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Let E be a measurable subset in a segment [0, r] in the positive part of the real axis
in the complex plane, and U = u − v be the difference of subharmonic functions u 6≡ −∞
and v 6≡ −∞ on the complex plane. An integral of the maximum on circles centered at zero
of U+ := sup{0, U} or |u| over E with a function-multiplier g ∈ Lp(E) in the integrand is
estimated, respectively, in terms of the characteristic function TU of U or the maximum of u
on circles centered at zero, and also in terms of the linear Lebesgue measure of E and the
Lp-norm of g. Our main theorem develops the proof of one of the classical theorems of Rolf
Nevanlinna in the case E = [0, R], given in the classical monograph by Anatoly A. Goldberg
and Iossif V. Ostrovsky, and also generalizes analogs of the Edrei – Fuchs Lemma on small arcs
for small intervals from the works of A. F. Grishin, M. L. Sodin (1988) and A. F. Grishin,
T. I. Malyutina (2005). Our estimates are uniform in the sense that the constants in these
estimates do not depend on U or u, provided that U has an integral normalization near zero
or u(0) > 0, respectively.

1. Introduction.
1.1. Origins and research subject. One of the classical theorems of Rolf Nevanlinna
can be considered as the original source of our results in this article [1, pp. 24–27]. Anatolii
Asirovich Gol’dberg and Iosif Vladimiriovich Ostrovskii indicate the last reference in their
classic monograph [2, Notes, Ch. 1]. The original source [1] remained inaccessible to us. But
the mentioned theorem is stated with a complete proof in the monograph of A.A. Gol’dberg
and I.V. Ostrovskii [2, Ch. 1, Theorem 7.2]. We give this result exactly in their formulation
and notations.

Let f be a meromorphic function on the complex plane C with the real axis R,

M(r, f) := max
{∣∣f(z)∣∣ : |z| = r

}
, r ∈ R+ := {x ∈ R : x > 0}, (1M)
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and with the Nevanlinna characteristics

T (r, f) :=
r ∈ R+

m(r, f) +N(r, f), (1T)

m(r, f) :=
r ∈ R+

1

2π

2π∫
0

ln+
∣∣f(reiϕ)∣∣ dϕ, ln+ x :=

x ∈ R+
max{lnx, 0}, (1m)

N(r, f) :=
r ∈ R+

r∫
0

n(t, f)− n(0, f)
t

dt+ n(0, f) ln r, (1N)

where n(r, f) is the number of poles of f in the closed disc D(r) := {z ∈ C : |z| 6 r}, taking
into account the multiplicity.

Rolf Nevanlinna Theorem ([2, Ch. 1, Theorem 7.2]). Let f(z) be a meromorphic function,
k > 1 be a real number. Then

1

r

r∫
0

ln+M(t, f) dt 6 C(k)T (kr, f), (2)

where the constant C(k) > 1 depends on k only.

But [2, Ch. 1, proof of Theorem 7.2] uses [2, Chap. 1, Lemma 7.1] for R′ :=
√
kr, which

was proved only for R′ > R > 1. It turns out to be essentially. So, for meromorphic function

f(z) ≡
z ∈ C

1

z
, M(r, f)

(1M)
≡

r > 0

1

r
, (3M)

m(r, f)
(1m)
≡

r > 0
ln+ 1

r
, N(r, f)

(1N)
≡

r > 0
ln r, T (r, f)

(1T)
≡

r > 0
ln+ r, (3T)

for the left-hand side of (2), we have

1

r

r∫
0

ln+M(t, f) dt
(3M)
≡

r > 0

1

r

r∫
0

ln+ 1

t
dt ≡

r > 0
1 + ln+ 1

r
>

r > 0

1. (3I)

Thus, if (2) is satisfied, then C(k) ln+ kr > 1. But this is impossible if 0 6 r 6 1/k. For the
constant C(k) independent of r, this is possible only if the requirement of the form r > r0 > 0
is added to the inequality (2), and the constant C(k) also depends from the choice of a fixed
number r0 > 0. For the sake of fairness, we note that the known cases of application of the
Rolf Nevanlinna Theorem are considered, as a rule, only for the cases r → +∞ or r > 1.

Integrals over small subsets on arc or ray intervals are also widely used in the theory of
entire and meromorphic functions. The starting point of these second-type estimates is the
A. Edrei and W.H. J. Fuchs Lemma on Small Arcs [3, Sect. 2, Lemma III, Sect. 9], which has
found important applications in the theory of meromorphic functions, reflected, in particular,
in [2, Chap. 1, Theorems 7.3, 7.4]. A variation on the Edrei – Fuchs Lemma on Small Arcs
is a Lemma on Small Intervals by A. F. Grishin and M.L. Sodin. The authors note that its
proof repeats verbatim the proof of the Edrei – Fuchs Lemma on Small Arcs, and therefore
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it is presented in [4, Lemma 3.1] without proof, but with interesting applications [4, Lemma
3.2, Theorem 3.1]. We formulate the Grishin – Sodin Lemma on Small Intervals also in the
literal translation of the author’s version.

Denote by mesE the linear Lebesgue measure of E ⊂ R, and E(R) := E ∩ [1, R).

Grishin – Sodin Lemma on Small Intervals ([4, Lemma 3.1]). Let f be a meromorphic
function on C, E ⊂ [1,+∞). Then

1

r

∫
E(r)

ln+M(t, f) dt 6 C
k

k − 1

(mesE(r)

r
ln

2r

mesE(r)

)
T (kr, f), (4)

where C is an absolute constant.

A version of the Grishin – Sodin Lemma on Small Intervals for subharmonic functions,
but only of finite order, is proved in the joint work of A. F. Grishin and T. I. Malyutina
[5]. The Grishin –Malyutina Lemma on Small Intervals found several important applications
in proofs of key results of [5, Theorems 2, 4] and [6, 4.3, Lemma 4.2]. We do not give this
version, because it is embedded in our joint with L.A. Gabdrakhmanova main result from
[7, Theorem 1 (on small intervals)], where it is discussed in detail [7, Conclusion of the
Grishin –Malyutina Theorem].

In this article, we consider integrals over subsets of intervals on a ray, but without esti-
mates of integrals over small arcs on circles. In particular, we generalize the Rolf Nevanlinna
Theorem, as well as the Grishin – Sodin Lemma on Small Intervals. Our Main Theorem on
small intervals with integral Lp-norms for functions-multipliers is formulated in Subsecti-
on 1.2. Generalizations of the previous results are given in several directions. First, we consi-
der differences of subharmonic functions, i.e., δ-subharmonic functions of arbitrary growth
on the plane. We give a simple correction to the summands dictated by counterexample (3).
Second, in the integrand, a multiplier function of the class Lp is allowed for 1 < p 6∞, and
the integrals are estimated using the Lp-norm with corresponding changes in the contributi-
on of small subsets E ⊂ R+. Third, the estimates of integrals over intervals are in a certain
sense uniform with respect to the class of all (δ-)subharmonic functions with an integral
normalization near zero. This will make it possible to translate them in the future into esti-
mates of integrals of plurisubharmonic functions and their differences in a multidimensional
complex space both for intervals on rays with common beginnings and for subsets on these
intervals.

1.2. Basic definitions and a recent theorem on small intervals. This subsection can
be referred to as needed. Our notations may differ from those used above. We write single-
point sets without curly braces, if this does not cause confusion. So, N := {1, 2, . . . } is the
set of natural numbers and N0 := {0} ∪ N, Z := (−N) ∪ N0 is the set of integers , and R is
the extended real axis with −∞ := inf R and +∞ := supR, −∞ 6 x 6 +∞ for each x ∈ R,
−(±∞) = ∓∞, R+

:= R+ ∪+∞, and

x+(+∞) = +∞ for x ∈ R\−∞, x+ (−∞) = −∞ for x ∈ R\+∞,

x·(±∞) := ±∞ =: (−x) · (∓∞) for x ∈ R+\0,
±x
0

:= ±∞ for x ∈ R+\0, x

±∞
:= 0 for x ∈ R, but 0 · ±∞ := 0

(5)
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unless otherwise stated; x+ := max{0, x} =: (−x)− for x ∈ R; inf ∅ := +∞ and sup∅ :=
−∞ for the empty set ∅. An interval I ⊂ R is a connected set with ends inf I ∈ R and
sup I ∈ R; (a, b) := {x ∈ R : a < x < b}, [a, b] := {x ∈ R : a 6 x 6 b}, [a, b) := [a, b]\b,
(a, b] := [a, b] \ a. D(z, r) := {z′ ∈ C : |z′ − z| < r} is an open disc, D(z, r) := {z′ ∈
C : |z′ − z| 6 r} is a closed disc, ∂D(z, r) := {z′ ∈ C : |z′ − z| = r} is the circle with center
z ∈ C of radius r ∈ R+; D(z, 0) = ∅, D(z, 0) = ∂D(z, 0) = z, D(z,+∞) = C. Besides,
D(r) := D(0, r), D(r) := D(0, r), ∂D(r) := ∂D(0, r).

Given a function f : X → R, f+ := sup{0, f} and f− := (−f)+ are positive and negative
parts of function f , respectively; |f | := f+ + f−.

Given S ⊂ C, sbh(S) is the class of all subharmonic on an open neighbourhood of S.
The class sbh(S) contains the trivial (−∞)-function −∞. We set sbh∗(S) := sbh(S)\−∞
for connected subset S ⊂ C.

By λ we denote the linear Lebesgue measure on R and its restrictions on arbitrary
λ-measurable subsets S ⊂ R, by setting λ(±∞) := 0. We also use the notation mesS := λ(S)
from Subsection 1.1. The concepts almost everywhere, measurability and integrability mean
λ-almost everywhere, λ-measurability and λ-integrability, respectively.

We denote by

ess sup
S
f := inf

{
a ∈ R : λ

(
{x ∈ S : f(x) > a}

)
= 0
}

(6)

essential upper bound of measurable function f defined almost everywhere on S, and

L∞(S) :=
{
f : ‖f‖L∞(S) := ess sup

S
|f | < +∞

}
, (7∞)

and for numbers p > 1,

Lp(S) :=

{
f : ‖f‖Lp(S) :=

(∫
S

|f |p dλ
)1/p

< +∞
}
, p ∈ (1,+∞), (7p)

together with the numbers q associated with p by equality

1

p
+

1

q
= 1, 1 < q =

p

p− 1
< +∞, but q := 1 if p =∞. (7q)

If S := I is an interval with ends a 6 b, then for Lebesgue integral of f over the interval
I we will use two forms of notation∫

I

f dλ :=:

b∫
a

f(t) dt. (8)

For r ∈ R+ and an arbitrary function v : ∂D(0, r)→ R, we define

Mv(r) := sup
|z|=r

v(z), Cv(r) :=
1

2π

2π∫
0

v(reis) ds (9)

The latter is the average over the circle ∂D(0, r) for v, if the function s 7→ reis is integrable
on [0, 2π]; Cv(0) := Mv(0) = Cv(0) = v(0). For the properties of the characteristics Mv and
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Cv in the case of a subharmonic function v, see [8, 2.6], [9, 2.7]. So, for meromorphic functions
f on C, we have

M(r, f)
(1M)
= Mln |f |(r), m(r, f)

(1m)
= Cln+ |f |(r).

Theorem on small intervals with weight ([7, Theorem 1, Remark 1.1]). There is an
absolute constant a > 1 such that

[u] for any subharmonic function u ∈ sbh∗(C), i. e., v 6≡ −∞ on C,
[r] for any numbers 0 6 r0 6 r < R < +∞,

[E] for any measurable subset E ⊂ [r, R],

[g] for any measurable function g on E,

[b] for any number b ∈ (0, 1],

the following inequality is fulfilled∫
E

M|u|g dλ 6
(a
b
ln
a

b

)(
Mu

(
(1 + b)R

)
+ 2C−u (r0)

)
‖g‖L∞(E)×

×
(
mesE +min{mesE, 3bR} ln 3ebR

min{mesE, 3bR}

)
︸ ︷︷ ︸

m∞(E;R,b)

(10)

where m∞(E;R, b) 6 2mesE when mesE > 3bR, and

m∞(E;R, b) 6 2mesE ln
3ebR

mesE
, if mesE 6 3bR.

2. Main Theorem. For a Borel subset S ⊂ C, the set of all Borel, or Radon, positive
measures µ > 0 on S is denoted by Meas+(S), and Meas(S) := Meas+(S)−Meas+(S) is the
set of all charges, or signed measures, on S. For a measure µ ∈ Meas+

(
D(R)

)
, we set

µrad(r) := µ
(
D(r)

)
∈ R+, 0 6 r 6 R, (11m)

Nµ(r, R) :=

R∫
r

µrad(t)

t
dt ∈ R+

, 0 6 r 6 R, (11N)

For 0 6 r 6 R ∈ R+ and an arbitrary function v : ∂D(r) ∪ ∂D(R)→ R, we define

Cv(r, R)
(9)
:= Cv(R)− Cv(r) =

1

2π

2π∫
0

(
v(Reis)− v(reis)

)
ds (12)

provided that Cv(R) and Cv(r) are well defined.
If D ⊂ C is a domain and u ∈ sbh∗(D), then there is its Riesz measure

∆u :=
1

2π
4u ∈ Meas+(D), (13)

where 4 is the Laplace operator acting in the sense of the theory of distribution or generali-
zed functions. This definition of the Riesz measures carries over naturally to u ∈ sbh∗(S)
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for connected subsets S ⊂ C. If v ∈ sbh∗
(
D(R)

)
, then, by the Poisson – Jensen –Privalov

formula, we have
Cv(r, R) = N∆v(r, R) for all 0 < r < R < +∞. (14)

Let U = u − v be a difference of subharmonic functions u, v ∈ sbh∗
(
D(0, R)

)
, i. e., a

δ-subharmonic non-trivial (6≡ ±∞) function on D(R) with the Riesz charge ∆U = ∆u−∆v

[10], [11], [12], [13, 3.1]. A representation U = uU − vU with uU , vU ∈ sbh∗
(
D(0, R)

)
is

canonical if the Riesz measure ∆uU of uU is the upper variation ∆+
U of ∆U and the Riesz

measure ∆vU of vU is the lower variation ∆−U of ∆U . The canonical representation for U
is defined up to the harmonic function added simultaneously to each of the representing
subharmonic functions uU and vU . We define a characteristic function of this δ-subharmonic
function U as a function of two variables

TU(r, R) := Csup{uU ,vU}(r, R) = CU+(r, R) + CvU (r, R) =

(14)
= CU+(r, R) + N∆+

U
(r, R), 0 < r 6 R ∈ R+. (15)

This characteristic function TU is already uniquely defined for all 0 < r 6 R < +∞ by
positive values in R+, and is also increasing and convex with respect to ln in the second
variable R, but is decreasing in the first variable r 6 R.

Main Theorem. Let 0 < r0 < r < +∞, 1 < k ∈ R+, E ⊂ [0, r] be measurable, g ∈ Lp(E),
where 1 < p 6 ∞ and q ∈ [1,+∞) is from (7q), U 6≡ ±∞ be a δ-subharmonic non-trivial
functions on C, and u 6≡ −∞ be a subharmonic function on C. Then

1

r

∫
E

M+
U(t)g(t) dt 6 4q

k

k − 1

(
TU(r0, kr) + CU+(r0)

)
‖g‖Lp(E)

q
√
mesE

r
ln

4kr

mesE
, (16T)

1

r

∫
E

M|u|(t)g(t) dt 6 5q
k

k − 1

(
Mu+(kr) + Cu−(r0)

)
‖g‖Lp(E)

q
√
mesE

r
ln

4kr

mesE
. (16M)

3. Lemmata and Proof of Main Theorem.

Lemma 1. Let µ ∈ Meas+
(
D(R)

)
. Then

µrad(r) 6
R

R− r
Nµ(r, R) for each 0 6 r 6 R. (17)

Proof. By definitions (11), we have

µrad(r) =

R∫
r

µrad(r)

t
dt

/ R∫
r

1

t
dt 6 Nµ(r, R)

/ R∫
r

1

R
dt =

R

R− r
Nµ(r, R),

and we obtain (17).

Lemma 2. Let 0 6 r < R < +∞, E ⊂ [0, r] be measurable, U = u − v be a difference of
subharmonic functions u, v ∈ sbh∗

(
D(R)

)
, ∆v be the Riesz measure of v, and g ∈ Lp(E).

Then∫
E

M+
U(t)g(t) dt 6

(
R + r

R− r
CU+(R)

q
√
mesE +∆rad

v (R) sup
06x6R

∥∥∥ln 2R∣∣· − x∣∣
∥∥∥
Lq(E)

)
‖g‖Lp(E). (18)
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Proof. For w ∈ E ⊂ D(r), by the Poisson–Jensen formula ([8, 4.5]), we have

U(teia) =
1

2π

2π∫
0

U(Reis) Re
Reis + teia

Reis − teia
ds−

∫
D(R)

ln
∣∣∣R2 − zte−ia

R(teia − z)

∣∣∣ d∆u(z)+

+

∫
D(R)

ln
∣∣∣R2 − zte−ia

R(teia − z)

∣∣∣ d∆v(z) 6
R + r

R− r
CU+(R) +

∫
D(R)

ln
2R∣∣t− |z|∣∣ d∆v(z)

where the right-hand side of the inequality is positive and independent of a ∈ [0, 2π). Hence,
by integrating, we get∫

E

M+
U(t)g(t) dt 6

R + r

R− r
CU+(R)

∫
E

|g|(t) dt+
∫

D(R)

∫
E

ln
2R∣∣t− |z|∣∣ |g|(t) dt d∆v(z).

Therefore, by Hölder’s inequality, we obtain∫
E

M+
U(t)g(t) dt 6

R + r

R− r
CU+(R)‖g‖Lp(E)(mesE)1/q+

+∆v

(
D(R)

)
‖g‖Lp(E) sup

z∈D(R)

∥∥∥ln 2R∣∣· − |z|∣∣
∥∥∥
Lq(E)

.

The latter gives (18).

Lemma 3. Let q ∈ R+, 0 < A ∈ R+, and a ∈ (0, A/e]. Then
a∫

0

lnq
A

x
dx 6 (1 + qq+1)a lnq

A

a
. (19)

Proof. We denote by bqc := max{n ∈ Z : n 6 q} the integer part of q. Evidently,

ln
A

x
> 1 if x ∈ (0, A/e], (20)

We integrate the integral from (19) by parts bqc+ 1 times:
a∫

0

lnq
A

x
dx = a lnq

A

a
+ qa lnq−1

A

a
+ q(q − 1)a lnq−2

A

a
+ . . .

· · ·+ q(q − 1) · · · (q − bqc+ 1) lnq−bqc
A

a
+ q(q − 1) · · · (q − bqc)

a∫
0

lnq−bqc−1
A

x
dx 6

6
(
a lnq

A

a

)(
1 +

q

ln A
a

+
q(q − 1)

ln2 A
a

+ . . .

· · ·+ q(q − 1) · · · (q − bqc+ 1)

lnbqc A
a

+
q(q − 1) · · · (q − bqc)

a lnq A
a

a∫
0

lnq−bqc−1
A

x
dx

 6

(20)
6
(
1 + q + q(q − 1) + · · ·+ q(q − 1) · · · (q − bqc+ 1) + q(q − 1) · · · (q − bqc)

)︸ ︷︷ ︸
Pq

a lnq
A

a
.
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We have a recurrent formula Pq = 1 + qPq−1 for 1 6 q ∈ R+. Therefore,

Pq =

bqc∑
j=0

qj + qbqc
(
q − bqc

)
6 1 + qbqc+1 6 1 + qq+1 for each p ∈ R+.

Thus, we obtain (19).

Lemma 4. For E ⊂ [0, r] ⊂ [0, R], q > 1, and 0 6 x 6 R, we have∥∥∥ln 2R∣∣· − x∣∣
∥∥∥
Lq(E)

6 2q
q
√
mesE ln

4R

mesE
, (21)

Proof. We use

Lemma A ([2, Lemma 7.2]). Let f : (−a, a)→ R be an even integrable function on (−a, a)
decreasing on (0, a), E ⊂ (−a, a) be a measurable subset. Then

∫
E

f dλ 6 2

λ(E)/2∫
0

f(t) dt. (22)

By Lemma A we obtain

∫
E

lnq
2R∣∣t− x∣∣ dt =

∫
E−x

lnq
2R

|t|
dt 6 2

λ(E−x)/2∫
0

lnq
2R

t
dt = 2

λ(E)/2∫
0

lnq
2R

t
dt,

where a := λ(E)/2 6 r/2 6 R/2 6 2R/e =: A/e. Hence, by Lemma 3, we have∫
E

lnq
2R∣∣t− x∣∣ dt 6 2(1 + qq+1)

λ(E)

2
lnq

2R

λ(E)/2
= (1 + qq+1)(mesE) lnq

4R

mesE

and (1 + qq+1)1/q 6 (2qq+1)1/q = q
(
(2q)1/2q

)2
6 2q for q > 1, since the function x 7−→

x ∈ R+
xx is

decreasing in [1/e,+∞). Thus,∥∥∥∫
E

lnq
2R∣∣· − x∣∣

∥∥∥
Lq(E)

6 q
√

1 + qq+1 q
√
mesE ln

4R

mesE
6 2q

q
√
mesE ln

( 4R

mesE

)
which gives (21).

Main Lemma. Let 0 < r < +∞, 0 < b ∈ R+, E ⊂ [0, r] be measurable, U = u − v be
a difference of subharmonic functions u, v ∈ sbh∗

(
D
(
(1 + b)2r

))
, and g ∈ Lp(E), where

1 < p 6 +∞ and q ∈ [1,+∞) is from (7q). Then∫
E

M+
U(t)g(t) dt 6 2q

1 + b

b

(
CU+

(
(1 + b)r

)
+ N∆v

(
(1 + b)r, (1 + b)2r

))
×

×‖g‖Lp(E)
q
√
mesE ln

4(1 + b)r

mesE
. (23)
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Proof. We set R := (1 + b)r. By Lemma 2, Lemma 1 with (1 + b)2r instead of R and R
instead of r, and Lemma 4, we have∫

E

M+
U(t)g(t) dt 6

(2 + b

b
CU+

(
(1 + b)r

)
q
√
mesE+

+
1 + b

b
N∆v

(
(1 + b)r, (1 + b)2r

)
2q

q
√
mesE ln

4(1 + b)r

mesE

)
‖g‖Lp(E) 6

6 2
1 + b

b

(
CU+

(
(1 + b)r

)
+ N∆v

(
(1 + b)r, (1 + b)2r

))
‖g‖Lp(E)q

q
√
mesE ln

4(1 + b)r

mesE
,

which gives (23).

Proof of the Main Theorem. We can assume that U = u− v is the canonical representation
of U . Consider a number b > 0 such that (1 + b)2 = k. By the Main Lemma, we have∫

E

M+
U(t)g(t) dt 6 2q

√
k√

k − 1

(
CU+(

√
kr) + N∆v(

√
kr, kr)

)
‖g‖Lp(E)

q
√
mesE ln

4
√
kr

mesE

6 2q
2k

k − 1

(
CU+(r0, kr) + N∆v(r0, kr)︸ ︷︷ ︸

TU (r0,kr)

+ CU+(r0)
)
‖g‖Lp(E)

q
√
mesE ln

4kr

mesE
,

and, by definition (15), obtain (16T).
Evidently, for any function u with values in R, we have

M+
u = Mu+ , M|u| 6 Mu+ +Mu− = Mu+ +M(−u)+ , (24)

If u ∈ sbh∗(C), then, under conditions of the Main Theorem, the function M+
u is increasing,

and, by Hölder’s inequality,∫
E

Mu+(t)g(t) dt 6 Mu+(r)‖g‖Lp(E)
q
√
mesE. (25)

For Uu := 0 − u, the difference 0 − u is the canonical representation of δ-subharmonic
non-trivial function Uu and we have

TUu(r, R)
(15)
= Csup{0,u}(r, R) = Cu+(r, R) 6 Cu+(R) 6 Mu+(R). (26)

Hence, by the Main Theorem in part (16T) for Uu in the role of U , we obtain

1

r

∫
E

M(−u)+(t)g(t) dt
(24)
=

1

r

∫
E

M+
Uu
(t)g(t) dt 6

(16T)
6

4kq

k − 1

(
TUu(r0, kr) + CU+

u
(r0)

)
‖g‖Lp(E)

q
√
mesE

r
ln

4kr

mesE
6

(26)
6

4kq

k − 1

(
Mu+(kr) + C(−u)+(r0)

)
‖g‖Lp(E)

q
√
mesE

r
ln

4kr

mesE
.

The latter together with (25) gives (16M).
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