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A Lotka-Volterra system with s + 1 conserved quantities of 2s + 1 variables is introduced. In the 
system each species interacts with the other 2s species. The conserved quantities are explicitly 
represented by polynomials in a simple way. 

We introduce a Lotka -Volterra system with s + 1 conserved quantities of 2s + 1 
variables. It is known that nonlinear lattice can provide a· Lotka-Volterra system l

)-4) 

of n variables, 

(1) 

with Pi+n=Pi for each integer i, which has soliton solutions.2
),5) In our system6

)-1O) of 
2s + 1 variables each species interacts with the other 2s species as 

with Pi+2S+!=Pi for each integer i. The conserved quantities for the case s=2 are 

and 

PI + Pz+ H+ P4 + Ps=C(l) , 

APzfl+PzHPs+PzflA+flPsPz+RA8=Q~ 

(3) 

Henonll
) and Flaschkal2

) independently showed analytically m conserved quantities 
for the general cyclic Toda latticel3

) of 2m variables. Henon's proof is based on 
combinatorial enumeration. Flaschka proved it by making use of Lax formalism. 
Sawada and Koteral4

) showed the theorem starting with the general equation of 
motion of Poisson brackets. They applied the method also to Calogero's system.15

) 

Our Lotka-Volterra equation is a deterministic version of a stochastic mode16
),9) 

and hence our present result is a deterministic version of the previous result.9
) Here 

we give the s + 1 conserved quantities explicitly for the 2s + 1 variables by a com
binatorial method. 

We assume: 
1) Ir={O, 1, ···,2r}. 
2) fr(n) is a function for every integer n which is defined by 

i) fr(n)=n (mod 2r+1) 
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ii) 0~Ir(n)~2r. 

3) For i, jEIs 

4) 

1 iff l~fs(i-j)~s 

aij=-1 iff s+l~fs(i-j)~2s 

o iff fs(i - j)=O . 

1 iff 1 ~fr(i - j) ~ r . 
S(r)={(ko, kl, ... , k2r)lak,kj=-1 iff r+l~fr(i-j)~2r 

o iff fr(i - j)=O 

for i,jElr where 0~ko<kl<···<k2T~2s}. 

Under the above assumption, we have the following theorem. 

THEOREM 

and 

P;(t) >0 for i=O, 1, ... , 2s, 

then 

2r 

~ II Pkm(t)=C(r) for r=O, 1, ... , s, (ko,kt,k""',k2r)ES(r) m=O 

where C( r) are time independent constant. 
We prove the lemmas. 

Lemma 1. 

Let (ko, k1, k2, "', k2r)ES(r) and ko=O, then kr~s<kr+l. 

Proof Obvious from the definition of S(r). 

Lemma 2. 

Let (ko, k1, k2, ... , k2r)ES(r), ko=O and kr< l < kr+1 , 

then (ko', k{, kz', ... , klr)ES(r), which satisfies 

km'E{ko, kl, k2, ... , k2r, l} for m=O, 1, 2, "', 2r, and 
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(4) 

(5) 

lE{ko', kl', k2', ... , klr}, is uniquely determined in the following way: 

i) iff kr<l~s, k/=l and for m=l=r km'=km, 

ii) iff s < l < kT+l, kr+l == l and for m=l= r + 1 km' = km • 

Proof From Lemma 1, we see the classification by i) and ii) is reasonable. 
We see the following two from the conditions. 
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(1) 1 is included in (ko', k{, kz', "', k2r). 
(2) For every fixed mo', l-;;'!s(k'mo - km') -;;. s holds just for r of km' where 

m=O, 1, 2, "', 2r. 

The problem is which km must be replaced by I. We consider Case i). Since 1 ~!s(l 
-km)-;;'s holds for r+ 1 of km, that is to say; for m=O, 1,2, "', r, one of them must be 
eliminated (because of (2». If one of km, in which 0 -;;. m -;;. r -1, is eliminated; l-;;'!s(kr 
- km) -;;. s holds just for r -1 of km. This does not satisfy (2). So kr must be replaced 
by t. 1 plays the same role as kr, that is, 

l-;;'!s(l-km)-;;'s for m=O, 1, 2,"', r-1 , 

s+1-;;'!s(l-km)-;;'2s for m=r+1, r+2, "', 2r. 

Thus we see (ko', k{, "', klr), in which kr'=l and for m=l=r km'=km, belongs to S(r). 
We can prove Case ii) in the same way. Q. E. D. 

For the following Lemma 3 we define kp for every integer /3 as kp = km iff m - /3 
=0 (mod 2r+1), where 0-;;'m-;;'2r. 

lSemma 3. 

Let l-;;'!s(l-ka)-;;.s and l-;;'!s(ka+1-l)-;;.s, then (ko',k{,"',k2r)ES(r), which 
satisfies 

ko', k{, k2', "', klrE{ko, kl' k2, "', k2r, l} , 

IE{ko', k{, "', k2r}, 

is uniquely determined in the way: 

i) iff l-;;'!s(ka- r+s-l)-;;.s, ka'=1 and for m=l=a km'=km, 

ii) iff l-;;'!s(l-s-ka-r)~s,k~+1=1 and for m=l=a+1 km'=km. 

~roof This is proved by a little modification of the proof of Lemma 2. 

~roof of the theorem 

2r 2r 2s 
= ~ ( II ~km(t» ~ ~ akmlPlt) . (ko.k,,···.k2r)eS(r) m=O m=OI=O 

We see each term of the right-hand side of the above equation has the form 
PkoPk,"'Pk2rPI, in which (ko, kl, "', kzr)ES(r), IE{O, 1, "', 2s}. We calculate the 
coefficient of these terms. 

Since (ko, kl' "', kzr)ES(r), for IE{ko, kl, "', k2r} Ckok""k2r(l)=~~=Oakml=0. 
Next we prove for the case IEI={ko, kl, "', k2r}. 
From Lemma 3 we see the coefficient of the term PkoPk,'" Pk2rPI is, 

in Case i) of Lemma 3, 
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in Case ii) of Lemma 3, 

We consider Case i) of Lemma 3, 

since 

since 

2r 

Ckokl···k2r(t)= ~ akml= -1, 
m=Q 

-1 form=0,1,2,···,r 
ak 1= 

m +1 form=r+1,r+2, ... ,2r. 

-1 for m=O, 1, 2, ... , r-1 
akm'kr= +1 for m=r, r+1, ... , 2r 

in which km' is defined in Lemma 3. Thus we see 

CkOkl··.k2r(l) + Cko'kl' ... k2r(kr) =0 . 

For Case Ii) we can discuss in the same way. 
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