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Integral-Type Sliding Mode Fault-Tolerant Control
for Attitude Stabilization of Spacecraft

Qiang Shen, Student Member, IEEE, Danwei Wang, Senior Member, IEEE,
Senqiang Zhu, Member, IEEE, and Eng Kee Poh

Abstract—Two fault-tolerant control schemes for spacecraft
attitude stabilization with external disturbances are proposed
in this paper. The approach is based on integral-type sliding
mode control strategy to compensate for actuator faults without
controller reconfiguration. Firstly, a basic integral-type sliding
mode fault-tolerant control scheme is designed so that sliding
manifold can be maintained from the very beginning. Once the
system enters the sliding mode, the dynamics of the closed-loop
system with actuator fault is identical to that of the nominal
healthy system. Secondly, the integral-type sliding mode fault-
tolerant controller is incorporated with adaptive technique to
accommodate actuator faults so that the required boundary
information can be relaxed. The effectiveness of the proposed
schemes against actuator faults is demonstrated in simulation.

Index Terms—Fault-tolerant control (FTC), actuator fault,
attitude stabilization, integral-type sliding mode control (ISMC),
spacecraft.

I. INTRODUCTION

IN recent years, due to the increasing demands for safety
and reliability in modern industrial systems, especially for

life-critical systems such as spacecraft, aircraft, nuclear power
plant and so on, fault-tolerant control (FTC) has received
considerable attention [1]–[3]. As is well known, the available
FTC schemes can be generally classified into two categories,
i.e. passive approach and active approach. Here, in this paper,
we focus on only the passive approach and apply it to
spacecraft attitude stabilization problems in the presence of
actuator faults.

Some effective passive FTC approaches have been proposed
for both linear systems and nonlinear systems, such as H∞
theory [4], linear matrix inequalities (LMIs) techniques [5],
Lyapunov reconstruction [6], [7], and sliding mode control
(SMC) [8], [9]. Among these approaches, SMC technique is
recognized as an efficient way to withstand matched external
disturbances and model uncertainties, and has been widely
adopted in spacecraft attitude FTC systems. In [10], sliding
mode fault-tolerant controller was proposed for a set of
second-order nonlinear systems under actuator faults, where
the proposed fault-tolerant controller was shown to ensure
local asymptotic stability when it was applied to spacecraft
attitude stabilization. Based on SMC technique, a fault-tolerant
control scheme for flexible spacecraft attitude stabilization
system using redundant actuators was proposed in [11]. In
[12], two adaptive fault-tolerant sliding mode control laws
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were developed for multiple spacecraft formation flying, where
the global asymptotic convergence of the position tracking
error was achieved in the presence of uncertain system pa-
rameters, external disturbances and actuator faults. In [13], an
adaptive sliding mode fault-tolerant attitude tracking control
scheme was developed for flexible spacecraft with partial loss
of actuator effectiveness fault, where a neural network was
employed to account for system uncertainties and an on-line
updating law was used to estimate the upper bound of actuator
fault.

The aforementioned classical SMC-based fault-tolerant ap-
proaches, although robust against matched actuator faults
and uncertainties, have some disadvantages. It was reported
that the system dynamics might be vulnerable to faults or
uncertainties during the reaching phase in which the system
states have not yet reached the sliding manifold [14]. With
a view to tackling the reaching phase problem, the concept
of integral-type SMC (ISMC) was proposed in [15]–[18]. The
basic idea of ISMC is to design a proper sliding manifold such
that the sliding mode starts from the initial time instant. As a
result, the robustness of the system can be guaranteed from the
beginning of the process and the reaching phase is eliminated.
Numerous research results of this technique can be found
over the last few years. For example, in [19], a robust ISMC
design for the uncertain stochastic system with state delay was
studied by means of the feasibility of LMIs. In [20], com-
bining ISMC with robust model predictive control, a control
scheme was proposed for nonlinear constrained continuous-
time uncertain systems. In particular, some research results
based on ISMC have been developed for FTC systems. In [21],
the active FTC issues were studied from the ISMC viewpoint
to accommodate actuator faults whenever the fault detection
and diagnosis information was available. With consideration of
managing actuator redundancy, an integral-type sliding mode
fault-tolerant controller incorporated with control allocation
was developed to handle the total failure of certain actuators
for a class of over-actuated linear systems [22].

Inspired by the above research, this paper investigates
ISMC-based FTC strategies for rigid spacecraft attitude stabi-
lization in the presence of external disturbances and two kinds
of actuator faults. Specifically, for the zero-disturbance fault-
free attitude control system, a simple saturated proportional-
derivative (PD) control law which is regarded as nominal
controller, is proposed to asymptotically stabilize the attitude
motion, where a scalar sharpness function is contained to
improve dynamic performance. Then, bounded external dis-
turbances and two kinds of actuator faults, including both
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partial loss of control effectiveness fault and additive fault, are
taken into account for attitude dynamics. Assuming that there
exists a priori knowledge of the boundaries of disturbances and
actuator faults, a basic ISMC-based fault-tolerant controller
is proposed to maintain close to the nominal closed-loop
performance from the beginning of the process. Moreover,
by means of adaptive mechanism, an adaptive ISMC-based
FTC scheme is designed such that the resultant closed-loop
system is capable of tolerating potential actuator faults without
requiring any information on the boundaries of disturbances
and faults except for their existence. The main contributions
of this paper are stated as follows:

1) Actuator faults and external disturbances can be com-
pletely compensated from the initial time instant when
basic FTC scheme is used.

2) The proposed adaptive FTC scheme has a simple struc-
ture and only one parameter is required to be adapted
on-line, thus simplifying the design process and reducing
the online computation load significantly.

3) In conventional adaptive SMC, the sliding manifold
deviation which is mainly caused by initial state error,
is the main reason for the increase in the estimated
switching gain [21], [23]. Since the proposed adaptive
controller is within the ISMC framework, one can see
that the initial sliding manifold deviation can be removed
during the switching gain adaptation process, and thus
the obtained control magnitude is less demanding than
that of classical adaptive SMC designs.

The remainder of this paper is organized as follows. In
Section II, spacecraft attitude dynamics and actuator fault
model are described, and a nominal controller based on simple
saturated PD control is proposed. In Section III, basic ISMC-
based FTC scheme and adaptive ISMC-based FTC scheme
are presented, respectively, with and without requiring the
knowledge of the boundary of the external disturbances and
faults. The simulation results are given in Section IV, followed
by conclusions in Section V.

II. PRELIMINARIES

A. Spacecraft Attitude Dynamics and Kinematics

The kinematics and dynamics for the attitude motion of a
rigid spacecraft can be expressed by the following equations
[24]:

Jω̇ = −ω×Jω + τ + d (1)

q̇v =
1

2
(qv

× + q0I3)ω (2)

q̇0 = −1

2
qv

Tω (3)

where J = JT denotes the positive definite inertia matrix
of the spacecraft, ω ∈ R3 is the inertial angular velocity
vector of the spacecraft with respect to an inertial frame I
and expressed in the body frame B, q = [q0, q1, q2, q3]

T =
[q0, q

T
v ]

T ∈ R× R3 denotes the unit quaternion describing the
attitude orientation of the body frame B with respect to inertial
frame I and satisfies the constraint q20 +qTv qv = 1, I3 ∈ R3×3

denotes the identity matrix, τ ∈ R3 and d ∈ R3 denote the

control torque and the external disturbances respectively. The
notation a× ∈ R3×3 for a vector a = [a1, a2, a3]

T is used to
represent the skew-symmetric matrix

a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (4)

Suppose that the internal dynamics in actuators is negligible.
An actuator with its output equal to its input is regarded
as fault free. The actuator faults of interest are modeled as
follows:

τ = [I3 − E(t)]u+ ū (5)

where E(t) = diag{e1(t), e2(t), e3(t)} ∈ R3×3 denotes the
effectiveness loss factor matrix for the spacecraft actuators
with 0 ≤ ei(t) < 1 (i = 1, 2, 3). Note that the case
ei(t) = 0 indicates that the ith actuator works normally, and
0 < ei(t) < 1 implies that the ith actuator partially loses its
effectiveness, but still not totally fail. u ∈ R3 represents the
bounded time-varying additive actuator fault. Such an actuator
fault formulation can be found in many previous results, such
as [7], [25], and [26]. Hence, the nonlinear attitude dynamics
model incorporating actuator faults defined in (5) can be
rewritten as the following form:

Jω̇ = −ω×Jω + [I3 − E(t)]u+ ū+ d. (6)

To facilitate the controller development, the actuator faults
and the external disturbances are assumed to satisfy the
following Assumptions.

Assumption 1: The external disturbance d is bounded such
that ∥d∥ ≤ dmax, where dmax is a positive constant and ∥ · ∥
denotes the Euclidean norm.

Assumption 2: 0 ≤ max{e1, e2, e3} ≤ em < 1, where em
is a positive constant.

Assumption 3: The actuator additive fault may be time-
varying and unknown, but it is always bounded such that
∥ū∥ ≤ fm, where fm is a positive constant.

B. Nominal Controller

For the zero-disturbance fault-free attitude control system,
the following nominal controller is developed and will be used
in Sec. III for the proposed fault-tolerant controller design.

Lemma 1: Consider the normal attitude dynamics without
any actuator faults and external disturbances

Jω̇ = −ω×Jω + τ (7)

if the nominal controller law is designed as the following
simple saturated PD controller:

unom = −kpqv − kdTanh

(
ω

p2

)
(8)

where kp and kd are positive constants, Tanh
(

ω
p2

)
=[

tanh
(

ω1

p2

)
, tanh

(
ω2

p2

)
, tanh

(
ω3

p2

)]T
, p2 is a nonzero s-

calar sharpness function satisfying 0 < p2min ≤ p2 ∈ ℓ∞
and ṗ ∈ ℓ∞. Then, the zero-disturbance closed-loop system is
asymptotically stable, i.e., qv → 0, ω → 0 as t → ∞.
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Proof. Consider the following positive-definite radially
unbounded candidate Lyapunov function:

V = kp(1− q0)
2 + kpq

T
v qv +

1

2
ωTJω. (9)

The first derivative along the motion of (2), (3), and (7) is
given by

V̇ = −2kpq̇0 + ωTJω̇ = kpq
T
v ω + ωT (−ω×Jω + unom)

= kpq
T
v ω − kpω

T qv − kdω
TTanh(ω/p2)

= −kdω
TTanh(ω/p2). (10)

By using the fact that x tanh(x/p2) ≥ 0 for all x, V̇ ≤ 0 can
be obtained. Therefore, one can show that q0, qv, and ω are
globally bounded. In view of the constraints on p2, it is clear
that V̈ is bounded. Hence, according to the Barbalat’s Lemma
[27], one can conclude that lim

t→∞
ω(t) = 0. At this point, it

remains to be shown that lim
t→∞

qv(t) = 0. From (7) and (8), it
can be derived that

Jω̈ = −ω̇×Jω − ω×Jω̇ + u̇nom

= −ω̇×Jω − ω×Jω̇ − kpq̇v − kd
d

dt
Tanh(

ω

p2
). (11)

Now, consider the last term in (11)

d

dt
tanh(

ωi

p2
) = sech2

(
ωi

p2

)
ω̇ip− 2ωiṗ

p3
(12)

where ωi is the ith element of ω (i = 1, 2, 3). Since ω, ω̇, q̇v ,
and ṗ are bounded and 0 < p2min ≤ p2, from (11) and (12),
one can show that ω̈ is bounded. Consequently, by virtue of the
Barbalat’s Lemma again, together with convergence of ω to the
origin and uniform continuity of ω̇, it leads to lim

t→∞
ω̇(t) = 0.

As t goes to infinity, from (7), we have unom = 0. Therefore,
from (8), it is clear that lim

t→∞

[
kpqv + kdTanh(

ω
p2 )
]

= 0,
which implies that lim

t→∞
qv(t) = 0 since lim

t→∞
ω(t) = 0. Thus,

the results as stated in Lemma 1 is established.

Remark 1: Using the property of the unit quaternion and
the standard hyperbolic tangent function, the unom in (8) can
be upper bounded as

|unomi| ≤ |kpqvi|+
∣∣kdTanh(ωi/p

2)
∣∣ ≤ kp + kd (13)

where unomi, qvi, and ωi represent the ith element of unom, qv ,
and ω, respectively. Hence, a natural saturation, in terms of
the nominal control gains, is achieved and the designer can
set the limits of the nominal control effort through the gains
kp and kd.

Remark 2: In comparison with the similar results presented
in [28], where Rodrigues parameters and modified Rodrigues
parameters are used for the attitude representation, a nonzero
sharpness function p2 is introduced in the proposed nominal
controller. It should be noted that p2 appears in the denomina-
tor of the argument of the hyperbolic tangent function, so that
its value determines how strongly the control varies with the
signal ω. Adjusting p2 changes the rate of change of nominal
control torque, and thus, better dynamic performance could be
obtained [29].

III. FAULT-TOLERANT ATTITUDE CONTROLLER DESIGN

In this section, based on the existing results on the integral-
type sliding mode manifold, the ISMC-based FTC schemes are
developed to solve the attitude stabilization problem for rigid
spacecraft under actuator faults and external disturbances.

A. Integral-Type Sliding Manifold Design

Adopting the integral-type sliding mode manifold design
procedure, the sliding manifold is introduced as follows:

s = D

{
ω(t)− ω(t0)

−
∫ t

t0

J−1
[
−ω(σ)

×
Jω(σ) + unom(q, ω)

]
dσ

}
(14)

where D ∈ R3×3 is a constant matrix. The matrix D is chosen
such that DJ−1 is invertible. Notice that, at t = t0, the sliding
manifold satisfies s(ω(t0), t0) = 0, and hence the reaching
phase is eliminated [16]–[18].

In order to analyze the sliding dynamics (motion equations
on the sliding manifold) in the presence of actuator faults, the
equivalent control method [14] is used. Taking the derivative
of the sliding manifold in (14) with respect to time yields

ṡ = D
[
ω̇ − J−1(−ω×Jω + unom)

]
. (15)

Substituting the attitude dynamics model with actuator faults
model defined in (6) into (15), it follows that

ṡ = DJ−1 [(I3 − E(t))u+ ū− unom + d ] . (16)

To derive the equivalent control, the algebraic equation ṡ = 0
should be solved, which gives

ueq = [I3 − E(t)]−1(unom − ū− d) (17)

where DJ−1 is invertible. Thus, the sliding dynamics can be
obtained by substituting (17) into (6) as

Jω̇h = −ω×
h Jωh + unom (18)

where the subscript h denotes the state vector in the sliding
mode. Furthermore, according to the Lemma 1, it can be
concluded that the sliding dynamics in (18) is asymptotically
stable.

Remark 3: Based on the aforementioned analysis, it is
found that actuator faults and external disturbances can be
completely rejected when the dynamics of spacecraft remains
on the sliding manifold. That is, the closed-loop dynamics of
the faulty system in the sliding mode is identical to that of
the zero-disturbance healthy system controlled by the nominal
controller. Hence, the designer has much more freedom in
designing a suitable nominal controller according to the system
requirements for the nominal healthy system in the absence of
external disturbances.
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B. Basic Integral-Type Sliding Mode FTC Design

Now, a sliding mode control law must be synthesized
such that the reachability of the specified integral-type sliding
manifold is ensured under partial loss of actuator effectiveness
fault and additive actuator fault.

The proposed basic ISMC-based FTC scheme has a form
given by

u = unom + uN (19)

where the nominal control unom is the same as (8) which
determines the behavior of the nominal system restricted to the
sliding manifold, and the second term uN is a discontinuous
control component that compensates for the possible actuator
fault effects on the system and drives the system trajectories
toward the sliding manifold.

In this section, the upper bounds of actuator effectiveness
fault and additive fault in Assumption 1 and 2 are assumed to
be known to the designer. Thus, the discontinuous control uN

is selected as

uN =

{
−ρ(t) (DJ−1)T s

∥(DJ−1)T s∥ , if s ̸= 0

0, otherwise
(20)

with the switching gain function

ρ(t) =

√
3em∥unom∥∞ + fm + dmax + ε

1− em
> 0 (21)

where ε is a bounded positive constant.
Theorem 1: Consider the attitude control systems described

by (1-3) in the presence of partial loss of actuator effectiveness
fault and additive actuator fault. Suppose that Assumptions 1-
3 are valid with known bounds on actuator faults and external
disturbances. Then the reachability of the sliding manifold s =
0 can be maintained by employing the controller in (19) with
unom and uN given in (8) and (20), respectively.

Proof. To analyze the reachability, consider the candidate
Lyapunov function

V =
1

2
sT s. (22)

Taking the time derivative of the Lyapunov function for s ̸= 0
with substitution of FTC law in (19), yields

V̇ = sTDJ−1

[
− (I3 − E(t))ρ(t)

(DJ−1)T s

∥(DJ−1)T s∥

− E(t)unom + ū+ d

]
≤−

[
(1− em)ρ(t)−

√
3em∥unom∥∞

− fm − dmax

]∥∥(DJ−1)T s
∥∥ (23)

where the inequality xT y ≤
√
3∥x∥∥y∥∞ with x ∈ R3

and y ∈ R3 has been used. Furthermore, since DJ−1 is
nonsingular, substituting for ρ(t) from (21) into (23) gives

V̇ ≤ −ε
∥∥(DJ−1)T s

∥∥ < 0, for s ̸= 0. (24)

This implies that the sliding motion can be maintained despite
partial loss of actuator effectiveness fault and additive actuator
fault as well as external disturbances. This completes the
proof.

C. Integral-Type Sliding Mode FTC Design with Adaptive
Estimation

It is seen that the upper bounds dmax, em, and fm of exter-
nal disturbances and actuator faults are required to synthesize
the basic FTC law in (19). However, from a practical point
of view, the exact knowledge of these bounds is not easily
obtained due to the uncertain and unexpected characteristics
of disturbances and faults. Therefore, an adaptive integral
sliding mode fault-tolerant controller is further developed
by incorporating parameter adaptive mechanism to relax the
requirement of a priori knowledge of these bounds.

Notice that the switching gain function ρ(t) in (21) is upper
bounded with the property that

ρ(t) ≤ ρm =

√
3em(kp + kd) + fm + dmax + ε

1− em
(25)

where ρm is a positive scalar representing the upper bound of
the switching gain function ρ(t).

Remark 4: Recalling the switching gain ρ(t) defined in
(21), from Assumption 3 and Remark 2, it is clear that
ρ(t) ≤

√
3em(kp+kd)+fm+dmax+ε

1−em
. Since kp and kd are bound-

ed positive constant design parameters, and em, fm, dmax and
ε are bounded positive constants, the positive scalar ρm always
exists. Therefore, the upper bounded property of the switching
gain ρ(t) can be obtained.

Next, we shall introduce an adaptive scheme which is
capable of performing an estimation of the upper bound ρm
and design a suitable adaptive fault-tolerant controller using
this estimated upper bound. Based on the aforementioned
analysis, the basic fault-tolerant control law in (19) is modified
as

u = unom + uaN (26)

where the nominal control unom is the same as (8). Due
to the discontinuity of uN in (19), the basic ISMC-based
FTC is discontinuous across the sliding manifold s = 0, thus
leading to control chattering. In order to alleviate undesirable
chattering, the discontinuous control in (20) is smoothed by

uaN =

{
−ρ̂m

(DJ−1)T s
∥(DJ−1)T s∥ , if ρ̂m

∥∥(DJ−1)T s
∥∥ ≥ ξ

−ρ̂2m
(DJ−1)T s

ξ , if ρ̂m
∥∥(DJ−1)T s

∥∥ < ξ
(27)

where ξ is a small positive scalar, and ρ̂m ≥ 0 is obtained by
the following adaptive law:

˙̂ρm = β(
∥∥(DJ−1)T s

∥∥− µρ̂m), with ρ̂m(0) ≥ 0 (28)

where β and µ are positive scalars, and the second term −µρ̂m
is used to establish robustness with respect to disturbances
and unmodeled dynamics [30] and prevent the increase of the
adaptive gain [31], [32].

Lemma 2: Given the switching gain update law in (28), the
gain ρ̂m has an upper bound, i.e., there always exists a positive
scalar ρ̄m such that ρ̂m ≤ ρ̄m and ρm ≤ ρ̄m for all t > 0.

Proof. See the Appendix.

Theorem 2: Consider the attitude control systems described
by (1-3) in the presence of partial loss of actuator effectiveness
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fault and additive actuator fault. Suppose that Assumptions 1-
4 are valid with unknown upper bounds on the actuator faults
(only the boundness property is known). Then the trajectory
of the closed-loop system can be driven into a neighborhood
of the sliding manifold s = 0 in finite time by employing the
adaptive controller in (26) and the parameter adaptive law in
(28).

Proof. Consider the following candidate Lyapunov func-
tion:

V =
1

2
sT s+

1− em
2β

(ρ̂m − ρ̄m)2 (29)

where ρ̄m is defined in Assumption 4 representing the upper
bound of ρ̂m.

Case I: If ρ̂m
∥∥(DJ−1)T s

∥∥ ≥ ξ, the time derivative of V
along with (26)-(28) results in

V̇ = sT ṡ+
1− em

β
(ρ̂m − ρ̄m) ˙̂ρm

≤− (1− em)

[
ρ̄m −

√
3em(kp + kd) + fm + dmax

1− em

]
×
∥∥(DJ−1)T s

∥∥− µ(1− em)(ρ̂m − ρ̄m)ρ̂m. (30)

where the inequality xT y ≤
√
3∥x∥∥y∥∞ with x ∈ R3 and

y ∈ R3 has been used. In view of Lemma 2, it is clear that
ρ̄m −

√
3em(kp+kd)+fm+dmax

1−em
≥ ε

1−em
and |ρ̂m − ρ̄m| ≤ ρ̄m.

Now, it is readily obtained from (30) that

V̇ ≤− µ(1− em)|ρ̂m − ρ̄m| − ε
∥∥(DJ−1)T s

∥∥
+ µ(1− em)(|ρ̂m − ρ̄m|+ 1

4
ρ̄2m)

=− δ1|ρ̂m − ρ̄m| − δ2 ∥s∥+ η1,

where δ1, δ2, and η0 are positive scalars defined by δ1 =
µ(1− em), δ2 = ε

∥∥DJ−1
∥∥, and η1 = µ(1− em)(ρ̄m+ 1

4 ρ̄
2
m),

respectively. Thus, it follows that

V̇ ≤−

√
2βδ21
1− em

√
1− em
2β

(ρ̂m − ρ̄m)
2 −

√
2δ2

√
1

2
sT s+ η1

≤−min


√

2βδ21
1− em

,
√
2δ2


×

(√
1− em
2β

(ρ̂m − ρ̄m)
2
+

√
1

2
sT s

)
+ η1

≤− δV
1
2 + η1, (31)

where δ =
√
2min

{√
βδ21

1−em
, δ2

}
.

Case II: If ρ̂m
∥∥(DJ−1)T s

∥∥ < ξ, the time derivative of the
Lyapunov candidate function defined in (29) is

V̇ =− 1− em
ξ

ρ̂2m∥(DJ−1)T s∥2 + (1− em)ρ̂m∥(DJ−1)T s∥

− (1− em)

[
ρ̂m −

√
3em(kp + kd) + fm + dmax

1− em

]
×
∥∥(DJ−1)T s

∥∥+ (1− em)(ρ̂m − ρ̄m)
∥∥(DJ−1)T s

∥∥
− µ(1− em)(ρ̂2m − ρ̂mρ̄m). (32)

Since ρ̂m
∥∥(DJ−1)T s

∥∥ < ξ, it is easy to prove that the term
− 1−em

ξ ρ̂2m∥(DJ−1)T s∥2 + (1− em)ρ̂m∥(DJ−1)T s∥ reaches
its maximum value of (1−em)ξ

4 when ρ̂m
∥∥(DJ−1)T s

∥∥ = ξ
2 .

Then, with the help of Lemma 2 and follow the same lines as
in case I, it can be shown from (32) that

V̇ ≤ −δV
1
2 + η2. (33)

where δ1 and δ2 have the same definitions as in case I, and η2
is a positive scalar defined by η2 = 1−em

4 (µρ̄2m + 4µρ̄m + ξ).
Therefore, combining above two cases together, for any

ρ̂m
∥∥(DJ−1)T s

∥∥, one has

V̇ ≤ −δV
1
2 + η, (34)

where η = max {η1, η2} = 1−em
4 (µρ̄2m + 4µρ̄m + ξ). Thus,

the trajectory of this system is practically finite-time stable
[33]. Furthermore, the decrease of V can in finite time drive
the trajectories of the closed-loop system into V

1
2 ≤ η

(1−θ0)δ
,

where θ0 is a positive scalar satisfying 0 < θ0 < 1. As a
result, the trajectories of the closed-loop system is bounded in
a small set containing the origin in finite time as

∥s∥ ≤
√
2η

(1− θ0)δ

=
(1− em)(µρ̄2m + 4µρ̄m + ξ)

4(1− θ0) ·min
{
µ
√

β(1− em), ε∥DJ−1∥
} . (35)

This completes the proof.

Remark 5: From inequality (35), it can be seen that the
smaller the boundary thickness ξ, the smaller the desired s is
obtained. Furthermore, the ultimate convergence set for s can
be small enough around the origin by choosing large enough
parameters β and D.

Remark 6: If a sufficiently large value for ρ̂m(0) can be
obtained to compensate the potential disturbance and fault
in the systems, the sliding function will stay in the small
convergence set even after a fault occurs. However, because the
magnitude of potential actuator fault in the system is always
unknown to the designer, a proper initial value of the adaptive
gain ρ̂m(0) is difficult to select. In this case, although the
sliding function may move out of the small convergence set
after a fault occurs, it will be attracted back to the small
convergence set in finite time.

IV. SIMULATION RESULTS

Simulation results are presented in this section to illustrate
the effectiveness of the proposed ISMC-based FTC schemes.
Similar to [34], the inertia matrix of a rigid spacecraft is given
as J = diag{10, 15, 20} kg ·m2. The external disturbances
are of the form d = 0.1[sin(t/10), cos(t/15), sin(t/20)]T +
[0.1, 0.1, 0.1]T Nm. The initial attitude and angular veloc-
ity are set as q(0) = [0.5, 0.5,−0.5,−0.5]T and ω(0) =
[0.5,−0.8, 0.3]T rad/s, respectively.

In the context of simulation, a severe fault scenario is
considered. At t = 10 s, each actuator suffers from a partial
loss of effectiveness fault, while at t = 50 s, these actua-
tors also undergo an additive time-varying fault that enters
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(b) p2 = 1

Fig. 1. Time response of quaternion with different sharpness parameters in
the absence of actuator faults and external disturbances.
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Fig. 2. Time response of angular velocity with different sharpness parameters
in the absence of actuator faults and external disturbances.
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Fig. 3. Time response of control input with different sharpness parameters
in the absence of actuator faults and external disturbances.

the spacecraft dynamics in an additive way. The details are
described as follows:

ei(t) =

{
0, if t < 10
0.5, if t ≥ 10

ūi(t) =

{
0, if t < 50
0.95 + 0.05sin(t), if t ≥ 50.

A. Nominal Saturated PD Controller

In order to demonstrate the effectiveness of the nominal
saturated PD controller, the nominal situation is simulated
in which all actuators are healthy and there is no external
disturbance. The gains for the nominal controller are chosen
as kp = 1 and kd = 1. For convenience, the sharpness function
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(b) Saturated PD scheme

Fig. 4. Time response of quaternion under different control schemes in the
presence of actuator faults and external disturbances.

p2 is set as a constant. To analyze the effect of changes in p2,
the nominal controller is applied twice with different sharpness
parameters (constant p2) in the simulation.

The response of attitude quaternion and angular velocity
are shown in Figs. 1 and 2, from which it is clear that
asymptotic attitude stabilization of the spacecraft is achieved
by applying the proposed nominal controller. Fig. 3 depicts
the time history of the nominal control effort unom given
by (8), which shows that the applied nominal control torque
remains bounded (|unomi| ≤ kp + kd = 2 Nm for all
time). In addition, referring to Figs. 1-3, it is shown that the
sharpness parameter affects the transient performance greatly
and, more specifically, decreasing p2 can improve the closed-
loop convergence rate and reduce the overshoot.

B. Basic Fault-Tolerant Controller

For the basic controller proposed in (19), the control pa-
rameters are chosen as kp = 1, kd = 1, p2 = 0.2, and ε = 1,
while the parameter of the integral-type sliding mode manifold
is D = 2I3. In order to eliminate control chattering, the
discontinuous control action in (20) is smoothed by using the
boundary modification [35], and the boundary layer width is
chosen as 0.0001. For the purpose of comparison, the nominal
saturated PD controller, which does not have a mechanism
to accommodate the actuator fault, is also applied to the
spacecraft attitude control system in the presence of actuator
faults with kp = 1, kd = 1, and p2 = 0.2.

Figs. 4 and 5 show the attitude quaternion and angular
velocity trajectory. It can be observed that the basic ISMC-
based fault-tolerant controller obtains a good performance in
the attitude stabilization even in the presence of partial loss
of actuator effectiveness fault and additive actuator fault. As
compared with the basic FTC case, the attitude control systems
can not be stabilized by the nominal saturated PD controller
when actuator faults are introduced in the system, especially
after the occurrence of additive actuator fault in 50s. From Fig.
6, it is shown that the basic FTC scheme in (19) manages to
produce a control torque to accommodate the effect of actuator
faults. On the other hand, for the nominal controller case,
it is observed that the effect of actuator faults can not be
compensated by the nominal saturated PD controller, which
may result in severe control chattering.
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(b) Saturated PD scheme

Fig. 5. Time response of angular velocity under different control schemes in
the presence of actuator faults and external disturbances.
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Fig. 6. Time response of control input under different control schemes in the
presence of actuator faults and external disturbances.

C. Adaptive Fault-Tolerant Controller

To illustrate the effectiveness of the proposed adaptive fault-
tolerant controller defined in (26), the attitude stabilization
problem in the absence of a priori knowledge of upper bounds
on disturbances and the actuator faults is simulated in this
section. In the simulation, the same gains of kp = 1, kd = 1
and p2 = 0.2 as in the case of basic controller are used for
the nominal saturated PD controller. The gain of integral-type
sliding mode manifold is chosen as D = 5I3, and the boundary
layer width is chosen as ξ = 0.01. The design parameters of
the adaptive law are chosen as β = 10 and µ = 0.00025 with
initial value ρ̂m(0) = 1.

From Figs. 7a and 7b, it is shown that the overall attitude
quaternion and angular velocity trajectories are stabilized
within 110 s, and acceptable performance is also achieved.
Figs. 7c and 7d depict the time histories of the estimate of the
switching gain ρ̂m(t) and the control torque u given by (26).
Referring to Figs. 7a-7d, it is clear that the proposed adaptive
FTC scheme is capable of accommodating actuator faults even
under the condition that the upper bounds of the actuator faults
are unknown. However, compared with the basic FTC scheme,
it is observed that the convergence of the system states takes
a much longer time when adaptive FTC scheme is used. This
is due to the fact that the estimated switching gain requires a
period of time to become a value large enough to compensate
for the efforts of the actuator fault once a fault happens.
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Fig. 7. Simulation results under adaptive FTC scheme in the presence of
actuator faults and external disturbances.

V. CONCLUSION

In this paper, two ISMC-based FTC schemes for the attitude
stabilization problem of a rigid spacecraft subject to two
kinds of actuator faults and external disturbances have been
proposed. In zero-disturbance fault-free case, i.e. the nominal
case, a novel simple saturated PD control law is proposed
to achieve asymptotic attitude stabilization. When actuator
faults occur in the system, the basic FTC scheme completely
compensates the effect of actuator faults from the beginning of
the process. In the event that the bound on the actuator faults
and disturbances are unknown, the adaptive fault-tolerant
controller ensures the trajectory of the system is practical
finite-time stable with a reasonable switching adaptive gain.
Numerical simulations are performed to validate the fault-
tolerant capability of the proposed FTC laws in the presence of
two kinds of actuator faults and disturbances. In future work,
control input saturation and actuator redundancy should be
investigated to reduce the power consumption and improve
system reliability, respectively.

APPENDIX

Proof of Lemma 2. Consider a Lyapunov function Vs =
1
2s

T s. Differentiating Vs with respect to time and substituting
the closed-loop equations into it, we have

V̇s ≤ −(1− em) (ρ̂m(t)− ρm)
∥∥(DJ−1)T s

∥∥ (36)

where ρm =
√
3em(kp+kd)+fm+dmax+ε

1−em
defined in equation

(25) is a finite constant. The following four cases should be
considered here.
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Case 1: If ρ̂m(t) > ρm and
∥∥(DJ−1)T s

∥∥ ≥ µρm, it
follows that V̇s(t) < 0 and ˙̂ρm(t) ≥ 0. Since V̇s(t) ≤ 0,
the sliding function s will decrease and it can be obtained that
Vs(t) ≤ Vs(0), which implies that ∥s∥ ≤

√
2Vs(0). Therefore,

although ˙̂ρm ≥ 0, the adaptive gain ρ̂m is upper bounded in
view of the updating law ˙̂ρm = β(

∥∥(DJ−1)T s
∥∥− µρ̂m).

Case 2: If ρ̂m(t) > ρm and
∥∥(DJ−1)T s

∥∥ < µρm, it is
clear that V̇s(t) < 0 and ˙̂ρm(t) ≤ 0. As a result, both the
Lyapunov function Vs(t) and the adaptive gain ρ̂m(t) are upper
bounded by their initial values Vs(0) and ρ̂m(0), respectively,
i.e., Vs(t) ≤ Vs(0) and ρ̂m(t) ≤ ρ̂m(0).

Case 3: If ρ̂m(t) ≤ ρm and
∥∥(DJ−1)T s

∥∥ < µρm, it follows
that V̇s(t) > 0 and ˙̂ρm(t) ≤ 0. In this case, it is obvious that
ρ̂m is upper bounded by the constant ρm. Moreover, although
V̇s > 0, we shall further prove that Vs is bounded. Since the
sliding function s is under the condition that

∥∥(DJ−1)T s
∥∥ ≤

µρm is satisfied, it could be shown that ∥s∥ ≤ µρm

∥(DJ−1)T ∥ .
Hence, the Lyapunov function Vs(t) is upper bounded by a

constant V ∗
s = 1

2

(
µρm

∥(DJ−1)T ∥

)2
in this case.

Case 4: If ρ̂m(t) ≤ ρm and
∥∥(DJ−1)T s

∥∥ ≥ µρm, it is
clear that V̇s(t) > 0 and ˙̂ρm ≥ 0. It is also obvious that ρ̂m
is upper bounded by the constant ρm in this case. Since s is
a large value such that

∥∥(DJ−1)T s
∥∥ > µρm, the adaptive

law could be approximated as ˙̂ρm(t) = β(
∥∥(DJ−1)T s

∥∥.
Comparing the expressions of V̇s(t) and ˙̂ρm(t), it is noted
that V̇s(t) ≤ km ˙̂ρm(t), where km is a constant defined
as km = (1−em)ρm

β . Thus, the Lyapunov function is upper
bounded by Vs(t) ≤ Vs(0) + km[ρ̂m(t) + ρ̂m(0)] on the basis
of the comparison principle. Furthermore, on the condition that
ρ̂m(t) ≤ ρm, it is found that Vs(t) ≤ Vs(0) + 2kmρm.

Based on the above analysis of these four cases, we
prove that the adaptive gain ρ̂m(t) is always upper bounded.
Therefore, there always exists a positive scalar ρ̄m such that
ρ̂m ≤ ρ̄m and ρm ≤ ρ̄m for all t > 0.

REFERENCES

[1] M. Blanke, R. Izadi-Zamanabadi, S. A. Bosh, and C. P. Lunau, “Fault-
tolerant control systems - a holistic view,” Control Eng. Practice, vol. 5,
no. 5, pp. 693–702, May 1997.

[2] Y. M. Zhang and J. Jiang, “Bibliographical review on reconfigurable
fault-tolerant control systems,” Annu. Rev. Control, vol. 32, no. 2, pp.
229–252, Dec. 2008.

[3] A. Zolghadri, “Advanced model-based FDIR techniques for aerospace
systems: Today challenges and opportunities,” Prog. Aeosp. Sci., vol. 53,
pp. 18–29, Aug. 2012.

[4] G. H. Yang, J. L. Wang, and Y. C. Soh, “Reliable H∞ controller design
for linear systems,” Automatica, vol. 37, no. 5, pp. 717–725, May 2001.

[5] F. Liao, J. L. Wang, and G. H. Yang, “Reliable robust flight tracking
control: an LMI approach,” IEEE Trans. Control Syst. Technol., vol. 10,
no. 1, pp. 76–89, Jan. 2002.

[6] M. Benosman and K. Y. Lum, “Online references reshaping and control
reallocation for nonlinear fault tolerant control,” IEEE Trans. Control
Syst. Technol., vol. 17, no. 2, pp. 366–379, Mar. 2009.

[7] ——, “Passive actuators’ fault-tolerant control for affine nonlinear
nystems,” IEEE Trans. Control Syst. Technol., vol. 18, no. 1, pp. 152–
163, Jan. 2010.

[8] Y. W. Liang and S. D. Xu, “Reliable control of nonlinear systems via
variable structure scheme,” IEEE Trans. Autom. Control, vol. 51, no. 10,
pp. 1721–1726, Oct. 2006.

[9] H. Alwi and C. Edwards, “Fault tolerant control using sliding modes
with on-line control allocation,” Automatica, vol. 44, no. 7, pp. 1859–
1866, Jul. 2008.

[10] Y. W. Liang, S. D. Xu, and C. L. Tsai, “Study of VSC reliable designs
with application to spacecraft attitude stabilization,” IEEE Trans. Control
Syst. Technol., vol. 15, no. 2, pp. 332–338, Mar. 2007.

[11] Q. L. Hu, “Robust adaptive sliding-mode fault-tolerant control with
L2-gain performance for flexible spacecraft using redundant reaction
wheels,” IET Contr. Theory Appl., vol. 4, no. 6, pp. 1055–1070, Jun.
2010.

[12] Godard and K. D. Kumar, “Fault tolerant reconfigurable satellite for-
mations using adaptive variable structure techniques,” J. Guid. Control
Dyn., vol. 33, no. 3, pp. 969–984, May-Jun. 2010.

[13] B. Xiao, Q. L. Hu, and Y. M. Zhang, “Adaptive sliding mode fault
tolerant attitude tracking control for flexible spacecraft under actuator
saturation,” IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1605–
1612, Nov. 2012.

[14] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electrome-
chanical Systems. London, U.K.: Taylor and Francis, 1999.

[15] V. Utkin and J. Shi, “Integral sliding mode in systems operating under
uncertainty conditions,” in Proc. 35th IEEE Conf. Decision Control,
Kobe, Japan, Dec. 1996, pp. 4591–4596.

[16] W. J. Cao and J. X. Xu, “Nonlinear integral-type sliding surface for
both matched and unmatched uncertain systems,” IEEE Trans. Autom.
Control, vol. 49, no. 8, pp. 1355–1360, Aug. 2004.

[17] F. Castanos and L. Fridman, “Analysis and design of integral sliding
manifolds for systems with unmatched perturbations,” IEEE Trans.
Autom. Control, vol. 51, no. 5, pp. 853–858, May 2006.

[18] M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, and L. Fridman,
“Integral sliding mode control for nonlinear systems with matched and
unmatched perturbations,” IEEE Trans. Autom. Control, vol. 56, no. 11,
pp. 2699–2704, Nov. 2011.

[19] Y. Niu, W. C. Ho, and J. Lam, “Robust integral sliding mode control
for uncertain stochastic systems with time-varying delay,” Automatica,
vol. 41, no. 5, pp. 873–880, May 2005.

[20] M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni, “Robust
model predictive control with integral sliding mode in continuous-time
sampled-data nonlinear systems,” IEEE Trans. Autom. Control, vol. 56,
no. 3, pp. 556–570, Mar. 2011.

[21] Y. W. Liang, L. W. Ting, and L. G. Lin, “Study of reliable control via an
integral-type sliding mode control scheme,” IEEE Trans. Ind. Electron.,
vol. 59, no. 8, pp. 3062–3068, Aug. 2012.

[22] M. T. Hamayun, C. Edwards, and H. Alwi, “Design and analysis of an
integral sliding mode fault-tolerant control scheme,” IEEE Trans. Autom.
Control, vol. 57, no. 7, pp. 1783–1789, Jul. 2012.

[23] B. L. Cong, Z. Chen, and X. D. Liu, “On adaptive sliding mode control
without switching gain overestimation,” Int. J. Robust Nonlinear Control,
vol. 24, no. 3, pp. 515–531, Feb. 2014.

[24] M. J. Sidi, Spacecraft Dynamics and Control. Cambridge, U.K.:
Cambridge University Press, 1997.

[25] J. Jin, S. Ko, and C. K. Ryoo, “Fault tolerant control for satellites with
four reaction wheels,” Control Eng. Practice, vol. 16, no. 10, pp. 1250–
1258, Oct. 2008.

[26] B. Xiao, Q. L. Hu, and Y. M. Zhang, “Fault-tolerant attitude control for
flexible spacecraft without angular velocity magnitude measurement,” J.
Guid. Control Dyn., vol. 34, no. 5, pp. 1556–1561, Sep.-Oct. 2011.

[27] J. J. E. Slotine and W. P. Li, Applied Nonlinear Control. Prentice-Hall,
1991.

[28] Y. Su and C. Zheng, “Globally asymptotic stabilization of spacecraft
with simple saturated proportional-derivative control,” J. Guid. Control
Dyn., vol. 34, no. 6, pp. 1932–1936, Sep.-Oct. 2011.

[29] R. J. Wallsgrove and M. R. Akella, “Globally stabilizing saturated
attitude control in the presence of bounded unknown disturbances,” J.
Guid. Control Dyn., vol. 28, no. 5, pp. 957–963, Sep.-Oct. 2005.

[30] P. A. Ioannou and J. Sun, Robust adaptive control. Prentice-Hall, 1996.
[31] J.-X. Xu, Q.-W. Jia, and T.-H. Lee, “On the design of a nonlinear

adaptive variable structure derivative estimator,” IEEE Trans. Autom.
Control, vol. 45, no. 5, pp. 1028–1033, 2000.

[32] H. Alwi and C. Edwards, “Fault detection and fault-tolerant control of a
civil aircraft using a sliding-mode-based scheme,” IEEE Trans. Control
Syst. Technol., vol. 16, no. 3, pp. 499–510, May 2008.

[33] Z. Zhu, Y. Xia, and M. Fu, “Attitude stabilization of rigid spacecraft with
finite-time convergence,” International Journal of Robust and Nonlinear
Control, vol. 21, no. 6, pp. 686–702, Apr. 2011.

[34] M. Krstic and P. Tsiotras, “Inverse optimal stabilization of a rigid
spacecraft,” IEEE Trans. Autom. Control, vol. 44, no. 5, pp. 1042–1049,
May 1999.

[35] J. J. E. Slotine and J. A. Coetsee, “Adaptive sliding controller synthesis
for non-linear systems,” Int. J. Control, vol. 43, no. 6, pp. 1631–1651,
1986.


