote the Fourier-Hermite expression of F(x) with the Fourier-Hermite coefficients A_{n_1,\dots,n_N}^F given by equation (2.4). For $N=1,2,\cdots$, let

(3.1)
$$F_N(x) = \sum_{n_1, \dots, n_N = 0}^N A_{n_1, \dots, n_N}^F \Psi_{n_1, \dots, n_N}(x).$$

Then by Theorem 2.2, we know that for each $N = 1, 2, \dots$, the integral transform $\mathcal{F}_{\alpha,\beta}F_N$ exists for all α and β as in Lemma 2.1, and $\mathcal{F}_{\alpha,\beta}F_N$ is an element of $L_2(C(Q))$ such that for each $y \in K(Q)$,

(3.2)
$$\mathcal{F}_{\alpha,\beta}F_N(y) = \sum_{n_1,\dots,n_N=0}^N A_{n_1,\dots,n_N}^F \beta^{n_1+\dots+n_N} \Psi_{n_1,\dots,n_N}(y).$$

Furthermore,

(3.3)
$$\|\mathcal{F}_{\alpha,\beta}F_N\|_2^2 = \sum_{n_1,\dots,n_N=0}^N |A_{n_1,\dots,n_N}^F\beta^{n_1+\dots+n_N}|^2.$$

Definition 3.1. Let $F \in L_2(C(Q))$ be given by (2.3). Then for each pair of nonzero complex numbers α and β , we define the integral transform $\hat{\mathcal{F}}_{\alpha,\beta}F$ of F to be

(3.4)
$$\hat{\mathcal{F}}_{\alpha,\beta}F(x) = \lim_{N \to \infty} \mathcal{F}_{\alpha,\beta}F_N(x), \quad x \in C(Q)$$

if it exists; that is to say if

(3.5)
$$\lim_{N \to \infty} \int_{C(Q)} |\hat{\mathcal{F}}_{\alpha,\beta} F(x) - \mathcal{F}_{\alpha,\beta} F_N(x)|^2 m_Y(dx) = 0.$$

Suppose that F is a functional defined on K(Q) and has the integral transform $\mathcal{F}_{\alpha,\beta}F(y)$ for $y \in K(Q)$ in the sense of Definition 1.1. Further assume that F, as a function of $x \in C(Q)$, belongs to $L_2(C(Q))$ and has the integral transform $\hat{\mathcal{F}}_{\alpha,\beta}F$ for $x \in C(Q)$ in the sense of Definition 3.1. The following example shows that the two integral transforms $\mathcal{F}_{\alpha,\beta}F(x)$ and $\hat{\mathcal{F}}_{\alpha,\beta}F(x)$ for $x \in C(Q)$ need not coincide.

Example 3.2. Let F be a functional defined on K(Q) by

$$F(y) = \begin{cases} 0, & \text{if } y \in C(Q) \\ 1, & \text{if } y \in K(Q) \setminus C(Q). \end{cases}$$

Then F belongs to $L_2(C(Q))$ and for $x \in C(Q)$, we have

$$\mathcal{F}_{\sqrt{2},i}F(x) = \int_{C(O)} F(\sqrt{2}z + ix) \, m_Y(dz) = 1.$$

On the other hand, for any nonnegative integers n_1, \dots, n_N ,

$$A_{n_1,\dots,n_N}^F = \int_{C(Q)} F(x) \Psi_{n_1,\dots,n_N}(x) \, m_Y(dx) = 0$$

and so $F_N(y) = 0$ for $y \in K(Q)$ and for all $N = 1, 2, \cdots$. Now

$$\mathcal{F}_{\sqrt{2},i}F_N(x) = \int_{C(Q)} F_N(\sqrt{2}z + ix) \, m_Y(dz) = 0, \quad x \in C(Q)$$

and so

$$\hat{\mathcal{F}}_{\sqrt{2},i}F(x) = \lim_{N \to \infty} \mathcal{F}_{\sqrt{2},i}F_N(x) = 0, \quad x \in C(Q).$$

Hence we conclude that

$$\mathcal{F}_{\sqrt{2},i}F(x) \neq \hat{\mathcal{F}}_{\sqrt{2},i}F(x)$$

for $x \in C(Q)$.

Theorem 3.3. Let $F \in L_2(C(Q))$ be given by (2.3). Let α and β be nonzero complex numbers and let c be a nonzero real number. Then

(3.6)
$$\hat{\mathcal{F}}_{\alpha,c\beta}F(x) = \hat{\mathcal{F}}_{\alpha,\beta}F(cx)$$

for $x \in C(Q)$.

Proof. By (1.2) for each $N = 1, 2, \dots$,

$$\mathcal{F}_{\alpha,c\beta}F_N(x) = \mathcal{F}_{\alpha,\beta}F_N(cx)$$

and so

$$\hat{\mathcal{F}}_{\alpha,c\beta}F(x) = \lim_{N \to \infty} \mathcal{F}_{\alpha,c\beta}F_N(x) = \lim_{N \to \infty} \mathcal{F}_{\alpha,\beta}F_N(cx) = \hat{\mathcal{F}}_{\alpha,\beta}F(cx)$$

as desired. \Box

The following lemma gives us a relationship between the Fourier-Hermite coefficients of $\hat{\mathcal{F}}_{\alpha,\beta}F$ and F.

Lemma 3.4. Let $F \in L_2(C(Q))$ be given by (2.3) with Fourier-Hermite coefficients given by (2.4). Let α and β be as in Lemma 2.1 and assume that $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists and is in $L_2(C(Q))$. Then

(3.7)
$$A_{n_1,\dots,n_N}^{\hat{\mathcal{F}}_{\alpha,\beta}F} = A_{n_1,\dots,n_N}^F \beta^{n_1+\dots+n_N}$$

for each $N = 1, 2, \cdots$.

Proof. Fix $N=1,2,\cdots$. For any given $\epsilon>0$, take a natural number M satisfying $\|\hat{\mathcal{F}}_{\alpha,\beta}F-\mathcal{F}_{\alpha,\beta}F_M\|_2<\epsilon$ and $M\geq N$. Then we have

$$\begin{split} &|A_{n_1,\cdots,n_N}^{\hat{\mathcal{F}}_{\alpha,\beta}F}-A_{n_1,\cdots,n_N}^F\beta^{n_1+\cdots+n_N}|\\ =&\Big|\int_{C(Q)}\hat{\mathcal{F}}_{\alpha,\beta}F(x)\Psi_{n_1,\cdots,n_N}(x)\,m_Y(dx)-A_{n_1,\cdots,n_N}^F\beta^{n_1+\cdots+n_N}\Big|\\ \leq&\Big|\int_{C(Q)}[\hat{\mathcal{F}}_{\alpha,\beta}F(x)-\mathcal{F}_{\alpha,\beta}F_M(x)]\Psi_{n_1,\cdots,n_N}(x)\,m_Y(dx)\Big|\\ &+\Big|\int_{C(Q)}\mathcal{F}_{\alpha,\beta}F_M(x)\Psi_{n_1,\cdots,n_N}(x)\,m_Y(dx)-A_{n_1,\cdots,n_N}^F\beta^{n_1+\cdots+n_N}\Big|. \end{split}$$

But by the Hölder inequality and the fact that $\{\Psi_{n_1,\dots,n_N}\}$ is an orthonormal set,

$$\left| \int_{C(Q)} \left[\hat{\mathcal{F}}_{\alpha,\beta} F(x) - \mathcal{F}_{\alpha,\beta} F_M(x) \right] \Psi_{n_1,\dots,n_N}(x) \, m_Y(dx) \right| \le \| \hat{\mathcal{F}}_{\alpha,\beta} F - \mathcal{F}_{\alpha,\beta} F_M \|_2 < \epsilon$$

and from (3.2) we know that

$$\int_{C(Q)} \mathcal{F}_{\alpha,\beta} F_M(x) \Psi_{n_1,\dots,n_N}(x) \, m_Y(dx) = A_{n_1,\dots,n_N}^F \beta^{n_1+\dots+n_N}.$$

Hence

$$|A_{n_1,\cdots,n_N}^{\hat{\mathcal{F}}_{\alpha,\beta}F}-A_{n_1,\cdots,n_N}^F\beta^{n_1+\cdots+n_N}|<\epsilon$$

which establishes equation (3.7).

The following theorem is our main result. It gives a necessary and sufficient condition that a functional F in $L_2(C(Q))$ has an integral transform $\hat{\mathcal{F}}_{\alpha,\beta}F$ belonging to $L_2(C(Q))$.

Theorem 3.5. Let $F \in L_2(C(Q))$ be given by (2.3) with Fourier-Hermite coefficients given by (2.4). Let α and β be as in Lemma 2.1. Then $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists and is an element of $L_2(C(Q))$ if and only if

(3.8)
$$\lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^{N} |A_{n_1, \dots, n_N}^F \beta^{n_1 + \dots + n_N}|^2 < \infty.$$

Furthermore if (3.8) holds, then the Fourier-Hermite expression of $\hat{\mathcal{F}}_{\alpha,\beta}F$ is given by

(3.9)
$$\hat{\mathcal{F}}_{\alpha,\beta}F(x) = \lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^{N} A_{n_1, \dots, n_N}^F \beta^{n_1 + \dots + n_N} \Psi_{n_1, \dots, n_N}(x)$$

for $x \in C(Q)$.

Proof. Assume that $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists and is an element of $L_2(C(Q))$. For any given $\epsilon > 0$, we have $\|\hat{\mathcal{F}}_{\alpha,\beta}F - \mathcal{F}_{\alpha,\beta}F_N\|_2 < \epsilon$ for sufficiently large N, and so

$$\left(\sum_{n_1,\dots,n_N=0}^{N} |A_{n_1,\dots,n_N}^F\beta^{n_1+\dots+n_N}|^2\right)^{1/2} = \|\mathcal{F}_{\alpha,\beta}F_N\|_2 \le \|\hat{\mathcal{F}}_{\alpha,\beta}F\|_2 + \epsilon.$$

Hence we have

$$\lim_{N\to\infty}\sum_{n_1,\cdots,n_N=0}^N |A^F_{n_1,\cdots,n_N}\beta^{n_1+\cdots+n_N}|^2 \leq \|\hat{\mathcal{F}}_{\alpha,\beta}F\|_2^2 < \infty.$$

To prove the converse, suppose that (3.8) holds. Let M > N, let

$$I_M = \{(n_1, \cdots, n_M) : n_1, \cdots, n_M = 0, 1, \cdots, M\},\$$

and let

$$I_N = \{(n_1, \dots, n_M) : n_1, \dots, n_N = 0, 1, \dots, N \text{ and } n_{N+1} = \dots = n_M = 0\}.$$

Then

$$\begin{split} & \|\mathcal{F}_{\alpha,\beta}F_{M} - \mathcal{F}_{\alpha,\beta}F_{N}\|_{2}^{2} \\ = & \left\| \sum_{I_{M} - I_{N}} A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1} + \cdots + n_{M}} \Psi_{n_{1}, \cdots, n_{M}} \right\|_{2}^{2} \\ = & \sum_{I_{M} - I_{N}} |A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1} + \cdots + n_{M}}|^{2} \\ = & \sum_{n_{1}, \cdots, n_{M} = 0} |A_{n_{1}, \cdots, n_{M}}^{F} \beta^{n_{1} + \cdots + n_{M}}|^{2} - \sum_{n_{1}, \cdots, n_{N} = 0}^{N} |A_{n_{1}, \cdots, n_{N}}^{F} \beta^{n_{1} + \cdots + n_{N}}|^{2} \end{split}$$

which goes to 0 as $M, N \to \infty$. Hence $\{\mathcal{F}_{\alpha,\beta}F_N\}$ is a Cauchy sequence in $L_2(C(Q))$ and since $L_2(C(Q))$ is complete,

$$\hat{\mathcal{F}}_{\alpha,\beta}F(x) = \lim_{N \to \infty} \mathcal{F}_{\alpha,\beta}F_N(x), \quad x \in C(Q)$$

exists and is an element of $L_2(C(Q))$ and is given by (3.9).

Our first corollary follows immediately from Theorem 3.5.

Corollary 3.6. Let F, α and β be as in Theorem 3.5. Furthermore assume that $|\beta| \leq 1$. Then $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists, belongs to $L_2(C(Q))$, and

(3.10)
$$\|\hat{\mathcal{F}}_{\alpha,\beta}F\|_{2}^{2} = \lim_{N \to \infty} \sum_{n_{1}, \dots, n_{N} = 0}^{N} |A_{n_{1}, \dots, n_{N}}^{F}\beta^{n_{1} + \dots + n_{N}}|^{2}$$
$$\leq \lim_{N \to \infty} \sum_{n_{1}, \dots, n_{N} = 0}^{N} |A_{n_{1}, \dots, n_{N}}^{F}\beta^{n_{1} + \dots + n_{N}}\beta^{n_{1} + \dots + n_{N}}|^{2}$$

In addition,

if and only if $|\beta| = 1$.

The following corollary is immediate from Theorems 3.3 and 3.5.

Corollary 3.7. Let F, α and β be as in Theorem 3.5 and let c be a nonzero real number. Then

(3.12)
$$\hat{\mathcal{F}}_{\alpha,c\beta}F(x) = \lim_{N \to \infty} \sum_{n_1,\dots,n_N=0}^N A_{n_1,\dots,n_N}^F \beta^{n_1+\dots+n_N} \Psi_{n_1,\dots,n_N}(cx)$$

for $x \in C(Q)$.

Next choosing $\alpha = \sqrt{2}$ and $\beta = i$, we obtain a Yeh-Wiener space version of the main theorem of [4].

Corollary 3.8. Every functional $F(x) \in L_2(C(Q))$ has a Fourier-Wiener transform $G(x) \in L_2(C(Q))$. The functional G(x) has F(-x) as its transform and F and G satisfies Plancherel's relation

(3.13)
$$\int_{C(Q)} |F(x)|^2 m_Y(dx) = \int_{C(Q)} |G(x)|^2 m_Y(dx).$$

Proof. Using Corollary 3.6 and Theorem 3.5, we obtain that $G(x) \in L_2(C(Q))$ is given by

$$G(x) = \lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^N A^F_{n_1, \dots, n_N} i^{n_1 + \dots + n_N} \Psi_{n_1, \dots, n_N}(x),$$

and that

$$\hat{\mathcal{F}}_{\sqrt{2},i}G(x)= \lim_{N\to\infty} \sum_{n_1,\cdots,n_N=0}^N A^F_{n_1,\cdots,n_N}(-1)^{n_1+\cdots+n_N} \Psi_{n_1,\cdots,n_N}(x).$$

But since the Hermite polynomial H_n is an even function if n is even and an odd function if n is odd, it is easy to see that

$$(-1)^{n_1+\cdots+n_N}\Psi_{n_1,\dots,n_N}(x) = \Psi_{n_1,\dots,n_N}(-x)$$

and so $\hat{\mathcal{F}}_{\sqrt{2},i}G(x)=F(-x)$. Finally equation (3.13) follows immediately from (3.11).

Recall that throughout this paper we have assumed that $\beta = a + bi$ was a nonzero complex number satisfying inequality (2.5); namely that $\text{Re}(1 - \beta^2) > 0$. Furthermore, in Corollary 3.6 we showed that if β also satisfies the inequality $|\beta| \leq 1$, then $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists as an element of $L_2(C(Q))$ for all $F \in L_2(C(Q))$ with α given by (2.6). In Example 10 of [11], Kim and Skoug showed that for any complex number β with $|\beta| > 1$ and $\text{Re}(1 - \beta^2) > 0$, there exists a functional $F \in L_2(C_0[0,T])$ such that $\mathcal{F}_{\alpha,\beta}F$, $\hat{\mathcal{F}}_{\alpha,\beta}F$ in our notation, doesn't exist as an element of $L_2(C_0[0,T])$. Using the same idea as in Example 10 of [11], we can construct a functional $F \in L_2(C(Q))$ such that $\hat{\mathcal{F}}_{\alpha,\beta}F$ doesn't exist as an element of $L_2(C(Q))$ when β is a complex number with $|\beta| > 1$ and $\text{Re}(1 - \beta^2) > 0$.

Our final results involves the inverse transform of $\hat{\mathcal{F}}_{\alpha,\beta}$. In order to insure the existence of the inverse transform of $\hat{\mathcal{F}}_{\alpha,\beta}$ we need to put an additional assumption on $\beta = a + bi$; namely that

(3.14)
$$\operatorname{Re}\left(1 - \frac{1}{\beta^2}\right) > 0.$$

Now $\operatorname{Re}(1-1/\beta^2)>0$ if and only if $(a^2+b^2)^2-(a^2-b^2)>0$. But the graph of $(a^2+b^2)^2-(a^2-b^2)=0$ is the lemniscate $r^2=\cos(2\theta)$. Hence $\operatorname{Re}(1-1/\beta^2)>0$ if and only if the point $(a,b)\in\mathbb{R}^2$ lies outside the lemniscate $(a^2+b^2)^2-(a^2-b^2)=0$.

Theorem 3.9. Let F, α and β be as in Theorem 3.5 and assume that (3.8) holds. Furthermore assume that β satisfies inequality (3.14). Then for $\alpha' \equiv \sqrt{1 - 1/\beta^2}$ and $\beta' = \pm 1/\beta$, we have that

(3.15)
$$\hat{\mathcal{F}}_{\alpha',\beta'}\hat{\mathcal{F}}_{\alpha,\beta}F(x) = F(\beta\beta'x), \quad x \in C(Q).$$

That is to say,

(3.16)
$$\hat{\mathcal{F}}_{\alpha',1/\beta}\hat{\mathcal{F}}_{\alpha,\beta}F(x) = F(x), \quad x \in C(Q)$$

and

(3.17)
$$\hat{\mathcal{F}}_{\alpha',-1/\beta}\hat{\mathcal{F}}_{\alpha,\beta}F(x) = F(-x), \quad x \in C(Q).$$

Proof. Since $\hat{\mathcal{F}}_{\alpha,\beta}F$ exists, the Fourier-Hermite expression of it is given by

$$\hat{\mathcal{F}}_{\alpha,\beta}F(x) = \lim_{N \to \infty} \sum_{n_1, \cdots, n_N = 0}^{N} A_{n_1, \cdots, n_N}^F \beta^{n_1 + \cdots + n_N} \Psi_{n_1, \cdots, n_N}(x)$$

for $x \in C(Q)$. Now since $\beta\beta' = \pm 1$, we have

$$\lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^{N} |A_{n_1, \dots, n_N}^F \beta^{n_1 + \dots + n_N} (\beta')^{n_1 + \dots + n_N}|^2 = \lim_{N \to \infty} \sum_{n_1, \dots, n_N = 0}^{N} |A_{n_1, \dots, n_N}^F|^2$$

$$= ||F||_2^2 < \infty.$$

Hence by Theorem 3.5, $\hat{\mathcal{F}}_{\alpha',\beta'}\hat{\mathcal{F}}_{\alpha,\beta}F$ exists and is given by

$$\hat{\mathcal{F}}_{\alpha',\beta'}\hat{\mathcal{F}}_{\alpha,\beta}F(x) = \lim_{N \to \infty} \sum_{n_1,\dots,n_N=0}^{N} A_{n_1,\dots,n_N}^F(\beta\beta')^{n_1+\dots+n_N} \Psi_{n_1,\dots,n_N}(x)$$

$$= \lim_{N \to \infty} \sum_{n_1,\dots,n_N=0}^{N} A_{n_1,\dots,n_N}^F \Psi_{n_1,\dots,n_N}(\beta\beta'x)$$

$$= F(\beta\beta'x),$$

for $x \in C(Q)$, where the second equality holds since $\beta\beta' = 1$ or -1, and this completes the proof of Theorem 3.9.

The following corollary is immediate from Theorems 3.3 and 3.9.

Corollary 3.10. Let $F, \alpha, \beta, \alpha'$ and β' be as in Theorem 3.9. Let c and c' be nonzero real numbers. Then

(3.18)
$$\hat{\mathcal{F}}_{\alpha',c'\beta'}\hat{\mathcal{F}}_{\alpha,c\beta}F(x) = F(cc'\beta\beta'x)$$

for $x \in C(Q)$.

References

- [1] E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc., **30**(1984), 305-321.
- [2] R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 485-488.
- [3] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 489-507.
- [4] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to L_2 over the space C, Duke Math. J., 14(1947), 99-107.
- [5] R. H. Cameron and D. A. Storvick, An L_2 analytic Fourier-Feynman transform, Michigan Math. J., 23(1976), 1-30.
- [6] K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim., 21(2000), 97-105.

- [7] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.
- [8] G. W. Johnson and D. L. Skoug, A stochastic integration formula for two-parameter Wiener×two-parameter Wiener space, SIAM J. Math. Anal., 18(1987), 919-932.
- [9] B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci., 2004(2004), 579-598.
- [10] B. J. Kim, B. S. Kim and I. Yoo, Integral transforms of functionals on a function space of two variables, submitted.
- [11] B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0,T])$, Rocky Mountain J. Math., **33**(2003), 1379-1393.
- Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces,
 J. Funct. Anal., 47(1982), 153-164.
- [13] D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 34(2004), 1147-1176.
- [14] J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450.
- [15] J. Yeh, Orthogonal developments of functionals and related theroems in the Wiener space of functions of two variables, Pacific J. Math., 13(1963), 1427-1436.
- [16] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.