Prog. Theor. Phys. Vol. 78, No. 3, September 1987, Progress Letters

Integrals of a Lotka-Volterra System of Odd Number of Variables

Yoshiaki Itoh
The Institute of Statistical Mathematics, Minami-Azabu, Tokyo 106

(Received June 5, 1987)

Abstract

A Lotka-Volterra system with $s+1$ conserved quantities of $2 s+1$ variables is introduced. In the system each species interacts with the other $2 s$ species. The conserved quantities are explicitly represented by polynomials in a simple way.

We introduce a Lotka-Volterra system with $s+1$ conserved quantities of $2 s+1$ variables. It is known that nonlinear lattice can provide a Lotka-Volterra system ${ }^{1) \sim 4}$ of n variables,

$$
\begin{equation*}
\frac{d}{d t} P_{i}=P_{i}\left(P_{i-1}-P_{i+1}\right) \tag{1}
\end{equation*}
$$

with $P_{i+n}=P_{i}$ for each integer i, which has soliton solutions. ${ }^{2,5)}$ In our system ${ }^{6) \downarrow 10)}$ of $2 s+1$ variables each species interacts with the other $2 s$ species as

$$
\begin{equation*}
\frac{d}{d t} P_{i}=P_{i}\left(\sum_{j=1}^{s} P_{i-j}-\sum_{j=1}^{s} P_{i+j}\right) \tag{2}
\end{equation*}
$$

with $P_{i+2 s+1}=P_{i}$ for each integer i. The conserved quantities for the case $s=2$ are

$$
\begin{aligned}
& P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=C(1), \\
& P_{1} P_{2} P_{4}+P_{2} P_{3} P_{5}+P_{3} P_{4} P_{1}+P_{4} P_{5} P_{2}+P_{5} P_{1} P_{3}=C(2)
\end{aligned}
$$

and

$$
\begin{equation*}
P_{1} P_{2} P_{3} P_{4} P_{5}=C(3) . \tag{3}
\end{equation*}
$$

Henon ${ }^{11)}$ and Flaschka ${ }^{12}$ independently showed analytically m conserved quantities for the general cyclic Toda lattice ${ }^{13)}$ of $2 m$ variables. Henon's proof is based on combinatorial enumeration. Flaschka proved it by making use of Lax formalism. Sawada and Kotera ${ }^{14)}$ showed the theorem starting with the general equation of motion of Poisson brackets. They applied the method also to Calogero's system. ${ }^{15)}$

Our Lotka-Volterra equation is a deterministic version of a stochastic model ${ }^{(6), 9)}$ and hence our present result is a deterministic version of the previous result. ${ }^{9)}$ Here we give the $s+1$ conserved quantities explicitly for the $2 s+1$ variables by a combinatorial method.

We assume:

1) $I_{r}=\{0,1, \cdots, 2 r\}$.
2) $f_{r}(n)$ is a function for every integer n which is defined by
i) $\quad f_{r}(n) \equiv n(\bmod 2 r+1)$
ii) $0 \leqq f_{r}(n) \leqq 2 r$.
3) For $i, j \in I_{s}$

$$
\begin{aligned}
1 & \text { iff } 1 \leqq f_{s}(i-j) \leqq s \\
a_{i j}=-1 & \text { iff } s+1 \leqq f_{s}(i-j) \leqq 2 s \\
0 & \text { iff } f_{s}(i-j)=0
\end{aligned}
$$

4)

$$
\begin{gathered}
S(r)=\left\{\left(k_{0}, k_{1}, \cdots, k_{2 r}\right) \mid a_{k_{i} k_{s}}=-1 \quad \text { iff } 1 \leqq f_{r}(i-j) \leqq r\right. \\
0 \quad \text { iff } r+1 \leqq f_{r}(i-j) \leqq 2 r \\
\text { for } \left.i, j \in I_{r} \text { where } 0 \leqq k_{0}<k_{1}<\cdots<k_{2 r} \leqq 2 s\right\} .
\end{gathered}
$$

Under the above assumption, we have the following theorem.
Theorem

$$
\text { Let } \frac{d}{d t} P_{i}(t)=P_{i}(t) \sum_{j=0}^{2 s} a_{i j} P_{j}(t)
$$

and

$$
\begin{equation*}
P_{i}(t)>0 \text { for } i=0,1, \cdots, 2 s \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{\left(k 0, k_{1}, k_{2}, \cdots, k_{2 r)} \in S(r)\right.} \prod_{m=0}^{2 r} P_{k m}(t)=C(r) \text { for } r=0,1, \cdots, s \tag{5}
\end{equation*}
$$

where $C(\dot{r})$ are time independent constant.
We prove the lemmas.

Lemma 1.

Let $\left(k_{0}, k_{1}, k_{2}, \cdots, k_{2 r}\right) \in S(r)$ and $k_{0}=0$, then $k_{r} \leqq s<k_{r+1}$.
Proof Obvious from the definition of $S(r)$.

Lemma 2.

Let $\left(k_{0}, k_{1}, k_{2}, \cdots, k_{2 r}\right) \in S(r), k_{0}=0$ and $k_{r}<l<k_{r+1}$, then $\left(k_{0}{ }^{\prime}, k_{1}{ }^{\prime}, k_{2}{ }^{\prime}, \cdots, k_{2 r}^{\prime}\right) \in S(r)$, which satisfies
$k_{m}{ }^{\prime} \in\left\{k_{0}, k_{1}, k_{2}, \cdots, k_{2 r}, l\right\}$ for $m=0,1,2, \cdots, 2 r$, and
$l \in\left\{k_{0}{ }^{\prime}, k_{1}{ }^{\prime}, k_{2}^{\prime}, \cdots, k_{2 r}^{\prime}\right\}$, is uniquely determined in the following way:
i) iff $\quad k_{r}<l \leqq s, k_{r}{ }^{\prime}=l$ and for $m \neq r \quad k_{m}{ }^{\prime}=k_{m}$,
ii) iff $s<l<k_{r+1}, k_{r+1}=l$ and for $m \neq r+1 \quad k_{m}{ }^{\prime}=k_{m}$.

Proof From Lemma 1, we see the classification by i) and ii) is reasonable. We see the following two from the conditions.
(1) l is included in $\left(k_{0}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, \cdots, k_{2 r}^{\prime}\right)$.
(2) For every fixed $m_{0}^{\prime}, 1 \leqq f_{s}\left(k_{m_{0}}^{\prime}-k_{m^{\prime}}{ }^{\prime}\right) \leqq s$ holds just for r of $k_{m}{ }^{\prime}$ where $m=0,1,2, \cdots, 2 r$.

The problem is which k_{m} must be replaced by l. We consider Case i). Since $1 \leqq f_{s}(l$ $\left.-k_{m}\right) \leqq s$ holds for $r+1$ of k_{m}, that is to say, for $m=0,1,2, \cdots, r$, one of them must be eliminated (because of (2)). If one of k_{m}, in which $0 \leqq m \leqq r-1$, is eliminated, $1 \leqq f_{s}\left(k_{r}\right.$ $\left.-k_{m}\right) \leqq s$ holds just for $r-1$ of k_{m}. This does not satisfy (2). So k_{r} must be replaced by l. l plays the same role as k_{r}, that is,

$$
\begin{aligned}
& 1 \leqq f_{s}\left(l-k_{m}\right) \leqq s \text { for } m=0,1,2, \cdots, r-1 \\
& s+1 \leqq f_{s}\left(l-k_{m}\right) \leqq 2 s \text { for } m=r+1, r+2, \cdots, 2 r
\end{aligned}
$$

Thus we see ($k_{0}{ }^{\prime}, k_{1}^{\prime}, \cdots, k_{2}^{\prime}$), in which $k_{r}{ }^{\prime}=l$ and for $m \neq r k_{m}{ }^{\prime}=k_{m}$, belongs to $S(r)$. We can prove Case ii) in the same way.
Q. E. D.

For the following Lemma 3 we define k_{B} for every integer β as $k_{\beta}=k_{m}$ iff $m-\beta$ $\equiv 0(\bmod 2 r+1)$, where $0 \leqq m \leqq 2 r$.

Lemma 3.

Let $1 \leqq f_{s}\left(l-k_{\alpha}\right) \leqq s$ and $1 \leqq f_{s}\left(k_{\alpha+1}-l\right) \leqq s$, then $\left(k_{0}{ }^{\prime}, k_{1}^{\prime}, \cdots, k_{2 r}^{\prime}\right) \in S(r)$, which satisfies

$$
\begin{aligned}
& k_{0}^{\prime}, k_{1}^{\prime}, k_{2}^{\prime}, \cdots, k_{2 r}^{\prime} \in\left\{k_{0}, k_{1}, k_{2}, \cdots, k_{2 r}, l\right\}, \\
& l \in\left\{k_{0}^{\prime}, k_{1}^{\prime}, \cdots, k_{2}^{\prime}\right\},
\end{aligned}
$$

is uniquely determined in the way:
i) iff $\quad 1 \leqq f_{s}\left(k_{\alpha-r}+s-l\right) \leqq s, k_{\alpha}{ }^{\prime}=l$ and for $m \neq \alpha \quad k_{m}{ }^{\prime}=k_{m}$,
ii) iff $1 \leqq f_{s}\left(l-s-k_{\alpha-r}\right) \leqq s, k_{\alpha+1}^{\prime}=l$ and for $m \neq \alpha+1 \quad k_{m}{ }^{\prime}=k_{m}$.

Proof This is proved by a little modification of the proof of Lemma 2.

Proof of the theorem

$$
\begin{aligned}
& \frac{d}{d t} \\
& \quad=\sum_{\left(k_{0}, k_{1},, \cdots, \cdots, k_{2} r\right) \in S(r)}\left(\prod_{m=0} \prod_{m=0}^{2 r} P_{k_{m}}(t)\right) \sum_{m=0}^{2 r} \sum_{l=0}^{2 S} a_{k m l} P_{l}(t) .
\end{aligned}
$$

We see each term of the right-hand side of the above equation has the form $P_{k_{0}} P_{k_{1}} \cdots P_{k_{2 r}} P_{l}$, in which $\left(k_{0}, k_{1}, \cdots, k_{2 r}\right) \in S(r), l \in\{0,1, \cdots, 2 s\}$. We calculate the coefficient of these terms.

Since $\left(k_{0}, k_{1}, \cdots, k_{2 r}\right) \in S(r)$, for $l \in\left\{k_{0}, k_{1}, \cdots, k_{2 r}\right\} \varepsilon_{k_{0} k_{1} \cdots k_{2 r}}(l)=\sum_{m=0}^{2 r} a_{k_{m} l}=0$.
Next we prove for the case $l \notin\left\{k_{0}, k_{1}, \cdots, k_{2 r}\right\}$.
From Lemma 3 we see the coefficient of the term $P_{k_{0}} P_{k_{1}} \cdots P_{k_{22}} P_{l}$ is, in Case i) of Lemma 3,

$$
\varepsilon_{k_{0} k_{1} \cdots k_{2 r}}(l)+\varepsilon_{k_{0} k_{1} \cdots k_{r-1} l k_{r+1} \cdots k_{2 r}}\left(k_{r}\right),
$$

in Case ii) of Lemma 3,

$$
\varepsilon_{k_{0} k_{1} \cdots k_{2 r}}(l)+\varepsilon_{k_{0} k_{1} \cdots k_{r} l k_{r+2} \cdots k_{2 r}}\left(k_{r+1}\right) .
$$

We consider Case i) of Lemma 3,

$$
\varepsilon_{k_{0} k_{1} \cdots k_{2 r}}(l)=\sum_{m=0}^{2 r} a_{k_{m} l}=-1
$$

since

$$
\begin{aligned}
& a_{k_{m l}}=\begin{array}{l}
-1 \quad \text { for } m=0,1,2, \cdots, r \\
+1 \text { for } m=r+1, r+2, \cdots, 2 r . \\
\varepsilon_{k_{0} k_{1} \cdots k_{r-1} l k r+1 \cdots k_{2 r}}\left(k_{r}\right)=1
\end{array}, .
\end{aligned}
$$

since

$$
a_{k m^{\prime} k r}=\begin{array}{ll}
-1 . & \text { for } m=0,1,2, \cdots, r-1 \\
+1 & \text { for } m=r, r+1, \cdots, 2 r
\end{array}
$$

in which $k_{m}{ }^{\prime}$ is defined in Lemma 3. Thus we see

$$
\varepsilon_{k_{0} k_{1} \cdots k_{2 r}}(l)+\varepsilon_{k_{0^{\prime}} k_{1} l^{\prime} k_{2}^{\prime} r}\left(k_{r}\right)=0 .
$$

For Case ii) we can discuss in the same way.

1) J. Moser, Adv. in Math. 16 (1975), 197.
2) R. Hirota and J. Satsuma, Prog. Theor. Phys. Suppl. No. 59 (1976), 64.
3). M. Wadati, Prog. Theor. Phys. Suppl. No. 59 (1976), 36.
3) M. Toda, Theory of Nonlinear Lattices (Springer, Berlin, 1981).
4) K. Narita, J. Phys. Soc. Jpn. 51 (1982), 1682.
5) Y. Itoh, Ann. Inst. Statist. Math. 25 (1973), 635.
6) Y. Itoh, Proc. Japan Acad. 51 (1975), 374.
7) Y. Itoh, Seminar on Probability 44 (1977), 141 (in Japanese).
8) Y. Itoh, J. Appl. Prob. 16 (1979), 36.
9) Y. Itoh and S. Ueda, Proc. Inst. Statist. Math. 28 (1981), 55 (in Japanese with English summary).
10) M. Henon, Phys. Rev. B9 (1974), 1921.
11) H. Flaschka, Phys. Rev. B9 (1974), 1924.
12) M. Toda, J. Phys. Soc. Jpn. 22 (1967), 431.
13) K. Sawada and T. Kotera, Prog. Theor. Phys. Suppl. No. 59 (1976), 101.
14) F. Calogero, Lett. Nuovo Cim. 13 (1975), 411.
