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Integrals of a Lotka-Volterra System of Odd Number of Variables
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i A Lotka-Volterra system with s +1 conserved quantities of 2s +1 variables is introduced. In the
system each species interacts with the other 2s species. The conserved quantities are explicitly
represented by polynomials in a simple way.

We introduce a Lotka-Volterra system with s+1 conserved quantities of 2s+1
variables. It is known that nonlinear lattice can provide a-Lotka-Volterra system"~*
of » variables,

d

TtPiZPi(Pi—l_Pi+l) (1)

with P:y,=P; for each integer 7, which has soliton solutions.?® In our system®~'? of

2s-+1 variables each species interacts with the other 2s species as

dp_prs _Sp.
E‘Pi—Pi(jZ}IPi—j jglpztz) (2)

with Piyzs41=P; for each integer 7. The conserved quantities for the case s=2 are
H+E+R+H+R=QD,
P P,Pi+ P PsPs+ PsPoPi+ Py Ps P+ Ps P Ps= C(2)

and

P.P,PsP,Ps=C(3). (3)

Henon'” and Flaschka'® independently showed analytically # conserved quantities
for the general cyclic Toda lattice'™ of 2m variables. Henon’s proof is based on
combinatorial enumeration. Flaschka proved it by making use of Lax formalism.
Sawada and Kotera'¥ showed the theorem starting with the general equation of
motion of Poisson brackets. They applied the method also to Calogero’s system.'®
Our Lotka-Volterra equation is a deterministic version of a stochastic model®?
and hence our present result is a deterministic version of the previous result.” Here
we give the s+1 conserved quantities explicitly for the 2s+1 variables by a com-
binatorial method.
We assume:
1) L={0,1,--,27}. :
2) f-(n) is a function for every integer » which is defined by

i) fr(m)=% (mod 27+1)
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i) 0=f/(n)<2¥».
3) For i, ;€1

1 iff 1=f(i—j)<s
ay=—1 iff s+1=f(i—/j)<2s
0 iff f(i—7)=0.

4)
1 iff 1S/A0GE—N=Zr
S(rY={(ko, br, ***, kerNarn,=—1 iff ¥y +1=F(i—7)<27
' 0 iff /(i—7)=0

for i, j&€I, where 0 hy< ki <+ < kzr =25} .
Under the above assumption, we have the following theorem.

THEOREM

d B 25
Let WPf(l‘)—Pi(f)jg,“ffR(t)

and
PA#)>0 for i=0,1, -+, 2s, 4)
then
2r
I1 Pu(8)=C(7) for »=0,1,-,s, (5)

(ko,k1,k2,,k2r)ES(T) m=0

where C(#) are time independent constant.
We prove the lemmas.

Lemma 1.
Let (ko, ku, ke, -+, k2r)ES(7) and k=0, then kr=s<kr.1.
Proof Obvious from the definition of S(r).
Lemma 2.
Let (ko, b, k2, -, kor)ES(7), ko=0 and k- <I<krs1,
then (&, k', k2, -+, ks-)E S(7), which satisfies
bn' €1k, by, ke, **, kar, [} for m=0,1,2, -, 27, and
(e{k, kY, ks, -+, k5r}, is uniquely determined in the following way:
i) iff k-<IZs, k/’=[ and for m=*v kn'=kn,
ii) iff s<I<kbrs1, bra={ and for m*r+1 kn'=kn.

Proof From Lemma 1, we see the classification by i) and ii) is reasonable.
We see the following two from the conditions.
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(1) 7 is included in (&, &', &2, =, k3r).
(2) For every fixed mo’, 1< fs(Eno— En")<s holds just for » of kn where
m=0,1,2, -, 27.

The problem is which £» must be replaced by /. We consider Case i). Since 1= £(/
—kn)=s holds for »+1 of kn, that is to say, for m=0, 1, 2, -+, 7, one of them must be
eliminated (because of (2)). If one of %, in which 0= m<»—1, is eliminated, 1< fs(&-
—#kn)=s holds just for » —1 of £». This does not satisfy (2). So £, must be replaced
by [. [ plays the same role as k-, that is,

1=f(l—kn)<s for m=0,1,2,, v—1,
SHI=f(l—kn)<2s for m=7»+1, r+2, -, 27.

Thus we see (&', &, *++, k%), in which k=17 and for m+*# kx'=Fkn, belongs to S(r).
We can prove Case ii) in the same way. , Q. E.D.

For the following Lemma 3 we define % for every integer 8 as ks=~Fkn iff m—pB
=0 (mod 27 +1), where 0<m=27.

Lemma 3. ) :
Let 1=/(l—ka)<s and 1=fi(kan—I)<s, then (k, &/, -, k-)ES(r), which
satisfies
ko', kY, ke, e, ksr & {ko, bu, ko, o, Feor, 1}
1€k, R, -, Kr),
is uniquely determined in the way:
D) iff 1=flke-rt+s—0=s, k=1 and for m¥a kn'=Fkn,
i) iff 1=f(l—5s—Fko-r)<s, keri=1 and for m=a+1 En'=Fn.
Proof This is proved by a little modification of the proof of Lemma 2.
Proof of the theovem

d 2r
G o > IT Pe.(2)

- k2r)eS(r) m=0
2

= 2 ( I Pk,,,(t)):z;gakmlpz(f) .

(ko k1, k2r)eS(T) m=0

We see each term of the right-hand side of the above equation has the form
ProPry Proy Py, in which (ko, by, -, ker)ES(7), 10,1, -, 2s}. We calculate the
coefficient of these terms.

Since (ko, kl, R kzr)ES(T), for le{ko, k1, nty, er} Ekoklmkzr(l)=2%nr=oakml=().

Next we prove for the case /& {k, ki, -+, kar).

From Lemma 3 we see the coefficient of the term PaoPr,*** P, P is,
in Case i) of Lemma 3,

ekokl-"kzr( Z) + Erok1-kr-1 lkr+1---k2r(k7) ’
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in Case ii) of Lemma 3,
Ekokl---kzr(l)+ Ekok1--~krlkr+z~-~k2r(kr+l) .

We consider Case i) of Lemma 3,

2r
ekokl'“kzr(l) = mz=0ak"’l= - 1 N

since
L=l form=0,1,2,7
741 for m=r+1,r+2, -, 27 .
Ekokl-"kr—llkr«u"'kzr(k'r)=1 ’
since
—1 for m=0,1,2, -, »—1
Arm kr—

+1 for m=vr, r+1, -, 27
in which %»" is defined in Lemma 3. Thus we see
ekokl---kzr(l)+ eko'kl""klzr(kT)ZO .

For Case ii) we can discuss in the same way.
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