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ABSTRACT. We give a necessary and sufficient condition that a square integrable func-
tional F'(x) on Yeh-Wiener space has an integral transform F, gF(z) which is also square
integrable. This extends the result by Kim and Skoug for functional F(z) in L2(Cy[0, 7).

1. Introduction and definitions

Let C(Q) denote Yeh-Wiener space; that is the space of all real-valued continu-
ous functions z(s,t) on @ = [0, 5] x [0, T] with 2(s,0) = 2(0,t) =0forall 0 < s < S
and 0 < ¢t < T. Yeh [14] defined a Gaussian measure my on C(Q) (later modified in
[16]) such that as a stochastic process {z(s,t) : (s,t) € @} has mean F[z(s,t)] =0
and covariance E[x(s,t)z(u,v)] = min{s, u} min{¢, v}.

Let M denote the class of all Yeh-Wiener measurable subsets of C(Q) and we
denote the Yeh-Wiener integral of a Yeh-Wiener integrable functional F' by

/ F(x) my (dz).
c(Q)
Let Ly(C(Q)) be the space of all real or complex valued functionals F satisfying
/ |F(z)]* my (dz) < oco.
c(Q)

Let K(Q) be the space of complex valued continuous functions defined on @ and
satisfying x(s,0) = 2(0,¢) = 0 for all 0 < s < Sand 0 <t < T. Let o and 3 be
nonzero complex numbers. Next we state the definitions of the integral transform
Fo,pF introduced in [12] and studied in [6],[9],[10] and [11].

Definition 1.1. Let F be a functional defined on K(Q). Then the integral trans-
form F, gF of F' is defined by

(1.1) FapFly) = /C o Flea s amy(dn), v K(Q)
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if it exists.

Remark 1.2. (1) When a =1 and 8 = ¢, Fo gF' is a Yeh-Wiener space version of
the Fourier-Wiener transform introduced by Cameron in [2] and used by Cameron
and Martin in [3].

(2) When oo = /2 and 3 =i, F, gF is a Yeh-Wiener space version of the modified
Fourier-Wiener transform introduced by Cameron and Martin in [4].

(3) Equation (1.1) implies that

(1.2) FappF(y) = FapF(B'y), yeK(Q)

for any nonzero complex number 3’
(4) For a detailed survey of previous work on integral transform, Fourier-Wiener
transform and Fourier-Feynman transform [5], see [13].

Recently Kim and Skoug [11] established a necessary and sufficient condition
that a functional F(z) in L2(Cy[0,T]) has an integral transform F, gF(x) which
also belong to L2 (C[0,T1]). In this paper we extend this result for square integrable
functionals on Yeh-Wiener space, that is, we give a necessary and sufficient condition
that a functional F(z) in Ly(C(Q)) has an integral transform F, sF(z), which will
be defined in Section 3, also belonging to L2 (C(Q)).

Now we introduce a concept of the function of bounded variation of two vari-
ables. The concept of bounded variation for a function of two variables is surpris-
ingly complex. In this paper we will use the definition used by Hardy and Krause
[1],[8] which we now review.

Let R = [a,b] X [¢,d] and let P be a partition of R given by

a=8s<851<--<s,=b, c=tg<t1 < ---<t,, =d.

A function f(s,t) is said to be of bounded variation on R in the sense of Hardy and
Krause provided the following three conditions hold.
(1) There is a constant B such that

(1.3) Z Z |f(si,t5) = fsistj—1) — f(si—1,t5) + f(si—1,t-1)| < B

i=1 j=1

for all partitions P.

(2) For each t € [¢,d], f(-,¢) is a function of bounded variation on [a, b].

(3) For each s € [a,b], f(s,-) is a function of bounded variation on [e, d].

The total variation Var(f, R) of f over R is defined to be the supremum of the
sums in (1.3) over all partitions P of R. Var(f(:,t),[a,b]) and Var(f(s,-),][c,d])
will denote the total variation of f(-,¢) on [a,b] and f(s,-) on [c, d], respectively, as
functions of single variable.

The definition of bounded variation by Hardy and Krause has the important
property that if g is continuous on R and f is of bounded variation on R then the
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Riemann-Stieltjes integrals [}, g(s,t)df(s,t) and [, f(s,t)dg(s,t) both exist and
satisfy an integration by parts formula [7].

Let {01,604, - ,0,} be an orthonormal set of real-valued functions in Ly (C(Q)).
Furthermore assume that each 6; is of bounded variation in the sense of Hardy
and Krause on Q Then for each y € K(Q) and j = 1,2,---, the Riemann-
Stieltjes integral (6 fQ s,t) dy(s,t) exists. We finish this section by in-

troducing a well- known Yeh-Wiener integration formula for functionals f((6,z)) =

f(<917$>a"' 7<0n7x>):

, om [ i el L) g
[ @) = om0 [ @ el i
where [|@]|* = "7, u? and di = du; - - - du,,.

2. Integral transforms of the Fourier-Hermite functionals

Forn=0,1,2,---, let H,(u) denote the Hermite polynomial
2y d?
Hy () = (=) (nt) 22 2 (e ),

Then, as is well known, the set
(2.1) {2m) VA H, (w)e " /4 in=0,1,2,--}

is a complete orthonormal(CON) set on R.
Let {6,(s,t) : p=1,2,---} be a CON set of functions of bounded variation on
Q. Define
(I)n,p(y) :H7L(<0;D7y>)’ n=012--,p=12.-,

and

(22) \I/nl,m Np (y) = \Ijn1,~-- Mp,0,- .,O(y) = q)n1,1(y) e (I)np,p(y)

for y € K(Q). The functionals in (2.2) are called the Fourier-Hermite functionals
on Yeh-Wiener space.

n [15], Yeh showed that the Fourier-Hermite functionals form a CON set in
L2 (C(Q)). That is to say that every functional F(x) in L2(C(Q)) has a Fourier-
Hermite development which converges in the Lo(C(Q)) sense to F(z); namely that

(2'3) F(x) = ljvi'_glo Z A -,nN\I}nl,“',nN (1’),
ni, yMMN = =0
where AF | is the Fourier-Hermite coefficient

(2.4) Afh Cnn :/ F(2)Uy, ... ny(x)my(dz).
el(®)
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Throughout this paper, in order to insure that various integrals exist, we will assume
that 8 = a 4 bi is a nonzero complex number satisfying the inequality

(2.5) Re(l1 — 3% =1+b*—a®>>0.

Note that Re(1 — 3?) = 1+ b? — a? > 0 if and only if the point (a,b) € R? lies in
the open region, determined by the hyperbola a? — b?> = 1, containing the b-axis.
Hence for all |8] < 1, B # 1, Re(1 — 3?) > 0. Next we define

(2.6) a=+1-062 —7/4<arg(a)<mr/4

and note that a? + 32 = 1 and Re(a?) = Re(1 — %) > 0.
The following lemma is introduced in [11] and will be needed to find the integral
transform of the Fourier-Hermite functionals on Yeh-Wiener space.

Lemma 2.1. Let 8 be a nonzero complex number satisfying inequality (2.5) and let
a be defined by equation (2.6). Let v be a complex number. Then forn =0,1,2,---,
1
(2.7) / H, (u) exp{—2—2(u - rﬁ)z} du = V2rafB" Hy,(r).
R (0%
Next, using Lemma 2.1, we obtain a formula for the integral transform of the
Fourier-Hermite functionals given by equation (2.2).

Theorem 2.2. Let a and 8 be as in Lemma 2.1. Then for each y € K(Q),

(2'8> Fa,8¥n, . Mp (y) = ﬁn1+~~'+np\1,nl)m Mp (y>

Proof. For j =1,2,---, let r; = (#;,y) which we know exists for all y € K(Q) since
6; is of bounded variation on (). Then for every y € K(Q), by the Yeh-Wiener
integration formula (1.4),

Fou U () = / Vs o (0 + By) my (do)
c(Q)

P
-11 [(QW)—W / H,, (o + Bry)e™/2 duj]
j=1 R
Note that for all positive « and all § € C,

1
/ H,(au +,8T)€7u2/2 du = —/ Hn(u)ef(“f’”ﬁ)z/zo‘2 du.
R @ Jr

But each side of the above expression is an analytic function of o throughout the
region {a € C : Re(a?) > 0}. Hence by the uniqueness theorem for analytic
functions, the above equality holds for all @ with Re(a?) > 0 and all 3 € C and so

P

Fos Vs, ) = [ [ (27a®) /2 / Hy, (ug)e= (s mms7/20% gy .

j=1
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Then using Lemma 2.1, we obtain equation (2.8), the desired result. O

Our first corollary follows immediately from equation (2.8) and the fact that
||\I/n1,~~wan2 =1

Corollary 2.3. Let o and 8 be as in Lemma 2.1. Then
(2~9) H]:a,,@qjm,m,nplb = |5|n1+~~+np'
By (1.2) and Theorem 2.2, we obtain the following corollary.

Corollary 2.4. Let a and 8 be as in Lemma 2.1 and let v be any nonzero complex
number. Then for each y € K(Q),

(2.10) Forr Wiy (y) = B 5000, (%).

3. Integral transforms of functionals belonging to L2(C(Q))

For F € Ly(C(Q)) let (2.3) denote the Fourier-Hermite expression of F(z) with
the Fourier-Hermite coefficients Afh,., . given by equation (2.4). For N =1,2
let

N

N
(3.1) Fy(z)= > Al L W (2).

ny,,nN=0

Then by Theorem 2.2, we know that for each N = 1,2, -, the integral transform
FapFn exists for all o and 8 as in Lemma 2.1, and F, gFy is an element of
L2 (C(Q)) such that for each y € K(Q),

N
(3.2) FapFn)= > AR BN ().
N1, mN=0
Furthermore,
N
(3.3) IFasEnlZ = D AL B0
N1, mN=0

Definition 3.1. Let I € Lo(C(Q)) be given by (2.3). Then for each pair of nonzero
complex numbers « and 3, we define the integral transform F, gF of F' to be

(3.4) FopF(z)= ljvi' m. Fo gFn(z), ze€C(Q)
if it exists; that is to say if

(3.5) lim | Fo s F(x) — FosFn(z))? my(dz) = 0.
N—oo C(Q)
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Suppose that F is a functional defined on K(Q) and has the integral transform
Fa,pF (y) for y € K(Q) in the sense of Definition 1.1. Further assume that F', as a

function of z € C(Q), belongs to La(C(Q)) and has the integral transform F, s F
for z € C(Q) in the sense of Definition 3.1. The following example shows that the
two integral transforms F, gF'(z) and F, gF'(z) for € C(Q) need not coincide.

Example 3.2. Let F be a functional defined on K(Q) by
0, ifyeC
) ={» TveCQ
L, ifye K(Q)\C(Q).
Then F belongs to L2(C(Q)) and for x € C(Q), we have
FziF(z) = / F(V2z +iz) my (dz) = 1.
(@)

On the other hand, for any nonnegative integers ny,--- ,ny,

A"'};l,'”;""fN :/ F(z)Un, ... oy () my (dz) =0
Q)
and so Fy(y) =0 for y € K(Q) and for all N =1,2,---. Now
FziFn(x) = / Fn(V2z 4 iz)my(dz) =0, z € C(Q)
c(Q)

and so R

Fzil(x) = lz\ri;rgo' Fraibn(z) =0, z€C(Q).
Hence we conclude that R

Fail(x) # F g, F ()

for x € C(Q).

Theorem 3.3. Let F' € Ly(C(Q)) be given by (2.3). Let o and B be nonzero
complex numbers and let ¢ be a nonzero real number. Then

(3.6) Fo,cpF (z) = Fo pF(cx)

forxz € C(Q).
Proof. By (1.2) for each N =1,2,---|

Fo,c8Fn(z) = Fo pFn(cz)
and so

fa,ch(m) = lNl m. }—a,cﬁFN(JJ) = lNl m. faﬁFN(Cl‘) = faﬂF(cx)
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as desired. O

The following lemma gives us a relationship between the Fourier-Hermite coef-
ficients of F, gF and F.

Lemma 3.4. Let I' € L2(C(Q)) be given by (2.3) with Fourier-Hermite coefficients
given by (2.4). Let o and 8 be as in Lemma 2.1 and assume that Fo gF exists and
is in La(C(Q)). Then

FopF nabetn
(3~7) Anl;"['i';nN :Agl,---,nNﬂ vty
for each N =1,2,---.
Proof. Fix N =1,2,---. For any given € > 0, take a natural number M satistying
|Fa,sF — FapFurl2 < € and M > N. Then we have
]t-(x. F mn TN
[An iy = Ay e BT
| o Tt F @ (@) () = AT, 70

<[ FasF@) = FagFrrla) U e () my ()
el(%)
+ ’/ Fo s P (2) W, .y () my (d) — Afl,...,nNﬂnﬁ"'*"N’-
(%)

But by the Hélder inequality and the fact that {¥,, ... », } is an orthonormal set,

J o ot @) = Fag Pt (D)W () my (@) < [P F = Fasrll <

c@

and from (3.2) we know that

FasFr(@)Un, oy (@) my (da) = AL, prttny,
o)(9)]

Hence

Al — AL | <

N1, NN

which establishes equation (3.7). O

The following theorem is our main result. It gives a necessary and sufficient
condition that a functional F' in Ly(C(Q)) has an integral transform F,, gF belong-
ing to L2(C(Q)).

Theorem 3.5. Let I € Lo(C(Q)) be given by (2.3) with Fourier-Hermite coeffi-
cients given by (2.4). Let o and § be as in Lemma 2.1. Then F, gF exists and is
an element of Lo (C(Q)) if and only if

N
(38) lim Z |A7}‘Z‘17---7nNﬂnl+.“+nN|2 < 0.

N —o0
ny, - ,ny=0
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Furthermore if (3.8) holds, then the Fourier-Hermite expression of faﬁF is given
by

N
(3.9 FapPla)=lim 3T AL L ST (2)
ny, ,ny=0

for x € C(Q).
Proof. Assume that ﬁa,ﬁF exists and is an element of Lo(C(Q)). For any given
€ > 0, we have ||Fo gF — Fa gFn||2 < € for sufficiently large N, and so

ol 1/2 .
(X AL BT = | Fas il < [ FasFlls + e
ni, - ,ny=0

Hence we have

N
lim Z |ATI;1 nNﬁnl"r-..-‘r’anQ < ||]:-oz,ﬁF||§ < 00.
N—oo Y
’I’Ll,'--,nNIO

To prove the converse, suppose that (3.8) holds. Let M > N, let
IM:{(nh'" 71’LM)Z711,-~- sy =0,1,--- 7_2\4}7
and let
Iy ={(n1, - ,np) 01, ,ny =0,1,--+- N and ny41 = -+ = ny = 0}.
Then
|1 FaFy — FasFn 3

2
_ F ni+--+nnp
_H Z A"lv"')”Mﬁ Wy mar

Iy —1IN 2
_ F a2
- Z |An1,m,nMﬂnl nM|
Ing—IN
M N
_ F +oon 2 F ot |2
= Y AL BT ST AL L, B
ni,-,np=0 ni, - ,nn=0

which goes to 0 as M, N — oo. Hence {F, gFn} is a Cauchy sequence in Ly (C(Q))
and since Lo(C(Q)) is complete,

FapF(x) = lNi. m. Fo sFn(z), x€C(Q)

exists and is an element of Ly(C(Q)) and is given by (3.9). O
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Our first corollary follows immediately from Theorem 3.5.

Corollary 3.6. Let F', o and (3 be as in Theorem 3.5. Furthermore assume that
|8 < 1. Then Fo gF exists, belongs to L2(C(Q)), and

N
(3.10) |FasFl3 = Jim 37 JAL L, B

ni, - ,ny=0

N
<tm > AR L= |FR

ni,,ny=0
In addition,
(3.11) 1FasFll2 = I1Fl2
if and only if |6] = 1.
The following corollary is immediate from Theorems 3.3 and 3.5.

Corollary 3.7. Let F', a and 8 be as in Theorem 3.5 and let ¢ be a nonzero real
number. Then

N
(312)  FaepFlx)=Lim Y7 AT FUTNG, L (ex)
ni, ,ny=0

forz € C(Q).

Next choosing a = v/2 and 3 = i, we obtain a Yeh-Wiener space version of the
main theorem of [4].

Corollary 3.8. Fvery functional F(z) € Lo(C(Q)) has a Fourier-Wiener trans-
form G(x) € La(C(Q)). The functional G(x) has F(—z) as its transform and F
and G satisfies Plancherel’s relation

(3.13) /C(Q) |F(x)* my (dz) :/ |G ()2 my (dz).

(@)

Proof. Using Corollary 3.6 and Theorem 3.5, we obtain that G(z) € L2(C(Q)) is
given by

Gla)=Lim. Yy AL N, (@),
ni,,ny=0
and that
N
ﬁﬁ,ia(x):ljvi;rgo. oo AR Mg, ().
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But since the Hermite polynomial H,, is an even function if n is even and an odd
function if n is odd, it is easy to see that

(_1)n1+m+nN\Iln1w“ NN (x) = \I]nl,-“ MN (—.’t)

and so .7:'\/526'(36) = F(—z). Finally equation (3.13) follows immediately from
(3.11). O

Recall that throughout this paper we have assumed that § = a + bi was a
nonzero complex number satisfying inequality (2.5); namely that Re(1 — %) >
0. Furthermore, in Corollary 3.6 we showed that if § also satisfies the inequality
18] < 1, then F, F exists as an element of Ly(C(Q)) for all F € Ly(C(Q)) with
a given by (2.6). In Example 10 of [11], Kim and Skoug showed that for any
complex number § with |3 > 1 and Re(1 — %) > 0, there exists a functional
F € Ly(Cy[0,T]) such that F, sF, FosF in our notation, doesn’t exist as an
element of Ly(Cy[0,T]). Using the same idea as in Example 10 of [11], we can
construct a functional F € Ly(C(Q)) such that F, gF doesn’t exist as an element
of Ly(C(Q)) when 3 is a complex number with |3] > 1 and Re(1 — %) > 0.

Our final results involves the inverse transform of F, 5. In order to insure the
existence of the inverse transform of .7:'(1,5 we need to put an additional assumption
on 8 = a + bi; namely that

(3.14) Re(l - %) > 0.

Now Re(1 — 1/8?) > 0 if and only if (a® + b*)? — (a®> — b?) > 0. But the graph of
(a® +b%)%2 — (a®? — b?) = 0 is the lemniscate > = cos(26). Hence Re(1 —1/3?%) > 0 if
and only if the point (a,b) € R? lies outside the lemniscate (a?+b%)? — (a% —b%) = 0.

Theorem 3.9. Let F', o and 8 be as in Theorem 3.5 and assume that (3.8) holds.
Furthermore assume that 3 satisfies inequality (3.14). Then for o/ = /1 —1/32
and ' = £1/8, we have that

(3.15) ForpFapsF(x)=F(BF), z€CQ).

That is to say,

(3.16) FornjpFapF(z)=F(z), z€C(Q)
and
(3.17) For—1)pFapF(z) = F(-z), x€C(Q).

Proof. Since ﬁa,ﬁF exists, the Fourier-Hermite expression of it is given by

N
FapF(a)=Lim. > AL N, L ()
ni, - ,ny=0
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for € C(Q). Now since 83" = 1, we have

N N
: F oot Foednn|2 g F 2
T D N e N DR A
nl,---,nN:O n1,~--,nN:O
=||F3 < oc.

Hence by Theorem 3.5, fa/ﬂ/.ﬁaﬂF exists and is given by

N
ForgpFapF(e) =Lim. 37 AE (BN, ()
ni, - ,nyn=0

N
=lim. Y AL L W (B8)

N—o0

ny, - ,ny=0
=F(Bp'x),
for x € C(Q), where the second equality holds since 83" = 1 or —1, and this
completes the proof of Theorem 3.9. (|

The following corollary is immediate from Theorems 3.3 and 3.9.

Corollary 3.10. Let F, o, 3,0’ and 3 be as in Theorem 3.9. Let ¢ and ¢ be
nonzero real numbers. Then

(318) ﬁa/,c’ﬁ’ﬁa,cﬁF(x) = F(Cclﬂﬂ/x)
forx € C(Q).
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