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Integral variable structure control approach for 
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Abstract: An integral variable structure control 
(IVSC) approach for robot manipulators is pre- 
sented to achieve accurate servo-tracking in the 
presence of load variations, parameter variations 
and nonlinear dynamic interactions. A procedure 
is proposed for choosing the control function so 
that it guarantees the existence of the sliding mode 
and for determining the coefficients of the switch- 
ing plane and the integral control gain such that 
the IVSC approach has the desired properties. 
Furthermore, a modified proper continuous func- 
tion is introduced to overcome the chattering 
problem. The proposed IVSC approach has been 
simulated for the first three links of a PUMA 560 
robot arm as an illustration. The simulation 
results demonstrate the potential of the proposed 
scheme. 

1 Introduction 

Most industrial robots are composed of multilinks. Such 
a robot arm is a highly nonlinear system with complic- 
ated coupled dynamics and uncertainty (various loads, 
inertia, gravitational forces etc.). With regard to such a 
complicated system, various controllers have been devel- 
oped, such as adaptive controllers [l-31, robust control- 
lers [46]  and controllers based on the theory of variable 
structure [7-lo]. 

The integral variable structure control (IVSC) 
approach previously proposed in Reference 11 considered 
the single-input single-output (SISO) system and has 
been successfully applied to electrohydraulic servo 
control systems. The IVSC approach comprises an integ- 
ral controller for achieving a zero steady-state error 
under step input and a variable structure controller 
(VSC) [12-141 for enhancing the robustness. With this 
special scheme, two control loops are obtained, and it 
yields improved performance when compared to conven- 
tional VSC and linear approaches [ll]. This paper 
extends previous results to the multi-input multi-output 
(MIMO) case, with an application to robot manipulators. 
The control of the first three links of a PUMA 560 robot 
arm has been simulated for illustrating the design pro- 
cedure and demonstrating the robustness property. 
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2 Description of methodology 

The IVSC approach presented here is derived for the 
class of second-order dynamic equations with a positive- 
definite symmetric inertia matrix. Since the dynamics of 
most mechanical systems can be modelled in this form, 
this approach will have wide applications. 

Consider the dynamic equation [9] 

M ~ + B ~ + D o =  W + U  (14  

where 0, 8, d are n x 1 position, velocity and acceleration 
vectors, respectively; M = M(0,  8) is an n x n symmetric 
positive-definite inertia matrix; B = B(0, 8) is an n x n 
matrix; D = D(0, 8) is an n x n matrix; W = W(8, 8) is an 
n x 1 vector representing the gravity term; and U is an 
n x 1 control vector. 

The corresponding state-space model can be written as 

+ [;-,]U + [JW 

The proposed configuration of the IVSC approach is 
shown in Fig. 1. It combines an integral controller, a 

integral 
cont io1 ler 

Fig. 1 Block diagram of an integral-variable-structure-controlled 
manipulator control system 

VSC and the plant (eqn. I), and is described as follows: 

I 

where Bd = [q:e", . . . e]' represent the desired position; 
Z = [zIz2 . . 2.1' is an n x 1 vector; I is the n x n iden- 
tity matrix; K, = diag &k2 . ' .  k,] is the gain matrix of ' 

the integral controller; and the control function U = 
[U, U ,  . . . U,JT is piecewise linear of the form 

U:(x, t )  if ui > 0 . 

U;(x ,  t) if ui > 0 
1 = 1, ...) n (3) 
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where ui is the ith component of the n-dimensional 
switching plane U = 0 and is chosen as 

(44 

(4b) 

ui = cAOi - kiz i )  + di 

U = C(0 - K,Z)  + d 

U = [UlU2 ' . '  U"]T 

i = 1, . . . , n 
or, in matrix form, 

where 

C = diag [clcz . . .  c,] ci > 0 

Design of such a system involves 
(a) the choice the functions U +  and U -  to guarantee 

the existence of a sliding mode 
(b)  the determination of the switching function U and 

the integral control gain K , ,  such that the system has the 
desired eigenvalues 

(e) the elimination of chattering of the control input. 

2.1 Control function 
From eqns. 2 and 4, one has 

ir = -M- 'D@ - M-'Bd + Cd 

- c~,(fY - e) + M - ~ W  + M - ~ U  (5) 
Let 

M = M O + A M  

B = B O + A B  

D = D O + A D  

W = W o + A W  

where MO, Bo, Do and W o  are nominal values of M ,  E ,  D 
and W ,  and A M ,  AB, AD and AW are the deviations. 

Let the control function U be decomposed as 

U = U,, + AU (64 
where U, , ,  called equivalent control, is defined as 
solution of the problem U = 0 under M = MO, B = 
D = Do and W = WO. That is, 

U,, = Do@ + BO8 - M°Cd 

+ MOCK,(@ - U )  - W o  

the 
BO, 

The function AU is used to eliminate the influence due to 
the plant parameter variations in A M ,  AB, AD and A W  
so as to guarantee the existence of a sliding mode. It is 
constructed as follows: 

AU = MOAT ( 6 4  

AT = ~ ( e  - K , Z )  + @d + cp ( 6 4  
Y =diag [YlY2 ... Y J  

@ = diag [m1D2 ... On] 

where 

For a mechanical system such as a robot arm, each 
diagonal component of M - ' M o  is larger than the absol- 
ute value of the sum of other components in the same 
row [lo]. Thus, the following equation is obtained: 

M - ' M o  = I  + AI (7) 

where AI = [Aiij] (i = 1, ..., n, j = 1, _.., n)  and each 
entry Aiij < 1. 

The condition for the existence of a sliding motion on 
the ith switch plane is [12-141 

lim ui  ui < 0 
Ci'O 

Substituting eqn. 6 into eqn. 5 yields 

iri = - M - '  ADO - M - '  ABB - AICO 

+ AICK(Od - U )  + M-'  AW + AI AT + AT 

Let 

A W  = [Awl ,  ..., 
M-'  = [m;'] 

M- '  AD = [Adij] 

M-'  A B  = [Abij] 

(i = 1, ..., n, j = 1, ..., n) 
( i  = 1, ..., n, j = 1, ..., n) 
( i  = 1, ..., n, j = 1, ..., n) 

Each component of ir is represented as 

iri = (- Adi, - Aiii ci - Aiii ci ki)(Oi - ki zi) 

- Abii8 + g i  + AT, 

= (- Ad,, - Aiii ci - Aiii ci k i  + Yi)(Oi - ki zi) 

+ (-  Abii + @ i ) B  + (si + vi) (94 
where 

g i  = - x ( A d i j  + Aii jc j  + AiijcjKj)Oj - C ( A b i j d j )  
j t i  j + i  

n 
+ C(Ai i jc jKj8; '  + m ; ' A w j ) +  C ( A i i j A z j )  

- (Adii + Aiii ci + Aiii ci K i ) K i  Zi 

j =  1 j =  1 

( 9 4  

Then 

lim iri ui = (- Adii - Aiii ci - Aiii ci ki + Yi)(Oi - kizi)ui 
ai-0 

+ (- Abii + @ J d i  0; + (8, + cpibi (10) 

and the conditions for satisfying the inequality eqn. 8 are 

Y t  < inf (Adii + Aiiici + Aiiiciki) 

Y; > sup (Ad,, + Aiii ci + Aiii ci ki) 
if (Ui - ki zi)ui > 0 

if (ei - k,  zi)oi < 0 

i = 1 ,  ..., n (lla) 

Y i  = 

@: < inf (Ab,,) if 4, ui > 0 
@; > sup (Abii) if 8,ui < 0 

i = l ,  ..., n ( l l b )  mi = 

cp+<inflg,l i fu i>O . 
I =  1, ..., n ( l l c )  

Note that g, in eqn. 9b is dependent not only on param- 
eter variations, load variation and coupling effects but 
also on the control parameters c j ,  K j ,   AT^ ( j  = 1, ..., n). 
Since the plant parameter variations Adij, Abij, Awi 
(i = 1, . . ., n, j = 1, .. ., n) are bounded and the term Ai, 
(i = 1, . . ., n, j = 1, . . ., n) 4 1 as described in eqn. 7, one 

{ cp; >suplg,l  i f u i < O  

cp = C c p , c p 2  " '  V"1' 

Y: if (ei - kizi)ai > 0 , 
I = 1, ..., n 

Y g = {  Y ;  if (ei  - kizi)ui < 0 

i = 1, ..., n 
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can guarantee the existence of the gain qi such that the 
inequality eqn. 1 I C  is held. 

2.2 Determination of switching plane and integral 
control gain 

While in the sliding motion, the system described by eqn. 
2 can be reduced to the following linear equations [12- 
141 : 

8 = -C(O - K , Z )  (W 
i = @ d - @  (12b) 

Since C and K, are diagonal matrices, the MIMO system 
can be decomposed into n sets of SISO systems, as 
follows: 

[ : ] = [ I : i  ct][:]+[y]O: i = l ,  ..., n (13) 

The closed-loop transfer function of the system described 
by eqn. 13 is 

where OAS) and @(S)  are the Laplace transforms of Oi and 
f$', respectively. The characteristic equations of the 
systems are 

S2 + c i s  + ciki = 0 i  = 1, ..., n (15) 
Since these characteristic equations are independent of 
the plant parameters, the IVSC approach is robust to the 
plant parameter variations. It can achieve a zero steady- 
state error, and its eigenvalues can be set arbitrarily. Let 
the desired eigenvalues of the systems be A l i ,  1 2 4  = 1, 
. . . , n), or the equivalent desired characteristic equations 

S2 + + a2i = 0 i = 1 ,  ..., n (16) 
Then the switching plane coefficients ci ( i  = 1, . . . , n - 1) 
and the integral control gains ki (i = 1 ,  . .. , n) can be 
chosen as follows: 

ci = U l i  

ki  = U 2 J U l i  

2.3 Chattering considerations 
For the control law given by eqn. 6d, if Y i ,  mi and cpi 
( i  = 1 ,  . . . , n) are chosen as 
y. = y: = -y: 
Qi = Q: = -@: 

and 
cp. = cp? = -cp. 

I ,  

then the control function Ari (i = 1, . . . , n) can be rep- 
resented as 

A ~ ~ = ( Y ~ l @ ~ - k ~ z ~ l  +cDi181 +cpi)sign(ui) (17) 
Since the control Asi contains the sign function sign (ui), 
direct application of such control signals to the plant 
may give rise to chattering. To obtain continuous 
control signals, the sign function sign (ui) in eqn. 17 can 
be replaced by a modified proper continuous function as 
Cl11 

'Ji Pi@,) = - 
I'Jil + 6i 

where di is chosen as a function of 1 Bi - as 

tii = d l i  + 6,il@i - @'I i = 1, ..., n (19) 

where 6,, and 62i  are positive constants. 

3 

The PUMA 560 robot arm has six links and six rota- 
tional joints. However, for simplicity, it is assumed that 
the wrist joints are not active. The mathematical model 
of the first three links of the PUMA 560 robot is given by 

Control of first three links of PUMA 560 robot 
arm 

Cl61 
M(0)Q + B(0, 8)8 = W(O, 8) + U (20) 

where 0 E R3,  U E R3, W(0, 8) E R', M(0)  E R 3 x 3  and 
B(0, 8) E R j X 3 .  

Based on the block diagram shown in Fig. 1, by com- 
bining eqn. 20 and the IVSC, one obtains a set of state 
equations of the integral-variable structure-controlled 
three-link manipulator control system, as follows: [SI=[-! -:-IS I 0 0  :]I:] 

+ [ {-.Iu + [ {-.Iw + [;]e (21) 

where Od = [e",e", e",]' represents the desired position, 
Z = [z,z2z,]' is a 3 x 1 vector, I is 3 x 3 identity 
matrix, and K, = diag [k,k2 k,] is the gain matrix of the 
integral controller. When following the design procedure 
described in Section 2, one obtains 

U=U,,+AU 

= 8'8 - M o d  + MOCK,(@ - 0) - WO + MO AT (22) 
where 

' J i  Pi(Oi) = 
1 U i )  + + a,, I O i  - e I 

The control gains are chosen, according to eqn. 11,  as 

Y i  = = -Y; < - supIAiiici + AiiicikiI 

i = 1, 2, 3 (23a) 

(23b) mi = @: = -Q; < - sup I Abii I i  = 1, 2, 3 

and 

cpi = cp+ = -cp; i - sup (giI i  = 1 ,  2, 3 

U = C(0 - K , Z )  + 8 

(234 

(24) 

The U function is obtained from eqn. 4 as 
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In the sliding motion, the system described by eqn. 21 
can be reduced to the following simple linear form: 

(25a) 

(25b) 
Since C and K, are diagonal matrices, the MIMO system 

and 

U = [ c , u ~  = C(O - K , Z )  + 4 
The simulation results of the dynamic responses are 
plotted in Figs. 2-6. To examine the robustness property 

8 = - C(O - K ,  Z )  
Z = O d - 0  

can be decomposed into three SISO systems, as follows: 1.2 

1.0 

0.8 

. 0.6 

0.4 

[:] = [I: ct][:] + [:]e i = 1 , 2 , 3  (26) 
U The characteristic equations of the system are .? 

Sz + c i s  + c ik i  = 0 i = 1, 2, 3 (27) m 

It is clear that the dynamic performance of the system 
can now be determined by simply choosing the coeff- 
cients c1, c,, c, and the gains k,,  k ,  , k,  . Let the charac- 

l l i  and lZi be 0 

0.2 

teristic equation of the system with desired eigenvalues '0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

s2 - (Ali  + AZi)S + L l i A Z i  = 0 (28) 
Then, ci and ki can be chosen as 

ci = - (Ali  + A,J 
1.2 I 

0 4 t  I 4 Simulation results and discussions 

The robustness of the proposed IVSC approach against 
large variations of plant parameters and load have been 
simulated for demonstration. The nominal values of the 
PUMA 560 robot are taken from Reference 16 and given 
in Table 1,  in Appendix 7. 

Choosing the eigenvalues of the systems of eqn. 26 as 

l l i  = -20 + j l 5  A z i  = -20 - j l5  i = 1, 2, 3 

one obtains the coefficients of the switching plane and the 
integral control gain given by eqn. 29 as 

K = diag C15.625 15.625 15.6251 (304 

C = diag [40 40 401 (304 
The gains Y i ,  mi and 'pi  must be chosen to satisfy eqn. 23, 
and, based on simulations, one possible set of the switch- 
ing gains is chosen as follows: 

Y = diag [-SO0 - 500 - 5001 

Q = diag [ - 10 - 10 - lo] 

cp = [ - 1 -  1 - 13= 

( 3 1 4  

( 3 W  

( 3 1 4  

and 

Thus, the IVSC design gives a control function 

U = U,, + AU 

= - M ° C 8  + M0CK,(Bd - 0) - WO + MO AT 
where C, K , ,  Y ,  @ and cp are given in eqns. 3G-31, and 

AT = (YI 0 - K , Z I  + @ I  81 + cp)P 

where 

P = CPl(4P2(~)P3(U) lT  

in which 

Ui P,(U,) = 
~ u i ~ + O . l + l O ~ o i - ~ ~  

0'1 0'2 0'3 0'4 0'5 0 6  0 7  0'8 0'9 1'0 
b 

S 

C 

Fig. 2 
0.1 + I O I X , ~ ~ 1 a n d i n p u t c o " n n d d = [ l  I I l r a d  
+ zero load 
+. . 
Y Response 0, 
b ResponseB, 
c Response 0, 

Angular responses of IVSC approach with function piu,) ,  6 ,  = 

with load (200% change in m, and 500% change in gyration radius) 

of the control system, assume that there is a load 
attached to the end effector and the total mass and gyra- 
tion radius of the arm are m3 = 15.03, k3xx = 0.0906, 
k3,,,, = 0.093 and k3== = 0.0126. This corresponds to an 
increase of 200% in mass and 500% in the gyration 
radius of the third link. The three links angle responses 
are shown in Figs. 2 and 3. It is clear that the response 
can almost be maintained under severe variations of the 
plant parameters and load. 

Figs. 4-6 show the waveforms of the control function 
of three links with zero load. It is clear that the chattering 
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phenomena can be eliminated by using a modified proper 
continuous function, Thus, the IVSC approach seems 
amenable for practical implementation. 

'. 06 
m- 

0 4  

o.21i 
'0" 01 0 2  0:3 0 4  0:5 0 6  0 7  08 0 9  1'0 

0 

0.4 t i 
'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

b 

5 
C 

Fig. 3 Angular responses of IVSC approach under random deviations 
of m, from 0 to 200%, gyration radius from 0 to 500%, with pia),  hi = 
0.1 + I O [ X ,  - @[ andinput command$ = [ I  
(1 Response 8 ,  
b Response 0, 
c Response 8, 

I I ]  rad 

5 Conclusions 

An IVSC design methodology for MIMO system is pre- 
sented and applied to the control of the first three links of 
a PUMA 560 robot arm. It has been shown that the 
IVSC approach is robust to the plant parameter varia- 
tions. It can achieve a zero steady-state error for step 
input and is possible for arbitrary eigenvalue assignment. 
The control of the three links of a PUMA 560 robot arm 
is considered for demonstrating the design procedure and 
the potential of the IVSC approach. Simulations show 
that the proposed approach can give an almost accurate 
servo-tracking response in the face of large plant param- 
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eter variations, load variations and nonlinear dynamic 
interactions. It is a robust and practical control law for 
robot manipulators. 
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Fig. 4 
@ = [ I  I 1lTrad 
(I Without piu ) S - 0 
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Control signal of link-1 in IVSC approach, with zero load and 
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Control signal of link-2 in IVSC approach, with zero load and 
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Control signal of link-3 in IVSC approach, with zero load and 

a Without p,(u,), 6, = 0 
b With p&,), 6, = 0.1 + 101 X ,  - S: I 
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7 Appendix 

Table 1 : PUMA 580 robot arm mrameters with zero load 
-____ - 

Reflected Link Mass Centre of mass Radius of gyration 
~ motor inertia 

m , h )  i , (m)  VAm) f,(m) C x ( m z )  k:,,(m2) k:,(m2) 
/.,(kg/m’) 

1 1296 00000 03088 00389 01816 00152 01811 07766 
2 2237 -03289 00050 02038 00596 01930 01514 23616 
3 501 00204 00137 00037 00151 00155 00021 05827 

a,  = 0 4318 m, a3 = -0 0191 m, d, = 0 1505 m, d, = 0 4331 m 
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