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Integrality of a ratio of Petersson norms

and level-lowering congruences
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Abstract

We prove integrality of the ratio 〈f, f〉/〈g, g〉 (outside an explicit finite set

of primes), where g is an arithmetically normalized holomorphic newform on

a Shimura curve, f is a normalized Hecke eigenform on GL(2) with the same

Hecke eigenvalues as g and 〈, 〉 denotes the Petersson inner product. The primes

dividing this ratio are shown to be closely related to certain level-lowering con-

gruences satisfied by f and to the central values of a family of Rankin-Selberg

L-functions. Finally we give two applications, the first to proving the integral-

ity of a certain triple product L-value and the second to the computation of

the Faltings height of Jacobians of Shimura curves.

Introduction

An important problem emphasized in several papers of Shimura is the

study of period relations between modular forms on different Shimura vari-

eties. In a series of articles (see for e.g. [34], [35], [36]), he showed that the

study of algebraicity of period ratios is intimately related to two other fasci-

nating themes in the theory of automorphic forms, namely the arithmeticity

of the theta correspondence and the theory of special values of L-functions.

Shimura’s work on the theta correspondence was later extended to other sit-

uations by Harris-Kudla and Harris, who in certain cases even demonstrate

rationality of theta lifts over specified number fields. For instance, the articles

[12], [13] study rationality of the theta correspondence for unitary groups and

explain its relation, on the one hand, to period relations for automorphic forms

on unitary groups of different signature, and on the other to Deligne’s conjec-

ture on critical values of L-functions attached to motives that occur in the

cohomology of the associated Shimura varieties. To understand these results

from a philosophical point of view, it is then useful to picture the three themes

mentioned above as the vertices of a triangle, each of which has some bearing

on the others.
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This article is an attempt to study the picture above in perhaps the sim-

plest possible case, not just up to algebraicity or rationality, but up to p-adic

integrality. The period ratio in the case at hand is that of the Petersson norm

of a holomorphic newform g of even weight k on a (compact) Shimura curve

X associated to an indefinite quaternion algebra D over Q to the Petersson

norm of a normalized Hecke eigenform f on GL(2) with the same Hecke eigen-

values as g. The relevant theta correspondence is from GL(2) to GO(D), the

orthogonal similitude group for the norm form on D, as occurs in Shimizu’s

explicit realization of the Jacquet-Langlands correspondence. The L-values

that intervene are the central critical values of Rankin-Selberg products of f

and theta functions associated to Grossencharacters of weight k of a certain

family of imaginary quadratic fields.

We now explain our results and methods in more detail. Firstly, to for-

mulate the problem precisely, one needs to normalize f and g canonically.

Traditionally one normalizes f by requiring that its first Fourier coefficient at

the cusp at ∞ be 1. Since compact Shimura curves do not admit cusps, such

a normalization is not available for g. However, g corresponds in a natural

way to a section of a certain line bundle L on X. The curve X and the line

bundle L admit canonical models over Q, whence g may be normalized up

to an element of Kf , the field generated by the Hecke eigenvalues of f . Let

〈f, f〉 and 〈g, g〉 denote the Petersson inner products taken on X0(N) and X

respectively. It was proved by Shimura ([34]) that the ratio 〈f, f〉/〈g, g〉 lies in

Q and by Harris-Kudla ([14]) that it in fact lies in Kf .

Now, let p be a prime not dividing the level of f . For such a p the

curve X admits a canonical proper smooth model X over Zp, and the line

bundle L too extends canonically to a line bundle L over X . The model X
can be constructed as the solution to a certain moduli problem, or one may

simply take the minimal regular model of X over Zp; the line bundle L is the

appropriate power of the relative dualizing sheaf. Let λ be an embedding of Q

in Qp, so that λ induces a prime of Kf over p. One may then normalize g up

to a λ-adic unit by requiring that the corresponding section of L be λ-adically

integral and primitive with respect to the integral structure provided by L.

One of our main results (Thm. 2.4) is that with such a normalization, and

some restrictions on p, the ratio considered above is in fact a λ-adic integer.

As the reader might expect, our proof of the integrality of 〈f, f〉/〈g, g〉
builds on the work of Harris-Kudla and Shimura, but requires several new

ingredients: an integrality criterion for forms on Shimura curves (§2.3), work

of Watson on the explicit Jacquet-Langlands-Shimizu correspondence [43], our
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computations of ramified zeta integrals related to the Rankin-Selberg L-values

mentioned before (§3.4), the use of some constructions (§4.2) analogous to

those of Wiles in [40] and an application of Rubin’s theorem ([30]) on the main

conjecture of Iwasawa theory for imaginary quadratic fields (§4.3). Below we

describe these ingredients and their role in more detail.

The first main input is Shimizu’s realization of the Jacquet-Langlands

correspondence (due in this case originally to Eichler and Shimizu) via theta

lifts. We however need a more precise result of Watson [43], namely that

one can obtain some multiple g′ of g by integrating f against a suitable theta

function. Crucially, one has precise control over the theta lift; it is not just any

form in the representation space of g but a scalar multiple of the newform g.

Further one checks easily that 〈g′, g′〉 = 〈f, f〉. To prove the λ-integrality of

〈f, f〉/〈g, g〉 is then equivalent to showing the λ-integrality of the form g′.

The next step is to develop an integrality criterion for forms on Shimura

curves. While q-expansions are not available, Shimura curves admit CM points,

which are known to be algebraic, and in fact defined over suitable class fields

of the associated imaginary quadratic field. This fact can be used to identify

algebraic modular forms via their values at such points; i.e., their values, suit-

ably defined, should be algebraic. In fact X is a coarse moduli space for abelian

surfaces with quaternionic multiplication and level structure. Viewed as points

on the moduli space, CM points associated to an imaginary quadratic field K

correspond to products of elliptic curves with complex multiplication by K,

hence have potentially good reduction. Consequently, the values of an integral

modular form at such points (suitably defined, i.e., divided by the appropriate

period) must be integral. Conversely, if the form g′ has integral values at all

or even sufficiently many CM points then it must be integral, since the mod p

reductions of CM points are dense in the special fibre of X at p. In practice,

it is hard to evaluate g′ at a fixed CM point but easier to evaluate certain

toric integrals associated to g′ and a Hecke character χ of K of the appropriate

infinity type. These toric integrals are actually finite sums of the values of g′ at

all Galois conjugates of the CM point, twisted by the character χ. In the case

when the field K has class number prime to p and the CM points are Heegner

points, we show (Prop. 2.9) that the integrality of the values of g′ is equivalent

to the integrality of the toric integrals for all unramified Hecke characters χ.

The toric integrals in question can be computed by a method of Wald-

spurger as in [14]. In fact, the square of such an integral is equal to the value at

the center of the critical strip of a certain global zeta integral which factors into

a product of local factors. By results of Jacquet ([20]), at almost all primes,

the relevant local factor is equal to the Euler factor Lq(s, f ⊗ θχ) associated to

the Rankin-Selberg product of f and θχ =
∑

a χ(a)e2πiNaz (sum over integral

ideals in K). For our purposes, knowing all but finitely many factors is not
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enough, so we need to compute the local zeta integrals at all places, including

the ramified ones, the ramification coming from the level of f , the discriminant

of K and the Heegner point data. The final result then (Thm. 3.2) is that the

square of the toric integral differs from the central critical value L(k, f ⊗ θχ)

of the Rankin-Selberg L-function by a p-adic unit.

We now need to prove the integrality of L(k, f⊗θχ) (divided by an appro-

priate period). One sees easily from the Rankin-Selberg method that this fol-

lows if one knows the integrality of 〈f ′, θχ〉/Ω′ for a certain period Ω′ and for all

integral forms f ′ of weight k+1 and level Nd where N is the level of f and −d is

the discriminant of K. In fact 〈f ′, θχ〉/Ω′ = α〈θχ, θχ〉/Ω′ = αL(k +1, χχρ)/Ω′′

where α is the coefficient of θχ in the expansion of f ′ as a linear combination of

orthogonal eigenforms, χρ is the twist of χ by complex conjugation and Ω′′ is

a suitable period. The crux of the argument is that if α had any denominators

these would give congruences between θχ and other forms; on the other hand

the last L-value is expected to count all congruences satisfied by θχ. Thus

any possible denominators in α should be cancelled by the numerator of this

L-value. The precise mechanism to prove this is quite intricate. Restricting

ourselves to the case when p is split in K and p ∤ hK (= the class number

of K), we first use analogs of the methods of Wiles ([40], [42]) to construct

a certain Galois extension of degree equal to the p-adic valuation of the de-

nominator of α. Next we use results of Rubin ([30]) on the Iwasawa main

conjecture for K to bound the size of this Galois group by the p-adic valuation

of L(k+1, χχρ)/Ω′′. The details are worked out in Chapter 4 where the reader

may find also a more detailed introduction to these ideas and a more precise

statement including some restrictions on the prime p. We should mention at

this point that in the case when the base field is a totally real field of even de-

gree over Q, Hida [19] has found a direct proof of the integrality of 〈f ′, θχ〉/Ω′

under certain conditions and he is able to deduce from it the anticyclotomic

main conjecture for CM fields in many cases.

To apply the results of Ch. 4 to the problem at hand, we now need to

show that we can find infinitely many Heegner points with p split in K and

p ∤ hK . In Section 5.1 we show this using results of Bruinier [3] and Jochnowitz

[22], thus finishing the proof of the integrality of the modular form g′ (and of

the ratio 〈f, f〉/〈g, g〉). An amazing consequence of the integrality of g′ is that

we can deduce from it the integrality of the Rankin-Selberg L-values above

even if p | hK or p is inert in K ! This result, which is also explained in

Section 5.1, would undoubtedly be much harder to obtain directly using the

Iwasawa-theoretic methods mentioned above.

Having proved the integrality of the ratio 〈f, f〉/〈g, g〉 we naturally ask for

a description of those primes λ for which the λ-adic valuation of this ratio is

strictly positive. First we consider the special case in which the weight of f is 2,

its Hecke eigenvalues are rational and the prime p is not an Eisenstein prime
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for f . In this case we show that p divides 〈f, f〉/〈g, g〉 exactly when for some q

dividing the discriminant of the quaternion algebra associated to X, there is a

form h of level N/q such that f and h are congruent modulo p. We say in such

a situation that p is a level-lowering congruence prime for f at the prime q.

In the general case we can only show one direction, namely that the λ-adic

valuation is strictly positive for such level-lowering congruence primes. This

is accomplished by showing that the λ-adic valuation of the Rankin-Selberg

L-value discussed above is strictly positive for such primes. Conversely, one

might expect that if the λ-adic valuation of the L-value is strictly positive for

infinitely many K and all choices of unramified characters χ, then λ would be

a level-lowering congruence prime.

Finally, we give two applications of our results. The first is to prove

integrality of a certain triple product L-value. Indeed, the rationality of

〈f, f〉/〈g, g〉 proved by Harris-Kudla was motivated by an application to prove

rationality for the central critical value of the triple product L-function asso-

ciated to three holomorphic forms of compatible weight. Combining a precise

formula proved by Watson [43] with our integrality results we can establish

integrality of the central critical value of the same triple product.

The second application is the computation of the Faltings height of Ja-

cobians of Shimura curves over Q. This problem (over totally real fields) was

suggested to me by Andrew Wiles and was the main motivation for the results

in this article. While we only consider the case of Shimura curves over Q,

most of the ingredients of the computation should generalize in principle to

the totally real case. Many difficulties remain though, the principal one being

that the Iwasawa main conjecture is not yet proven for CM fields. (The reader

will note from the proof that we only need the so-called anticyclotomic case of

the main conjecture. As mentioned before this has been solved [19] in certain

cases but not yet in the full generality needed.) Also one should expect that

the computations with the theta correspondence will get increasingly compli-

cated; indeed the best results to date on period relations for totally real fields

are due to Harris ([11]) and these are only up to algebraicity.
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1. Notation and conventions

Let A denote the ring of adeles over Q and Af the finite adeles. We fix an

additive character ψ of Q \A as follows. Choose ψ so that ψ∞(x) = e2πıx and

so that ψq for finite primes q is the unique character with kernel Zq and such

that ψq(x) = e−2πıx for x ∈ Z[1q ]. Let dxv be the unique Haar measure on Qv

such that the Fourier transform ϕ̂(yv) =
∫

Qv
ϕ(xv)ψ(xvyv)dxv is autodual, i.e.,

ˆ̂ϕ(y) = ϕ(−y). On A we take the product measure dx =
∏

v dxv. On A× we

fix the Haar measure dξ =
∏

v d×xv, the local measures being given by d×xv =

ζv(1) dxv

|xv| , where ζp(s) = (1− p−s)−1 for finite primes p and ζR(s) = π−s/2Γ(s).

If D is a quaternion algebra over Q, tr and ν denote the reduced trace and

the reduced norm respectively. The canonical involution on D is denoted by i so

that tr(x) = x+xi and ν(x) = xxi. Let 〈, 〉 be the quadratic form on D given by

〈x, y〉 = tr(xyi) = xyi+yxi. We choose a Haar measure dxv on Dv = D⊗Qv by

requiring that the Fourier transform ϕ̂(yv) =
∫

Dv
ϕ(xv)〈xv, yv〉dxv be autodual.

On D×
v = (D⊗Qv)

× we fix the Haar measure d×xv = ζv(1) dxv

|ν(xv)| . These local

measures induce a global measure d×x =
∏

v d×xv on D×(A) (the adelic points

of the algebraic group D×). In the case D× = GL(2), at finite primes p, the

volume of the maximal compact GL2(Zp) with respect to the measure d×xp is

easily computed to be ζp(2)−1. On the infinite factor GL2(R) one sees that

d×x∞ = d×a1d
×a2dbdθ if x∞ =

(

a1

a2

)(

1 b

1

)

κθ,

where κθ =

(

cos θ − sin θ

sin θ cos θ

)

.

Let D(1) and PD× denote the derived and adjoint groups of D× respec-

tively. On D(1)(A) we pick the measure d(1)x =
∏

v dx1,v where dx1,v is com-

patible with the exact sequence 1 → D
(1)
v → D×

v
ν−→ Q×

v → 1. Likewise on

PD×(A) we pick the measure d×x =
∏

v d×xv where the local measures d×xv

are compatible with the exact sequence 1 → Q×
v → D×

v → PD×
v → 1. It is

well known that with respect to these measures, vol(D(1)(Q) \ D(1)(A)) = 1

and vol(PD×(Q) \ PD×(A)) = 2.

If W is a symplectic space and V an orthogonal space (both over Q),

GSp(W ) denotes the group of symplectic similitudes of W and GO(V ) the

group of orthogonal similitudes of V , both viewed as algebraic groups. We also

denote by GSp(W )(1) and GO(V )(1) the subgroups with similitude norm 1 and

by GO(V )0 the identity component of GO(V ). In the text, W will always be



INTEGRALITY OF A RATIO OF PETERSSON NORMS 907

two-dimensional and by a choice of basis GSp(W ) and GSp(1)(W ) are identified

with GL(2) and SL(2) respectively, the Haar measures on the corresponding

adelic groups being as chosen as in the previous paragraph. For H = GO(V ) or

GO(V )0 we pick Haar measures d×h on H(A) such that
∫

A×H(Q)\H(A) d×h = 1.

The similitude norm induces a map ν : H(Q)ZH,∞ \H(A)→ Q×(Q×
∞)+ \Q×

A

whose kernel is identified with H(1)(Q) \H(1)(A). As in [15, §5.1], we pick a

Haar measure d(1)h on H(1)(A) such that the quotient measures satisfy d×h =

d(1)hdξ.

Let H denote the complex upper half plane. The group GL2(R)+ consisting

of elements of GL2(R) with positive determinant acts on H by γ·z = az+b
cz+d where

γ =

(

a b

c d

)

. We define also j(γ, z) = (cz+d)det(γ)−1 and J(γ, z) = (cz+d)

for any element γ ∈ GL2(R) and z ∈ H.

As is usual in the theory, we fix once and for all embeddings i : Q →֒ C,

λ : Q →֒ Qp. These induce on every number field an infinite and p-adic place.

2. Shimura curves and an integrality criterion

2.1. Modular forms on quaternion algebras. Let N be a square-free integer

with N = N+N− where N− has an even number of prime factors. Let D be

the unique (up to isomorphism) indefinite quaternion algebra over Q with

discriminant N−. Fix once and for all isomorphisms Φ∞ : D⊗R ≃M2(R) and

Φq : D ⊗ Qq ≃ M2(Qq) for all q ∤ N−. Any order in D gives rise to an order

in D ⊗Qq for each prime q which for almost all primes q is equal (via Φq) to

the maximal order M2(Zq). Conversely given local orders Rq in D⊗Qq for all

finite q, such that Rq = M2(Zq) for almost all q, they arise from a unique global

order R. Let O be the maximal order in D such that Φq(O ⊗ Zq) = M2(Zq)

for q ∤ N− and such that O ⊗ Zq is the unique maximal order in D ⊗ Qq for

q | N−. It is well known that all maximal orders in D are conjugate to O. Let

O′ be the Eichler order of level N+ given by Φq(O′⊗Zq) = Φq(O⊗Zq) for all

q ∤ N+, and such that Φq(O′⊗Zq) =

{(

a b

c d

)

∈M2(Zq), c ≡ 0 mod q

}

for

all q | N+.

2.1.1. Classical and adelic modular forms. Let Γ = ΓN−

0 (N+) be the

group of norm 1 units in O′. (If N− = 1 we will drop the superscript and write

Γ simply as Γ0(N).) Via the isomorphism Φ∞ the group Γ may be viewed

as a subgroup of SL2(R) and hence acts in the usual way on H. Let k be an

even integer. A (holomorphic) modular form f of weight k and character ω

(ω being a Dirichlet character of conductor Nω dividing N+) for the group Γ

is a holomorphic function f : H→ C such that f(γ(z))(cz + d)−k = ω(γ)f(z),

for all γ ∈ Γ, where we denote also by the symbol ω the character on Γ
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associated to ω in the usual way (see [43]). Denote the space of such forms

by Mk(Γ, ω). We will usually work with the subspace Sk(Γ, ω) consisting of

cusp forms (i.e. those that vanish at all the cusps of Γ). When N− > 1, there

are no cusps and Sk(Γ, ω) = Mk(Γ, ω). The space Sk(Γ, ω) is equipped with

a Hermitean inner product, the Petersson inner product, defined by 〈f1, f2〉 =
∫

Γ\H
f1(z)f2(z)ykdµ where dµ is the invariant measure 1

y2 dxdy.

To define adelic modular forms, let ω̃ be the character of Q×
A corresponding

to ω via class field theory. Denote by L2(D×
Q \D×

A , ω) the space of functions

F : D×
A → C satisfying F (γzβ) = ω̃(z)F (β) ∀γ ∈ D×

Q and z ∈ A× and having

finite norm under the inner product 〈F1, F2〉 = 1
2

∫

Q
×

A D×

Q \D×

A

F1(β)F2(β)d×β.

Also let L2
0(D

×
Q \D×

A , ω) ⊆ L2(D×
Q \D×

A , ω) be the closed subspace consisting

of cuspidal functions. If U =
∏

q UN−

0 (N+)q is the compact subgroup of D×
Af

given by UN−

0 (N+)q = (O′ ⊗ Zq)
× for all finite primes q, one has

D×(A) = D×(Q) · (U × (D×
∞)+)(1)

(by strong approximation) and (U × (D×
∞)+) ∩ D×(Q) = Γ. Since Nω | N+,

the character ω̃ restricted to Q×
Af

can be extended in the usual way to a char-

acter of U , also denoted by ω̃. A (cuspidal) adelic automorphic form of weight

k and character ω for U is a smooth (i.e. locally finite in the p-adic vari-

ables and C∞ in the archimedean variables) function F ∈ L2
0(D

×
Q \ D×

A , ω)

such that F (βκ) = ω̃(κfin)e−ıkθF (β) if κ =
∏

q<∞ κq × κθ ∈ U × SO2(R).

We denote the space of such forms by Sk(U, ω). The assignment f �−→ F ,

F (β) = f(β∞(ı))j(β∞, ı)−kω̃(κ), if β = γκβ∞ is a decomposition of β given by

(1), is independent of the choice of decomposition and gives an isomorphism

Sk(Γ, ω) ≃ Sk(U, ω). It is easy to check that if fi corresponds to Fi under this

isomorphism, then 〈F1, F2〉 = 1
vol(Γ\H)〈f1, f2〉.

If Nω | N ′ | N+, there is an inclusion Sk(Γ
N−

0 (N ′), ω) →֒ Sk(Γ, ω). The

subspace of Sk(Γ, ω) generated by the images of all these maps is called the

space of oldforms of level N+ and character ω. The orthogonal complement of

the oldspace is called the new subspace and is denoted Sk(Γ)new.

We will need to use the language of automorphic representations. (See

[8] for details.) If f is a newform in Sk(Γ, ω) then F generates an irreducible

automorphic cuspidal representation πf of (the Hecke algebra of) D×(A) that

factors as a tensor product of local representations πf = ⊗πf,∞ ⊗⊗qπf,q.

2.1.2. The Jacquet-Langlands correspondence. We assume now that ω is

trivial, and denote the space Sk(Γ, 1) simply by Sk(Γ). This space is equipped

with an action of Hecke operators Tq for all primes q (see [32] for instance

for a definition). Let T(N−,N+) be the algebra generated over Z by the Hecke

operators Tq for q ∤ N . It is well-known that the action of this algebra on

the space Sk(Γ) is semi-simple. Further, on the new subspace Sk(Γ)new, the
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eigencharacters of T(N−,N+) occur with multiplicity one. In the case when

N− = 1 this follows from Atkin-Lehner theory. In the general case it is a

consequence of a theorem of Jacquet-Langlands. More precisely one has the

following proposition which is an easy consequence of the Jacquet-Langlands

correspondence. (We use the symbols λf and λg to denote the associated

characters of the Hecke algebra.)

Proposition 2.1. Let f be an eigenform of T(1,N) in Sk(Γ0(N))new for

N = N+N−. Then there is a unique (up to scaling) T(N−,N+) eigenform g in

Sk(Γ)new such that λf (Tq) = λg(Tq) for all q ∤ N .

2.1.3. Shimura curves, canonical models and Heegner points. Now suppose

N− > 1 and denote by Xan the compact complex analytic space

Xan = D×(Q)+ \ H×D×(Af )/U ≃ Γ \ H(2)

and by XC the corresponding complex algebraic curve. Following Shimura we

will define certain special points on XC called CM points. Let j : K →֒ D be an

embedding of an imaginary quadratic field in D. Then j induces an embedding

of C = K ⊗R in D⊗R, hence of C× in GL2(R)+. The action of the torus C×

on the upper half plane H has a unique fixed point z. In fact there are two

possible choices of j that fix z. We normalize j so that J(Φ∞(j(x)), z) = x

(rather than x). One refers to such a point z (or even the embedding j itself)

as a CM point. Let ϕ : H→ Γ \ H be the projection map.

Theorem 2.2 (Shimura [33]). The curve XC admits a unique model over

Q satisfying the following : for any embedding j : K →֒ D such that j(OK) ⊂ O,

and associated CM point z, the point ϕ(z) on XC is defined over Kab, the max-

imal abelian extension of K in Q. If σ ∈ Gal(Kab/K) then the action of σ

on ϕ(z) is given by ϕ(z)σ = the class of [z, jAf
(i(σ)fin)] via the isomorphism

(2), where i(σ) is any element of K×
A mapping to σ under the reciprocity map

K×
A → Gal(Kab/K) given by class field theory.

It is well known that the imaginary quadratic fields that admit embeddings

into D are precisely those that are not split at any of the primes dividing N−.

Let Uj = K×
Af
∩ j−1

Af
(U). Then it is clear from the above theorem that ϕ(z)

is defined over the class field of K corresponding to the subgroup K×UjK
×
∞.

We will be particularly interested in the case when K is unramified at N and

j(OK) ⊂ O′, the corresponding CM points being called Heegner points. For

any Heegner point it is clear that Uj is the maximal compact subgroup of

K×(Af ) and hence such points are defined over the Hilbert class field of K.

Heegner points exist if and only if K is split at all the primes dividing N+ and

inert at all the primes dividing N−. In that case, there are exactly 2thK of

them (t = the number of primes dividing N , hK = class number of K), that
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split up into 2t conjugacy classes under the action of the class group of K.

(See [2] and [39] for more details.)

2.2. A ratio of Petersson norms. Let f ∈ Sk(Γ0(N))new be a normalized

Hecke eigenform (i.e. with first Fourier coefficient = 1) and g be the unique (up

to a scalar) Hecke eigenform in Sk(Γ) with the same Hecke eigenvalues as f .

Then sg = g(z)(2πı · dz)⊗k/2 is invariant under Γ, hence descends to a section

of Ω⊗k/2 on Xan and by GAGA induces a section of Ω⊗k/2 on XC. In this way,

one obtains a natural isomorphism Sk(Γ) ≃ H0(XC, Ω⊗k/2). It is well known

that the field Kf generated by the Hecke eigenvalues of f is a totally real

number field. Suppose for the moment that Kf = Q and let V be the Q-vector

space H0(XQ, Ω⊗k/2). Since λg takes values in Q, we can choose g such that sg

lies in V . Let X be the minimal regular model of XQ over spec Z. It is known

that XQ is a semi-stable curve, i.e. that the fibres of X over any prime q are

reduced and have only ordinary double points as singularities. The relative

dualizing sheaf ω = ωX/Z is then an invertible sheaf on X that agrees with Ω

on the generic fibre. Denote by V the lattice H0(X , ω⊗k/2) and normalize g by

requiring that sg be a primitive element in this lattice. This fixes g up to ±1,

so the Petersson norm 〈g, g〉 is well defined. Now define β = 〈f,f〉
〈g,g〉 .

Theorem 2.3. (i) (Shimura [34]). β ∈ Q.

(ii) (Harris-Kudla [14]). β ∈ Q.

In this article we study the p-integrality properties of β. In fact we can

also prove a corresponding result in the more general case when Kf �= Q, but,

since the class number of Kf need not be 1 we are forced to formulate the

result λ-adically. Choosing g such that sg ∈ V ⊗Kf and further such that sg

is λ-adically primitive in V ⊗OKf
, we see that g is well-defined up to a λ-adic

unit in Kf . It is known, again due to Shimura, that β = 〈f, f〉/〈g, g〉 ∈ Q and

due to Harris-Kudla that β ∈ Kf . We will prove a λ-adic integrality result

for β. To motivate our results in the general case, we first study in the next

section the special case k = 2 and Kf = Q.

2.2.1. A special case: elliptic curves and level-lowering congruences. In

this section we restrict ourselves to the case when k = 2 and Kf = Q. Then f

corresponds to an isogeny class of elliptic curves over Q, and if E is any curve

in this class there exist surjective maps from J0(N) and J to E (where J0(N)

and J denote the Jacobians of X0(N) and X respectively). Let E1 and E2

be the strong elliptic curves corresponding to J0(N) and J respectively and

let ϕ1 : J0(N) → E1 and ϕ2 : J → E2 denote the corresponding maps. Also

let ωi be a Neron differential on Ei i.e. a generator of the rank−1 Z-module

H0(Ei, Ω1) where Ei denotes the Neron model of Ei over spec Z. If A2 is the
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kernel of the map ϕ2, we get an exact sequence of abelian varieties

0→ A2 → J → E2 → 0.

By a theorem of Raynaud ([1, App.]) one then has an exact sequence

0→ Lie(A2)→ Lie(J )→ Lie(E2)→ (Z/2Z)r → 0

with r = 0 or 1, where the script letters denote Neron models. Denote by H

the cokernel of the map Lie(A2)→ Lie(J ). Then we have exact sequences

0→ Lie(A2)→ Lie(J )→ H → 0,

0→ H → Lie(E2)→ (Z/2Z)r → 0

and hence by taking duals, exact sequences

0→ H∨ → H0(J , Ω1)→ H0(A2, Ω
1)→ 0,

0→ H0(E2, Ω1)→ H∨ → (Z/2Z)r → 0.

Thus the injective map ϕ∗
2 : H0(E2, Ω1) → H0(J , Ω1) remains injective on

tensoring with Z/qZ for any prime q other than 2. Noting now that one has

a canonical isomorphism H0(X , ω) ≃ H0(J , Ω1), we see that ϕ∗
2ω2 equals sg

(via this isomorphism) except possibly for a factor of ±2. Let ψ2 : XC → JC

be the embedding corresponding to the choice of any point in X(C) and let

ϕ′
2 denote the composite map ϕ2 ◦ ψ2. Then ϕ′∗

2(ω2) equals sg possibly up

to a factor of ±2. Also let ψ1 : X0(N) → J0(N) be the usual embedding

corresponding to the cusp at ∞ and let ϕ′
1 = ϕ1 ◦ ψ1. Then it is shown in [1]

that ϕ′∗
1(ω1) = 2πıf(z)dz possibly up to a factor of 2. Writing ∼2 to mean

equality to up to possibly a power of 2, we get
∫

E1(C) ω1∧ ω̄1 ∼2
1

deg ϕ′
1
4π2〈f, f〉

and
∫

E2(C) ω2 ∧ ω̄2 ∼2
1

deg ϕ′
2
4π2〈g, g〉.

Denote by S the set of Eisenstein primes for the isogeny class containing E1

and E2 i.e. S is the set of primes q for which the representation of Gal(Q/Q)

on the q-torsion Ei[q] is reducible. Choosing any isogeny ϕ3 : E1 → E2 of

minimal degree it is easy to see that the degree of ϕ3 can only be divisible by

primes in S. Using the symbol ∼ to mean equality up to primes in S ∪ {2},
we see then that

∫

E1(C) ω1 ∧ ω̄1 ∼
∫

E2(C) ω2 ∧ ω̄2 and hence 〈f,f〉
〈g,g〉 ∼

deg ϕ′
1

deg ϕ′
2
.

Now it is known that deg ϕ′
1 measures congruences between f and other

forms of level dividing N . Likewise deg ϕ′
2 measures congruences between g

and other forms of weight 2 on X. Such forms correspond to forms on X0(N)

which are new at the primes dividing N−. Thus the ratio deg ϕ′
1

deg ϕ′
2

should measure

congruences between f and other forms on X0(N) that are old at some prime

dividing N−. Indeed, in [29] it is shown that deg ϕ′
1

deg ϕ′
2
∼

∏

q|N− cq, where cq is

the order of the component group of E1 at q. Also it follows from [28] that a

non-Eisenstein prime p divides cq exactly when p is a level-lowering congruence

prime for f at q; i.e., when there exists a form f ′ of level N/q such that the
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Hecke eigenvalues (away from N) of f and f ′ are congruent to each other

modulo some prime of Q above p. As a consequence we see that away from

Eisenstein primes, the ratio 〈f,f〉
〈g,g〉 is integral and is divisible by a prime p exactly

when p is a level-lowering congruence prime for f at some prime q dividing N−.

2.2.2. The general case: statement of the main theorem. The results of

the previous section motivate the following theorem which is the central result

of this article. It is proved in Sections 5.1 and 5.2.

Theorem 2.4. Suppose g is chosen such that sg is Kf -rational and

λ-adically primitive. Let β = 〈f,f〉
〈g,g〉 . Then β ∈ Kf . Further, for p ∤ M :=

∏

q|N q(q − 1)(q + 1) and p > k + 1,

1. vλ(β) ≥ 0.

2. If there exists a prime q | N− and a newform f ′ of level dividing N/q

and weight k such that ρf,λ ≡ ρf ′,λ mod λ then vλ(β) > 0. Here ρf,λ and

ρf ′,λ denote the two dimensional λ-adic representations associated to f

and f ′.

2.3. An integrality criterion for forms on Shimura curves. This section

is devoted to developing an integrality criterion for forms on Shimura curves

using values at CM points. The main result is Proposition 2.9.

2.3.1. Integral models of Shimura curves. We now choose an auxiliary

integer N ′ ≥ 4, prime to N and such that p does not divide N ′. Consider the

Shimura curve X ′ = Γ′ \ H associated to the subgroup U1 of U consisting of

elements whose component at q for q | N ′ is congruent to

(

∗ ∗
0 1

)

mod q.

This curve too has a canonical model defined over Q that is the solution to

a certain moduli problem (parametrizing abelian varieties of dimension 2 with

an action of O and suitable level structure). The moduli problem can in fact be

defined over Z[ 1
NN ′ ] and is represented by a fine moduli scheme X ′ over Z[ 1

NN ′ ],

that is geometrically connected, proper and smooth of relative dimension 1.

For all these facts, see [6, §§3 and 4].

Let Y and Y ′ denote the base change of X and X ′ to Z(p) respectively.

Then the canonical map from X ′
C to XC is in fact defined over Q and extends

to a map u : Y ′ → Y. Clearly we may choose N ′ such that p ∤ deg(u). The

following lemma is then evident.

Lemma 2.5. Let s ∈ H0(XL, Ω⊗l) for L a number field and l a positive

integer. If Lλ is the completion of L at λ and Oλ the ring of integers of Lλ,

then s ∈ H0(X , Ω⊗l)⊗Oλ = H0(XOλ
, Ω⊗l) ⇐⇒ u∗(s) ∈ H0(Y ′, Ω⊗l)⊗Oλ =

H0(Y ′
Oλ

, Ω⊗l).
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The field Q(
√
−N−) embeds in D. Pick an element t ∈ D such that

t2 = −N−, and let ∗ denote the involution on D given by x∗ = t−1xit. Let

π : A → Y ′ be the universal abelian scheme over Y ′. It is known (see [6,

Lemma 5]) that there exists a unique principal polarization on A/Y ′ such

that on all geometric points x the associated Rosati involution induces the

involution ∗ on O →֒ End(Ax). Let φ : A ≃ A∨ be the isomorphism associated

to the principal polarization. Via φ, R1π∗OA is isomorphic to R1π∗OA∨ ; hence

R1π∗OA and π∗Ω1
A/Y ′ are dual to each other so that the adjoint of δ ∈ O is

δ∗. The proof of [6, Lemma 7] shows that there is a canonical isomorphism of

rank-2 locally free sheaves

ϕ : π∗Ω
1
A/Y ′ ≃ R1π∗OA ⊗ Ω1

Y ′/Z(p)
.(3)

Recall that the above map is constructed in the following way. Since A/Y ′ and

Y ′/Z(p) are smooth, the sequence

0→ π∗Ω1
Y ′/Z(p)

→ Ω1
A/Z(p)

→ Ω1
A/Y ′ → 0

is exact. Applying R·π∗ to this sequence gives a map

π∗Ω
1
A/Y ′ → R1π∗π

∗Ω1
Y ′/Z(p)

≃ R1π∗OA ⊗ Ω1
Y ′/Z(p)

which is the required one. Taking the second exterior power of (3) we get

∧2π∗Ω
1
A/Y ′ ≃ ∧2(R1π∗OA ⊗ Ω1

Y ′/Z(p)
) = ∧2R1π∗OA ⊗ (Ω1

Y ′/Z(p)
)⊗2

and by the duality of R1π∗OA and π∗Ω1
A/Y ′ , a canonical isomorphism

ϕ(l) : (∧2π∗Ω
1
A/Y ′)⊗l ≃ (Ω1

Y ′/Z(p)
)⊗l

for every even integer l. Let x : Spec L → X ′ be a geometric point of X ′ de-

fined over a number field L. By the properness of Y ′ over Z(p), x extends to an

Oλ-valued point of Y ′, x : Spec Oλ → Y ′. Denote by Ax,λ, Ax,λ and Ax the

Abelian schemes over Oλ, Lλ and L, respectively, obtained by pulling back the

universal family over Y ′ via x. Now suppose s = G(z)(2πı·dz)⊗l (with G a form

of weight 2l) descends to an L-rational element of H0(X ′, (Ω1)⊗l). Via the iso-

morphism ϕ(l), s gives rise to a section sx ∈ H0(Ax, (∧2π∗Ω1
Ax

)⊗l). If further s

is λ-integral, i.e. if s ∈ H0(Y ′, (Ω1
Y/Z(p)

)⊗l) then sx ∈ H0(Ax,λ, (∧2π∗Ω1
Ax,λ

)⊗l).

Conversely, let R be an infinite set of algebraic points such that the mod λ

reductions of x ∈ R still form an infinite set. If sx ∈ H0(Ax,λ, (∧2π∗Ω1
Ax,λ

)⊗l)

for all x ∈ R, it is clear that s must be λ-integral (since the reduction of Y ′

mod λ is irreducible).

We use the same symbol x to denote also the corresponding point of X ′(C)

and suppose τ ∈ H is such that the image of τ in X ′ = Γ \ H is equal to x.

Then one has a canonical identification

C2

Φ∞(O)

[

τ

1

] ≃ Ax,C.
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Via this isomorphism sx corresponds to some multiple of (dt1 ∧ dt2)
⊗l

where t1, t2 denote the coordinates on C2.

Lemma 2.6. sx = (2πı)2l

(N−)l/2 G(τ)(dt1 ∧ dt2)
⊗l.

Before proving the lemma we note the following consequence. Let ωx be

an element of H0(Ax, (∧2π∗Ω1
Ax,λ

)) that is λ-integral and λ-adically primitive

(with respect to the lattice H0(Ax,λ, (∧2π∗Ω1
Ax,λ

)), and suppose that via the

isomorphism above, ωx corresponds to µτdt1∧dt2 for some complex period µτ .

Since p ∤ N−, the following proposition is a corollary of the lemma and the

preceding discussion.

Proposition 2.7. Let R be an infinite set of algebraic points on X ′ whose

reductions mod λ still form an infinite set. Then s := G(z)(2πı · dz)⊗l is

λ-integral if and only if for all x ∈ R and τ ∈ H mapping to x, (2π)2lG(τ)
µl

τ
is a

λ-adic integer. (Note: G has weight 2l.)

We now prove the lemma. A similar result is proved in [10] (see state-

ment 4.4.3) in the symplectic case, and we only need to adapt the proof to

our context. First one needs to note that the map (3) can be defined in a

slightly different way using the Gauss-Manin connection on the relative de

Rham cohomology of A/Y ′. Let H1
DR(A/Y ′) denote the first relative de Rham

cohomology sheaf. It is an algebraic vector bundle on Y ′ equipped with a

canonical integrable connection, the Gauss-Manin connection:

∇ : H1
DR(A/Y ′)→ H1

DR(A/Y ′)⊗ Ω1
Y ′/Z(p)

.

Also the de Rham cohomology sits in an exact sequence

0→ π∗Ω
1
A/Y ′

f1−→ H1
DR(A/Y ′)

f2−→ R1π∗OA.

The composite map

π∗Ω
1
A/Y ′

f1−→ H1
DR(A/Y ′)

∇−→ H1
DR(A/Y ′)⊗ Ω1

Y ′/Z(p)

f2⊗1−−−→ R1π∗OA ⊗ Ω1
Y ′/Z(p)

is then the same as the map given by (3). To prove the lemma we only need to

pull back these vector bundles to H and compute explicitly the connection ∇.

Let Lτ = Φ∞(O)

[

τ

1

]

⊂ C2. If AC denotes the universal family over X ′
C,

the pull-back of AC to H is an analytic family of Abelian varieties with fibre

Aτ = C2/Lτ over the point τ . Let H1
DR(A/H) denote the analytic vector

bundle on H obtained by pulling back H1
DR(AC/X ′

C) to H. The fibre of this

vector bundle over τ ∈ H is naturally interpreted as the de Rham cohomology of

Aτ , hence as the complex vector space Hom(Lτ⊗Z C, C) (since Lτ = H1(Aτ , Z)

and by the isomorphism between de Rham and singular cohomology).
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Denote by Et the nondegenerate skew-symmetric pairing on O defined by

Et(a, b) = 1
N− tr(abit) so that Et(ca, b) = Et(a, c∗b). Via the natural isomor-

phism O ≃ Lτ , Et induces a pairing on Lτ and we extend it R-linearly to a

real-valued skew-symmetric pairing on C2, denoted Eτ . Then Eτ takes integral

values on Lτ , and is a nondegenerate Riemann form for Aτ . In fact it is easy

to check (for instance using an explicit symplectic basis for O as constructed

in [16]) that the Pfaffian of Eτ restricted to Lτ is 1; hence the associated po-

larization of Aτ is principal. Since the corresponding Rosati involution is just

the involution ∗, we see that the principal polarization associated to the Rie-

mann form Eτ is φτ . Let {e1, e2, e3, e4} be a symplectic basis for O ⊗ R with

respect to the skew-symmetric form Et and ei,τ = Φ∞(ei)

[

τ

1

]

∈ Lτ ⊗ R so

that the ei,τ form a symplectic basis for Lτ ⊗ R with respect to the form Eτ .

We define α1, α2, β1, β2 to be the global sections of H1
DR(A/H) which when

restricted to the fibre Aτ give the basis dual to {e1,τ , e2,τ , e3,τ , e4,τ}. If H1

is the complex subspace of H0(H,H1
DR(A/H)) spanned by α1, α2, β1, β2, one

has H1
DR(A/H) = H1 ⊗ OH. The sections α1, α2, β1, β2 are horizontal for the

Gauss-Manin connection and on H1
DR(A/H) = H1 ⊗ OH the connection ∇ is

just 1 ⊗ d. The principal polarization φ induces a nondegenerate alternating

form

〈, 〉DR : H1
DR(AC/X ′

C)×H1
DR(AC/X ′

C)→ OX′
C
.

Pulling back to H, this form can be computed on the global sections α1, α2, β1, β2:

〈βj , αk〉DR =
1

2πı
δj,k = −〈αk, βj〉DR,

〈βj , βk〉DR = 0 = 〈αj , αk〉DR.

Let t1 and t2 denote the coordinates on C2 so that π∗Ω1
A/H

is generated freely

by dt1 and dt2. Suppose that Φ∞(ei) =

(

pi qi

ri si

)

. Clearly,

dt1 = (p1z + q1)α1 + (p2z + q2)α2 + (p3z + q3)β1 + (p4z + q4)β2,

dt2 = (r1z + s1)α1 + (r2z + s2)α2 + (r3z + s3)β1 + (r4z + s4)β2,

whence

∇(dt1) = (p1α1 + p2α2 + p3β1 + p4β2)⊗ dz,

∇(dt2) = (r1α1 + r2α2 + r3β1 + r4β2)⊗ dz.

Suppose ϕ(dt1) = (x11(dt1)
∨ + x12(dt2)

∨)⊗ dz and ϕ(dt2) = (x21(dt1)
∨ +

x22(dt2)
∨)⊗dz. Then ϕ(2)(dt1∧dt2)

⊗2 = (x11x22−x12x21)dz⊗2 where xijdz =

〈∇(dti), dtj〉DR. To compute det(xij) it is simplest to work with some explicit

choice of ei. Without loss, we may assume that Φ∞(t) =

(

0 −1

N− 0

)

and
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that Φ∞ maps e1, e2, e3, e4 to

(

1 0

0 0

)

,

(

0 0

N− 0

)

,

(

0 1

0 0

)

and

(

0 0

0 1

)

,

respectively. Thus, dt1 = zα1 + β1, dt2 = N−zα2 + β2, whence ∇(dt1) =

α1dz,∇(dt2) = N−α2dz, x11 = −1/2πı, x12 = 0, x21 = 0, x22 = −N−/2πı,

and finally det(xij) = N−

(2πı)2 . Hence ϕ(l)(dt1 ∧ dt2)
⊗l = (N−)l/2

(2πı)l dz⊗l for any

even integer l. It follows then that via the isomorphism ϕ(l) the section

s = (2πı)lG(z)dz⊗l corresponds to (2πı)2l(N−)−l/2G(τ)(dt1 ∧ dt2)
⊗l on the

fibre over τ . This completes the proof of Lemma 2.6.

2.3.2. Algebraic Hecke characters. Let K and L be number fields. Let

χ : K×
A → L× be an algebraic Hecke character and let µ : K× → L× be the

restriction of χ to K×. Thus µ is an algebraic homomorphism of algebraic

groups; i.e. there exist integers nσ such that µ(x) =
∏

σ(σx)nσ where σ ranges

over the various embeddings of K into Q. The formal sum
∑

σ nσσ is called

the infinity type of χ.

Since µ is algebraic, it induces a continuous homomorphism µA : K×
A →

L×
A . Recall that we have fixed embeddings i : Q →֒ C, λ : Q →֒ Qp. Now χ

gives rise to two characters χ and χλ which are defined as follows.

(i) Let µi : K×
A → C× be the projection of µA onto the factor corresponding

to i. Then χ(x) = i(χ(x))/µi(x) and χ is a continuous character of K×
A , trivial

on K×, with values in C× i.e. a Grossencharacter of K.

(ii) Let µλ : K×
A → L×

λ be the projection of µA onto the factor correspond-

ing to λ. Then χλ(x) = (λ(χ(x))/µλ(x))−1. Since L×
λ is a totally disconnected

topological group, χλ must factor through the group of components of K×
A ,

which by class field theory is canonically identified with Gal(K/K)ab. Thus

we can think of χλ as a character of Gal(K/K) and we shall use the same

symbol to denote both the character on the ideles and the Galois group.

For the rest of this article, by a Grossencharacter of K we shall mean a

Grossencharacter χ that arises from an algebraic Hecke character χ as in (i)

above. By the infinity type of χ we shall mean the infinity type of χ. We will

also use the same symbol χ to denote the corresponding character on the ideals

of K prime to the conductor cχ. Thus, for q an ideal in K coprime to λ and cχ,

we have χ(q) = χλ(Frobq) where Frob denotes the arithmetic Frobenius. For

any algebraic map σ : K× → K× we shall denote by χσ the Grossencharacter

corresponding to the algebraic Hecke character χσ where χσ(x) = χ(σx). Espe-

cially for K imaginary quadratic, we denote by ρ the nontrivial automorphism

of K/Q and χρ the associated Grossencharacter. Clearly, χρ
λ(g) = χλ(cgc−1)

for any g ∈ Gal(K/K) where c denotes complex conjugation.

2.3.3. CM periods. Let K be an imaginary quadratic field and let p be any

prime. We shall define a canonical period Ω associated to the pair (K, p) that

will be well defined up to multiplication by a p-adic unit. Let E be any elliptic
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curve defined over some number field L with CM by OK defined also over L.

Assume also that E has good reduction over L; we can certainly achieve this

by passing to a larger field. Denote by E the Neron model of E over OL, the

ring of integers of L. Since M = H0(E , Ω1) is a locally free OL module of rank

one, we may choose ω ∈M such that the cardinality of M/OLω is coprime to

p. Likewise the module N = H1(E(C), Z) is a locally free OK module of rank

one, so we may choose γ ∈ N such that N/OKγ has cardinality coprime to p.

There is a canonical pairing between M and N given by integration, which we

use to define the period Ω :=
∫

γ ω. If ω1 and γ1 also satisfy these conditions,

they must differ from ω and γ by p-adic units, so Ω that (up to a p-adic unit)

does not depend on the choices of ω and γ. That Ω does not depend on the

choice of E is also clear since if E′ is another such curve, it must be isogenous

to E (over some number field) by an isogeny of degree prime to p.

2.3.4. The integrality criterion. Suppose now that z is a Heegner point

(see §2.1.3), j : K× → D× is the corresponding embedding and p is unramified

in K. If f ∈ Sk(Γ) and F is the corresponding adelic automorphic form, define

(following [14, App.]) for any Grossencharacter χ of K with weight (k, 0) at

infinity,

Lχ(F ) = j(α, ı)k

∫

K×K×
∞\K×

A

F (xα)χ′(x)d×x(4)

for any α ∈ (D×
∞)

(1)
= SL2(R) such that α(ı) = z. Here we pick a Haar

measure d×x =
∏

v d×xv on K×
A such that for finite v, d×xv gives Uv volume

1 and such that dx∞ induces on (R×)
+ \K×

∞ a measure with volume 1. The

quotient measure, also denoted d×x, on K×K×
∞ \K×

A has total volume 1. Also

χ′ = χρN−k/2 and we think of K×
A as a subgroup of D×

A via jA. It is easy to

check that the definition above does not depend on the choice of α. (Indeed,

in the notation of [14], j(α, ı)kF (·α) is nothing but Lift(s) where s denotes the

restriction of the section f(z)(dz)⊗k/2 of the automorphic line bundle Ω⊗k/2

to the sub-Shimura variety defined by the embedding of the torus K× in D×.)

Note that there is some abuse of notation here, since Lχ(F ) depends not only

on χ and K but also the specific choice of Heegner point.

We will assume henceforth that χ is an unramified Hecke character of K.

We show now that Lχ(F ) is a weighted sum of the values of f at the vari-

ous Galois conjugates of the CM point z. Pick yi ∈ K×
Af

such that K×
A =

⊔h
i=1(K

×UKK×
∞)yi where UK =

∏

v Uv, Uv = the units in Kv and h = hK is

the class number of K. Write j(yi) = gi(gU,i·γi), gi ∈ D×, gU,i ∈ U, γi ∈ (D×
∞)

+
.

One sees immediately that

Lχ(F ) =
1

h
j(α, ı)k

h
∑

i=1

f(γiαi)j(γiα, ı)−kχ′(yi) =
1

h

h
∑

i=1

f(γiz)j(γi, z)−kχ′(yi).
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Since every element in the class group is Frobq for infinitely many primes q,

we can choose yi = (. . . 1, 1, πqi
, 1, . . . ) where qi is prime to p and πq is a

uniformiser at q. Now yh
i ∈ K×(UK · K×

∞). Suppose yh
i = x(xUx∞). Then

x∞ = x−1 and it is clear that x is a λ-adic unit (since xxp = 1 and xp is a

p-adic unit for p any prime above p). Hence χ′(yi)
h = x

k/2
∞ x

−k/2
∞ = (x/x)−k/2

is a λ-adic unit and the same is therefore true of χ′(yi).

Let zi = γiz and Azi
be the fibre over the image of zi in X ′. Then there

is an isomorphism

Azi
≃ C2

Φ∞(O)

[

zi

1

] =
C2

(ciz + di)−1Φ∞(Og−1
i )

[

z

1

] ≃ C2

Φ∞(Og−1
i )

[

z

1

]

where γi =

(

a b

c d

)

. From the choice of yi we see that gi ∈ (O ⊗ Zp)
× and

hence the Azi
are all isogenous to Az by isogenies of degree prime to p. Now

it is well known that the Azi
admit models over Q. Let Ai be such a model

for Azi
over some number field. We will see below that each Ai is isogenous

to a product of elliptic curves with CM by OK by an isogeny of degree prime

to p. Thus by extending scalars to a bigger number field if required we can

assume that Ai has good reduction everywhere and in particular at λ. If Ai is

the Neron model of Ai then H0(Ai,∧2Ω1) is a lattice in the one dimensional

vector space H0(Ai,∧2Ω1) and we can pick an element ωi in this lattice that

is λ-adically primitive. Pick an integer n coprime to p such that ng−1
i ∈ O.

Then we have an isogeny

C2

Φ∞(Og−1
i )

[

z

1

] ≃ C2

Φ∞(Ong−1
i )

[

z

1

] → C2

Φ∞(O)

[

z

1

] = Az

given by the inclusion Ong−1
i →֒ O. Composing the two maps above, we get

an isogeny ψi

Azi
≃ C2

Φ∞(O)

[

zi

1

] → C2

Φ∞(O)

[

z

1

] = Az

of degree prime to p. Suppose ωi = µidt1 ∧ dt2 on Azi C. Tracing through the

above maps we see that ψ∗
i (ω) = ψ∗

i (µdt1 ∧ dt2) = (ciz+di)2

n2 µdt1 ∧ dt2. On the

other hand since ψi has degree prime to p, ψ∗
i (ω)/ωi must be a λ-adic unit.

Hence (ciz+di)2

n2

µ
µi

is a λ-adic unit. Noting that det(γi) = N(gi)
−1 and n are

λ-adic units we get that βi = (µi/j(γi, z)2µ)k/2 is a λ-adic unit. Now Lχ(F )
µk/2 =

1
h

∑h
i=1

f(zi)

µ
k/2
i

βi · χ′(yi) and
∑

χ
Lχ(F )
µk/2 χ′(y−1

j ) =
∑

χ
1
h

∑h
i=1

f(zi)

µ
k/2
i

βiχ
′(yi)χ

′(y−1
j )

=
∑h

i=1 βi
f(zi)

µ
k/2
i

1
h

∑

χ χ′(yiy
−1
j ) = βj

f(zj)

µ
k/2
j

. Thus we get the following proposi-

tion:
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Proposition 2.8. 1. (2π)kLχ(F )
µk/2 is a λ-adic integer for all unramified χ

⇒ (2π)kf(zi)

µ
k/2
i

is a λ-adic integer for all i ⇒ h (2π)kLχ(F )
µk/2 is a λ-adic integer for

all unramified χ.

2. If p ∤ h, then
(2π)kLχ(F )

µk/2 is a λ-adic integer for all unramified χ ⇐⇒
(2π)kf(zi)

µ
k/2
i

is a λ-adic integer for all i.

We now relate µ to the period Ω defined in Section 2.3.3. Write D =

K +KJ for some J ∈ NK×(D×) \K× so that J i = −J and xJ = J x for all

x ∈ K. (This is an orthogonal decomposition for the norm form on D.) Let I

be the fractional ideal of OK given by I = {x ∈ K : xJ ∈ O}. Since K and

D are both unramified at p, we have O⊗Zp = OK ⊗Zp + (I ⊗Zp)J . Clearly

we may choose J such that I and NJ are prime to p. The map K ×K → D

given by (x1, x2) �→ x1 + x2J induces on tensoring with R, maps

C× C = (K ⊗ R)× (K ⊗ R)→ D ⊗ R

Φ∞(·)





z

1





−−−−−−−−→ Φ∞(D ⊗ R)

[

z

1

]

= C2.

Let α denote the composite map. For all x ∈ K, xJ = J x; hence

Φ∞(x)Φ∞(J )(z) = Φ∞(J )Φ∞(x)(z) = Φ∞(J )(z).

Thus Φ∞(J )(z) must be either z or z. Since NJ must be negative, Φ∞(J )(z)

= z. Now, for (x1, x2) ∈ K ×K,

α(x1, x2) = Φ∞(x1 + x2J )

[

z

1

]

= x1

[

z

1

]

+ x2J(J , z)

[

z

1

]

=

[

zx1 + J(J , z)zx2

x1 + J(J , z)x2

]

and so the same formula holds for (x1, x2) ∈ C × C. (Note that we are using

the fact that j is normalized so that J(Φ∞(j(x)), z) = x for all x ∈ K. Also

we write J(J , z) instead of J(Φ∞(J ), z).) This shows that α is holomorphic

and hence it induces an isogeny, also denoted by α,

E1 × E2 = C/OK × C/I
α−→ C2

Φ∞(O)

[

z

1

]

from the product of elliptic curves on the left to the abelian variety Az. Since

(OK + IJ ) ⊗ Zp = O ⊗ Zp, the degree of this isogeny is prime to p. If ω1,

ω2 are holomorphic differentials on E1, E2 respectively that are λ-adically

primitive, then α∗(ω) = βω1 ∧ ω2 with β a λ-adic unit. Note that up to

λ-adic units ω1 = Ωdx1 and ω2 = Ωdx2 (since I is prime to p), so that α∗(ω) =

Ω2dx1 ∧ dx2 up to a λ-adic unit. On the other hand α∗ω = α∗(µdt1 ∧ dt2) =
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µdet

(

z J(J , z)z

1 J(J , z)

)

dx1 ∧ dx2 = 2µJ(J , z)ℑ(z)dx1 ∧ dx2, which shows that

up to a λ-adic unit µ = (2J(J , z)ℑ(z))−1Ω2. Now combining this computation

with Lemma 2.5, Proposition 2.7 (applied to G = f2, R = the image in X ′ of

an appropriate set of Heegner points) and Proposition 2.8 we get

Proposition 2.9. Let f be an algebraic modular form on Γ. Suppose f

is λ-adically integral. Then for all choices of imaginary quadratic fields K with

p unramified in K, Heegner points K →֒ D, and unramified Grossencharacters

χ of K of type (k, 0) at infinity, the algebraic number

(2J(J , z)ℑ(z))k · h2
K ·

(2π)2kLχ(F )2

Ω2k

is a λ-adic integer. (F = the adelic form associated to f .) Conversely, if there

exist infinitely many Heegner points K →֒ D with K split at p such that for all

unramified characters χ of K of weight (k, 0) at infinity, the algebraic numbers

(2J(J , z)ℑ(z))k · (2π)2kLχ(F )2

Ω2k

are λ-adic integers, then f is λ-adically integral.

Note that if the fields K are chosen to be split at p, the mod λ reductions

of the corresponding Heegner points give infinitely many distinct points in the

mod λ reduction of the Shimura curve X. The reader will notice the appearance

of an extra factor h2
K in the first half of the proposition. This comes from the

fact that Lχ(f) is of the form 1
hK

( a sum of values of f at CM points), hence

one can only expect the product hK · Lχ(F )/Ωk (and not Lχ(F )/Ωk) to have

good integrality properties. Consequently, it will be important for applications

to know the existence of infinitely many Heegner points with class number

prime to p (see Lemma 5.1).

3. Computations with the theta correspondence

3.1. The Weil representation. Let W be a symplectic space of dimension

2n and V an orthogonal space of dimension d. Then W ⊗ V is naturally a

symplectic space with symplectic form 〈, 〉 = 〈, 〉W ⊗ 〈, 〉V . The groups Sp(W )

and O(V ) form a dual reductive pair in Sp(W ⊗V ). Recall that we have fixed

an additive character ψ of Q \ A. If V is even dimensional the metaplectic

cover splits over Sp(W ) and O(V ) and we get a representation ωψ of (Sp(W )×
O(V ))(A) by restricting the Weil representation. Let W = W1⊕W2 where W1

and W2 are isotropic for the symplectic form. Then the Weil representation

(and hence ωψ) can be realised on the Schwartz space S((W1 ⊗ V )(A)). The

action of the orthogonal group is via its left regular representation

L(h)ϕ(β) = ϕ(h−1β).
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We now restrict to the case when W is two-dimensional so that the Weil

representation is realised on S(V (A)). Let w1, w2 be nonzero elements of W1

and W2 respectively and write elements of the symplectic group as matrices

with respect to the basis {w1, w2}. The action of Sp(W )(A) = SL2(A) can be

described by giving the action of Sp(W )(Qv) on S(V ⊗ Qv) for all primes v

and is given by

ωψv

(

1 u

0 1

)

ϕ(β) = ψ(
1

2
〈uβ, β〉V )ϕ(β)(5)

ωψv

(

a

a−1

)

ϕ(β) = χV (a)|a|d/2ϕ(aβ)

ωψv

(

1

−1

)

ϕ(β) = γV ϕ̂(β)

where γV is an eighth root of unity and χV is a certain quadratic character.

The values of γ and χV in the cases of interest to us can be copied from [21]

and are listed below in Section 3.4. Here, ϕ̂ is the Fourier transform:

ϕ̂(s) =

∫

V ⊗Qv

ϕ(t)ψv(〈t, s〉)dt

the Haar measure on V ⊗Qv being chosen to be self-dual with respect to the

pairing 〈, 〉V . (i.e. so that ˆ̂ϕ(β) = ϕ(−β)).

Following Harris-Kudla [15] we can extend L to an action of GO(V )(A)

and ωψ to an action of G(Sp(W )×O(V ))(A) where

G(Sp(W )×O(V )) = {(x, y) ∈ GSp(W )×GO(V ), ν1(x) = ν2(y)}

and ν1 and ν2 denote the similitude characters on GSp(W ) and GO(V ) re-

spectively. Define L(h)ϕ(β) = |ν2(h)|−d/4ϕ(h−1β) for h ∈ GO(V )(A). For

(x, y) ∈ G(Sp(W )×O(V ))(A) let δ = ν1(x) = ν2(y), α =

(

1

δ

)

and x(1) =

xα−1, x(1) = α−1x. Then define ωψ(x, y) = ωψ(x(1))L(y) = L(y)ωψ(x(1)).

The Weil representation can be used to lift automorphic forms from GSp(W )

to GO(V ) and vice versa. Pick any ϕ ∈ S(V (A)). If F is a form on GSp(W )(A)

one defines the theta lift, θϕ(F ) : GO(V )(A)→ C, by

θϕ(F )(h) =

∫

GSp(W )(1)\GSp(A)(1)

[

∑

x∈V

ωψ(gg̃, h)ϕ(x)

]

F (gg̃)d(1)g

for any g̃ ∈ GSp(A) with ν1(g̃) = ν2(h). Likewise if G is a form on GO(V )(A)

one defines θt
ϕ(G) : GSp(W )(V )(A)→ C, by

θt
ϕ(G)(g) =

∫

GO(V )(1)\GO(V )(A)(1)

[

∑

x∈V

ωψ(g, hh̃)ϕ(x)

]

G(hh̃)d(1)h
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for any h̃ ∈ GO(V )(A) with ν1(g) = ν2(h̃) and GSp(W )(V ) is the subgroup of

GSp(W )(A) consisting of those elements g such that ν1(g) = ν2(h̃) for some

h̃ ∈ GO(V )(A).

3.2. Theta correspondence for the dual pair GL(2) × GO(D). We now

consider the case V = D equipped with the quadratic form 〈β1, β2〉 = β1β
i
2 +

βi
1β2. Let ρ : D× ×D× → GO(D) be the map ρ(β1, β2)(β) = β1ββ−1

2 . Then

ρ surjects onto H, the identity component of GO(D). As mentioned above

the Weil representation on S(D(A)) can be used to lift the adelic form F on

GL2(A) associated to the normalized newform f from Section 2.2 to a form

θϕ(F ) on GO(D)(A). If g̃ is any element of GL2(A) such that ν1(g̃) = ν2(h),

θϕ(F )(h) :=

∫

GL2(Q)(1)\GL2(A)(1)

[

∑

x∈D

ωψ(gg̃, h)ϕ(x)

]

F (gg̃)d(1)g.

This lift depends on ϕ ∈ S(D(A)), the choice of which will be very important

in what follows. We make the following choice for ϕ: ϕ = ⊗qϕq, where

ϕq =
1

vol((O′ ⊗ Zq)
×)

IO′⊗Zq
, for finite primes q,

ϕ∞(β) =
1

π
Y (β)ke−2π(|X(β)|2+|Y (β)|2)

where for β =

(

a b

c d

)

∈ M2(R) = D ⊗ R, X(β) = 1
2(a + d) + ı

2(b − c) and

Y (β) = 1
2(a−d)+ ı

2(b+ c). This is very close to the choice made in [43] except

for the place at infinity. It ensures that the theta lift is holomorphic in both

variables as opposed to holomorphic in one and antiholomorphic in the other

when pulled back to a form on D×(A) × D×(A). We now summarize some

results from [43] with the modifications required to account for our different

choice of Schwartz function (at infinity).

Let πg be the automorphic representation on D×(A) associated to

πf by the Jacquet-Langlands correspondence (realised as a subspace of

L2(D×
Q \D×

A , 1)) and Ψ the adelic form in πg corresponding to the arithmetically

normalized newform g from Section 2.2. Also let θ̃ϕ(F ) denote the pull-back of

θϕ(F ) to D×(A)×D×(A) and ϕ′ = ωψ(J0, (J0, 1))ϕ where J0 =

(

1 0

0 −1

)

∈

D×(R) = GL2(R). Thus ϕ′
∞(β) = X(β)ke−2π(|X(β)|2+|Y (β)|2) and ϕ′

q = ϕq for

all finite q. By [43, Chap. 2, Thm. 1], θ̃ϕ′(F ) = Ψ′ × Ψ′ where Ψ′ is some

scalar multiple of Ψ. Note that this only fixes Ψ′ up to a scalar of absolute

value 1. However by requiring further that Ψ′(βJ0) = Ψ′(β), Ψ′ is fixed up to
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±1. Then θ̃ϕ(F )(β1, β2) equals
∫

GL2(A)(1)

∑

x∈D

ωψ(gg̃, ρ(β1, β2))ϕ(x)F (gg̃)d(1)g

=

∫

GL2(A)(1)

∑

x∈D

ωψ(gg̃, ρ(β1, β2))ωψ(J0, (J0, 1))ϕ′(x)F (gg̃J0)d
(1)g

=

∫

GL2(A)(1)

∑

x∈D

ωψ(gg̃J0, ρ(β1J0, β2))ϕ
′(x)F (gg̃J0)d

(1)g

= θ̃ϕ′(F )(β1J0, β2) = Ψ′(β1J0)Ψ
′(β2) = Ψ′(β1)Ψ

′(β2)

where det(g̃)=ν(β1)ν(β2)
−1. Thus θ̃ϕ(F )=Ψ′×Ψ′. Now define F ′ : H(A)→ C

by F ′(ρ(β1, β2)) = Ψ′(β1)Ψ
′(β2). By see-saw duality (see [23] and [15]),

〈θϕ(F ), F ′〉 = 〈F, θt
ϕ(F ′)〉(6)

where θt
ϕ(F ′) is the theta lift of F ′ to GL(2), given by

θt
ϕ(F ′)(g) :=

∫

H(Q)(1)\H(A)(1)

[

∑

x∈D

ωψ(g, hh̃)ϕ(x)

]

F ′(hh̃)d(1)h

with h̃ ∈ H(A), ν2(h̃) = ν1(g). By a computation similar to the one given

above, it is easy to check that θt
ϕ(F ′)(gJ0) = θt

ϕ′(F ′′)(g) where F ′′(β1, β2) =

Ψ′(β1)Ψ′(β2). Further, by the computations in [43, §2.2.1], θt
ϕ′(F ′′)(g) =

〈Ψ′, Ψ′〉F (g), whence θt
ϕ(F ′)(g) = 〈Ψ′, Ψ′〉F (gJ0) = 〈Ψ′, Ψ′〉F (g). Substitut-

ing this in (6) we see that 〈Ψ′, Ψ′〉2 = 〈Ψ′, Ψ′〉〈F, F 〉, whence 〈Ψ′, Ψ′〉 = 〈F, F 〉.
The key point will be to show by Proposition 2.9 that Ψ′ is the adelic form

associated to a p-adically integral form on D×.

Let j : K →֒ D be an embedding of an imaginary quadratic field K in D

corresponding to a Heegner point with p unramified in K. Recall that such an

embedding gives an algebraic map K× → D× and hence a map jA : K×
A → D×

A .

In what follows we think of K×
A as a subgroup of D×

A via this embedding. Let

χ be an algebraic Hecke character of K of weight (k, 0) at infinity and let χ

denote the corresponding Grossencharacter at infinity (i.e. corresponding to

the identity embedding of K in C). Also, define χ′ = χρN−k/2. Recall also

(see (4)) that we have defined Lχ(Ψ′) to be the integral

Lχ(Ψ′) = j(α, ı)k

∫

K×K×
∞\K×

A

Ψ′(xα)χ′(x)d×x

for any α ∈ SL2(R) ⊂ D×(R) such that α(ı) = z. Note that there is some

abuse of notation here, since Lχ(Ψ′) depends not only on χ and K but also

on the specific choice of Heegner point. We assume henceforth that χ is an

unramified Hecke character of K.
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We now compute Lχ(Ψ′)2 by a method of Waldspurger, as in [14]. As

in Section 2.3.4 write D = D1 + D2 where D1 = K and D2 = KJ is the

orthogonal complement to K for the norm form on D. Then the identity

components of GO(D1) and GO(D2) are both equal to K×, and the identity

component of G(O(D1) × O(D2)) is identified with G(K× × K×). The map

ρ : D× × D× → GO(D)0 = H sends K× × K× to (G(O(D1) × O(D2)))
0 =

G(K× ×K×), and this map is nothing but (x, y) �→ (xy−1, xy−1). Note also

that χ′(xy) = χ′(xy−1)χ′(yy) = χ′(xy−1) since χ′, being unramified, implies

χ′(yy) = 1. Let T1 and T2 denote the tori GO(D1)
0 and GO(D2)

0 respectively

and T be the torus G(T1 × T2). Now,

Lχ(Ψ′)2 = j(α, ı)2k

∫

(K×K×
∞\K×

A )2
θ̃ϕ(F )(xα, yα)χ′(xy)d×xd×y

=
1

π

j(α, ı)2k

∏

q vol((O′ ⊗ Zq)
×)
·
∫

T (Q)T (R)\T (A)
θϕ′′(F )|T (A)χ

′(b)d×ad×b

where a is the variable on T1, b that on T2 and ϕ′′ is given by

ϕ′′
q = vol((O′ ⊗ Zq)

×
)ϕq = IO′⊗Zq

for finite q,

ϕ′′
∞(x = x1 + x2J ) = πϕ∞(α−1xα) = πϕ∞(α−1x1α + (α−1x2α)(α−1Jα))

= (Y (α−1x2Jα))ke−2π(N(x1)+N(x2)|N(J )|).

Let C = 1
π

∏

q|N+(q + 1)
∏

q|N−(q − 1). By see-saw duality (see [14, 14.5 and

§7.3], this last integral equals

C · ζ(2)j(α, ı)2k

∫

Z(A)GL2(Q)\GL2(A)
F (g)θt

ϕ′′(1, χ′)|GL2(A)(g)d×g.

Note that θt
ϕ′′ is a priori defined only on the subgroup G(ηK) = {x ∈ GL2(A),

det(x) is a norm from K×
A }. We extend it to a function on GL2(A) by making

it left invariant by GL2(Q) and extending by zero outside GL2(Q)G(ηK) which

is a subgroup of index 2 in GL2(A).

Since D = D1 + D2, S(D(Af )) = S(D1(Af ))⊗S(D2(Af )). Note that ϕ′′
∞

is of the form ϕ∞1⊗ϕ∞2. However this is not necessarily the case for finite q.

For each finite q write ϕ′′
q =

∑

iq∈Iq
ϕq,iq,1 ⊗ ϕq,iq,2. Then

(7)

Lχ(Ψ′)2 = C · j(α, i)2k · ζ(2)
∑

∏

q Iq

∫

Z(A)G(Q)\G(A)
F (g)θt

ϕ∞1⊗(⊗qϕq,iq,1)
(1)(g)

· θt
ϕ∞2⊗(⊗qϕq,iq,2)

(χ′)(g)d×g

where G = GL(2) and θt
ϕ1

(1) and θt
ϕ2

(χ) denote theta lifts from the groups

GO(D1)
0(A) and GO(D2)

0(A) respectively to GL(2). In the next section we

will study the Fourier coefficients of the cusp form θt
ϕ2

(χ) and explicitly identify
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the form θt
ϕ1

(1) as an Eisenstein series for ϕ1 and ϕ2 in S(D1(A)) and S(D2(A))

respectively.

3.3. Theta functions attached to Grossencharacters of K and the Siegel-

Weil formula. We first derive an explicit formula for the Fourier coefficients

of θt
ϕ2

(χ′) for any ϕ2 ∈ S(D2(A)). Let K(1) denote the kernel of the norm

map N : K× → Q×. Recall that we have picked (in Section 2.3.4) a Haar

measure d×x on K×
A such that vol(K×K×

∞ \K×
A ) = 1. The norm map induces

a map N : K×(R×)+ \K×
A → Q×(R×)+ \ Q×

A whose kernel is identified with

K×(1) \K×
A

(1)
. We pick d×1 h to be the unique measure on K×

A

(1)
such that the

quotient measure on K×(1) \K×
A

(1)
satisfies d×x = d×1 hdξ. (Thus the volume

of K×(1) \K×
A

(1)
with respect to this measure is 2.) Let g ∈ G(ηK) and h̃ be

any element of K×
A with N(h̃) = det(g). Then one sees that

θt
ϕ2

(χ′)(g) =

∫

K×(1)\K×

A

(1)

(

∑

x∈K

ωψ(g, hh̃)ϕ2(xJ )

)

χ′(hh̃)d×1 h.

We split this into two terms, one corresponding to x = 0 and one corresponding

to all other x ∈ K. Thus θt
ϕ2

(χ′)(g) = I0 + I, where

I0 =

∫

K×(1)\K×

A

(1)
ωψ(g, hh̃)ϕ2(0)χ′(hh̃)d×1 h,

I =

∫

K×(1)\K×

A

(1)





∑

α̃∈K(1)\K×

∑

γ∈K(1)

ωψ(g, hh̃)ϕ2(α̃γJ )



 χ′(hh̃)d×1 h.

Note that ωψ(g, hh̃)ϕ2(0) = ωψ(1, h)ωψ(g, h̃)ϕ2(0) = ωψ(g, h̃)ϕ2(h
−1 · 0) =

ωψ(g, h̃)ϕ2(0) is independent of h. Then, since χ′|
K×

A

(1) is nontrivial, we must

have I0 = 0. Hence θt
ϕ2

(χ′)(g) is given by the expression

∫

K×(1)\K×

A

(1)





∑

α̃∈K(1)\K×

∑

γ∈K(1)

ωψ(g, hγ−1h̃)ϕ2(α̃γJ )



 χ′(hγ−1h̃)d×1 h

=

∫

K×

A

(1)





∑

α̃∈K(1)\K×

ωψ(g, hh̃)ϕ2(α̃J )



 χ′(hh̃)d×1 h

=
∑

α̃∈K(1)\K×

∫

K×

A

(1)
ωψ

((

N(α̃) 0

0 1

)

, α̃i

)

ωψ(g, hh̃)ϕ2(J )χ′(hh̃)d×1 h

=
∑

ξ∈Q×

ξ∈N(K×)

W

((

ξ 0

0 1

)

g

)
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where

W (g) =

∫

K×

A

(1)
ωψ(g, hh̃)ϕ2(J )χ′(hh̃)d×1 h.

Then for any x ∈ AQ, by (5),

W

((

1 x

0 1

)

g

)

=

∫

K×

A

(1)
ωψ(

(

1 x

0 1

)

g, hh̃)ϕ2(J )χ′(hh̃)d×1 h

= ψ(N(J )x)W

((

1 x

0 1

)

g

)

.

Let Wψ
θϕ2

(g) = W

((

N(J )−1 0

0 1

)

g

)

so that Wψ
θϕ2

((

1 x

0 1

)

g

)

=

ψ(x)Wψ
θϕ2

(g). Then we have the following Fourier expansion for θt
ϕ2

(χ′)(g):

θt
ϕ2

(χ′)(g) =
∑

ξ∈Q×

N(J )−1ξ∈N(K×)

Wψ
θϕ2

((

ξ 0,

0 1

)

g

)

,

Wψ
θϕ2

(g) =

∫

K×

A

(1)
ωψ

((

N(J )−1 0

0 1

)

g, hh̃

)

ϕ2(J )χ′(hh̃)d×1 h,

where h̃ is chosen such that N(h̃) = N(J )−1det(g). Now let U
(1)
q be the

group of norm 1 elements in (OK ⊗ Zq)
× if q is finite and U

(1)
∞ = K×

∞
(1)

. Let

d×h =
∏

q d×hq be the product measure on K×
A

(1)
where d×hq is the measure

on K
(1)
q that gives U

(1)
q volume 1 if q is unramified in K or q =∞ and volume

2 otherwise. It is easy to check that the measures d×1 h and d×h are related by

d×1 h = 1
hK

d×h where hK is the class number of K. Thus, if ϕ2 = ⊗qϕq,2, and

g =
∏

q gq, then

Wψ
θϕ2

(g) =
1

hK

∏

q

W
ψq

θϕ2,q
(gq), where(8)

W
ψq

θϕ2,q
(g) =

∫

K
(1)
q

ωψq

((

N(J )−1 0

0 1

)

g, hqh̃

)

ϕ2(J )χ′
q(hqh̃)d×hq(9)

if N(J )−1det(g)=N(h̃), for some h̃ ∈ K⊗Qq, and is equal to 0 if N(J )−1det(g)

is not a norm from Kq. Note that while the local Whittaker coefficients depend

on the choice of J , the expression in (8) is independent of the choice of J .

On the other hand, by the Siegel-Weil formula (due in this case to Hecke),

the theta lift of the character 1 is an Eisenstein series. More precisely, one has

([14, Thm. 13.3])

Proposition 3.1. Let ϕ1 = ϕ∞1 ⊗ (⊗qϕq,iq,1). Then θt
ϕ1

(1)(g) = the

restriction to G(ηK) of E(0, Φ, g) where E(s,Φ, g) is the Eisenstein series cor-
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responding to the function

Φ = Φϕ1
: B(Q) \GL2(A)→ C,

Φ(g) = ωψ(g, g′)ϕ1(0) if g ∈ G(ηK)

where g′ ∈ K×
A is any element such that N(g′) = ν1(g) = det(g), and

Φ

((

ad b

0 d

)

g

)

= ηK(d)|a|1/2
A Φ(g) for g ∈ GL2(A).

Define Φs(g) = ‖a(g)‖s−1/2Φ(g), where g = n(g)a(g)k(g) in the NAK

decomposition, and ‖
(

a1

a2

)

‖ = |a1/a2|. Using the proposition and un-

folding the Eisenstein series in (7), we find (as in [14, §14.6]; see also [20]) that

Lχ(Ψ′)2 is the value at s = 1/2 of the analytic continuation of

ζ(2) · C · j(α, i)2k
∑

∏

Iq

∫

Z(A)N(A)\GL2(A)
Wψ

F (g)Wψ
θt

ϕ∞,2⊗(⊗qϕq,iq,2)

(ηg)

· Φs
ϕ∞,1⊗(⊗qϕq,iq,1)

(g)d×g

= C · j(α, i)k
∑

∏

Iq

∫

K(A)

∫

A×

Wψ
F

((

a 0

0 1

)

k

)

Wψ
θt

ϕ∞,2⊗(⊗qϕq,iq,2)

·
((

−a 0

0 1

)

k

)

Φs
ϕ∞,1⊗(⊗qϕq,iq,1)

((

a 0

0 1

)

k

)

|a|−1d×a dk

where η =

(

−1 0

0 1

)

, K(A) =
∏

q Kq(A) with K∞ = SO2(R), Kq = the

maximal compact GL2(Zq) for finite q and the measure dk is chosen as follows.

Let dk′
∞ = dθ on SO2(R) and dk′

q be the restriction of the measure dg× to Kq =

GL2(Zq) so that vol(GL2(Zq) with respect to this measure is ζq(2)−1. If T ′ is

the torus consisting of matrices of the form

(

a 0

0 1

)

, then Z(A)N(A)\GL2(A)

is identified above with T ′(A) × K(A). The quotient measure associated to

the Tamagawa measure dg× is easily seen to be identified with the measure

|a|−1d×adk′. Then dk is defined to be the measure on K(A) given by dk∞ =

dk′
∞ and dkq = ζq(2)dk′

q, the product
∏

q ζq(2) = ζ(2) accounting for the loss

of the factor ζ(2) above. It follows that Lχ(Ψ′)2 is the value at s = 1/2 of the

analytic continuation of C
hK
· L∞ ×

∏

q<∞ Lq where
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L∞ = j(α, i)2k

∫

K∞

∫

R×

Wψ∞

F,∞

((

a 0

0 1

)

k

)

Wψ∞

θt
ϕ∞,2

((

−a 0

0 1

)

k

)

· Φs
ϕ∞,1

((

a 0

0 1

)

k

)

|a|−1d×a dk∞,

Lq =

∫

Kq

∫

Q
×
q

W
ψq

F,q

((

a 0

0 1

)

k

)

[

∑

iq∈Iq

W
ψq

θt
ϕq,iq,2

((

−a 0

0 1

)

k

)

· Φs
ϕq,iq,1

((

a 0

0 1

)

k

)

]

|a|−1d×a dkq,

and the local measures dk∞ and dkq are such that vol(SO2(R)) = 2π and

vol(GL2(Zq)) = 1.

3.4. Computation of the local zeta integrals Lq and L∞. We list below

the values of γ and χV at the various local places, for the following choices

of V : V = D, K, KJ . The reader can find these computed in [21, Chap. 1,

§1]. Let −d be the discriminant of the field K and ηK the quadratic character

associated to the extension K/Q. We assume that d is odd to simplify the local

calculations at the prime 2. In the application of interest this can be arranged:

χD γD χK γK χKJ γKJ
q ∤ dN, split in K 1 1 1 1 1 1

q ∤ dN, inert in K 1 1 ηK 1 ηK 1

q | N+ 1 1 1 1 1 1

q | N− 1 −1 ηK 1 ηK −1

q | d 1 1 ηK ζ1 ηK ζ2

q =∞ 1 1 a �→ a/|a| i a �→ a/|a| −i

where we will only need the fact that ζ1ζ2 = 1.

We now make some reductions in the case that q is unramified in K. In

this case O′⊗Zq = OK⊗Qq
+ IJ for some ideal I in OKq

. Thus ϕq = ϕ1⊗ϕ2,

where ϕ1 is the characteristic function of OK ⊗Zq and ϕ2 is the characteristic

function of IJ . Note that Kq is generated by the matrices
(

1 x

1

)

, x ∈ Zq,

(

a

b

)

, a, b ∈ Z×
q and

(

0 1

−1 0

)

.(10)

We first compute the action of these matrices on ϕ1. It is easy to see that

ωψ

((

1 x

1

)

, 1

)

ϕ1 = ψ(xN(·))ϕ1 = ϕ1

ωψ

((

a

b

)

, c

)

ϕ1 = ϕ1(a·) = ϕ1 if N(c) = ab

ωψ

((

0 1

−1 0

)

, 1

)

ϕ1 = ϕ̂1 = ϕ1.
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Hence Φs
ϕ1

((

a 0

0 1

)

k

)

= |a|s−1/2Φϕ1

((

a 0

0 1

)

k

)

= |a|sωψ(k, h̃)ϕ1(0) =

|a|sϕ1(0) = |a|s (here h̃ is any element with N(h̃) = det(k)).

Next we compute the actions of the matrices above on ϕ2.

ωψ

((

1 x

1

)

, 1

)

ϕ2 = ψ(xN(·))ϕ2 = ϕ2,

ωψ

((

a

b

)

, c

)

ϕ2 = ϕ2(a·) = ϕ2 if N(c) = ab,

ωψ

((

0 1

−1 0

)

, 1

)

ϕ2 = ζϕ̂2,

where ζ = 1 unless q|N− in which case ζ = −1. Let r = 0 if q ∤ N and r = 1

if q | N . Since O′ ⊗ Zq = OK⊗Qq
+ IJ , taking discriminants shows that we

have an equality of ideals (q)r = NI · NJ . Now it is easy to compute that

ϕ̂2 = q−r· (char. function of q−rIJ ). Thus if r = 0, W
ψq

θϕ2
is right-invariant

under Kq. If r = 1 we show that W
ψq

θϕ2
is right-invariant under the subgroup

Γ0(q), where

Γ0(q) =

{(

a b

c d

)

∈ Kq, c ≡ 0 mod q

}

.

To check this note first that Γ0(q) is generated by matrices of the form
(

1 x

0 1

)

, x ∈ Zq

(

a

b

)

, a, b ∈ Zq
×

(

1 0

y 1

)

, y ∈ qZq.

So it will suffice to check that ϕ2 is invariant under ωψ

((

1 0

y 1

)

, 1

)

with

y ∈ qZq. Since
(

1 0

y 1

)

=

(

−1 0

0 −1

)(

0 1

−1 0

) (

1 −y

0 1

) (

0 1

−1 0

)

,

ωψ

((

1 0

y 1

)

, 1

)

ϕ2(tJ ) = ζωψ

((

0 1

−1 0

) (

1 −y

0 1

)

, 1

)

ϕ̂2(−tJ ).

But

ωψ

((

1 −y

0 1

)

, 1

)

ϕ̂2(−tJ ) = ψ(
1

2
〈ytJ ,−tJ 〉)ϕ̂2(−tJ )

= ψ(−yN(t)NJ )ϕ̂2(−tJ ) = ϕ̂2(−tJ ),

since

ϕ̂2(−tJ ) �= 0⇒ −tJ ∈ 1

q
IJ ⇒ −yN(t)NJ ∈ (q)(1/q2)NI(NJ )

= Zq ⇒ ψ(−yN(t)NJ ) = 1.
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Hence

ωψ

((

1 0

y 1

)

, 1

)

ϕ2(tJ ) = ζωψ

((

0 1

−1 0

)

, 1

)

ϕ̂2(−tJ )

= ζ2 ˆ̂ϕ2(−tJ ) = ϕ2(tJ )

which proves our claim that W
ψq

θϕ2
is right invariant by Γ0(q). We now write

down a coset decomposition for GL2(Zq)/Γ0(q):

Kq = GL2(Zq) = Γ0(q) ⊔
q−1
⊔

z=0

(

z 1

−1 0

)

Γ0(q).

Thus, in any case,

Lq =

∫

Q
×
q

∫

Kq

W
ψq

F,q

((

a 0

0 1

)

k

)

W
ψq

θϕ2

((

−a 0

0 1

)

k

)

|a|s−1dkd×a

=
1

q + 1
[I1 + I2], where

I1 =

∫

Q
×
q

W
ψq

F,q

(

a 0

0 1

)

W
ψq

θϕ2

(

−a 0

0 1

)

|a|s−1d×a

I2 =

q−1
∑

z=0

∫

Q
×
q

W
ψq

F,q

((

a 0

0 1

) (

z 1

−1 0

))

· Wψq

θϕ2

((

−a 0

0 1

)(

z 1

−1 0

))

|a|s−1d×a

= q

∫

Q
×
q

W
ψq

F,q

(

0 a

−1 0

)

W
ψq

θϕ2

(

0 −a

−1 0

)

|a|s−1d×a

since

(

±a 0

0 1

) (

z 1

−1 0

)

=

(

1 ∓az

0 1

) (

0 ±a

−1 0

)

. Suppose h̃ ∈

(K ⊗Qq)
× is such that N(h̃) = −(NJ )−1a. Since

ωψ

((

−(NJ )−1a 0

0 1

)

, hh̃

)

ϕ2(J ) = |(NJ )−1a|1/2ϕ2(−(NJ )−1a(hh̃)−1J )

we see by (9) that

W
ψq

θϕ2

(

−a 0

0 1

)

= |(NJ )−1a|1/2

∫

(K⊗Qq)(1)
ϕ2(−(NJ )−1a(hh̃)−1J )(11)

· χ′(hh̃)d×h,



INTEGRALITY OF A RATIO OF PETERSSON NORMS 931

if ηq(−(NJ )−1a) = 1 and is equal to 0 otherwise. Likewise, since

(

0 −a

−1 0

)

=
(

−a 0

0 1

) (

0 1

−1 0

)

,

(12)

W
ψq

θϕ2

(

0 −a

−1 0

)

= ζ|(NJ )−1a|1/2

∫

(K⊗Qq)(1)
ϕ̂2(−(NJ )−1a(hh̃)−1J )

· χ′(hh̃)d×h

if ηq(−(NJ )−1a) = 1 and is equal to 0 otherwise. As for W
ψq

F,q

(

a 0

0 1

)

and

W
ψq

F,q

(

a 0

0 1

)

, the reader is referred to [43, §2.5] where the following formulae

have been worked out. For q ∤ N , πq(f) ≃ π(µ1, µ2),

W
ψq

F,q

(

a 0

0 1

)

= |a|1/2 µ1(aq)− µ2(aq)

µ1(q)− µ2(q)
IZq

(a).(13)

For q | N , πq(f) ≃ σ(| · | 12+itq , | · |− 1

2
+itq) (with tq satisfying q2itq = 1),

W
ψq

F,q

(

a 0

0 1

)

= |a|itq |a|IZq
(a),(14)

W
ψq

F,q

(

0 a

−1 0

)

=−|a|itq |aq|IZq
(qa).(15)

For q =∞,

Wψ∞

F,∞

(

a 0

0 1

)

= ak/2e−2πaIR+(a)e−ikθ.(16)

We now evaluate the local integrals Lq. We will often drop the subscript

q in the following sections (e.g. we write χ instead of χq etc.) Also we will use

formulas (11) and (12) repeatedly without comment.

3.4.1. q ∤ dN , q split in K. Identifying OK ⊗ Zq with Zq × Zq suppose

that I = (q−n1 , q−n2). Then (NJ ) = (qn1+n2). We have seen that in this

case W
ψq

θϕ2
is right invariant by Kq. Identifying (K ⊗Qq)

× with Q×
q ×Q×

q , let

h = (t, t−1) and h̃ = (1,−(NJ )−1a). Then ϕ2(−(NJ )−1a(hh̃)−1J ) �= 0 ⇐⇒
(NJ )−1a(hh̃)−1 ∈ I ⇐⇒ −n2 ≤ vq(t) ≤ −n2 + vq(a). The character χ′

restricted to (K ⊗ Qq)
× = Q×

q × Q×
q is of the form (λ, λ−1) since χ′|Q×

q = 1.
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Then W
ψq

θϕ2

(

−a 0

0 1

)

equals

IZq
(a)|(NJ )−1a|1/2

∫

−n2≤vq(t)≤−n2+vq(a)
χ′(t,−(NJ )−1at−1)d×t

= IZq
(a)|(NJ )−1a|1/2λ−1(−(NJ )−1a)

∑

−n2≤n≤−n2+vq(a)

λ(q)2n

= IZq
(a)|(NJ )−1a|1/2λ(q)n1−n2

λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
.

Now, W
ψq

F,q is also right invariant under Kq. If πq(f) ≃ π(µ1, µ2), by (13),

Lq =

∫

Q
×
q

|a|1/2 µ1(aq)− µ2(aq)

µ1(q)− µ2(q)

· |(NJ )−1a|1/2λ(q)n1−n2
λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
IZq

(a)|a|s−1d×a

= |(NJ )−1|1/2λ(q)n1−n2Lq(2s, ηK)−1Lq(s, πf ⊗ πχ′)

where πχ′ denotes the automorphic representation of GL(2)) associated to χ′

by Langlands functoriality (so that LQ(s, πχ′) = LK(s, χ′)). The last equality

above follows from a standard calculation. (See [20] for instance.)

3.4.2. q ∤ dN , q inert in K. Let q denote the unique prime ideal in

OK ⊗ Zq and suppose that I = q−n, so that (NJ ) = (q2n). Note that

W
ψq

θϕ2

(

−a 0

0 1

)

= 0 unless −N(J )−1a is a norm from K⊗Qq. Since (NJ ) =

(q2n) and q is unramified in K, this happens exactly when vq(a) is even. Now

ϕ2(−(NJ )−1a(hh̃)−1J ) �= 0 ⇐⇒ (NJ )−1a(hh̃)−1 ∈ I ⇐⇒ vq(a) ≥ 0.

Since χ′ is unramified and the norm 1 elements in K ⊗ Qq are all units, χ′

factors as χ′ = χ̃ ◦N(K⊗Qq)×/Q
×
q

for some character χ̃ of Q×
q . Hence

W
ψq

θϕ2

(

−a 0

0 1

)

=

∫

(K⊗Qq)(1)
|(NJ )−1a|1/2χ′(hh̃)d×h · I{vq(·)≥0,≡0 mod 2}(a)

= |(NJ )−1a|1/2χ̃(−(NJ )−1a) · I{vq(·)≥0,≡0 mod 2}(a)

= |(NJ )−1a|1/2 (χ̃ηK)(aq)− χ̃(aq)

(χ̃ηK)(q)− χ̃(q)
IZq

(a)

since χ′ unramified implies χ̃(−NJ ) = 1. Again, W
ψq

F,q is right invariant under

Kq. If πq(f) ≃ π(µ1, µ2), by (13),

Lq =

∫

Q
×
q

|a|1/2 µ1(aq)− µ2(aq)

µ1(q)− µ2(q)

· |(NJ )−1a|1/2 (χ̃ηK)(aq)− χ̃(aq)

(χ̃ηK)(q)− χ̃(q)
IZq

(a)|a|s−1d×a

= |(NJ )−1|1/2Lq(2s, ηK)−1Lq(s, πf ⊗ πχ′).
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3.4.3. q | N+. Writing O′⊗Zq = OK⊗Zq + IJ and taking discriminants,

we see that (q) = (NI)(NJ ). Identifying OK ⊗ Zq with Zq × Zq, let I =

(q−n1 , q−n2), so that (NJ ) = qn1+n2+1. Also we may suppose that the local

representation πf,q is equivalent to the special representation

σ(| · | 12+itq , | · |− 1

2
+itq)

(with some tq satisfying q2itq = 1).

We begin by computing I1. Identifying (K ⊗ Qq)
× with Q×

q × Q×
q , let

h = (t, t−1) and h̃ = (1,−(NJ )−1a). Then

ϕ2(−(NJ )−1a(hh̃)−1J ) �= 0⇐⇒ (NJ )−1a(hh̃)−1 ∈ I

⇐⇒ −n2 ≤ vq(t) ≤ −n2 − 1 + vq(a)⇒ vq(a) ≥ 1.

The character χ′ restricted to (K ⊗ Qq)
× = Q×

q × Q×
q is of the form (λ, λ−1)

since χ′|Q×
q = 1. Hence W

ψq

θϕ2

(

−a 0

0 1

)

is equal to

IZq
(a/q)|(NJ )−1a|1/2

∫

−n2≤vq(t)≤−n2−1+vq(a)
χ′(t,−(NJ )−1at−1)d×t

= IZq
(a/q)|(NJ )−1a|1/2λ−1(−(NJ )−1a)

∑

−n2≤n≤−n2−1+vq(a)

λ(q)2n

= IZq
(a/q)|(NJ )−1a|1/2λ(q)n1−n2

λ(a)− λ−1(a)

λ(q)− λ−1(q)
.

By (14), I1 equals

∫

Q
×
q

|a|itq |a|IZq
(a)|(NJ )−1a|1/2λ(q)n1−n2

λ(a)− λ−1(a)

λ(q)− λ−1(q)
IZq

(a/q)|a|s−1d×a

=

∫

Q
×
q

|aq|itq |aq||(NJ )−1aq|1/2λ(q)n1−n2
λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
IZq

(a)|aq|s−1d×a

= |q| 12+itq+s|(NJ )−1|1/2λ(q)n1−n2

∫

Q
×
q

|a| 12+itq+s λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
IZq

(a)d×a

=
q−

1

2
−itqq−s|(NJ )−1|1/2λ(q)n1−n2

(1− (1
q )

1

2
+itqλ(q)q−s)(1− (1

q )
1

2
+itqλ−1(q)q−s)

.

We now compute I2 noting that

ϕ̂2(−(NJ )−1a(hh̃)−1J ) �= 0 ⇐⇒ (NJ )−1a(hh̃)−1 ∈ 1

q
I

⇐⇒ −n2 − 1 ≤ vq(t) ≤ −n2 + vq(a)⇒ vq(a) ≥ −1.
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Since ϕ̂2 takes the value 1
q whenever it is nonzero, W

ψq

θϕ2

(

0 −a

−1 0

)

is equal

to

1

q
IZq

(aq)|(NJ )−1a|1/2

∫

−n2−1≤vq(t)≤−n2+vq(a)
χ′(t,−(NJ )−1at−1)d×t

=
1

q
IZq

(aq)|(NJ )−1a|1/2λ−1(−(NJ )−1a)
∑

−n2−1≤n≤−n2+vq(a)

λ(q)2n

=
1

q
IZq

(aq)|(NJ )−1a|1/2λ(q)n1−n2
λ(aq2)− λ−1(aq2)

λ(q)− λ−1(q)
.

By (15), I2 equals

q

∫

Q
×
q

−|a|itq |aq|IZq
(aq)

1

q
|(NJ )−1a|1/2

· λ(q)n1−n2
λ(aq2)− λ−1(aq2)

λ(q)− λ−1(q)
IZq

(aq)|a|s−1d×a

=

∫

Q
×
q

−|a/q|itq |a|IZq
(a)|(NJ )−1a/q|1/2

· λ(q)n1−n2
λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
IZq

(a)|a/q|s−1d×a

=−|q| 12−itq−s|(NJ )−1|1/2λ(q)n1−n2

∫

Q
×
q

|a| 12+itq+s λ(aq)− λ−1(aq)

λ(q)− λ−1(q)
IZq

(a)d×a

=
−q−

1

2
+itqqs|(NJ )−1|1/2λ(q)n1−n2

(1− (1
q )

1

2
+itqλ(q)q−s)(1− (1

q )
1

2
+itqλ−1(q)q−s)

.

Finally, since Lq = 1
q+1 [I1 + I2] and qitq = q−itq , we get

Lq =
1

q + 1
|(NJ )−1|1/2λ(q)n1−n2

−q−
1

2
+itqqs(1− q−2s)

(1− (1
q )

1

2
+itqλ(q)q−s)(1− (1

q )
1

2
+itqλ−1(q)q−s)

=− 1

q + 1
|(NJ )−1|1/2λ(q)n1−n2q−

1

2
+itq+sLq(2s, ηK)−1Lq(s, πf ⊗ πχ′).

3.4.4. q | N−. Again, O′⊗Zq = OK ⊗Zq + IJ for I an ideal in OK ⊗Zq.

Let q denote the unique prime ideal of OK ⊗ Zq, and suppose that I = q−n.

Taking discriminants yields (q) = NI(NJ ) so that (NJ ) = q2n+1.

We begin by computing I1. We may suppose that the local representation

πf,q is equivalent to the special representation σ(| · | 12+itq , | · |− 1

2
+itq) (with some

tq satisfying q2itq = 1). Recall that W
ψq

θϕ2

(

−a 0

0 1

)

= 0 unless −N(J )−1a is

a norm from K ⊗ Qq. Since (NJ ) = (q2n+1) and q is unramified in K, this

happens exactly when vq(a) is odd. Now ϕ2(−(NJ )−1a(hh̃)−1J ) �= 0 ⇐⇒
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(NJ )−1a(hh̃)−1 ∈ I ⇐⇒ vq(a) ≥ 1. Since χ′ is unramified and the norm−1

elements in K ⊗Qq are all units, χ′ factors as χ′ = χ̃ ◦N(K⊗Qq)×/Q
×
q

for some

character χ̃ of Q×
q . Hence

W
ψq

θϕ2

(

−a 0

0 1

)

=

∫

(K⊗Qq)(1)
|(NJ )−1a|1/2χ′(hh̃)d×h · I{vq(·)≥1,≡1mod 2}(a)

= |(NJ )−1a|1/2χ̃(−(NJ )−1a) · I{vq(·)≥1,≡1 mod 2}(a)

= |(NJ )−1a|1/2 · I{vq(·)≥1,≡1 mod 2}(a)

since vq(−N(J )−1a) ≡ 0 mod 2⇒ χ̃(−(NJ )−1a) = 1. Thus

I1 =

∫

Q
×
q

|a|itq |a|IZq
(a)|(NJ )−1a|1/2 · I{vq(·)≥1,≡1 mod 2}(a)|a|s−1d×a

=

∫

Q
×
q

|aq|itq |aq|IZq
(aq)|(NJ )−1aq|1/2 · I{vq(·)≥1,≡1 mod 2}(aq)|aq|s−1d×a

= |q| 12+itq+s|(NJ )−1|1/2

∫

Q
×
q

I{vq(·)≥0,≡0 mod 2}(a)|a| 12+itq+sd×a

= |q| 12+itq+s|(NJ )−1|1/2
∞

∑

n=0

((
1

q
)

1

2
+itq+s)2n

= |q| 12+itq+s|(NJ )−1|1/2 1

(1− (1
q )

1

2
+itqq−s)(1 + (1

q )
1

2
+itqq−s)

.

Next we compute I2. Now ϕ̂2(−(NJ )−1a(hh̃)−1J ) �= 0 ⇐⇒ (NJ )−1a(hh̃)−1

∈ q−1I ⇐⇒ vq((NJ )−1a(hh̃)−1) ≥ −n− 1 ⇐⇒ vq(a) ≥ −1. Since ϕ̂2 takes

the value 1
q whenever it is nonzero, W

ψq

θϕ2

(

0 −a

−1 0

)

equals

− 1

q

∫

(K⊗Qq)(1)
|N(J )−1a|1/2I{vq(·)≥−1,≡1 mod 2}(a)χ′(hh̃)d×h

= −1

q
|N(J )−1a|1/2I{vq(·)≥−1,≡1 mod 2}(a)

since vq(−N(J )−1a) ≡ 0 mod 2⇒ χ̃(−(NJ )−1a) = 1. Thus, I2 is equal to

q

∫

Q
×
q

(

−|a|itq |aq|IZq
(qa)

)

(

−1

q
|N(J )−1a|1/2I{vq(·)≥−1,≡1 mod 2}(a)

)

|a|s−1d×a

=

∫

Q
×
q

(

|a
q
|itq |a|IZq

(a)

) (

|N(J )−1 a

q
|1/2I{vq(·)≥−1,≡1 mod 2}(

a

q
)

)

|a
q
|s−1d×a

= |q| 12−itq−s|N(J )−1|1/2

∫

Q
×
q

|a| 12+itq+sI{vq(·)≥0,≡0 mod 2}(a)d×a

= |q| 12−itq−s|(NJ )−1|1/2 1

(1− (1
q )

1

2
+itqq−s)(1 + (1

q )
1

2
+itqq−s)

.
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Finally, since Lq = 1
q+1 [I1 + I2], we get

Lq =
1

q + 1
|(NJ )−1|1/2 |q| 12+itq+s + |q| 12−itq−s

(1− (1
q )

1

2
+itqq−s)(1 + (1

q )
1

2
+itqq−s)

=
1

q + 1
|(NJ )−1|1/2 qitq+s− 1

2 (1 + q−2s)

(1− (1
q )

1

2
+itqq−s)(1 + (1

q )
1

2
+itqq−s)

=
1

q + 1
|(NJ )−1|1/2q−

1

2
+itq+sLq(2s, ηK)−1Lq(s, πf ⊗ πχ′).

3.4.5. q ramified in K, i.e. q | d. In this case D ⊗Qq ≃ M2(Qq). Since d

is odd, vq(d) = 1. Suppose that K ′ := K ⊗Qq = Qq(
√

ǫq) where ǫ is a unit in

Zq. Then the embedding φ of K ⊗Qq in D ⊗Qq given by

√
ǫq �→

(

0 1

ǫq 0

)

sends OK ⊗ Zq to M2(Zq). If j : K →֒ D is the embedding corresponding

to the Heegner point chosen, then j and φ are conjugate by an element β of

GL2(Qq). We claim that they are in fact conjugate by an element of GL2(Zq).

To prove this, note first that we can assume that det(β) has even valuation

by replacing β by

(

0 1

ǫq 0

)

β if necessary and then that vq(det(β)) = 0 by

dividing β by a suitable power of q. Let β =

(

a b

c d

)

. Then

β−1

(

0 1

ǫq 0

)

β = (unit)

(

−abǫq + cd −b2ǫq + d2

a2ǫq − c2 abǫq − cd

)

∈M2(Zq).

Since −b2ǫq + d2 ∈ Zq, both b and d must lie in Zq, and likewise for a and c,

which shows that β ∈ GL2(Zq) as required.

Note now that we have two different decompositions of D ⊗ Qq : D ⊗

Qq = j(K ′) + j(K ′)J and D ⊗ Qq = φ(K ′) + φ(K ′)

(

1 0

0 −1

)

, that are

conjugate by β. Let βJ β−1 = φ(y0)

(

1 0

0 −1

)

for some y0 ∈ K. Then

N(J ) = −N(y0). Now, if π denotes the uniformiser
√

ǫq,

M2(Zq) =

q−1
∑

i=0

φ

(

OK′ +
i

π

)

× φ

(

OK′ +
i

π

)(

1 0

0 −1

)

.



INTEGRALITY OF A RATIO OF PETERSSON NORMS 937

Since β ∈ GL2(Zq), M2(Zq) = β−1M2(Zq)β

=

q−1
∑

i=0

(β−1φβ)

(

OK′ +
i

π

)

×
(

β−1φβ
)

(

OK′ +
i

π

)

· β−1

(

1 0

0 −1

)

β

=

q−1
∑

i=0

j

(

OK′ +
i

π

)

× j

(

OK′ +
i

π

)

j(y−1
0 )J .

Thus ϕq =
∑q−1

i=0 ϕ1,i ⊗ ϕ2,i, where ϕ1,i = the characteristic function of

OK′ + i
π and ϕ2,i the characteristic function of (OK′ + i

π )(y−1
0 J ). While the

individual terms W
ψq

θt
ϕ2,i

· Φs
ϕ1,i

are not invariant under Kq we see that the sum
∑

i W
ψq

θt
ϕ2,i

· Φs
ϕ1,i

is in fact invariant under K
(η)
q = {g ∈ Kq, ηK(det(g)) = 1}. It

suffices to check that
∑

i ϕ1,i⊗ϕ2,i is invariant under the action of the matrices
(

1 x

0 1

)

,

(

0 1

−1 0

)

and

(

a 0

0 b

)

∈ K
(η)
q . First,

ωψ(

(

1 x

0 1

)

, 1)(ϕ1,i ⊗ ϕ2,i)(t1, t2y
−1
0 J )

= ψ(xN(t1))ψ(xN(t2)N(y−1
0 J ))(ϕ1,i ⊗ ϕ2,i)(t1, t2y0J ).

If ϕ1,i ⊗ ϕ2,i(t1, t2y0J ) �= 0, then t1, t2 ∈ OK′ + i
π , hence N(t1)−N(t2) ∈ OK′

and ψ(xN(t1))ψ(xN(t2)N(y−1
0 J )) = ψ(x(N(t1) − N(t2))) = 1 which shows

that ωψ

((

1 x

0 1

)

, 1

)

(ϕ1,i ⊗ ϕ2,i) = ϕ1,i ⊗ ϕ2,i. Next, since ηK(a)2 = 1,

ωψ

((

a 0

0 b

)

, c

)

(ϕ1,i ⊗ ϕ2,i)(·, ·) = (ϕ1,i ⊗ ϕ2,i)(ac−1·, ac−1·)

= ϕ1,j ⊗ ϕ2,j

where ac−1i ≡ j mod π. Hence ωψ

((

a 0

0 b

)

, c

)

(
∑

i ϕ1,i ⊗ ϕ2,i) =
∑

i ϕ1,i ⊗ ϕ2,i.

Finally, since ζ1ζ2 = 1,

ωψ

((

0 1

−1 0

)

, 1

)

(ϕ1,i ⊗ ϕ2,i) = ϕ̂1,i ⊗ ϕ̂2,i.

We now compute ϕ̂1,i and ϕ̂2,i.

ϕ̂1,i(y) =

∫

D1⊗Qq

ϕ1,i(s)ψ(〈s, y〉)ds =

∫

OK⊗Qq + i

π

ψ(〈s, y〉)ds

= ψ(〈 i
π

, y〉)
∫

OK⊗Qq

ψ(〈s, y〉)ds = ψ(〈 i
π

, y〉)
∫

OK⊗Qq

ψ(Tr(syi))ds.

This integral is nonzero ⇐⇒ ψ(Tr(syi)) = 1 for all s ⇐⇒ Tr(syi) ∈
Zq for all s ⇐⇒ yi ∈ π−1 ⇐⇒ y ∈ π−1, in which case the integral is
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equal to 1√
q . Thus ϕ̂1,i = 1√

qψ(〈 i
π , y〉)char. function of π−1. Likewise, ϕ̂2,i =

1√
qψ(−〈 i

π , ·〉)char. function of π−1y−1
0 J . Then

∑

i(ϕ̂1,i ⊗ ϕ̂2,i)(t1, t2y
−1
0 J ) = 0

unless t1, t2 ∈ π−1, in which case it is equal to 1
q

∑

i ψ(〈 i
π , (t1 − t2)〉). Suppose

t1 − t2 = α + j
π with α ∈ OK′ . Then

1

q

∑

i

ψ

(〈

i

π
, (t1 − t2)

〉)

=
1

q

∑

i

ψ

(−2ij

ǫq

)

. = δ0j .

Thus
∑

i(ϕ̂1,i ⊗ ϕ̂2,i)(t1, t2y
−1
0 J ) is zero unless t1, t2 ∈ π−1 and t1 − t2 ∈ OK′

in which case it is equal to 1. Clearly then,
∑

i(ϕ̂1,i ⊗ ϕ̂2,i) =
∑

i ϕ1,i ⊗ ϕ2,i as

required. This proves our claim that
∑

i W
ψq

θt
ϕ2,i

· Φs
ϕ1,i

is invariant under K
(η)
q .

Thus

Lq =

∫

Q
×
q

W
ψq

F,q

(

a 0

0 1

)

{

∑

i

W
ψq

θt
ϕ2,i

(

−a 0

0 1

)

Φs
ϕ1,i

(

a 0

0 1

)

}

|a|−1d×a.

But Φs
ϕ1,i

(

a 0

0 1

)

= |a|sδ0i. Hence

Lq =

∫

Q
×
q

W
ψq

F,q

(

a 0

0 1

)

W
ψq

θt
ϕ2,0

(

−a 0

0 1

)

|a|s−1d×a where

Wθϕ2,0

((

−a 0

0 1

))

= |(NJ )−1a|1/2

∫

(K⊗Qq)(1)
ϕ2,0(−(NJ )−1a(hh̃)−1J )

·χ′(hh̃)d×h

for any h̃ ∈ K ⊗ Qq with N(h̃) = −aN(J )−1 if ηK(−aN(J )−1) = 1 and

is equal to zero if ηK(−aN(J )−1) = −1. Suppose the former holds. Since

ηK(−N(J )−1) = 1, in this case ηK(a) = 1. Now, ϕ2,0(−(NJ )−1a(hh̃)−1J ) �=
0 ⇐⇒ vq(−(NJ )−1a(hh̃)−1y0) ≥ 0 ⇐⇒ vq(a) ≥ 0, in which case it is

equal to 1. Since χ′ is unramified, χ′ = χ̃ ◦ N for some character χ̃, and

χ′(hh̃) = χ′(h̃) = χ̃(N(h̃)) = χ̃(−aN(J )−1). Now χ̃ is a priori defined only on

the subgroup N(K×) of Q×
q . But it extends, in exactly two ways to a character

of Q×
q . Denote the one which is trivial on the units of Zq by χ̃. Then the other

extension is χ̃ηK and in any case,

Wθϕ2,0

((

−a 0

0 1

))

= (1 + ηK(a))|N(J )−1a|1/2χ̃(−aN(J )−1)IZq
(a)
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since the volume of (K ⊗ Qq)
(1) with respect to the measure d×h is 2. If

πf,q ≃ π(µ1, µ2), then

Lq = |N(J )−1|1/2χ̃(−N(J )−1)

·
∫

Q
×
q

WF,q

(

a 0

0 1

)

|a|1/2(χ̃(a) + (ηK χ̃)(a))|a|s−1IZq
(a)d×a

= |N(J )−1|1/2χ̃(−N(J )−1)

∫

Q
×
q

WF,q

(

a 0

0 1

)

|a|1/2χ̃(a)|a|s−1IZq
(a)d×a

= |N(J )−1|1/2χ̃(−N(J )−1)

∫

Q
×
q

µ1(aq)− µ2(aq)

µ1(q)− µ2(q)
χ̃(a)|a|sIZq

(a)d×a

= |N(J )−1|1/2χ̃(−N(J )−1)
1

(1− µ1(q)χ(π)q−s)(1− µ2(q)χ(π)q−s)

= |N(J )−1|1/2χ̃(−N(J )−1)Lq(2s, ηK)−1Lq(s, πf ⊗ πχ′).

3.4.6. q = ∞. In this case it is easy to check that ωψ(κθ)ϕ1 = −e−ıθϕ1

and ωψ(κθ)ϕ2 = −eı(k+1)θϕ2. Since Wψ∞

F,∞(gκθ) = eıkθWψ∞

F,∞(g) we have

L∞ = (2π)j(α, ı)2k

∫

R×

Wψ
F,∞

(

a 0

0 1

)

Wψ∞

θt
ϕ∞,2

(

−a 0

0 1

)

|a|s−1d×a, with

Wψ∞

θt
ϕ∞,2

(

−a 0

0 1

)

= |(NJ )−1a|1/2

∫

(K⊗R)(1)
ϕ∞,2(−(NJ )−1a(hh̃)−1J )

·χ′
∞(hh̃)d×h,

h̃ being chosen such that N(h̃) = −(NJ )−1a. Such an h̃ exists only if a ≥ 0

in which case we may choose h̃ =
√

−N(J )−1a. Suppose h′ = h1 + ıh2 where

α−1j(h)α =

(

h1 −h2

h2 h1

)

, and y = y1 + ıy2 where α−1Jα =

(

y1 y2

y2 −y1

)

.

Then

ϕ∞,2(−(NJ )−1a(hh̃)−1J ) = ϕ∞,2(h̄
¯̃
hJ ) = [Y (α−1j(h̄)

¯̃
hJα)]ke−2π|N(J )|N(h̄

¯̃
h)

= yk(h̄′ ¯̃h)ke−2πa.

Since χ′
∞(hh̃) = (h′h̃)k/2 · (h̄′ ¯̃h)−k/2 = h′k,

Wψ∞

θt
ϕ∞,2

(

−a 0

0 1

)

= IR+(a)|(NJ )−1a|1/2yk(−(NJ )−1a)k/2e−2πa

∫

d×h

= yk(−(NJ )−1)
k+1

2 a
k+1

2 e−2πaIR+(a).
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Thus

L∞ = (2π)j(α, ı)2kyk(−(NJ )−1)
k+1

2

∫ ∞

0
a

k

2 e−2πaa
k+1

2 e−2πaas−1d×a

= (2π)J(α, ı)2kyk(−(NJ )−1)
k+1

2
1

(4π)k+s− 1

2

Γ

(

k + s− 1

2

)

=

(

J(J , z)

ℑ(z)

)k

(−(NJ )−1)
k+1

2
2π

(4π)k+s− 1

2

Γ

(

k + s− 1

2

)

.

The last equality follows from the computation: −ȳ = J(α−1Jα, ı) =

J(α−1, z̄)J(J , z)J(α, ı) = ℑ(z)J(J , z)J(α, ı)2 since J(α−1, z̄) = J(α−1, αı̄) =

J(α, ı̄)−1 = J(α, ı)ℑ(z). Thus yJ(α, ı)2 = −ℑ(z)J(J , z) · J(α, ı)
2
J(α, ı)2 =

−ℑ(z)−1J(J , z), as required. Finally, noting that J(J , z)J(J , z) = −N(J )

(since −ℑ(z) = ℑ(z) = ℑ(J z) = N(J )|J(J , z)|−2ℑ(z)) we get

(ℑ(z)J(J , z))kL∞ = (−NJ )k/2(−NJ )−1/2 2π

(4π)k+s− 1

2

Γ

(

k + s− 1

2

)

.

3.4.7. The final formula for Lχ(Ψ′)2. Putting together the results at all

primes, and evaluating at s = 1
2 , we have:

Theorem 3.2. Assume that K has odd discriminant. Then, up to a

p-adic unit,

(4ℑ(z)J(J , z))kLχ(Ψ′)2 =
2 · Γ(k)

πk · hK

∏

q|N−

q − 1

q + 1
· L(1, ηK)−1L

(

1

2
, πf ⊗ πχ′

)

.

Let g′ be the classical modular form on H/Γ that corresponds to Ψ′. Then

〈g′, g′〉 = vol(H/Γ)〈Ψ′, Ψ′〉 = vol(H/Γ)〈F, F 〉 = vol(H/Γ)
vol(H/Γ0(N))〈f, f〉. Letting g′′ =

( vol(H/Γ)
vol(H/Γ0(N))

−1/2g′, and Ψ′′ be the adelic modular form corresponding to g′′,

we see then that 〈g′′, g′′〉 = 〈f, f〉.
It is shown in [14] that the form g′′ × g′′ on D× × D× is Kf -rational.

Hence g′′ = δg where δ2 ∈ Kf . We will be interested in the λ-adic valuation

of δ, or what is the same thing, the λ-adic valuation of g′′. It follows from

Proposition 2.9 that the λ-adic integrality properties of g′′ are controlled by

the λ-adic valuation of

(2ℑ(z)J(J , z))k (2π)2kLχ(Ψ′′)2

Ω2k
∼ πk−1 · L

(

1
2 , πf ⊗ πχ′

)

h2
K · Ω2k

(17)

where ∼ denotes equality up to a λ-adic unit. Here we have used that p > k,

p ∤ M and L(1, ηK) = 2πhK/w
√

d. The reader will note that in this section we

have not placed any restriction on K except that p be unramified in K. In the

next section we will study the λ-adic integrality of (17) under the assumption
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that p is split in K. While in this chapter we have normalized our L-functions

so that the center of the critical strip is 1/2, in the next chapter we use the

classical normalization which is more standard in the algebraic theory.

4. Integrality of the Rankin-Selberg L-value

For the convenience of the reader we recall briefly our notation. f is

a newform of even weight k for Γ0(N). Also, N is square-free and N =

N+N−, where N− has an even number of prime factors and K is an imaginary

quadratic field of discriminant −d, chosen such that K is split at the primes

dividing N+ and inert at the primes dividing N−. Further, χ is an unramified

Grossencharacter of K of infinity type (k, 0) (see §2.3.2). Denote by θ = θ(χ)

the modular form
∑

a χ(a)e2πiNaz, the sum being taken over integral ideals of

K where we think of χ in the usual way as a character on ideals of K. Then θ

is a newform of weight k + 1 and character ηK (ηK = the quadratic character

associated to the extension K/Q) on Γ1(d) and its L-function coincides with

the L-function of χ over K. The L-value of concern to us in this chapter is the

central (critical) value L(k, f ⊗ θ) of the Rankin-Selberg product of f and θ.

(In the previous chapter, this same L-value was denoted L(1
2 , πf ⊗ πχ′).)

Let p be a prime number unramified in K. Recall from Section 2.3.3 that

associated to the field K and the prime p is a canonical CM period Ω = Ωp ∈ C

that is well defined up to multiplication by a p-adic unit. It follows from work

of Shimura ([31]) that πk−1L(k, f ⊗ θ)/Ω2k is an algebraic number.

Theorem 4.1.Suppose p>k+1 and p ∤M where M =
∏

q|N q(q+1)(q−1).

Then πk−1L(k, f ⊗ θ)/Ω2k is a λ-adic integer.

Theorem 4.1 is proved in this chapter under the assumption that p is

split in K and p ∤ hK where hK is the class number of K. A consequence

of this special case of the theorem and the results from the previous chapters

is a certain result (Theorem 5.2) about the integrality properties of the theta

correspondence from the modular curve X0(N) to the Shimura curve corre-

sponding to an Eichler order of level N+ in the indefinite quaternion algebra

of discriminant N−. It is interesting that one can now argue in the reverse

direction and deduce Theorem 4.1 even when p | hK or p is inert in K. This

is explained in Section 5.1.

Note. In this chapter we use the normalized Petersson inner product

〈f1, f2〉 = 1
vol (Γ1(dN)\H)

∫

Γ1(dN)\H
f1f2.

4.1. Idea of the proof (when p is split in K and p ∤ hK). Suppose that θ =
∑

anqn and f =
∑

bnqn are the q-expansions of θ and f , and let D(s, f, θ) =
∑ anbn

ns . It is easy to see that

D(s, f, θ) = L(s, f ⊗ θ)LN (2s + 1− 2k, ηK)−1(18)
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where L(s, f⊗θ) is the Rankin-Selberg product and LN denotes the L-function

with the Euler factors at N removed. Consider the Eisenstein series

E1,Nd(z, s, ηK) =
∑

(m,n)

ηK(n)(mNdz + n)−1|mNdz + n|−2s

where the sum is over all (m, n) ∈ Z2, �= (0, 0) and we think of ηK as a character

mod Nd. The series above converges for ℜ(s) ≫ 0, and it is well known that

it admits an analytic continuation to the whole complex plane. Let E =

E1,Nd(z, 0, ηK). By [31, Thm. 2],

D(k, f, θ) = D(k, f, θρ) =
c

2
πk+1〈fE, θ〉LNd(1, ηK)−1

where c = 4kNd
3(k−1)!

∏

q|dN (1 + 1
q ). (Recall that in the notation of [31], θρ =

∑

anqn. However χ is unramified; hence θρ = θ.) Thus

πk−1L(k, f ⊗ θ) =
c

2
π2k+1

〈

f · 1
π

E, θ

〉

.(19)

It is known (due to Hecke) that 1
πE has Fourier coefficients that are algebraic

and p-integral (see [31, (3.3) and (3.4)]). We see then that to prove Theorem 4.1

it suffices to show that
∏

q|d(q + 1)π2k+1〈g, θ〉/Ω2k is p-integral for all integral

modular forms g ∈ S = Sk+1(Nd, ηK).

We now explain informally how this is done, the details being in the next

two sections. One notes that 〈g, θ〉/Ωk = α〈θ, θ〉/Ωk = αL(χχρ, k + 1)/Ω′′

where α is the coefficient of θ when g is written as a linear combination of

orthogonal eigenforms and Ω′′ is a suitable period. The required integrality

will follow if one can bound the denominator of α in terms of the L-value

L(χχρ, k + 1)/Ω′′.
Let χρ be the Hecke character χ◦ρ where ρ is the nontrivial automorphism

of K/Q, and denote by χλ, χρ
λ the λ-adic characters of Gal(K/K) associated

to χ, χρ respectively. Also let K0 be an abelian extension of K of degree over

K prime to p and K∞ the unique Z2
p extension of K0 abelian over K, the field

K0 being chosen so that χλ factors via Gal(K∞/K). First, one constructs L′,
an abelian p-extension of K∞ with controlled ramification, such that the ac-

tion of Γ = Gal(K∞/K0) on Gal(L′/K∞) by conjugation is via the character

χλ(χρ
λ)−1, and such that the degree [L′ : K∞] is essentially the p-adic valuation

of the denominator of α. The main inputs here are the existence and prop-

erties of the λ-adic representations ρh,λ associated to holomorphic forms h of

weight k +1 and congruent to θ modulo λ. While ρθ,λ restricted to Gal(K/K)

is reducible (in fact equal to χλ ⊕ χρ
λ), ρh,λ restricted to Gal(K/K) will be
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irreducible as long as h is not a theta lift from K. This fact along with the

congruence ρθ,λ ≡ ρh,λ mod λ can be used to construct a lattice L in the

representation space of ρθ,λ whose reduction mod λ (as a representation of

Gal(K/K)) is a nontrivial extension of the character χρ
λ by χλ. The splitting

field of L/λL over K∞ is then a field extension of the above type and the field

L′ is essentially the compositum of all fields obtained in this way from different

forms h. On the other hand, extensions of the type constructed are controlled

precisely by Iwasawa theory. Let p be the prime of K induced by λ. The main

conjecture in this situation (a theorem of Rubin [30]) shows that the degree

[L′ : K∞] is bounded by the p-adic valuation of the p-adic L-function evaluated

at the character χλ(χρ
λ)−1, which in turn is equal to the p-adic valuation of the

special value L(χχρ, k + 1)/Ω′′.
The prototype of the arguments used to construct L′ can be found in

work of Ribet [27] on the converse to Herbrand’s theorem. However we need

to employ the analogs in our context of the more refined techniques of Wiles

([40] and [42]) used in his proof of the Iwasawa conjecture for totally real fields.

In the work of Ribet and Wiles, the congruence is betweeen an Eisenstein series

and a cusp form while we need to study congruences between theta lifts and

cusp forms that are not of theta-type. It turns out that it is easier to keep

track of such congruences in the case p ∤ hK since this condition rules out

congruences between theta lifts from K, and hence we restrict ourselves to

this case in the present chapter.

We briefly mention the reasons for including the hypotheses p > k+1 and

p ∤
∏

q|N q(q+1)(q−1) in Theorem 4.1. The assumption p > k+1 is needed to

ensure that χλ and χρ
λ remain distinct on reducing modulo p. The condition

p ∤ q(q + 1)(q − 1) for q | N is utilized in controlling level-raising congruences

satisfied by θχ at such primes q. It should however be hoped that by a more

careful analysis some of these hypotheses may be removed in future work.

4.2. Constructing extensions from congruences. This section closely fol-

lows the paper [40], where congruences between Eisenstein series and cusp

forms are used to construct nontrivial extensions of certain characters of

Gal(Q/Q). Here we use congruences between theta functions from K and

cusp forms not of theta type (for K) to construct extensions of the charac-

ter χ̃ρ
λ of Gal(K/K) by the character χ̃λ (where the tildes denote reductions

mod λ). We will also make use of some results from [42].

4.2.1. The congruence ideal. Recall that S = Sk+1(Nd, ηK). On S one

has the actions of the usual Hecke operators Tq for q ∤ Nd and Uq for q | Nd.

For q | N+, let αq, βq be the roots of the characteristic polynomial of Frobq

acting on the λ-adic representation associated to θ. Write q = qq where q is

chosen such that χ(q) = αq. Let T be the set of primes q dividing N+ such
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that aq(θ)
2 ≡ qk−1(q +1)2 mod λ (i.e. by [5], exactly the set of primes q | N+

at which θ admits a level-raising congruence mod λ). Now

qk−1(αq/βq − q)(βq/αq − q) = qk−1(q + 1)2 − (αq + βq)
2

= qk−1(q + 1)2 − aq(θ)
2.

Hence if q is in T , one has either αq/βq ≡ q mod λ or βq/αq ≡ q mod λ.

(Both these conditions cannot be satisfied simultaneously for that would im-

ply q2 ≡ 1 mod λ. Also note that αq �≡ βq mod λ since otherwise q ≡ 1

mod p.) Interchanging αq and βq if necessary, we can assume that for q ∈ T

the first congruence holds; i.e. αq/βq ≡ q mod λ. Let T̃ be the subalgebra

of EndC(Sk+1(Nd, η)) generated over Z by the Hecke operators Tq for q ∤ Nd

and Uq for q | d or q ∈ T . Then the old-space corresponding to θ is the direct

sum of 2#T spaces Vi on each of which T̃ acts via a character, the different Vi

corresponding to the choice of αq or βq as the eigenvalue of Uq acting on Vi for

each q ∈ T . Let Ti be the set of primes in T such that the eigenvalue of Uq

acting on Vi is βq. Now, let g be any integral form in S and suppose

g =
∑

i∈P (T )

δigi + g′(20)

where gi ∈ Vi is a (p-adically) primitive (T̃-eigen)form and g′ is orthogonal to

the old-space spanned by θ. Here P (T ) is the power set of T . Then

〈g, θ〉
Ω2k

=
∑

i∈P (T )

δi
〈gi, θ〉
Ω2k

.(21)

Lemma 4.2.

vp









∏

q|d
(q + 1)





π2k+1〈gi, θ〉
Ω2k





≥
∑

q∈Ti

vp(1− q−(k+1)α2
q) + vp

(

πk−1L(k + 1, χχρ)

Ω2k

)

.

Proof. Let P be the product of the primes dividing N+ that are not in

T and the primes dividing N−. Let θi denote the eigenform of T̃ obtained

by dropping from the Euler product for θ the Euler factors (1− αqq
−s)−1 for

q ∈ Ti and the Euler factors (1−βqq
−s)−1 for q ∈ T \Ti. Then θi is an integral

form in Vi and it is easy to see that a basis for Vi over C is given by {θi(d
′z)}

where d′ runs over the divisors of P . Suppose that

gi =
∑

d′|P
γd′θi(d

′z).

Now γ1 = a1(gi), so that γ1 is a p-adic integer. For any d′ > 1, d′ | P ,

ad′(gi) =
∑

d′′|d′ γd′′ad′/d′′(θi). By induction on the number of prime factors
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dividing d′, one sees then that each γd′ is a p-adic integer. By [31, Lemma 3],

one has

〈θi(d
′z), θ〉 =





∏

q∈Ti

(qk+1 − α2
q)

qk(q + 1)

∏

q∈T\Ti

(qk+1 − β2
q )

qk(q + 1)

∏

q|d′

aq(θ)

qk(q + 1)



 〈θ, θ〉.(22)

Note that qk+1−β2
q = βq(qαq−βq) is a λ-adic unit. Further, by the assumption

p ∤ M , the denominators on the right-hand side of (22) are coprime to p.

Finally, by [31, 2.5],

(4π)k+1

k!
〈θ, θ〉= Ress=k+1D(s, θρ, θ)

=





∏

q|d

q

q + 1



 Ress=k+1
LK(s, χχρ)ζK(s− k)

ζQ(2s− 2k)

=
6

π2





∏

q|d

q

q + 1



 LK(k + 1, χχρ)L(1, ηK).

Since L(1, ηK) = 2πhK/w
√

d (w = the number of roots of unity in K) and

p > k + 1, p ∤ M , the lemma follows.

For the rest of this chapter we fix an i and assume that vp(δi) < 0. (It

will be clear that there is nothing to prove if vp(δi) ≥ 0.) Let F ′ be a large

enough number field, containing all the Hecke eigenvalues of all eigenforms of

level dividing Nd. Denote by O the ring of integers of F ′ and by π the prime

of O induced by λ. When

S = ⊕Vi′ ⊕W

with W orthogonal to ⊕Vi′ , let T′ be the subalgebra of EndC(⊕i′ �=iVi′ ⊕W )

generated by the image of T̃ and let T = T′ ⊗ O. Suppose that vπ(δi) = −n.

Pick a scalar α ∈ F ′ such that vπ(α) = n. Define I = AnnT(α(
∑

i′ �=i δi′gi′ +g′)
mod πn). Then T/I ≃ O/πn. Also clearly the elements T ′ − λθi

(T ′) ∈ I for

all T ′ ∈ T′.

4.2.2. Galois representations associated to modular forms. Let h ∈ S

be a newform of some level Nh dividing Nd and of character ηK (so that

d | Nh | Nd), and let Kh,λ denote the λ-adic completion of Kh. It is a theorem

of Shimura and Deligne that one can associate to h a Galois representation

ρh,λ : Gal(Q/Q)→ GL2(Kh,λ) which is unramified outside Nh and such that

trace ρh,λ(Frobq) = aq(h),

det ρh,λ(Frobq) = ηK(q)qk

for all q ∤ pNh.
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Lemma 4.3. ρh,λ |Gal(Q/K) is unramified at the primes of K dividing d.

Proof. Let q be a prime dividing d and q the prime in K above q. Let πh

be the automorphic representation associated to h by Jacquet-Langlands. The

local factor πh,q is then a ramified principal series representation π(ǫ−1, ǫηK,q)

for some unramified character ǫ of Q×
q . The base change of this representation

to GL2(Kq) is then the representation π(ǫ−1 ◦ NKq/Qp
, ǫ ◦ NKq/Qp

) which is

unramified. By the local Langlands correspondence this implies the statement

of the lemma.

We will be especially interested in those h that are congruent to θ. Since θ

is ordinary at p, such h are ordinary at p too. The following theorem of Wiles

describes in this case the restriction of the representation ρh,λ to a decompo-

sition group at p.

Theorem 4.4 (Wiles [41]). Let Dp be a decomposition group at p. Then

up to equivalence,

ρh,λ |Dp
≃

(

ǫ1 ∗
0 ǫ2

)

for characters ǫ1 and ǫ2 of Dp, with ǫ1 ramified, ǫ2 unramified and ǫ2(Frobp) =

α(p, h) where α(p, h) is the unit root of x2 − ap(h)x + pk.

4.2.3. The representation space. Let [W ] be a set of representatives for

the eigenspaces of T̃ contained in W and F be the ring
∏

i′ �=i F
′ ×∏

h′∈[W ] F
′

(where by h′ ∈ [W ] we mean h′ is any normalized eigenform of T̃ contained in

W , i.e. with first Fourier coefficient equal to 1). Then T is naturally a subring

of F via the embedding given by the various characters of T̃ and T⊗O F ′ = F .

Let V = F ⊕ F and L = (
∏

i′ �=iO ×
∏

h′∈[W ]O)2 ⊂ V . Then L is a sublattice

of V that is stable under the action of T. Below we write K ′
θi′

or K ′
h′ for the

appropriate copy of the field F ′ in F (and O′
h′ for the appropriate copy of O)

so that F =
∏

i′ �=i K
′
θi′
×

∏

h′∈[W ] K
′
h′ .

Let β be the maximal ideal in T containing I and consider the completions

Iβ, Tβ, Lβ and Vβ. The natural map L→ Lβ factors through
∏

i′ �=i(O′
θi′ ,λ

)2 ×
∏

h′∈[W ](O′
h′,λ)2.

Lemma 4.5. (i) If (O′
h′,λ)2 is not in the kernel of this map, then h′ is

congruent to θi mod λ.

(ii) If h′ is an eigenform corresponding to a theta lift from K, then (O′
h′,λ)2

is in the kernel of this map.

(iii) The terms (O′
θi′ ,λ

)2 are in the kernel of this map.
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Proof. Clearly a factor (O′
h′,λ)2 survives in Tβ if and only if the extension

of β to O′
h′,λ is not the unit ideal. Since for all T ′ ∈ T′, T ′ − λθi

(T ′) ∈ β, we

must have λh′(T ′)− λθi
(T ′) lies in the maximal ideal of O′

h′,λ, which amounts

to the congruence claimed in (i). To prove (ii) we only need to show that

under our assumptions there are no congruences between θi and other θ-lifts

from K. This is a special case of [18, Prop. 2.2], since we have assumed that

p ∤ hKM and p > k +1. Finally to see (iii) we note that for some q ∈ T the Uq

eigenvalue of θi′ differs from that of θi. However at q we have the congruence

αq ≡ qβq mod λ. If we also have αq ≡ βq mod λ, then q ≡ 1 mod p which

is not true. Thus λθi′
(Uq) is not congruent mod λ to λθi

(Uq), whence by the

argument used to prove (i), (O′
θi′ ,λ

)2 lies in the kernel.

Let [W̃ ] denote the set of newforms h in W such that one of the eigenforms

h′ of T̃ corresponding to h is congruent to θi mod λ. In fact then, for each

such h exactly one of the eigenforms corresponding to h can be congruent

to θi mod λ. To see this suppose that two different eigenforms h′
1 and h′

2

corresponding to h are congruent to θi mod λ. Then there exists a prime

q ∈ T such that the eigenvalues of Uq acting on h′
1 and h′

2 are different. In

particular h must be old at q. Since the mod λ representations associated

to h and θ are isomorphic, we must have that aq(h) ≡ aq(θ) mod λ, these

being the traces of Frobq in these representations. Let αq(h), βq(h) denote

the roots of the characteristic polynomial of Frobq acting on ρh,λ. Now, we

have just seen that αq(h) + βq(h) ≡ αq + βq mod λ. On the other hand,

since q | N+, αq(h)βq(h) ≡ qk ≡ αqβq mod λ. Thus the set {αq(h), βq(h)}
equals {αq, βq} when reduced mod λ. Since αq �≡ βq mod λ, we have also

αq(h) �≡ βq(h) mod λ. Now the eigenvalues of Uq corresponding to h′
1 and h′

2

must be αq(h), βq(h), hence it could not possibly be true that h′
1 ≡ h′

2 mod λ.

Thus we have the following lemma (where h′ is uniquely determined by h):

Lemma 4.6. (i) Lβ ≃ (
∏

h∈[W̃ ]O′
h′,λ)2.

(ii) Tβ ⊗O F ′ ≃
∏

h∈[W̃ ] K
′
h′,λ.

Since Vβ = Lβ ⊗O F ′ ≃ (
∏

h∈[W̃ ] K
′
h′,λ)2 ≃

∏

h∈[W̃ ](K
′
h′,λ)2, and Kh,λ

is contained in K ′
h′,λ, Vβ is naturally a representation space for Gal(Q/Q),

the action on the component Vh,λ = (K ′
h′,λ)2 being via ρh,λ. The Galois action

preserves Lβ and thus Lβ is a Tβ[Gal(Q/Q)] module with commuting actions of

the Galois group and the Hecke algebra. Henceforth we shall only be concerned

with its structure as a Tβ[Gal(Q/K)] module.

We will be interested in the Tβ[Gal(Q/K)] modules L/IL where L is any

compact sub-bimodule of Lβ ⊗ F ′. If q is any prime in K not dividing pNd,
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we have

(Frobq− χ(q))(Frobq− χρ(q)) = 0 on L/IL(23)

where we think of χ as a character on the ideals of K (so χ(q) = χλ(Frobq)).

To check this note that for q ∤ pNd,

(Frobq)
2 − TqFrobq + ηK(q)qk = 0 on L,

this being true in each factor (K ′
h′,λ)2. If q is split in K, q = qq, then

Frobq, Frobq are conjugate to Frobq in Gal(Q/Q), hence satisfy the same poly-

nomial. In this case Tq − χ(q) − χ(q) ∈ I, ηK(q) = 1 and χ(q)χ(q) = qk,

hence we get (23) for both q and q. If q is inert in K, writing q for the

prime of K above q, we see that Frobq = Frob2
q , Tq ∈ I, ηK(q) = −1, and

χ(q) = χρ(q) = qk. Hence (23) follows for the prime q. Now, a standard

application of the Brauer-Nesbitt theorem gives the following lemma.

Lemma 4.7. Suppose that U is an irreducible subquotient (as a

Tβ[Gal(Q/K)] module) of L/πrL for some r. Then U has one of the following

two types.

(i) U ≃ Tβ/βTβ ≃ Oπ/πOπ with Gal(Q/K) acting via χ̃λ,

(ii) U ≃ Tβ/βTβ ≃ Oπ/πOπ with Gal(Q/K) acting via χ̃ρ
λ.

We will refer to these two types of irreducible modules as being of types

χ and χρ respectively. (It is easy to check that these types are distinct using

the hypothesis p > k + 1.) A finite Tβ[Gal(Q/K)] module E is said to be of

type χ (resp. χρ) if in any Jordan-Holder series for E every irreducible factor

is of type χ (resp. χρ).

Proposition 4.8. For any stable lattice L there exists a stable lattice

L′ ⊆ L such that L/L′ is of type χ and such that every sublattice of L with

this property contains L′. A similar result holds with χ replaced by χρ.

Proof. This is proved exactly as in [40, Prop. 3.2]. If L1 and L2 are such

that L/L1 and L/L2 are of type χ then the same holds for L1∩L2. If a smallest

such lattice L′ did not exist then one could find an infinite descending sequence

L1 � L2 � . . . , each Li having the required property. If M = ∩Li, then M is a

sub-bimodule of L and L/M is infinite, hence L/M⊗OF ′ �= 0. Any irreducible

constituent of L/M ⊗O F ′ (as Gal(Q/K)-module) must be isomorphic to ρh,λ

for some h ∈ [W̃ ] since these are the irreducible constituents of L ⊗O F ′.

Since χ̃λ is not isomorphic to χ̃ρ
λ, one can find infinitely many q split

in K with χ(q) �≡ χρ(q) mod λ for a prime q in K over q. Pick such a

prime q in K not dividing pND. Then Frobq − χρ(q) is invertible on L/Li

for each i since L/Li is of type χ, and by compactness of L the same is true
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on L/M (and hence on any irreducible constituent of L/M ⊗O F ′). Choose

such an irreducible constituent ≃ ρh,λ with h ∈ [W̃ ]. On ρh,λ the characteristic

polynomial of Frobq has roots congruent to χ(q), χρ(q) mod λ and both these

roots occur, so Frobq− χρ(q) could not possibly act invertibly. This gives the

required contradiction.

The lattice L′ in the proposition is called the type χ deprived sublattice.

(It has no type χ quotient.) The next lemma and proposition follow directly

from the the corresponding results proved in [42].

Lemma 4.9. Suppose E is a Tβ/ITβ[Gal(Q/K)] module of type χ. Then

σ = χ(σ) on E for all σ ∈ Gal(Q/K). A similar result holds with χ replaced

by χρ.

Proof. See [42, Lemma 5.3].

Proposition 4.10. Let E be any finite Tβ/ITβ[Gal(Q/K)] module.

(i) Suppose that E has no type χρ submodule. Let Eχ be the maximal type

χ submodule contained in E. Then E/Eχ is of type χρ.

(ii) Suppose E has no type χρ quotient. Let E/Eχ be the maximal type χ

quotient. Then Eχ is of type χρ.

A similar result holds if χ and χρ are interchanged.

Proof. See [42, Prop. 5.4] (applied with R = Tβ/I).

In case (i), we shall call the exact sequence

0→ Eχ → E → E/Eχ → 0

the canonical sequence associated to E, likewise for case (ii) or with χ and χρ

interchanged.

4.2.4. The local representation. Let p = pp be the prime decomposition

of p in K and suppose that λ induces the prime p. Then χλ is ramified at p

and unramified everywhere else, while χρ
λ is ramified at p and unramified at all

other places. Let Dp be a decomposition group at p. Then by Theorem 4.4, the

representation ρh,λ has a unique Dp-invariant subspace V 0
h,λ ⊂ Vh,λ on which

the action of Dp is ramified. Also the action of Dp on the quotient Vh,λ/V 0
h,λ

is unramified. Set

V 0
β = ⊕h∈[W̃ ]V

0
h,λ, V ét

β = Vβ/V 0
β .

It is clear that V 0
β is preserved by the action of Tβ, so that V 0

β and V ét
β

are Tβ ⊗O F ′ modules, free, of rank one (by Lemma 4.6). Define

Lét = im(L → V ét
β ), L0 = ker(L → Lét).



950 KARTIK PRASANNA

The Jordan-Holder factors of L/λrL are still of type χ or χρ as Dp-modules

and these types are distinct because χ̃λ is ramified at p (since p > k +1) while

χ̃ρ
λ is unramified at p. From the construction of L0 and Lét, and using that

ρh,λ ≡ ρθ,λ mod λ, one sees that L0/λrL0 and Lét/λrLét must be of types χ

and χρ respectively (as Dp-modules).

Lemma 4.11. There is a stable sublattice L of Lβ such that L has no type

χ quotient and Lét is a free Tβ module of rank one.

Proof. This is proved exactly as in [40, Lemma 3.4] to which we refer the

reader for details. (All one needs to do is replace the types “1” and “r” in that

proof by χρ and χ respectively.)

Choose L as in the lemma. Then L/IL has no type χ quotient. If

0→ C → L/IL →M → 0(24)

is the canonical sequence associated to it, we must have M ≃ Lét/ILét and

C ≃ L0/IL0. Also M is a free module of rank one over Tβ/I.

4.2.5. A Galois extension of K∞. Let K0 be the Hilbert class field of

K, K∞ the unique Z2
p extension of K0 abelian over K, and L′ the splitting

field over K∞ of the representation L/IL. Denote by G′ the Galois group

Gal(L′/K∞). We define a pairing

G′ ×M → C, 〈σ, m〉 �→ σm̃− χλ(g)m̃(25)

where m̃ is any lift of m to L/IL.

Lemma 4.12. The extension L′/K∞ is unramified outside the primes ly-

ing above the following set of primes in K: the prime p and the primes q for

q in Ti.

Proof. The representations ρh,λ are unramified outside pNd and restricted

to Gal(Q/K) are even unramified at the primes of K dividing d (Lemma 4.3).

If h ∈ [W̃ ], then h must be old at the primes q dividing N− and the primes

q dividing N+ but not lying in Ti. To see this note that since aq(θ) = 0 for

q | N−, the relation aq(θ)
2 ≡ ηK(q)qk−1(q + 1)2 mod λ cannot be satisfied

for any such q (since p ∤ q ± 1). Hence (see [5]) θ does not admit any level-

raising congruences at such q. If q | N+ and h is new at q, then q ∈ T and

aq(h)2 = qk−1. Thus the square of the Uq eigenvalue of θi must be congruent

to qk−1 mod λ. Since β2
q ≡ qk−1 mod λ, α2

q ≡ qk+1 mod λ �≡ qk−1 mod λ,

we see that h can only be new at q if q ∈ Ti.

Thus the extension L′/K∞ can only possibly be ramified at the primes

above p, p and q, q for q ∈ Ti. We show now that in fact it is unramified over p

and the various q. It suffices to show that the extension (24) splits viewed as
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a sequence of Dp or Dq modules. We first consider p. Applying Theorem 4.4

to Dp we see that as Dp modules, L sits in an exact sequence

0→ L1 → L → L2 → 0

where the action of Dp on L1 is via a ramified character and that on L2 is via

an unramified character. Then

L1/IL1 → L/IL → L2/IL2 → 0

is exact and we must have that as Dp -modules, L1/IL1 is of type χρ and

L2/IL2 is of type χ (since χ̃λ is unramified and χ̃ρ
λ is ramified at p). Comparing

with (24), we see that (24) viewed as an extension of Dp-modules must split.

We now consider q for q ∈ Ti. We may assume that h is new at q. Then

the restriction of ρh,λ to a decomposition group at q is known by a theorem of

Carayol. If Dq denotes a decomposition group at q, one has

ρh,λ ≃
(

χ1ǫ ∗
0 χ1

)

where χ1 is an unramified character of Dq and ǫ is the p-adic cyclotomic char-

acter. Apply this to the decomposition group Dq. Then L sits in an exact

sequence

0→ L1 → L → L2 → 0

where the action of Dq on L1 and L2 is unramified, and if α = χ1(Frobq), we

have that Frobq acts as qα on L1 and as α on L2. Since the eigenvalues of

Frobq are congruent mod λ to αq and βq, and since αq ≡ qβq mod λ, βq �≡ qαq

mod λ, we see that in the exact sequence

L1/IL1 → L/IL → L2/IL2 → 0

the ends L1/IL1 and L2/IL2 must be of types χρ and χ respectively as

Dq -modules. (Recall that χ(q) = αq, χ
ρ(q) = βq, so that χρ(q) = αq,

χ(q) = βq.) Comparing this sequence with (24) we see that the sequence

(24) must split when viewed as a sequence of Dq -modules, as required.

We view the pairing (25) as one of Gal(Q/K) modules where Gal(Q/K)

acts on G′ in the usual way (via conjugation). Let R denote the ring Tβ/I ≃
Oπ/πn. Then we obtain a Galois equivariant injection

G′ →֒ HomR(M, C).(26)

Let ν be the Grossencharacter χ(χρ)−1 and Rν be the ring generated over

Zp by the values of νλ = χλ(χρ
λ)−1. The image of G′ under (26) is easily seen

to be stable under Rν , and this gives G′ the structure of an Rν module. We

thus get a map φ : G′ ⊗Rν
Oπ → HomOπ

(M, C) = HomOπ/πn(M, C) = C.
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Lemma 4.13. The map φ is surjective and FittOπ
(G′ ⊗Rν

Oπ) ⊆ πn.

Proof. Suppose that φ is not surjective. Then its image lands in a proper

submodule C0 of C. Consider the exact sequence

0→ C/C0 → X/C0 →M → 0

where X = L/IL. This sequence splits over K∞ and since K∞/K is abelian,

we can write X/C0 as

X/C0 = ker(Frobq− χ(q))⊕ ker(Frobq− χρ(q))

for any q with χ(q) �≡ χρ(q) mod λ. The splitting is in fact one of Gal(Q/K)

modules. Since C/C0 is nontrivial by assumption, X would have a type χ

quotient, which gives a contradiction.

The surjectivity of the map shows that FittOπ
(G′ ⊗Rν

Oπ) ⊆ FittOπ
(C).

Now C≃L0/IL0 for the faithful Tβ module L0 and FittTβ
(L0)⊆AnnTβ

(L0)=0.

Therefore, FittOπ/πn(C) = FittTβ/I(L0/IL0) = image in Tβ/I of FittTβ
(L0)

= 0. Thus FittOπ
(C) ⊆ πn, which gives the second part of the lemma.

4.3. Bounding congruences using the Main Conjecture. In this section we

use Rubin’s theorem on the main conjecture of Iwasawa theory for imaginary

quadratic fields to show the following key proposition.

Proposition 4.14.

FittRν
(G′) ⊇





∏

q∈Ti

(1− q−(k+1)α2
q)





(

πk−1 L(k + 1, χχρ)

Ω2k

)

.

Combining this with the results of the previous section, we see that

πn⊇FittOπ
(G′ ⊗Rν

Oπ) = FittRν
(G′)⊗Rν

Oπ

⊇





∏

q∈Ti

(1− q−(k+1)α2
q)





(

πk−1L(k + 1, χχρ)

Ω2k

)

.

Since n = −vπ(δi), using Lemma 4.2 we get the following theorem.

Theorem 4.15. Let g and gi be as in Section 4.2.1 (see equations (20)

and (21)). Then

vp



δi

∏

q|d
(q + 1)

π2k+1〈gi, θ〉
Ω2k



 ≥ 0

and

vp





∏

q|d
(q + 1)

π2k+1〈g, θ〉
Ω2k



 ≥ 0.
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Applying the theorem to g = 1
πfE and using formula (19), we have proved

Theorem 4.1 in the case p is split in K and p ∤ hK .

4.3.1. Statement of the main conjecture. For every finite extension F of

K in K∞ write A(F ) for the p-part of the class group of F , E(F ) for the group

of global units of F and C(F ) for the group of elliptic units of F . Also write

U(F ) for the group of local units of F ⊗K Kp which are congruent to 1 modulo

the primes above p and let E(F ) and C(F ) denote the closures of E(F )∩U(F )

and C(F )∩U(F ), respectively, in U(F ). (See [30] for more details.) For every

infinite extension F of K in K∞ define A(F ), E(F ) etc. to be the inverse limits

over finite extensions L of the groups A(L), E(L) etc., the limits being taken

with respect to the canonical norm maps. If F ⊂ K∞ define M(F ) to be

the maximal abelian p-extension of F which is unramified outside the primes

above p and let X(F ) = Gal(M(F )/F ). We will also write A∞, E∞ etc. to

denote A(K∞), E(K∞) etc. Global class field theory gives the following exact

sequence

0→ E∞/C∞ → U∞/C∞ → X∞ → A∞ → 0.

The Galois group G = Gal(K∞/K) acts on all the terms in this exact sequence

and the “main conjecture” relates the structure of the various terms as Zp[[G]]
modules.

Let ∆ = Gal(K0/K), Γ = Gal(K∞/K0) ≃ Z2
p (noncanonically). Since ∆

has order prime to p we have a canonical splitting G ≃ Γ × ∆, which allows

us to view ∆ both as a subgroup and a quotient of G. If Y is a Zp[∆]-module

and η is a p-adic character of ∆, define Rη = Zp[η] and Y η to be the η-isotypic

component of Y ; i.e,

Y η = {y ∈ Y ⊗Zp
Rη : gy = η(g)y for all g ∈ ∆}.

The functor Y → Y η is exact on Zp[∆] modules (since p ∤ #(∆)). We denote

by eη the natural projection from Y to Y η.

Let Λ be the Iwasawa algebra

Λ = Zp[[G]] = lim←−Zp[Gal(F/K)]

the limit being taken over all finite extensions F of K contained in K∞. Then

for every p-adic character η of ∆,

Λη = Zp[[G]]η ≃ Rη[[Γ]]

is isomorphic (noncanonically) to the power series ring in two variables over Rη.

We recall now some facts about the structure of finitely generated Λ′ =

R[[Γ′]] modules where Γ′ ≃ Zr
p and R is the ring of integers of a finite extension

of Qp. The ring Λ′ is a regular local ring of dimension r + 1. A Λ′-module

N is called torsion if every element of N is annihilated by a nonzero element

of Λ′. A finitely generated Λ′-module N is called pseudo-null if for any height 1
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prime ideal r of Λ′, Nr = 0 or equivalently if Ann(N) contains a height 2 ideal

in Λ′. For any two modules N1 and N2, N1 is said to be pseudo-isomorphic to

N2 if there exists an exact sequence

0→ A→ N1 → N2 → B → 0

for some psuedo-null modules A and B. If N1 and N2 are torsion Λ′-modules

this is an equivalence relation. The structure theorem for finitely generated

torsion Λ′-modules asserts that any such module is pseudo-isomorphic to an

elementary torsion module i.e. one of the form ⊕iΛ
′/fi for some (nonzero)

elements fi of Λ′. Elementary torsion modules have no nonzero pseudo-null

submodules, so in fact one has an injection ⊕iΛ
′/fi →֒ N with pseudo-null

cokernel. The ideal
∏

i(fi) is an invariant of N . It is called the characteristic

ideal of N and denoted by charΛ′(N). This ideal is principal and any generator

of it is called a characteristic power series of N . The characteristic power series

is well defined up to multiplication by a unit power series. The characteristic

ideal is multiplicative in short exact sequences of torsion modules. If one

defines the characteristic ideal of a finitely generated nontorsion module to

be 0 then the characteristic ideal is multiplicative in short exact sequences of

finitely generated modules.

The “main conjecture” of Iwasawa theory in this setting is the following

theorem proved by Rubin [30].

Theorem 4.16 (Rubin). The Λη modules (E∞/C∞)η, (U∞/C∞)η, Xη
∞ and

Aη
∞ are finitely generated and torsion. One has equivalently

charΛη((A∞)η) = charΛη((E∞/C∞)η),

charΛη((X∞)η) = charΛη((U∞/C∞)η).

4.3.2. The two-variable p-adic L-function. We now need to review briefly

the existence and properties of the two-variable p-adic L-function. Let D
denote the ring of integers of the maximal unramified extension of Qp. The

p-adic L-function is an element of D[[G]] that interpolates the special values

of L-functions of Grossencharacters of K whose associated λ-adic character

factors through G. For ǫ any such Grossencharacter of K let η(ǫ) denote the

restriction of ǫλ to ∆. Then one has the following theorem due to Katz, Yager

and de Shalit (see [4, II.4.14]). (Lp(·) denotes the L-function L(·) with the

Euler factor at p removed.)

Theorem 4.17. There exist an element Lp in D[[G]], a p-adic period Ωp ∈
D× and a complex period Ω such that for any unramified Grossencharacter ǫ

of K of infinity type (k′, j′) with 0 ≤ −j′ < k′,

Ωj′−k′

p ǫλ(Lp
η(ǫ)) = Ωj′−k′

Γ(k′)

(
√
−d

2π

)j′
(

1− ǫ(p)

p

)

Lp(ǫ
−1, 0).(27)
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In (27) the left-hand side lies in Cp while the right-hand side lies in C.

The equality should be interpreted as saying that both sides lie in Q and are

equal. The period Ω coincides up to a p-adic unit with the period Ω defined

in Section 2.3.3 and so we use the same symbol for both.

We will also need the following theorem, first proved by Yager when

hK = 1 and extended by de Shalit in general. (See [4, III.1.10, III.1.14 and

the discussion on p. 142].)

Theorem 4.18. For any character η of ∆,

charD[[Γ]]((U∞/C∞)η) = (Lp
η).(28)

4.3.3. The descent argument. The action of Gal(K∞/Q) on Gal(K∞/K0)

by conjugation induces an action of the group Gal(K/Q) = 〈1, c〉 on

Gal(K∞/K0). Let G+ and G− denote the maximal subgroups of Gal(K∞/K0)

on which the action of c is via −1 and +1 respectively. Denote by K+
∞ and

K−
∞ the fixed fields of G+ and G− respectively. Let K∞(p) and K∞(p) be

the maximal subextensions of K∞ unramified outside p and p respectively. By

class field theory there are canonical isomorphisms

κ1 : Γ1 = Gal(K∞(p)/K0) ≃ 1 + pZp,

κ2 : Γ2 = Gal(K∞(p)/K0) ≃ 1 + pZp.

Let u = 1 + p, and viewing κ1, κ2 as characters of Γ = Gal(K∞/K0) define

γ1, γ2, γ
+, γ− (see [4, III 3.3]) by

κ1(γ1) =u, κ1(γ2) = 1,

κ2(γ1) = 1, κ2(γ2) = u,

γ+ = γ1γ2, γ
− = γ1/γ2.

Finally, defining κ+ = κ1κ2 and κ− = κ1κ
−1
2 , we see that these yield isomor-

phisms

κ+ : Γ+ = Gal(K+
∞/K0) ≃ 1 + pZp,

κ− : Γ− = Gal(K−
∞/K0) ≃ 1 + pZp.

Since p ∤ [K0 : K], we have a canonical isomorphism G = Gal(K∞/K) ≃ ∆×Γ

where ∆ = Gal(K0/K). Let η be the restriction of the character νλ to ∆. If Rη

is the ring generated over Zp by the values of η, one sees easily that Rη = Rν .

The isomorphism Γ ≃ Γ+ × Γ− gives rise to an isomorphism

Λη = Zp[[G]]η ≃ Rη[[Γ]] ≃ Rη[[S, T ]]

sending γ+ to 1 + S and γ− to 1 + T . Also, let G− = Gal(K−
∞/K) ≃ ∆× Γ−.

Since η factors through G−, one also has an isomorphism

Λη
− = Zp[[G−]]η ≃ Rη[[Γ

−]] ≃ Rη[[T ]]

sending γ− to 1 + T .
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Lemma 4.19. Suppose X is a finitely generated torsion Λη module with

no nonzero pseudo-null submodule and such that X/SX is a (finitely gener-

ated) torsion Λη
− module. Then charΛη

−
(X/SX) = f(0, T ), where f(S, T ) =

charΛη(X).

Proof. Since X has no pseudo-null submodule there is an exact sequence

0→ X → Y → N → 0

where Y = ⊕i
Λη

fi(S,T ) , with
∏

i fi(S, T ) = f(S, T ) and N a pseudo-null Λη

module. This gives an exact sequence

Y [S]→ N [S]→ X/SX → ⊕i
Λη
−

fi(0, T )
→ N/SN → 0.

Since N is a pseudo-null Λη module, it is annihilated by a height 2 ideal I in

Λη. If (S, I) is a height 3 ideal, then its image in Λη
− is height 2 and annihilates

both N [S] and N/SN . Then N [S] and N/SN are pseudo-null Λη
− modules,

so charΛη
−
(X/SX) =

∏

i fi(0, T ) = f(0, T ). On the other hand, if (S, I) is a

height 2 ideal, then S ∈ rad(I), so N is a finitely generated torsion A module

where A is the ring Λη
− thought of as a subring of Λη. The exact sequence

0→ N [S]→ N
S−→ N → N/SN → 0

shows that charA(N [S]) = charA(N/SN). Now, since X/SX is a torsion Λη
−

module, it follows from the above exact sequence that fi(0, T ) �= 0 for all i.

Consequently, Y [S] = 0. Since charΛη
−
(N [S]) = charΛη

−
(N/SN), we see that

charΛη
−
(X/SX) = charΛη

−
(Y/SY ) = f(0, T ).

Recall that in Section 4.2.5, we have constructed an abelian extension L′

of K∞ with Galois group G′. Further, G′ is an Rν module and the action of

Λ on G′ is via the character νλ = χλ(χρ
λ)−1. Let δ be the idele (. . . , 1, 1, 1 +

p, 1, 1, . . . ) ∈ K×
A where all factors except the one at p are equal to 1, and let

δ′ be defined similarly but with p replaced by p. Then (see §2.3.2) χλ(γ1) =

χλ(δ) = (λ(χ(δ))/µλ(δ))−1 = (1+p)k since χ is unramified. Likewise χλ(γ2) =

χλ(δ′) = (λ(χ(δ′))/µλ(δ′))−1 = 1. Hence νλ(γ1) = (1 + p)k and νλ(γ2) =

(1 + p)−k, whence νλ(γ+) = 1 and νλ(γ−) = (1 + p)2k. Thus νλ induces a

homomorphism of the group algebra Λη ≃ Rη[S, T ] to Rη, also denoted νλ,

that sends S to 0 and T to (1 + p)2k − 1.

Let L be the maximal extension of K∞ in L′ that is unramified outside

p and set G = Gal(L/K∞). Denote by f the ideal
∏

q∈Ti
q. Also let M∞,f be

the maximal abelian p-extension of K∞ unramified outside p and the primes
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dividing f and set X∞,f = Gal(M∞,f/K∞). Then in the commutative diagram

1 �� Y ��

��

X∞,f

��

�� X∞ ��

��

1

1 �� H �� G′ �� G �� 1

the vertical maps are all surjective.

Lemma 4.20. FittRν
(H) ⊇

(

∏

q∈Ti
(1− q−(k+1)α2

q)
)

.

Proof. The map φ : Y → H induces a surjective map from Y η to H that,

by the discussion above, factors via the quotient Y η/(S, (1+T )− (1+p)2k)Y η.

By class field theory one knows that

Y ≃ lim←−





∏

q∈Ti

∏

rj |q
µ(Kn,r)/µ(Kn)





where rj ranges over the primes of Kn lying over q and µ(L), for any field L,

denotes the p-power roots of unity in L. Since µp∞(K∞) = 1, as a Λη module,

Y η ≃





∏

q∈Ti

Ind
Gal(K∞/K)
Dr

Zp(1)





η

≃
∏

q∈Ti

Λη/eη(Frobq− q)

where r is a prime of K∞ over q, Dr is the decomposition group of r in

Gal(K∞/K), and Zp(1) = lim←−µpn . Hence

Y η/(S, (1 + T )− (1 + p)2k)Y η ≃
∏

q∈Ti

Rη/(ν(Frobq)− q)

=
∏

q∈Ti

Rη/(αq/βq − q) =
∏

q∈Ti

Rη/(α2
q − qk+1).

Since this last module surjects onto H and Rη = Rν , we get the lemma.

Proposition 4.21. FittRν
(G) ⊇

(

πk−1L(k+1,χχρ)
Ω2k

)

.

Proof. We begin by applying (27) with ǫ−1 = χχρN−(k+1). With this

choice of ǫ, k′ = k + 1, j′ = 1 − k, hence (k′, j′) lies in the range of inter-

polation. Thus πk−1L(k + 1, χχρ)/Ω2k = πk−1L(0, ǫ−1)/Ω2k which in turn is

equal, up to a λ-adic unit, to ǫλ(Lp
η(ǫ)). (It is easy to check that the terms

1 − ǫ(p)
p and 1 − ǫ−1(p) are λ-adic units.) For any Grossencharacter ǫ′ of K

denote by ǫ̂′ the Grossencharacter (ǫ′ρ)−1N−1. By the functional equation

for the p-adic L-function ([4, II.6.4]), ǫλ(Lp
η(ǫ)) is equal up to a λ-adic unit

to ǫ′λ(Lp
η(ǫ′)) where (ǫ′)−1 = ˆǫ−1. Now we check immediately that ˆǫ−1 =

(χρχN−(k+1))−1N−1 = χρχ−1 = ν−1 since χρχρ = Nk. Thus ǫ′ = ν. Recall
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that we have been denoting η(ν) just by the symbol η. Let Lp
η = f(S, T ) ∈ Λη.

Then νλ(Lp
η) = f(0, α) where α = (1 + p)2k − 1. Also, by Theorem 4.16 and

Theorem 4.18, charΛη(Xη
∞) = f(S, T ). Now, G is a quotient of Xη

∞, in fact of

Xη
∞/(S, T − α)Xη

∞. To compute the size of this last module, first apply

Lemma 4.19 with X = X∞. To check that the hypotheses of the lemma

apply, note first that Xη
∞ has no nonzero pseudo-null Λη submodules by a

theorem of Perrin-Riou ([25, §II.2, Thm. 23]). Further Xη
∞/SXη

∞ injects into

X(K−
∞)η by [30, Thm 5.3(ii)] (applied with F = K−

∞) and by the fact that K∞
is unramified over K−

∞. Since X(K−
∞)η is a torsion Λη

− module (by [25, §II.2.2,

Prop. 20]) the same is true of Xη
∞/SXη

∞. Thus the hypotheses of the lemma

are verified and we have charΛη
−
(Xη

∞/SXη
∞) = f(0, T ). Further, since X(K−

∞)η

has no nonzero pseudo-null Λη
− submodules ([9, Prop. 5 and the remarks at the

end of §4]), the same is true of Xη
∞/SXη

∞. Hence there is an exact sequence

0→ Xη
∞/SXη

∞ → ⊕i
Λη
−

fi(T )
→ N → 0

where f(0, T ) =
∏

i fi(T ) and N is a pseudo-null Λη
− submodule. Taking

coinvariants of this sequence by T − α we get an exact sequence

N [T − α]→ Xη
∞/(S, T − α)Xη

∞ → ⊕i
Rη

fi(α)
→ N/(T − α)N → 0.

Since the two modules at the ends of this sequence have the same size, we get

FittRη
(Xη

∞/(S, T − α)Xη
∞) ⊇ FittRη

(

⊕i
Rη

fi(α)

)

=
∏

i

(fi(α)) = (f(0, α)).

Finally, since Rη = Rν ,

FittRν
(G) ⊇ (f(0, α)) =

(

πk−1L(k + 1, χχρ)

Ω2k

)

which completes the proof of the proposition.

Combining Lemma 4.20 and Proposition 4.21, we have proved Proposi-

tion 4.14.

5. Applications

5.1. Integrality of 〈f, f〉/〈g, g〉. Recall that f is a normalized newform

on Γ0(N), g its Jacquet-Langlands lift to the group Γ = ΓN−

0 (N+). Kf is

the field generated by the Hecke eigenvalues of f (or g.) The form g has

been chosen to be Kf -rational and also λ-adically integral and primitive with

respect to the integral structure provided by an integral model of the Shimura

curve associated to Γ (see §2.2.) We are interested in the ratio 〈f, f〉/〈g, g〉,
this being well-defined only up to a λ-adic unit in Kf . Recall also that in

Section 3.4.7, using the theta correspondence, we constructed a form g′′ for Γ

that satisfies
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(a) g′′ is a scalar multiple of g, indeed g′′ = δg for a nonzero algebraic number

δ such that δ2 ∈ Kf .

(b) 〈f, f〉 = 〈g′′, g′′〉.

Now

〈f, f〉
〈g, g〉 =

〈g′′, g′′〉
〈g, g〉 = δδ = ±δ2

since Kf is totally real. We will show that vλ(δ) ≥ 0. The idea is to apply

Proposition 2.9 to g′′ and its associated adelic form Ψ′′. We will need the

following lemma which can be obtained by combining results from [3] and [22].

Lemma 5.1. Suppose p ∤ M =
∏

q|N q(q − 1)(q + 1). Then there exist

infinitely many imaginary quadratic fields K with odd discriminant, such that

1. K is split at p.

2. K is split at the primes dividing N+.

3. K is inert at the primes dividing N−.

4. p ∤ hK .

Proof. It follows from [3, Thm. 7], that under the assumption p ∤ M , there

exist infinitely many such fields K satisfying 2, 3 and 4. If infinitely many of

these satisfy 1 too, we are done. If not, there exists a field K0 that satisfies 2, 3

and 4 but is not split at p. Then by [22, Thm. 7.5] there are infinitely many

fields K satisfying 1− 4 of the lemma.

The lemma provides infinitely many different Heegner points K →֒ D as

needed in Proposition 2.9. Applying the second half of this proposition to g′′

and using formula (17) and Theorem 4.1 we see that

Theorem 5.2. The form g′′ is λ-integral. Hence vλ(δ) ≥ 0.

This proves the λ-integrality of 〈f,f〉
〈g,g〉 and thus the first part of Theorem 2.4.

Also combining this theorem with the first half of Propostion 2.9 and formula

(17) we see that Theorem 4.1 follows even if p is inert in K or p | h = hK .

5.2. Level-lowering congruences. We now assume that λ is a level-lowering

congruence prime for f at a prime q dividing N−; i.e., there exists an eigenform

f ′ of level dividing N/q and weight k such that ρf ≡ ρ′f (λ). Recall that this is

equivalent to saying that the Hecke eigenvalues of f and f ′ outside the primes

dividing N are congruent mod λ. We will assume that f ′ is a newform of level

N/q, the argument being easily modified if this is not the case. Let aq′ and bq′
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denote the Fourier coefficients of θ = θχ and f ′ at a prime q′. Then it is well

known (see [5]) that there is the congruence

b2
q ≡ qk−2(q + 1)2 mod λ

so that bq ≡ ±q
k

2
−1(q + 1) mod λ. One then checks easily that f ≡ f ′∓ qk/2h

mod λ where h(z) = f ′(qz) and the congruence is one of q-expansions. It

follows now from Theorem 4.15 and formulas (18) and (19) that

πkD(k, f, θ)

Ω2k
≡ πkD(k, f ′, θ)

Ω2k
∓ qk/2 πkD(k, h, θ)

Ω2k
mod λ.

Now, from [31, Lemma 1], one sees that D(s, f ′, θ) and D(s, h, θ) have Euler

products, and the Euler factors are all the same except for the ones at q.

Suppose that the Frobenius eigenvalues at q of θ are α, β and those of f ′ are

α′, β′. It is also shown in [31, proof of Lemma 1] that the Euler factors at q

are

Dq(s, f
′, θ) =

1− αβα′β′q−2s

(1− αα′q−s)(1− αβ′q−s)(1− βα′q−s)(1− ββ′q−s)
,

Dq(s, h, θ) =
(aq − bqαβq−s)q−s

(1− αα′q−s)(1− αβ′q−s)(1− βα′q−s)(1− ββ′q−s)
.

Since q is inert in K, αβ = −qk, α′β′ = qk−1 and aq = 0. Hence the numerator

of Dq(k, f ′, θ) is equal to 1+ 1
q while that of Dq(k, h, θ) is bqq

−k. Since we have

assumed that p ∤ (q + 1), we get

πkD(k, f ′, θ)
Ω2k

∓ qk/2 πkD(k, h, θ)

Ω2k
= (a λ-adic integer )

(

1 +
1

q
∓ qk/2 · bqq

−k

)

= (a λ-adic integer )(q
k

2
−1(q + 1)∓ bq)

≡ 0 mod λ.

Now applying again Proposition 2.9 and formulas (17), (18), (19), we see

that vλ(g′′) > 0 in this case and hence vλ( 〈f,f〉
〈g,g〉 ) = vλ(δ2) > 0. This completes

the proof of Theorem 2.4.

5.3. Integrality of a triple product L-value. Let g1, g2, g3 be holomorphic

newforms on Γ of even weights ki and let πi denote the automorphic represen-

tations of GL2(A) associated to gi by the Jacquet-Langlands correspondence.

Suppose that the gi are λ-adically normalized and that the weights satisfy

k1 = k2 + k3. Define

P (g1, g2, g3) =

∫

Γ\H

g1(z)g2(z)g3(z)yk1
dxdy

y2
.
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Theorem 5.3. If P (g1, g2, g3) �= 0 then L∗(1
2 , π1 ⊗ π2 ⊗ π3) �= 0 and

L∗(1
2 , π1 ⊗ π2 ⊗ π3)

|P (g1, g2, g3)|2

is a λ-adic integer, L∗ being the L-function with the gamma factors at infinity

included.

Proof. Let fi denote the Jacquet-Langlands lift of gi to Γ0(N), the fi’s

being normalized Hecke eigenforms. The main theorem of [43] shows that

|P |2
∏

i〈gi, gi〉
=

c

N2
· L

∗(1
2 , π1 ⊗ π2 ⊗ π3)

∏

i L
∗(1, ad0(πi))

where c is a product of a power of 2 and a product of local terms indexed by

the primes dividing N . For each prime q | N the local term in question is of

the form 1 ± ǫq where ǫq = ǫq,1ǫq,2ǫq,3 is the product of the signs ǫq,i of the

Atkin-Lehner involution Wq acting on fi, and the ± sign occurs depending on

whether q | N+ or N−. Thus c �= 0 for at most one choice of factorization

N = N+N−, in which case c is a power of 2 and hence a λ-adic unit. One

has also (see [43, §4.2, Lemma 5]) that L∗(1, ad0(πi)) = 2ki

N 〈fi, fi〉. Our main

result (Theorem 2.4) shows that 〈fi, fi〉/〈gi, gi〉 is a λ-adic integer. The theorem

follows.

5.4. The Faltings height of JN
0 (1). The Faltings height of J0(N) was

computed in [38]. The computation relies crucially on the q-expansion principle

and a corresponding duality between the integral Hecke algebra and the space

of integral modular forms that is available for modular curves. The main result

is that the (exponential) height times an L-value equals the discriminant of

the Hecke algebra, which is an integer that measures congruences between

all forms of level N and weight 2. As mentioned in the introduction the

computation of the Faltings height of Jacobians of Shimura curves was one

of the motivating questions behind this article. Let X denote the Shimura

curve over Q associated to ΓN
0 (1) (where, as before, N is square-free and a

product of an even number of primes) and let JN
0 (1) = Jac(X). In this section

we show two different methods to compute the height of J := JN
0 (1). The

first uses the fact that J is isogenous to the new-quotient of J0(N), and the

computation of the height of J0(N)new in [38]. Here we can give a result up

to Eisenstein primes. The second method uses the main results of this article.

Consequently, one can at present only compute the height outside the primes

dividing M =
∏

q|N q(q + 1)(q − 1) by this method. In either case, the main

result is that the (exponential) height times an L-value equals the discriminant

of the Hecke algebra times an integer that measures level-lowering congruences.

The second method has the advantage of being generalizable (in principle, at

least) to the case of Shimura curves over totally real fields.
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Recall the definition of the Faltings height of a semistable Abelian variety

A of dimension d defined over a number field L. Let ω ∈ H0(A, Ωd
A) be a

nonzero element of this one-dimensional L-vector space. Then

hFal(A) = − 1

[L : Q]

(

∑

σ∈HL

1

2
log

(

∫

Aσ(C)
|ωσ ∧ ωσ|

)

−
∑

p<∞

∑

σ∈HL

vp(ω
σ) log p

)

where HL denotes the set of distinct embeddings σ : L →֒ C. This definition is

independent of the choice of ω and invariant under extension of the base field L.

We define the exponential height HFal(A) by HFal(A) = exp(2hFal(A)).

We recall also from [38] the definition of the Hida constant attached to

an optimal quotient φ : J0(N) → A. Since A is optimal we have an injection

φ∗ : H0(A, Ω1) →֒ H0(J0(N), Ω1) ≃ H0(X0(N), Ω1). If α1, α2, . . . , αd is a basis

for H0(A, Ω1), define

cA,φ =

∣

∣

∣

∣

∣

∣

det
(

∫

X0(N) φ∗(αi) ∧ φ∗(αj)
)

∫

A α1 ∧ · · · ∧ αd ∧ α1 ∧ · · · ∧ αd

∣

∣

∣

∣

∣

∣

.

Clearly this is independent of the choice of the basis α1, . . . , αd. If there is

no ambiguity in the choice of map φ, then this constant is denoted cA and is

called the Hida constant of A. Let φ∨ : A∨ → J0(N)∨ ≃ J0(N) denote the dual

map. Then it is shown in [38] that cA = (deg(φ ·φ∨))1/2 and that cA measures

congruences between forms corresponding to A and other forms. Further, one

has the following formula for the Faltings height of J0(N)new.

Theorem 5.4 (Ullmo ([38, 4.10])). Up to a power of 2

HFal(J0(N)new) ·
∏

newforms f of level N

4π2〈f, f〉 = (δTnew) · (cJ0(N)new)

where for any reduced algebra R, δR denotes the discriminant of R. As men-

tioned above, the term cJ0(N)new measures congruences between newforms and

old forms. The term δTnew measures congruences between newforms of level N .

(Tnew denotes the new quotient of the full Hecke algebra on J0(N).)

Now it is well known that there is a Hecke equivariant isogeny ϕ : J0(N)new

→ JN
0 (1) (not necessarily canonical) defined over Q. Let K be the kernel of

this isogeny. Then K(Q) is a T[Gal(Q/Q] module. Any irreducible subquotient

of K must be contained in J0(N)[mn] for some maximal ideal m of T and

some integer n. Assume that p is not an Eisenstein prime at level N . (Since

Eisenstein primes divide the order of the cuspidal class group of J0(N), from

[37, Thm. 5.1], it is enough to assume that p ∤ M .) Then for any maximal

ideal m of T above p, J0(N)[m] is an irreducible T[Gal(Q/Q] module and

any irreducible subquotient of J0(N)[mn] is isomorphic to J0(N)[m]. Now

the Gal(Q/Q) representation J0(N)[m] is autodual and so we can apply the

following lemma.



INTEGRALITY OF A RATIO OF PETERSSON NORMS 963

Lemma 5.5. Suppose A is a semistable Abelian variety defined over Q

with good reduction at p and K is a finite subgroup of A defined over Q of

p-power order. Assume that the representation of Gal(Q/Q) on K(Q) is auto-

dual and that p �= 2. Then hFal(A) = hFal(A/K).

Proof. Let B = A/K. The isogeny φ : A → B extends to one of Neron

models A → B. Let K1 denote the kernel of this map restricted to the con-

nected component of the Neron models. Then K1 is a quasi-finite flat group

scheme over Z that is finite at p. From [7, Lemma 5],

hFal(A) = hFal(B) +
1

2
deg(φ)− log(#s∗(Ω1

K1,Zp/ spec Zp
))

where s denotes the zero section of K1,Zp
/ spec Zp. Let φ∨ : B∨ → A∨ be the

dual isogeny. Again φ∨ extends to a map of Neron Models and we denote by

K2 the kernel of φ∨ restricted to the connected part of the Neron models. Then

hFal(B
∨) = hFal(A

∨) +
1

2
deg(φ∨)− log(#s∗(Ω1

K2,Zp/ spec Zp
)).

Now K1 and K2 are finite at p since A and B have good reduction at p.

Further, since p �= 2, K1,Zp
and K2,Zp

are completely determined by the Galois

action on their generic fibres. Since K is autodual we see that K1,Zp
≃ K2,Zp

.

Further the height of an Abelian variety equals that of its dual ([26]). Com-

paring the equations above, we see then that hFal(A) = hFal(B).

The lemma and the discussion preceding it show that up to (logarithms

of) Eisenstein primes at level N (and therefore up to primes dividing M),

hFal(J0(N)new) = hFal(J
N
0 (1)). Since the (full) Hecke algebra on the Shimura

curve, T, is isomorphic to Tnew, and since (see [43, §4.2, Lemma 5]) 8π3〈f, f〉 =

L(1, ad0(πf )) = L(1, ad0(πg)), we get the following result.

Proposition 5.6. Up to primes dividing M ,

γ := HFal(J
N
0 (1)) ·

∏

eigenforms g on Γ=ΓN
0 (1)

(2π)−1L(1, ad0(πg)) = (δ
T
) · (cJ0(N)new).

Note that other than the term cJ0(N)new all the other terms are defined

intrinsically in terms of the Shimura curve XN
0 (1). (So rather mysteriously,

the Shimura curve “sees” level-lowering congruences !).

We would like to prove a formula as in the previous proposition intrinsi-

cally on the Shimura curve rather than use the fact that there is an isogeny

from J0(N)new to JN
0 (1). The advantage of doing so would be that this method

might work for Shimura curves over totally real fields, where an isogeny be-

tween Jacobians is not available.

Let L be a number field containing all the Hecke eigenvalues of all weight

2 forms on Γ and {g1, . . . , gn} be a basis of eigenforms, defined over L; i.e.,
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sj = 2πıgj(z)dz ∈ H0(XL, Ω1) ≃ H0(JL, Ω1). Let ω = s1 ∧ · · · ∧ sn. Now,

∫

Jσ(C)
|ωσ ∧ ωσ| = det

[

∫

Xσ(C)
sσ
i ∧ sσ

j

]

=

n
∏

i=1

∫

X(C)
sσ
i ∧ sσ

i =
n

∏

i=1

4π2〈gi, gi〉.

If we choose the basis {gi} such that for every σ ∈ HL, gσ
i also lies in the

basis, then it is clear that ω ∈ H0(JQ, Ωn). Let fi be the normalised newform

on Γ0(N) corresponding to gi under the Jacquet-Langlands correspondence.

Then clearly γ (defined in Prop. 5.6) is given by

γ =

n
∏

i=1

〈fi, fi〉
〈gi, gi〉

∏

p<∞
p2vp(ω).

By Harris-Kudla [14], the ratio 〈fi,fi〉
〈gi,gi〉 lies in L for each i and satisfies

(

〈fi,fi〉
〈gi,gi〉

)σ
=

〈fσ
i ,fσ

i 〉
〈gσ

i ,gσ
i 〉 . This implies the first part of the following theorem. The second part

is an integrality result for γ analogous to Proposition 5.6.

Theorem 5.7. (i) γ ∈ Q.

(ii) Suppose p ∤ M . Then vp(γ) ≥ vp(δT
). Also if p is a level-lowering

congruence prime for some newform on Γ0(N), then vp(γ) > vp(δT
).

The idea of the proof is as follows: one chooses the gi so that the si are

p-adically primitive. Then from our previous results the ratio 〈fi,fi〉
〈gi,gi〉 is

p-adically integral and divisible by p if p is a level-lowering congruence prime

for fi. It remains then to show that with such a choice of gi, vp(ω) = 1
2vp(δT

).

Let J be the Neron model of J over spec Zp. Let us also assume at first

that the following holds for all maximal ideals m of T lying over p:

(i) The Tm module H0(J , Ω1)m is a free Tm module of rank 1.

(ii) The ring Tm is Gorenstein; i.e., Tm ≃ HomZp
(Tm, Zp) as Tm modules.

Since T ⊗ Zp =
∏

m Tm, H0(J , Ω1) =
∏

m H0(J , Ω1)m. Let x1, . . . , xd be

primitive eigenvectors of Tm in H0(J , Ω1)m ⊗Zp
Oλ where λ is some prime

of L over p. It will suffice to show that vλ(x1 ∧ · · · ∧ xd) = 1
2vλ(δ

Tm⊗ZpOλ
).

Since H0(J , Ω1)m ≃ Tm ≃ HomZp
(Tm, Zp) we need to show that vλ(y1 ∧

· · · ∧ yd) = 1
2vλ(δ

Tm⊗ZpOλ
) where y1, . . . , yd are primitive eigenvectors of Tm in

HomZp
(Tm, Zp) ⊗Zp

Oλ = HomOλ
(Tm ⊗Zp

Oλ,Oλ). If Tm ⊗Zp
Oλ →֒

∏

iOλ

is the canonical inclusion given by the various characters of Tm, then we may

choose the yi to be the projections on the various factors.

Let 〈, 〉 be the bilinear form on HomOλ
(Tm ⊗Zp

Oλ,Oλ) ⊗Oλ
Lλ that is

dual to the trace form on Tm. With respect to this form the volume of

HomOλ
(Tm ⊗Zp

Oλ,Oλ) is clearly δ
1/2

Tm⊗ZpOλ

. On the other hand it is easy
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to check that y1, . . . , yd form an orthonormal basis with respect to this form,

whence vλ(y1 ∧ · · · ∧ yd) = 1
2vλ(δ

Tm⊗ZpOλ
) as required.

We now only need to check that (i) and (ii) hold for primes p ∤ M . It

is well known that both would follow if one knew that the multiplicity of the

mod p representation ρm in J [m] is 1 for any prime m above p. That this is

the case follows from the result of Helm [17]. We recall that in the notation

of [17], a non-Eisenstein maximal ideal m of T is called controllable at a prime

q | N if ρm is either ramified at q or ρm(Frobq) is not a scalar.

Theorem 5.8 (Helm). Suppose that m is controllable at all primes q | N .

Then ρm occurs in J [m] with multiplicity one.

Note that if m is not controllable at q, then ρm must be unramified at q

and ρm(Frobq) must be a scalar, which is necessarily ±1. In this case, q ≡ 1

mod p. But we have assumed that p ∤ M , and thus the hypothesis of Theorem

5.8 holds. This completes the proof of Theorem 5.7. However this proof is

still not completely satisfactory since the proof of Theorem 5.8 is based on

a study of relations between Hecke modules attached to (character groups

of) J0(N) and JN (1) and ultimately depends on the fact that we know the

corresponding mutiplicity-one statement for J0(N). Ideally, one would like

to verify (i) and (ii) working on the Shimura curve without referring to the

corresponding modular curve, and thus make the height computation intrinsic

to the Shimura curve.
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