
Biol Cybern

DOI 10.1007/s00422-014-0621-7

ORIGINAL PAPER

Integrate-and-fire neurons driven by asymmetric dichotomous

noise

Felix Droste · Benjamin Lindner

Received: 31 January 2014 / Accepted: 8 July 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract We consider a general integrate-and-fire (IF)

neuron driven by asymmetric dichotomous noise. In contrast

to the Gaussian white noise usually used in the so-called dif-

fusion approximation, this noise is colored, i.e., it exhibits

temporal correlations. We give an analytical expression for

the stationary voltage distribution of a neuron receiving such

noise and derive recursive relations for the moments of the

first passage time density, which allow us to calculate the fir-

ing rate and the coefficient of variation of interspike intervals.

We study how correlations in the input affect the rate and reg-

ularity of firing under variation of the model’s parameters for

leaky and quadratic IF neurons. Further, we consider the limit

of small correlation times and find lowest order corrections

to the first passage time moments to be proportional to the

square root of the correlation time. We show analytically that

to this lowest order, correlations always lead to a decrease

in firing rate for a leaky IF neuron. All theoretical expres-

sions are compared to simulations of leaky and quadratic IF

neurons.
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1 Introduction

Models of the integrate-and-fire (IF) type have been widely

used in the study of neural systems (reviewed in Burkitt

2006a,b). Usually, they describe neuronal dynamics via a

single variable, the membrane voltage v, complemented by

a fire-and-reset rule that is applied once a voltage thresh-

old is crossed. In numerical as well as analytical studies,

this minimal description has allowed insights, for instance,

into neuronal information transmission properties (Brunel et

al. 2001; Lindner and Schimansky-Geier 2001), the effect

of input correlations (De La Rocha et al. 2007; Salinas

and Sejnowski 2002; Moreno et al. 2002), or the dynamics

of whole networks (Brunel 2000; Softky and Koch 1993;

Shadlen and Newsome 1998). Further, it can be readily

extended to include more complex behavior, such as spike-

frequency adaptation (Liu and Wang 2001; Schwalger et al.

2010), which can then be studied in a well-understood setting.

Last but not least, exponential IF models have been shown

to be powerful predictors of the dynamics of real pyramidal

cells (Badel et al. 2008).

The synaptic input to the neuron is commonly thought of

as a sequence of stereotypical spikes with stochastic arrival

times; mathematically speaking, it is a point process where

each event is a delta function (shot noise). As such dis-

crete input with a potentially rich correlation structure is

notoriously difficult to treat analytically, many studies have

employed the so-called diffusion approximation, modeling

the massive synaptic bombardment as Gaussian white noise.

This is usually justified by arguing that the overall input is a

superposition of a large number of nearly uncorrelated spike

trains and that each individual synaptic event only has a small

weight.

However, there are various physiologically observed input

characteristics that cannot be accounted for by uncorrelated
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Gaussian fluctuations. Deviations from Gaussian white noise

occur both with respect to the stationary distribution, which

is often non-Gaussian, and temporal correlations, which can

be pronounced. In other words, a more faithful description

of the input is a non-Gaussian colored noise process.

In certain brain states, for example, the input switches

between two well distinguishable levels, so-called up and

down states of the network (Cowan and Wilson 1994; Shu et

al. 2003). Such input is not Gaussian but follows a bimodal

distribution; on a coarse level, it can be considered two-

valued. Further, in some cells, it has been shown (Markram

et al. 1997) that the assumption of many small superposed

pulses underlying the Gaussian approximation is violated and

that thus, the shot-noise character of synaptic input should

be taken into account (Richardson and Gerstner 2005).

Deviations from the assumption of white input (i.e., lack

of temporal correlations) are even more severe in many neural

systems. The activity of presynaptic cells may be correlated,

both among neurons (De La Rocha et al. 2007) and in time

(Bair et al. 1994) and superposition of spike trains does not

remove temporal correlations (Lindner 2006). This, along

with synaptic filtering (Brunel and Sergi 1998; Moreno et al.

2002) and short-term synaptic plasticity (Lindner et al. 2009),

leads to an overall input that is colored instead of white.

A simple non-Gaussian colored noise process is dichoto-

mous noise, a Markovian two-valued stochastic process. In

physics and biophysics, dichotomous noise has been pop-

ular as a modeling tool for a long time (Horsthemke and

Lefever 1984; Hänggi and Jung 1995; Bena 2006), both

due to its analytical tractability as well as its applicability

to “on-off” situations. Dichotomous noise has been used

to model a vast number of phenomena, ranging from the

movement of molecular motors (Astumian and Bier 1994)

to the switching of single spins (Rugar et al. 2004). Some

further applications arise because dichotomous noise con-

verges to Gaussian white noise or Poissonian shot noise

when taken to appropriate limits (van den Broeck 1983). In

contrast to the (likewise exponentially correlated) Gaussian

Ornstein–Uhlenbeck process, dichotomous noise is a discrete

process, possessing infinitely many cumulant correlation

functions.

In neuroscience, dichotomous noise has been used to

model the opening and closing of ion channels (Horsthemke

and Lefever 1981; Fitzhugh 1983; Goychuk and Hänggi

2000); its use as a model for neural input has been rela-

tively sparse (Salinas and Sejnowski 2002; Lindner 2004a).

However, dichotomous noise is interesting in several of the

situations mentioned above. Specifically, it can be used to

model input (i) from a presynaptic population that under-

goes transitions between up and down states, (ii) in the form

of finite pulses, and (iii) from a strong single presynaptic

bursting cell. More generally, dichotomous noise allows to

build a tractable model to explore the effect of temporal cor-

relations and non-Gaussianity of input currents on the firing

statistics of neurons.

Here, we apply the well-developed techniques for the

study of dichotomous flows (Horsthemke and Lefever 1984;

Bena 2006) to neuron models of the IF type. In doing so, the

main difference to the problems previously considered in the

statistical physics literature lies in the initial and boundary

conditions that are imposed by the fire-and-reset rule. In the

first part, we derive exact expressions for the stationary dis-

tribution of membrane voltages as well as the moments of

the first passage time density for a general IF neuron driven

by dichotomous noise with asymmetric switching rates. We

emphasize that this constitutes one of the rare cases where

the firing statistics of a stochastic neural dynamics can be

exactly calculated. As a first application, we then use these

expressions to study the effect of temporal input correlations

on neural firing. In the interest of conciseness, we restrict

ourselves to symmetric rates in this case; the general asym-

metric case is especially relevant for taking the shot-noise

limit and for modeling input from a presynaptic population

that switches between up and down states, both of which will

be dealt with elsewhere.

The impact of temporal correlations in the input on the

firing statistics of a neuron has been studied by a number of

authors, mostly using Ornstein–Uhlenbeck (OU) processes

(Brunel and Sergi 1998; Fourcaud and Brunel 2002; Salinas

and Sejnowski 2002; Brunel and Latham 2003; Middleton et

al. 2003; Lindner 2004a; Moreno et al. 2002; Schwalger and

Schimansky-Geier 2008). Specifically, one can ask whether

the firing rate increases or decreases with increasing corre-

lation time and whether firing becomes more or less regular.

Salinas and Sejnowski (2002) have investigated these ques-

tions in a setup of perfect and leaky IF neurons receiving

symmetric dichotomous noise. They give analytical expres-

sions for firing rate and CV in closed form for the perfect

IF and as a series expansion for the leaky IF. For both, they

report that firing rate as well as CV increases with increasing

correlation time τc. When varying τc, Salinas and Sejnowski

(2002) keep the noise variance fixed. As we argue below, this

is the proper choice for input with large τc, while for small

τc, fixing the noise intensity allows for a more meaningful

comparison between white and correlated input, and leads to

different results (most importantly, we find a decrease instead

of an increase in firing rate).

The outline of this paper is as follows: After describing

the model and the governing equations (Sect. 2), we calcu-

late exact expressions for the stationary probability density

(Sect. 3) of a general IF neuron driven by dichotomous noise.

We then give exact recursive relations for the moments of

the first passage time density (Sect. 4) and derive a simple

approximation for rate and CV that is valid in the limit of

long correlation times (Sect. 5). In Sect. 6, we apply these

results and study the effect of correlations on firing rate and
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CV. Specifically, we plot firing rate and CV as a function of

the correlation time, the base current, and the noise intensity

both for leaky and quadratic IF neurons and compare them

with the white-noise-driven case. In all cases, we find the

firing rate to be lower for correlated input, while the CV may

be either higher or lower. In Sect. 7, we consider the limit

of small correlation times and show analytically that to the

lowest order in τc, the firing rate of leaky IF neurons always

decreases with the correlation time. We conclude with a brief

discussion of our results in Sect. 8.

2 Model and governing equations

We consider a general IF neuron. Between spikes, its voltage

dynamics is described by

v̇ = f (v) + η(t), (1)

where η(t) is dichotomous noise and f (v) is a continu-

ous, potentially nonlinear function. Whenever v crosses the

threshold vT , it is reset to vR and a spike is registered. Com-

mon choices for f (v) are f (v) = µ, yielding the perfect

IF neuron (PIF), f (v) = µ − v, the leaky IF neuron (LIF),

and f (v) = µ + v2, the quadratic IF neuron (QIF), where

the parameter µ quantifies a base current to the neuron. We

will use the latter two models for numerical verification of

the expressions we derive, but stress that our theory is valid

for arbitrary nonlinearities. Note that for ease of notation,

we consider non-dimensionalized dynamics where time is

measured in units of the membrane time constant.

The dichotomous Markovian process (DMP) η(t) is a two-

state process; it jumps between the values σ+ and σ− (see

Fig. 1). Jumps happen at constant rates k+ and k−, where k+
denotes the rate of hopping from σ+ to σ− (and vice versa

time

A B

C

Fig. 1 Dichotomous noise. a Dichotomous noise is a two-state process,

jumping between a “+” state with value σ+ and a “-” state with value

σ− at constant rates k+ and k−. b A sample realization of dichotomous

noise. c Voltage time course of an LIF driven by this noise

for k−). When k+ = k− = k and σ+ = −σ− = σ, η(t) is

called symmetric. Note that asymmetry in the values σ± can

always be transformed away: a system driven by such noise

is equivalent to a system with an additional bias (σ++σ−)/2,

driven by noise with symmetric values ±σ , where σ = (σ+−
σ−)/2. We assume σ+ > σ− and restrict all further analysis

to the case f (v) + σ+ > 0 for all v ∈ [vR, vT ] (thereby

excluding scenarios where the neuron would never be able

to reach the threshold).

The time evolution of dichotomous noise is described by

the master equation

d

dt
P+(t) = −k+ P+(t) + k− P−(t), (2)

d

dt
P−(t) = k+ P+(t) − k− P−(t), (3)

where P±(t) is the probability that the DMP takes the value

σ± at time t . The solution of this equation is straightforward

and well known (Fitzhugh 1983; Horsthemke and Lefever

1984); here, we list important statistics it allows to calculate.

The expectation of η(t) is

〈η(t)〉 = k−σ+
k+ + k−

+ k+σ−
k+ + k−

. (4)

It is apparent that in general, asymmetric dichotomous noise

has nonzero mean. The residence times in each state are expo-

nentially distributed with expectation 1/k±; the variance of

the process is

var(η(t)) = 2σ 2k+k−
(k+ + k−)2

. (5)

Dichotomous noise is exponentially correlated with the cor-

relation time τc given by

τc = 1

k+ + k−
. (6)

Another quantity useful for the comparison to other noise

processes is the noise intensity

D = 2σ 2k+k−
(k+ + k−)3

. (7)

In accordance with the standard approach for dynami-

cal systems driven by dichotomous noise (Horsthemke and

Lefever 1981; Bena 2006), we extend the master equation

to the full system (noise process and neuronal dynamics) by

considering P±(v, t)dv, i.e., the probability that the DMP

takes the value σ± and the neuron’s membrane voltage is in

the interval (v, v + dv) at time t . To this end, we combine

the continuity equations that link the change in P±(v, t) to

the fluxes J±(v, t) = ( f (v)+σ±)P±(v, t) with Eqs. (2) and

(3). Additionally, we need to incorporate the fire-and-reset

rule: Trajectories are removed at vT and reinserted at vR . If

f (vT ) + σ− > 0, the threshold can be crossed at both noise
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values. For the moment, we call the respective fluxes over

the threshold r+(t):=J+(vT , t) and r−(t):=J−(vT , t); they

sum to the instantaneous firing rate, r(t) = r+(t) + r−(t).

The probability density is thus governed by

∂t P+(v, t) = −∂v(( f (v) + σ+)P+(v, t))

−k+ P+(v, t) + k− P−(v, t)

+r+(t) (δ(v − vR) − δ(v − vT )) , (8)

∂t P−(v, t) = −∂v(( f (v) + σ−)P−(v, t))

+k+ P+(v, t) − k− P−(v, t)

+r−(t) (δ(v − vR) − δ(v − vT )) . (9)

This describes the stochastic switching between two deter-

ministic flows, the “+” dynamics and the “-” dynamics. The

source and sink terms r±(t)δ(v − vR) and r±(t)δ(v − vT )

can be seen as a formal way to prescribe boundary condi-

tions (cf. Richardson and Swarbrick 2010). They implement

the fire-and-reset rule and mark the most profound differ-

ence to dichotomous noise problems previously treated in

the statistical physics literature.

3 Stationary distribution

We first want to calculate the stationary probability distrib-

ution of voltages. To this end, we start from the stationarity

condition for Eqs. (8) and (9),

0 = −
(

( f̂ (v) + σ)P+(v)

)′

− k+ P+(v) + k− P−(v)

+ r0α (δ(v − vR) − δ(v − vT )) ,

(10)

0 = −
(

( f̂ (v) − σ)P−(v)

)′

+ k+ P+(v) − k− P−(v)

+ r0(1 − α) (δ(v − vR) − δ(v − vT )) ,

(11)

where we have symmetrized the DMP values by introducing

f̂ (v):= f (v) + σ+ + σ−
2

, σ :=σ+ − σ−
2

(12)

(to unburden notation, we return to calling this new function

f (v) in the following) and where we have expressed the

fluxes over the threshold by the stationary firing rate r0 and

the ratio

α:=r+/r0, (13)

which denotes the fraction of trajectories that cross the

threshold in the “+” dynamics.

Without solving the equations, we can already assess how

the probability density behaves at threshold and reset volt-

age due to the fire-and-reset rule. To this end, we integrate

Eq. (10) from vR − ǫ to vR + ǫ and let ǫ → 0, which yields

-1 0 1
v

0

0.5

1

p
(v

)

-2 0 2
v

0

0.5

1
A B FIQFIL

Fig. 2 Stationary probability density compared to the diffusion

approximation. Input in both cases is symmetric dichotomous noise

with intensity D = 0.4 and correlation time τc = 0.15. a LIF with

µ = 0.8, vR = 0, vT = 1. b QIF with µ = −0.2, vR = −∞, vT = ∞.

We plot theory (thin lines) and simulation results (circles) and compare

them to the analytical results for white noise input with the same D

(thick lines, see e.g., Vilela and Lindner 2009). The most prominent

qualitative difference lies in the discontinuities that correlated input

induces at the (finite) reset and threshold points of the LIF

P+(v+
R ) − P+(v−

R ) = r0
α

f (vR) + σ
, (14)

where P+(v±
R ) = limǫ→0 P+(vR ± ǫ). Similarly, integrating

from vT − ǫ to vT + ǫ and taking into account that there is

no probability above threshold yields

P+(v−
T ) = r0

α

f (vT ) + σ
. (15)

Analogously, we obtain

P−(v+
R ) − P−(v−

R ) = r0
1 − α

f (vR) − σ
, (16)

P−(v−
T ) = r0

1 − α

f (vT ) − σ
. (17)

Here, we already observe an important difference to the case

of IF neurons driven by white noise: The probability density

is no longer continuous, but exhibits jumps at vR and vT (cf.

Fig. 2). This is typical for colored noise and has also been

observed for neurons driven by an OU process (Fourcaud and

Brunel 2002).

In the following, we will solve Eqs. (10) and (11) sep-

arately below vR and between vR and vT , i.e., excluding

the source and sink terms. The jump conditions can then

be satisfied by choosing the respective integration constants

appropriately.

Ultimately, we are interested in the probability that the

voltage is in an infinitesimal interval aroundv, independent of

the state of the noise. The corresponding probability density

is given by

p(v):=P+(v) + P−(v). (18)
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We define also

q(v):=P+(v) − P−(v). (19)

Writing Eqs. (10) and (11) in terms of p(v) and q(v) and

adding one equation to the other leads to a stationarity con-

dition for the total flux which can be directly integrated,

yielding

J0 = f (v)p(v) + σq(v), (20)

where J0 is piecewise constant:

J0 =
{

0 if v < vR, v > vT ,

r0 if vR < v < vT .
(21)

Subtracting Eq. (11) from Eq. (10) yields one remaining ordi-

nary differential equation (ODE),

( f (v)q(v) + σ p(v))′ + k2 p(v) + k1q(v) = 0, (22)

where

k1:=(k+ + k−), k2:=(k+ − k−). (23)

We can eliminate q(v) using Eq. (20) and define g(v):= f (v)

J0 − ( f 2(v) − σ 2)p(v); the ODE then reads

g′(v) = − f (v)k1 − σk2

f 2(v) − σ 2
g(v)

+ J0

f 2(v) − σ 2

(

σ 2k1 − σ f (v)k2

)

.

(24)

Note that we have divided by f 2(v) − σ 2 here, which can

lead to singular behavior at points where the “-” dynamics

has a fixed point (FP); this is treated in detail below.

Solving the ODE through variation of constants and inte-

grating by parts to simplify the result yields

p(v) = e−φ(v)

f 2(v) − σ 2

[

c + J0

(

f (d)eφ(d)

+
∫ v

d

ds eφ(s)( f ′(s) + k1)

)]

,

(25)

where

φ(v):=k+

∫ v

du
1

f (u) + σ
+ k−

∫ v

du
1

f (u) − σ
. (26)

In Eq. (25), d can still be chosen freely, as long as c has

not been fixed. Equation 25 represents two solutions (one

with J0 = 0 for v < vR and one with J0 = r0 for v > vR),

each with its own integration constant c. In order to fully

appreciate how these integration constants as well as r0 and

α are determined, we first need to discuss how fixed points

of the “-” dynamics need to be dealt with.

3.1 Dealing with fixed points in the “-” dynamics

As mentioned above and noted first by Bena et al. (2002),

problems may arise at fixed points of the deterministic flows.

We only need to consider fixed points in the “-” dynamics,

f (vF )−σ = 0, as fixed points in the “+” dynamics would be

impossible for the system to overcome; such a neuron would

never fire. To see how p(v) behaves in the vicinity of a fixed

point vF , we approximate f (v) ≈ f (vF ) + f ′(vF )(v −
vF ) = σ + f ′(vF )(v − vF ). This means f ′(v) ≈ f ′(vF ),

f 2(v) − σ 2 ≈ 2σ f ′(vF )(v − vF ),

e−φ(v) ≈ |v − vF |−
k−

f ′(vF ) ·
∣

∣

∣v − vF + 2σ
f ′(vF )

∣

∣

∣

− k+
f ′(vF )

(27)

and thus

p(v) ≈
|v − vF |−

k−
f ′(vF ) ·

∣

∣

∣v − vF + 2σ
f ′(vF )

∣

∣

∣

− k+
f ′(vF )

2σ f ′(vF )(v − vF )

·
[

c + J0

(

f (d)eφ(d)

+
∫ v

d

ds eφ(s)( f ′(s) + k1)

)

]

.

(28)

Further discussion of this formula depends on whether we

are dealing with a stable or an unstable fixed point.

3.1.1 Unstable fixed points

If vU is an unstable fixed point, f ′(vU ) > 0 and p(v)

diverges,

p(v) ∼ |v − vU |−
k−

| f ′(vU )| −1
. (29)

This is “clearly unphysical and mathematically improper

in view of the requirement of normalization” (Bena et al.

2002). Specifically, one would expect the probability to find

the system near an unstable fixed point to be low and not high,

and more generally, divergences in the probability density are

only acceptable if they can be integrated.

As pointed out in Bena et al. 2002, one thus needs to con-

sider separate solutions above and below such fixed points

and then choose their integration constants such that diver-

gent terms vanish at vU . In the case considered here, this

corresponds to setting c = 0 and d = vU , both above and

below vU . We can then apply l’Hôpital’s rule to calculate the

limit

lim
v→vU

p(v) = r0

2σ

(

1 + k+
f ′(vU ) + k−

)

. (30)

To see that this does indeed make sense, it is instructive

to take one step back and ask: If p(v) must not diverge at

vU , which value should it take? At a fixed point of the “-”
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Fig. 3 Behavior of the stationary probability density at fixed points

of the “-” dynamics. We plot probability densities (thin lines: theory,

circles: simulation results) as well as the nonlinearity f (v) ± σ , where

stable FPs are marked by black dots and unstable FPs by white dots. a

LIF with µ = 0.8, vR = 0, vT = 1, σ = 0.4 and k+ = 1.5. Depending

on the value of k−, p(v) can either be continuous at a stable FP (k− =
1.2) or exhibit an integrable divergence (k− = 0.8). b QIF with µ =
−0.2, vR = −∞, vT = ∞, σ = 3 and k+ = 5. Again, p(v) is either

continuous (k− = 4) or exhibits an integrable divergence (k− = 3) at

the stable FP. Note that due to a proper choice of integration constants,

it is smooth and continuous at the unstable FP

dynamics, J− = ( f (vU )−σ)P−(vU ) = 0, so that the whole

flux r0 has to be mediated by the “+” dynamics, which fixes

P+(vU ) = r0

f (vU ) + σ
= r0

2σ
. (31)

This allows to calculate P−(vU ) and thus p(vU ) as follows:

At vU , Eq. (11) becomes

0 = − f ′(vU )P−(vU ) − k− P−(vU ) + k+
r0

2σ
, (32)

which can be solved for P−(vU ), yielding indeed the limit

calculated above.

3.1.2 Stable fixed points

For stable fixed points, f ′(vS) = −| f ′(vS)| and one sees

from Eq. (28) that the previously problematic term becomes

|v − vS|
k−

| f ′(vS )| −1
. (33)

For k− > | f ′(vS)|, this does not diverge (trajectories leave

toward the “+” state faster than new ones are coming in);

for k− < | f ′(vS)|, it diverges but can still be integrated

(cf. Fig. 3). Stable fixed points thus pose no fundamental

problem; however, we still have to make sure that they lie

outside the integration boundaries of the integral in Eq. (25),

where they would cause a divergence.

3.2 Boundary conditions and full solution

In contrast to the case of white-noise-driven IF neurons,

the stationary probability density is in general not defined

for arbitrarily negative values of v. The support of p(v)

is the interval [v−, vT ], where v− is either the first fixed

point smaller than vR , if f (vR) − σ < 0, or vR itself, if

f (vR) − σ > 0 (in both cases, trajectories cannot cross this

point toward smaller values of v. It extends to negative infin-

ity only if f (vR) − σ < 0, and no fixed point exists below

of vR (such as, e.g., for a PIF with µ − σ < 0).

As pointed out above, solutions have to be given sepa-

rately for intervals that are delimited by vR , vT , and fixed

points of the “-” dynamics. The integration constants are

either determined by the jump conditions at reset voltage and

threshold or, if the interval in question neighbors an unstable

fixed point, fixed by the requirement of avoiding divergence

(see Fig. 4 for a schematic depiction). If the lower and upper

interval boundaries are denoted by a and b, the full solution

is given by

p(v) = r0e−φ(v)

f 2(v) − σ 2
·

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ΓI(v) if b = vRand no FPs > vR

ΓII(v) if b = vR and first unst. FP at vU

ΓIII(v) if a = vU or b = vU

ΓIV(v) if a = vR and f (vR) − σ > 0

ΓV(v) if b = vT and f (vT ) − σ < 0,

(34)

where using the abbreviation h(v):=(σ (2α−1)− f (v))eφ(v),

the Γi (v) are given by

ΓI(v) = h(vR) − h(vT )

−
vT
∫

vR

ds eφ(s)( f ′(s) + k1), (35)

ΓII(v) = h(vR) −
vU
∫

vR

ds eφ(s)( f ′(s) + k1), (36)

ΓIII(v) =
v

∫

vU

ds eφ(s)( f ′(s) + k1), (37)

ΓIV(v) = −h(vR) +
v

∫

vR

ds eφ(s)( f ′(s) + k1), (38)

ΓV(v) = −h(vT ) −
vT
∫

v

ds eφ(s)( f ′(s) + k1). (39)

The above expressions for p(v) still include r0, the sta-

tionary firing rate, and α, the fraction of trajectories that cross

vT during “+” dynamics. The latter can be calculated as fol-

lows: If f (vT ) − σ < 0, threshold crossings happen only

during “+” dynamics, which entails α = 1. Otherwise, the
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Fig. 4 Schematic depiction of how the integration constants for the

probability density are determined in different regions (delimited by

dashed lines). Integration constants in regions next to unstable fixed

points are always chosen to avoid a divergence; the remaining ones are

determined by the jump conditions at reset and threshold. If f (vT )−σ <

0, threshold crossing happens only via the “+” dynamics, so α = 1. If

f (vT ) − σ > 0, the integration constant in the rightmost region is

either determined by ensuring non-divergence at the nearest fixed point

(necessarily unstable) or the jump condition at the reset, if no such

fixed point exists. This allows α to be determined via the jump condi-

tion at the threshold. Roman numerals denote which of the solutions

pI(v) · · · pV(v) applies. Note that commonly used IF models have at

most one stable and one unstable fixed point

integration constant of the rightmost interval is always deter-

mined by either an unstable FP or the jump condition at vR ,

which allows us to use the remaining jump condition at the

threshold to calculate α (see Fig. 4). This yields

α = 1

2

(

1 + f (vR)eφ(vR) − f (vT )eφ(vT )

σ
(

eφ(vR) − eφ(vT )
)

+

vT
∫

vR

ds eφ(s)( f ′(s) + k1)

σ
(

eφ(vR) − eφ(vT )
)

⎞

⎟

⎟

⎟

⎠

,

(40)

if there is no unstable FP, or

α = 1

2

(

1 + f (vT )

σ

−
e−φ(vT )

vT
∫

vU

ds eφ(s)( f ′(s) + k1)

σ

⎞

⎟

⎟

⎟

⎠

,

(41)

if the unstable FP next to the threshold is at vU . Finally, the

stationary firing rate r0 can be determined by requiring p(v)

to be normalized.

4 Moments of the inter-spike interval density

The expressions derived in the previous section allow us to

calculate the stationary distribution of voltages and the fir-

ing rate of an IF neuron driven by dichotomous noise. The

firing rate is inversely proportional to the average interspike

interval (ISI), i.e., the first moment of the ISI density. Higher

moments of the ISI density are also of interest; the second

moment, for example, appears in the definition of the coef-

ficient of variation (CV), which is often used to characterize

the regularity of neural firing. The ISI density is equivalent

to the density of trajectories that, starting at the reset voltage,

reach the threshold for the first time after a time T , i.e., the

first passage time (FPT) density.

In this section, we derive expressions for the moments

of the FPT density. To this end, we adopt and adapt the

approach outlined (for Gaussian white noise) in Lindner

2004b. The central argument of our derivation is the fol-

lowing: The FPT density ρ(T ) corresponds exactly to the

(time dependent) flux of probability across the threshold,

j (vT , T ) = J+(vT , T ) + J−(vT , T ), provided that all tra-

jectories start at vR at t = 0 and that no probability can

flow back from above the threshold (otherwise, we would

count re-entering trajectories multiple times). Note that we

do not need to directly consider the fire-and-reset rule in
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this case; it only enters through its impact on the initial

conditions.

For colored noise that can take continuous values, the “no-

backflow” condition is notoriously difficult to implement and

often only fulfilled approximately. Here, it amounts to the

simple condition J−(vT , t) ≥ 0. For f (vT ) − σ > 0, this is

automatically fulfilled, while for f (vT )−σ < 0, it will have

to be enforced through the boundary condition J−(vT , t) =
0. The n-th moment of the FPT density is then given by

〈

T n
〉

=
∞
∫

0

dt tn (J+(v, t) + J−(v, t)) . (42)

We start by rewriting the master equation Eqs. (8) and (9)

in terms of fluxes. We introduce

j (v, t):=J+(v, t) + J−(v, t) (43)

and

w(v, t) = J+(v, t) − J−(v, t), (44)

which allows us to write

∂t

(

f (v) j (v, t) − σw(v, t)

f 2(v) − σ 2

)

= −∂v j (v, t), (45)

∂t

(

f (v)w(v, t) − σ j (v, t)

f 2(v) − σ 2

)

= −∂vw(v, t)

−γ1(v)w(v, t) − γ2(v) j (v, t), (46)

where

γ1/2(v):= k+
f (v) + σ

± k−
f (v) − σ

. (47)

We then multiply both sides by tn and integrate over t from

0 to ∞ (the l.h.s by parts); introducing the abbreviations

Jn(v) :=
∫ ∞

0

dt j (v, t)tn, (48)

Qn(v) :=
∫ ∞

0

dt w(v, t)tn, (49)

we obtain

– for n = 0

∂v J0(v) = f (v) j (v, 0) − σw(v, 0)

f 2(v) − σ 2
, (50)

∂v Q0(v) = f (v)w(v, 0) − σ j (v, 0)

f 2(v) − σ 2

−γ1(v)Q0(v) − γ2(v)J0(v), (51)

– for n > 0

∂v Jn(v) = n
f (v)Jn−1(v) − σ Qn−1(v)

f 2(v) − σ 2
, (52)

∂v Qn(v) = n
f (v)Qn−1(v) − σ Jn−1(v)

f 2(v) − σ 2

− γ1(v)Qn(v) − γ2(v)Jn(v),

(53)

where we have used that

lim
t→∞

j (v, t) = lim
t→∞

w(v, t) = 0 ∀ v < vT (54)

(eventually, every trajectory will have crossed the thresh-

old). Given suitable boundary and initial conditions (IC), we

can recursively solve these ODEs for Jn(v). Evaluated at the

threshold, this is exactly the n-th FTP moment,

〈

T n
〉

= Jn(vT ). (55)

All trajectories start at the reset voltage vR at t = 0, so

for η(0) = σ , we have the ICs

P+(v, 0) = δ(v − vR), P−(v, 0) = 0 (56)

(and vice versa for η(0) = −σ ). Thus, we actually need to

consider two conditional FPT densities

ρ(T |η(0) = σ) (57)

and

ρ(T |η(0) = −σ). (58)

The stationary FPT density is then

ρ(T ) = p(η(0) = σ)ρ(T |η(0) = σ)

+ p(η(0) = −σ)ρ(T |η(0) = −σ),
(59)

where p(η(0) = σ) = α is the probability that the last

threshold crossing happened in “+” dynamics. Due to the

linearity of the problem, we can replace this averaging over

the noise upon firing by preparing a “mixed” initial state,

P+(v, 0) = αδ(v − vR), P−(v, 0) = (1 − α)δ(v − vR). We

thus have the ICs

j (v, 0) = (σ (2α − 1) + f (v)) δ(v − vR), (60)

w(v, 0) = ( f (v)(2α − 1) + σ) δ(v − vR). (61)

Equations (50, 52) can directly be integrated,

J0(v) = θ(v − vR), (62)

Jn>0(v) = n

v
∫

Cn

ds
f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2
, (63)

where θ(v) is the Heaviside step function and the integration

constant in Eq. (62) is fixed by requiring the FPT density to
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be normalized (J0(vT ) = 1). The other ODEs can be solved

by variation of constants, yielding the general solution

Q0(v) = e−φ(v)

⎡

⎢

⎣
D0 +

v
∫

E0

ds eφ(s)

·
(

(2α − 1)δ(s − vR) − γ2(s)θ(s − vR)

)

⎤

⎥

⎦
,

(64)

Qn>0(v) = e−φ(v)

⎡

⎢

⎣
Dn −

v
∫

En

ds eφ(s)

·
(

γ2(s)Jn(s) − n
f (s)Qn−1(s) − σ Jn−1(s)

f 2(s) − σ 2

)

⎤

⎥

⎦
,

(65)

where we have used φ(v) =
∫ v

dx γ1(x) and where En can

be freely chosen as long as Dn is not fixed.

Unfortunately, it is evident from Eqs. (64) and (65) that

the presence of fixed points of the “-” dynamics remains

the nuisance that it was in the calculation of the stationary

probability density (see Sect. 3.1). Again, we thus need to

split the range of possible voltages [v−, vT ] at fixed points

of the “-” dynamics [note that, in contrast to the previous

section, we do not need to split at vR , as the jump condition

at vR is already incorporated through the initial conditions

Eqs. (60 and 61)].

If an interval borders on an unstable FP, we can avoid

a divergence by setting the integration constants Dn = 0

and En = vU . To see that this makes sense, one can apply

l’Hôpital’s rule to calculate the limits of Q0(v) and Qn>0(v)

for v → vU and this choice of values,

lim
v→vU

Q0(v) = 1, (66)

lim
v→vU

Qn>0(v) = Jn(vU )

+ n

2k−
(Qn−1(vU ) − Jn−1(vU )) . (67)

At an FP of the “-” dynamics, all flux occurs through the

“+” state, so there is no difference between Jn(vU ) and

Qn(vU ). This is reflected in the two limits: According to

Eq. (62), J0(vU ) = 1 (unstable FPs occur only above the

reset voltage), so we have indeed J0(vU ) = Q0(vU ). Eq. (67)

extends this to all n by induction, as from Qn−1(vU ) =
Jn−1(vU ), Qn(vU ) = Jn(vU ) follows. This also means that

no special treatment of Eq. (63) is necessary at unstable

FPs, as the divergence of the integrand cancels exactly for

Qn(vU ) = Jn(vU ).

Boundary conditions for Qn(v) are well defined in all

intervals:

– Leftmost interval. If f (vR) − σ > 0, the lower bound-

ary is the reset voltage vR , which all trajectories leave

toward the right. For t > 0, P(vR, t) = 0 and conse-

quently J−(vR, t) = 0, fixing Q0(vR) = 2α − 1 and

Qn>0(vR) = 0. Otherwise, if f (vR) − σ < 0, the upper

boundary of the interval is either an unstable fixed point

(see inner intervals) or vT (with f (vT )−σ < 0, see right-

most interval).

– Inner intervals. Inner intervals necessarily have an unsta-

ble FP as upper or lower boundary, at which Qn(vU ) =
Jn(vU ).

– Rightmost interval. If f (vT ) − σ < 0, we need to make

sure that there is no flux of probability back across the

threshold. This amounts to imposing J−(vT , t) = 0,

implying Qn(vT ) = Jn(vT ). If f (vT ) − σ > 0, the “no-

backflow” condition is always fulfilled. In this case, we

have a condition at the lower boundary of the interval,

which is either an unstable FP (demanding Qn(vU ) =
Jn(vU )) or the reset voltage vR (with f (vR) − σ > 0, see

leftmost interval).

The integration constant of Jn>0(v) is determined as fol-

lows: If f (v−)−σ > 0, all trajectories leave v− = vR instan-

taneously toward higher values of v. Thus, p(v−, t) = 0 for

t > 0 and consequently Jn>0(v−) = 0. If f (v−)−σ < 0, v−
is at a stable FP, so that Jn(v−) = Qn(v−). Because Qn(v)

goes to zero as v approaches a stable FP, we again have the

condition Jn>0(v−) = 0.

The fraction of trajectories that cross the threshold in “+”

state, α, can be calculated using the expression given in

the previous section. An alternative derivation goes as fol-

lows: α corresponds to the time-integrated flux in “+” state,
∫ ∞

0 dt J+(vT , t). Thus, it can be determined from the rela-

tion

α = J0(vT ) + Q0(vT )

2
, (68)

in which Q0(vT ) on the r.h.s. in general also depends on α.

If there are no FPs other than a stable FP at v−, we obtain

the following recursive relations

J0(v) = θ(v − vR), (69)

Q0(v) = e−φ(v)

[

eφ(vT ) − θ(vR − v)eφ(vR) +

vT
∫

v

ds eφ(s)γ2(s)θ(s − vR)

]

, (70)

Jn>0(v) = n

v
∫

v−

ds
f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2
, (71)
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Qn>0(v) = e−φ(v)

⎡

⎣Jn(vT )eφ(vT ) +
vT
∫

v

ds eφ(s)

×
(

γ2(s)Jn(s) − n
f (s)Qn−1(s) − σ Jn−1(s)

f 2(s) − σ 2

)

⎤

⎦ . (72)

This case is relevant if σ is sufficiently large, e.g., when

considering a limit close to white noise. A general solution

that is further transformed to ease numerical integration is

given in Appendix 9.

Evaluating Eqs. (69) - (72) recursively, we can now obtain

an exact expression for the n-th moment of the FPT density,
〈

T n
〉

= Jn(vT ). (73)

This allows us to calculate, for instance, the stationary firing

rate (given here for the case that there is no FP above vR),

r0 =

⎡

⎣

vT
∫

v−

dx

(

θ(x − vR)

f (x) + σ
+ σe−φ(x)

f 2(x) − σ 2
·

x
∫

vT

dy
2k+θ(y − vR)eφ(y)

f (y) + σ

⎞

⎠

⎤

⎦

−1

.

(74)

Similarly, one may use J1(vT ) and J2(vT ) to obtain a

lengthy expression for the coefficient of variation CV =
√

〈

T 2
〉

− 〈T 〉2/ 〈T 〉 (which we do not reproduce here). These

exact expressions for firing rate and CV of a general IF neu-

ron driven by asymmetric dichotomous noise are a central

result of this work.

5 Approximation for firing rate and CV at large

correlation times

When the correlation time of the DMP is large, one can derive

a simple quasi-static approximation for the firing rate and CV.

While we have already derived exact expressions, valid over

the whole range of correlation times, in the previous sec-

tion, this approximation has its merits in allowing immediate

insights into neuronal firing at high τc, µ or σ , without the

need for numerical integration. The approach outlined below

shares similarities with those used to study PIF (Middleton

et al. 2003) and LIF neurons (Schwalger and Schimansky-

Geier 2008) driven by an OU process; however, the two-state

nature of the DMP renders the derivation considerably less

complicated.

Let us first make the notion of a “large” correlation time

more precise. If we fix the DMP η(t) in “+” state, we are

dealing with a deterministic system v̇ = f (v)+σ . We denote

the time that this system takes to go from vR to vT by T +
d .

If f (v) − σ > 0 for all v (the neuron also fires if the noise

is fixed in “-” state), we can equivalently define a T −
d . We

call the correlation time large if τc ≫ T +
d , and, in case T −

d

is defined, if also τc ≫ T −
d . Note that this implies the same

for the residence times in both states, i.e., 1/k± ≫ T +
d and

1/k± ≫ T −
d .

We start with the case where the neuron only fires in

“+” state ( f (v) − σ < 0 for some v). On average, it emits

1/(k+T +
d ) ≫ 1 spikes while in “+” state, followed by one

long ISI in the quiescent “-” state. Neglecting “boundary

effects” at switching events of the noise, the probability that

a randomly picked ISI is a short interval of length T +
d is thus

Ps =
1

k+
1

T +
d

1
k+

1

T +
d

+ 1
, (75)

while the probability that it is a long interval in “-” state is

Pl = 1
1

k+
1

T +
d

+ 1
. (76)

The mean ISI in this limit is given by

〈T 〉 = T +
d Ps + 1

k−
Pl (77)

≈ k+ + k−
k−

T +
d , (78)

where we have used that 1/(k+T +
d ) ≫ 1. Similarly, the sec-

ond moment is given by

〈

T 2
〉

=
(

T +
d

)2
Ps +

∞
∫

0

dt ′ t ′2k−e−k−t ′ Pl (79)

≈
T +

d

k+
+ 2

k2
−

1
k+

1

T +
d

. (80)

Firing rate and CV thus read

r0 ≈
k− 1

T +
d

k+ + k−
, (81)

CV ≈
√

2k+
(k+ + k−)2

1

T +
d

. (82)

For the case where threshold crossings happen also in “-”

state ( f (v)−σ > 0), expressions can be derived using similar

reasoning; here, we obtain

r0 ≈
k− 1

T +
d

+ k+ 1

T −
d

k+ + k−
, (83)

CV ≈
√

k+k−
(k+ + k−)2

(T +
d − T −

d )2

T +
d T −

d

. (84)
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For symmetric dichotomous noise, the expressions sim-

plify to

r0 ≈ 1

2

1

T +
d

, (85)

CV ≈
√

τc

T +
d

, (86)

if f (v) − σ < 0 for some v ∈ [vR, vT ], and

r0 ≈ 1

2

(

1

T +
d

+ 1

T −
d

)

, (87)

CV ≈
√

1

4

(T +
d − T −

d )2

T +
d T −

d

, (88)

if f (v) − σ > 0 for all v ∈ [vR, vT ].
It remains to calculate

T ±
d =

vT
∫

vR

dv

f (v) ± σ
. (89)

For the LIF, it reads

T ±
d = ln

(

µ ± σ − vR

µ ± σ − vT

)

, (90)

and for the QIF

T ±
d = π√

µ ± σ
. (91)

We will discuss the implications of these formulas in dif-

ferent limits and scalings in the next section.

6 Application: impact of correlations on firing rate and

CV

Can we make general statements about the influence that

temporal correlations in the input exert on the firing statis-

tics of a neuron? Does the firing rate increase or decrease

when we replace white input by correlated input? Does fir-

ing become more or less regular? In order to address such

questions, we first need to clarify how to choose parameters

to allow for a meaningful comparison between white noise

and dichotomous noise. Here and in the following, we con-

sider symmetric dichotomous noise (k+ = k− = k), but the

discussion also applies to the asymmetric case.

When varying the correlation time τc, one faces the ques-

tion of how to parameterize the noise process. One choice is

to keep its variance σ 2 constant, which in turn means that the

noise intensity D varies proportionally to τc, as

D = σ 2

2k
= σ 2τc. (92)

Alternatively, one may choose τc and D to parameterize the

noise, with the consequence that σ 2 varies inversely propor-

tional to τc. Choosing one or the other can have a decisive

impact on the response of the system and raises questions

about how to interpret the observed behavior: Is a change in

the response really a manifestation of changed correlations

in the input? Or is it rather a consequence of the simultaneous

change in σ or D, i.e., one that would also occur if τc were

fixed and only σ or D were varied?

The fact that white noise has infinite variance, but a finite

intensity suggests that in the limit of small correlation times,

the appropriate choice is fixing the noise intensity D. This

is indeed a common parameterization in the literature when

considering the white noise limit of colored noise (van den

Broeck 1983; Broeck and Hänggi 1984; Bena 2006; Four-

caud and Brunel 2002; Brunel and Latham 2003). On the

other hand, when τc is large, a more sensible choice is fix-

ing σ 2 (Schwalger and Schimansky-Geier 2008). This is also

the parametrization chosen by Salinas and Sejnowski (2002).

We note that an alternative parameterization that interpolates

between these two extremes has been used in Alijani and

Richardson (2011).

In Fig. 5 A and B, we reproduce Fig. 12a of Salinas and

Sejnowski 2002, which shows firing rate and CV of an LIF as

a function of τc for different values of σ (which are kept fixed

for each curve). Additionally, we plot the same curves as a

function of D and include results for a white-noise-driven

LIF (Fig. 5C,D). Exact expressions for the white noise case

have been known for a long time (Siegert 1951, for a sum-

mary of results for LIF and QIF see e.g., (Vilela and Lind-

ner 2009). First, we note that for the parameter values for

which it converges, the series expansion for the LIF given in

Salinas and Sejnowski 2002 is in excellent agreement with

our quadrature expressions (the resulting curves are indistin-

guishable). It can be seen, however, that for small correlation

times, much of the observed effect can already be explained

by the increase in noise intensity; it is already present if the

noise does not contain any correlations at all but is purely

white (thick line in Fig. 5C,D). Put differently, the increase in

firing rate and CV with τc can be attributed to the increase of

the noise intensity D = σ 2τc at fixed variance. If we instead

fix D, the firing rate drops with increasing correlation time

(illustrated by the symbols in Fig. 5A,C).

The analysis in Salinas and Sejnowski 2002 thus applies to

input with large correlation times; in order to make statements

about input with small τc, one should instead keep the noise

intensity D fixed. This is the parameterization we use in the

rest of this section. In order to fully describe the range of

neuronal responses one may observe in this parameterization,

we also show and interpret results for large correlation times.

The bounded support of the DMP has consequences that

one needs to keep in mind when doing parameter scans: It

must be possible for the neuron to fire in the “+” dynamics,
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Fig. 5 Firing rate (a, c) and CV (b, d) of an LIF at different correlation

times/noise intensities. All parameters were chosen as in Fig. 12a of

(Salinas and Sejnowski 2002) (vR = 1/3, vT = 1, µ = 0.5). For each

of the thin lines, only τc was varied, while σ was kept constant. Both

columns show curves for the same parameters; plotted as a function

of τc = 1/(2k) in a, b (reproducing Fig. 12a of Salinas and Sejnowski

2002) and as a function of the noise intensity D = σ 2/(2k) in c, d. Four

points in parameter space are marked by symbols to ease comparison

of the two columns. The thick lines are analytical results for an LIF

driven by Gaussian white noise with the same D. The insets in the right

column show the same plots over a wider range of noise intensities. It

can be seen that for small correlation times, much of the change in both

mean firing rate and CV can already be explained by the increase in

noise intensity. As illustrated by the symbols, the firing rate drops with

correlation time if the noise intensity is kept fixed. Note that to compare

our non-dimensionalized model quantitatively to the plots in Salinas

and Sejnowski 2002, time needs to be multiplied and rate divided by

the membrane time constant τm = 10 ms

which corresponds to demanding f (v)+σ > 0 for all acces-

sible v. If the neuron is in a sub-threshold regime ( f (v) < 0

for at least some v), this imposes a constraint on the possible

parameter values. For an LIF, they must fulfill the inequality

µ − vT +
√

D

τc

> 0, (93)

and for a QIF the inequality

µ +
√

D

τc

> 0. (94)

If f (v) alone is already positive for all v, the neuron is in a

supra-threshold regime and there is no such constraint; how-

ever, for

f (v) − σ > 0 (95)

f(v) + σ

f(v) - σv
R

v
T

η(t)

v(t)

A

B

Fig. 6 Two regimes of firing (here in an LIF). Shown are nonlinearities

and FPs (a) and an example time course of input and voltage (b). A

correlation time that is much larger than the deterministic time from

reset to threshold leads to burst-like behavior if there is a stable FP in

the “-” dynamics (left column). However, if the base current is high

enough or σ is small enough, the neuron may fire even if the DMP η(t)

is in the “-” state, leading to a much more regular spike train (right

column)

the stable fixed point in the “-” dynamics disappears (see

Fig. 6). This means that the neuron may fire even if the noise

never leaves the “-” state, which has a strong qualitative effect

on the rate and, especially, the regularity of firing.

In Figs. 7 and 8, we plot the firing rate (A) and the CV (B)

of an LIF and a QIF, respectively, when τc is varied while

D is kept constant. First of all, it is apparent that fixing D

results in a vastly different picture compared to (Salinas and

Sejnowski 2002). In particular, for small τc (where this is

the appropriate parameterization), we find that the firing rate

actually decreases with increased τc; for both LIF and QIF,

it is always lower than for white noise input with the same

intensity (thick bars). The CV at short correlation times is

always larger than for white noise input in the QIF, while it

can also be smaller for the LIF in a moderately sub-threshold

regime. For larger τc, effects of our parameterization become

clearly visible: In the supra-threshold case, the decrease in σ 2

eventually leads to the disappearance of the stable FP in the “-

” dynamics (cf. Fig. 6), leading to a kink in the curves. More

dramatically, in the sub-threshold case, firing is no longer

possible when the variance becomes to small ( f (v)+σ < 0

for at least some v); consequently, curves end at such points.

The behavior for τc → ∞ in the different parameteri-

zations can also be directly read off the expressions from

the quasi-static approximation, Eqs. (85)–(88): For fixed

D and a supra-threshold µ, both T +
d and T −

d converge to

Td :=
∫ vT

vR
dv/ f (v) for σ → 0, so for τc → ∞, the firing
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Fig. 7 Dependence of the firing rate (a) and the CV (b) of an LIF on

the correlation time τc. We vary the correlation time while adjusting σ to

keep D = 1 constant. Different curves correspond to different base cur-

rents: far sub-threshold (µ = −0.8), slightly sub-threshold (µ = 0.8),

and supra-threshold (µ = 1.6). Thin lines: theory (quadrature results),

circles: simulation results, dotted lines: quasi-static approximation (for

µ = 0.8 and µ = 1.6). Thick bars: theory for white-noise-driven LIF.

The firing rate can be seen to be always lower for correlated input com-

pared to the white noise case, while the CV can either be lower or higher

rate saturates (r0 → Td/2) and the CV tends to zero. In con-

trast, when σ 2 is fixed, T +
d and T −

d are independent of τc, and

one directly sees that the firing rate saturates, while the CV

either diverges ∼ √
τc (sub-threshold) or saturates (supra-

threshold). This is indeed the behavior described in Salinas

and Sejnowski 2002. The divergence of the CV ∼ √
τc was

also reported for OU noise with fixed variance (Schwalger

and Schimansky-Geier 2008).

In Figs. 9 and 10, we plot the firing rate (A) and the CV

(B) of an LIF and a QIF, respectively, as the mean input µ is

varied for three different values of τc. The firing rate shows

qualitatively the same behavior for LIF and QIF. It can be

seen to be lower for correlated than for white noise input,

and unsurprisingly, it increases monotonically with µ. The

kinks in the curves for τc = 1 and τc = 10 occur where the

stable FP in the “-” dynamics disappears (cf. Fig. 6). For the

LIF, the CV may be slightly smaller than for the white noise

case even where this FP still exists, whereas for the QIF, it
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B

Fig. 8 Dependence of the firing rate (a) and the CV (b) of a QIF on

the correlation time τc(D = 1). Different curves correspond to different

base currents µ as indicated. Thin lines: theory (quadrature results),

circles: simulation results, dotted lines: quasi-static approximation (for

µ = −0.1 and µ = 1). Thick bars: theory for white-noise-driven QIF.

Again, the firing rate can be seen to be always lower for correlated input

compared to the white noise case, while the CV can either be lower or

higher

is always larger than for the white noise case for small µ. In

the limit µ → ∞, both T +
d and T −

d decay ∼ (vT − vR)/µ.

Consequently, r0 diverges while the CV tends to zero (this is

true for both parameterizations).

Finally, in Figs. 11 and 12, we plot the firing rate (A) and

the CV (B) of an LIF and a QIF, respectively, as a func-

tion of the noise intensity. The firing rate can again be seen

to decrease with increasing τc. For the LIF, the CV shows a

minimum at a finite noise intensity, both for white noise input

as well as correlated input, if the correlation time is not too

large. This is a signature of coherence resonance (Pikovsky

and Kurths 1997). In contrast, the QIF is known not to exhibit

coherence resonance (in the sense that the CV is minimal at

a finite D) for white noise input; here, the CV monotoni-

cally decreases and, independent of parameters, approaches

the value 1/
√

3 for large D (Lindner et al. 2003). It can be

seen that this changes with correlated input, for which the

CV diverges with increasing D, leading again to a (poten-

tially very broad) minimum. This is true for arbitrarily small

correlation times: For any value of τc, there is a value of
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Fig. 9 Firing rate (a) and CV (b) of an LIF as a function of the base

current µ. Different curves correspond to different correlation times

as indicated; D = 1. Thin lines: theory (quadrature results), circles:

simulation results, dotted lines: quasi-static approximation. Thick lines:

theory for white noise case. No simulation results were plotted in the

top panel to avoid an overly cluttered presentation. Again, the firing

rate can be seen to be always lower for correlated input compared to the

white noise case, while the CV may be either higher or lower. The kinks

in the curves for both rate and CV occur where µ becomes large enough

that the neuron starts to fire tonically both in the “+” and the “-” state

and are qualitatively well captured by the quasi-static approximation

D at which T +
d becomes small enough that the quasi-static

approximation may be applied. From looking at Eq. (86), it is

then apparent that any non-vanishing value of τc eventually

leads to a divergence of the CV.

7 Application: the limit of small correlation times

While our analytical expressions for firing rate and CV show

excellent agreement with simulations, it is hard to derive

general statements from them. For instance, evaluating our

expressions for specific parameters has shown the firing rate

to be lower for correlated than for white input for every para-

meter set we tried (see Figs. 7, 8, 9, 10, 11, 12), raising the

question whether this is always the case. However, it seems

impossible to answer this question just by looking at the

recursive relations Eqs. (69)–(72).
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Fig. 10 Firing rate (a) and CV (b) of a QIF as a function of the base

current µ. Different curves correspond to different correlation times

as indicated; D = 1. Thin lines: theory (quadrature results), circles:

simulation results, dotted lines: quasi-static approximation. Thick lines:

theory for white noise. No simulation results were plotted in the top

panel to avoid an overly cluttered presentation. We see qualitatively the

same behavior as for the LIF (Fig. 9)

In order to make the difference to white-noise input

explicit, we thus expand the recursive relations for the

moments of the FPT density for small values of τc, simi-

lar to what has been done for the case of Gaussian colored

noise (Brunel and Sergi 1998; Fourcaud and Brunel 2002;

Moreno et al. 2002; Brunel and Latham 2003). In this limit,

σ =
√

D/τc is large, so it is sufficient to consider the case

with no unstable FP and a stable FP left of vR (for the QIF, we

will discuss the limit vR → −∞, vT → ∞ after doing the

expansion in τc). We thus start from Eqs. (69)–(72). The func-

tion appearing in the exponents, φ(v), is readily expanded,

φ(v) = U (v)

D
− τc

v
∫

dx
f 3(x)

D2
+ O

(

τ 2
c

)

, (96)

where we have used the potential

U (v):= −
v

∫

dx f (x). (97)
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Fig. 11 Firing rate (a) and CV (b) of an LIF as a function of the noise

intensity D. Different curves correspond to different correlation times

(as indicated) and share the same base current µ = 0.8. Thin lines: the-

ory (quadrature results), circles: simulation results, dotted lines: quasi-

static approximation. Thick lines: theory for white noise. The firing rate

can be seen to be always lower than for the white noise case, while for

this particular choice of µ, the CV is always higher

Consequently, we have

eφ(v) = e
U (v)

D

⎛

⎝1 − τc

v
∫

dx
f 3(x)

D2

⎞

⎠ + O

(

τ 2
c

)

(98)

As γ2(v) diverges for τc → 0, it is advantageous to rewrite

the recursive relations in terms of Q̂n(v):=Qn(v)/σ ; after

replacing σ by
√

D/τc, they read

J0(v) = θ(v − vR), (99)

Q̂0(v) = e−φ(v)

[
√

τc

D

(

eφ(vT ) − θ(vR − v)eφ(vR)

)

−
vT
∫

v

ds
eφ(s)θ(s − vR)

f 2(s)τc − D

]

, (100)

10
-2

10
0

10
2

10
4

D

10
0

10
1

C
V

10
-3

10
-1

10
1

fi
ri

n
g

 r
at

e

τ
c
 = 0.1

τ
c
 = 1

τ
c
 = 10

A

B

Fig. 12 Firing rate (a) and CV (b) of a QIF as a function of the noise

intensity D. Different curves correspond to different correlation times

(as indicated); µ = −0.2. Thin lines: theory (quadrature results), cir-

cles: simulation results, dotted lines: quasi-static approximation. Thick

lines: theory for white noise. For a white noise driven QIF, the CV

does not diverge in the high-noise limit but monotonically approaches

a value of 1/
√

3, independent of parameters. Correlations in the input

make this universal behavior disappear, leading to a (potentially very

broad) minimum in the CV

Jn(v) = n

v
∫

v−

ds
f (s)Jn−1(s)τc − DQ̂n−1(s)

f 2(s)τc − D
, (101)

Q̂n(v) = e−φ(v)

[

Jn(vT )eφ(vT )

√

τc

D

−
vT
∫

v

ds eφ(s)
Jn(s) + nτc

(

f (s)Q̂n-1(s) − Jn-1(s)
)

f 2(s)τc − D

]

.

(102)

Looking at the above equations, it is apparent that the

lowest order contribution due to correlations will in general

be of order
√

τc. Expanding in powers of
√

τc and letting

v− → −∞, we obtain

Jn(v) = J 0
n (v) + √

τc · J c
n (v) + O

(

(√
τc

)2
)

, (103)
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where

J 0
0 (v) = �(y − vR), (104)

J 0
n>0(v) = n

D

v
∫

−∞

dx e
−U (x)

D

vT
∫

x

dy e
U (y)

D J 0
n−1(y), (105)

J c
1 (v) =

v
∫

−∞

dx e
−U (x)

D
e

U (vT )

D − �(vR − x)e
U (vR )

D

√
D

, (106)

J c
n>1(v) = n

v
∫

−∞

dx e
−U (x)

D

[

e
U (vT )

D J 0
n−1(vT )

√
D

+ 1

D

vT
∫

x

dy e
U (y)

D J c
n−1(y)

]

.

(107)

Equations (104) and (105) give the recursive relations for

the FPT moments under Gaussian white noise input (Siegert

1951; Lindner 2004b). When the neuron is driven by dichoto-

mous noise, these FPT moments undergo a correction [Eqs.

(106) and (107)] that is in general to the lowest order propor-

tional to
√

τc. Interestingly, this
√

τc behavior was also found

for LIFs driven by an Ornstein–Uhlenbeck process (OU), a

Gaussian colored noise (Brunel and Sergi 1998; Moreno et

al. 2002).

In Fig. 13, we compare the first-order approximation to

firing rate (A) and CV (B) of an LIF to numerical simula-

tions. It is apparent that for small τc, the correction decays

indeed with the square root of the correlation time. For this

particular choice of parameters, the first-order correction can

be seen to provide a decent description over the whole range

of admissible τc values (for small τc, we always find it in

excellent agreement with simulations).

For a QIF driven by an OU, the correction to the firing

rate has been reported to be linear in τc, due to the choice of

threshold and reset vR and vT at ±∞ (Brunel and Latham

2003). Indeed, for vR → −∞ and vT → ∞, the
√

τc cor-

rections vanish also for dichotomous noise, as we show in

Appendix 10.

Finally, we can now address the question under which con-

ditions the correction to the firing rate is negative. Consider

the correction to the mean FPT:

J c
1 (vT ) = e

U (vT )

D

√
D

vT
∫

−∞

dx e
−U (x)

D

− e
U (vR )

D

√
D

vR
∫

−∞

dx e
−U (x)

D

(108)

This correction is positive if

ϑ(vT ) > ϑ(vR), (109)
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Fig. 13 Firing rate (a) and CV (b) of an LIF in the limit of small cor-

relation times (µ = 0.5, D = 0.15). Circles: Simulation results, thick

lines: theory for white noise, thin lines: first-order (
√

τc) approximation

for dichotomous noise. The insets show the absolute difference between

a white-noise-driven LIF and simulation results (circles) as well as the

first-order correction (lines) in a log–log plot, demonstrating that, to the

lowest order, the correction is indeed ∝ √
τc

where

ϑ(v):=e
U (v)

D

v
∫

−∞

dx e
−U (x)

D (110)

This is certainly the case if ϑ(v) is monotonically increasing,

i.e., ϑ ′(v) > 0 or

U ′(v)

D
e

U (v)
D

v
∫

−∞

dx e
−U (x)

D ≥ −1. (111)

If U ′(v) > 0 this is always true, so let us focus on U ′(v) < 0.

In this case, if U ′(x) is monotonically increasing up to v, then

−U ′(x) ≥ −U ′(v) ∀ x < v and

1 = e
U (v)

D

v
∫

−∞

dx

(

− U ′(x)

D

)

e
−U (x)

D (112)
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≥ e
U (v)

D

v
∫

−∞

dx

(

− U ′(v)

D

)

e
−U (x)

D . (113)

Thus, for potential shapes with positive curvature—such as

the quadratic potential of the LIF—the correction to the mean

FPT is indeed always positive, meaning that to lowest order in

τc, the firing rate of an LIF always decreases with increasing

correlations.

8 Summary and discussion

In this paper, we have theoretically studied IF neurons driven

by asymmetric dichotomous noise. We have derived exact

analytical expressions for the stationary probability distribu-

tion of voltages as well as for the moments of the ISI density.

In doing this, we have taken care to ensure the proper treat-

ment of fixed points in the “-” dynamics, which has allowed

us to obtain valid expressions in all parameter regimes.

As a first application, we have used our theory to study

the impact of temporally correlated input on neural firing,

using symmetric dichotomous noise. We have argued that it

is advantageous to keep the noise intensity fixed when explor-

ing the effect of input with short correlation times, as opposed

to keeping the variance fixed (Salinas and Sejnowski 2002),

which is the more appropriate choice for long correlation

times. We have then studied the firing rate and CV of LIF

and QIF neurons when varying either the correlation time τc,

the base current µ, or the noise intensity D. We have found

that, compared to neurons driven by Gaussian white noise

with the same D, the firing rate always decreases when the

input is correlated, while the CV can be either higher or lower.

When varying the base current µ, we find that CVs change

abruptly at a certain value of µ when τc is large, but not for

small or vanishing τc. This could in principle be used to infer

properties of presynaptic activity from single cell recordings

in vivo. By measuring the spiking activity of a cell at different

values of an injected current, an experimenter could replicate

Figs. 9B and 10B. According to our theory, input that can be

described by a two-state process with a long correlation time

would manifest itself in a sudden drop of the CV as µ is

increased. Such input could for example arise due to up and

down states of a presynaptic population. Conversely, input

with short or vanishing correlation times would lead to a

smoother and weaker dependence of the CV on µ.

Finally, varying D, we found that under correlated input,

the CV of a QIF no longer converges to the universal value

of 1/
√

3 for large D, as found for white noise (Lindner et al.

2003), but instead diverges. This means that with correlated

input, also QIF neurons may exhibit a weak form of coher-

ence resonance (in the sense that the CV is minimal at a finite

value of D).

We have studied the recursive relations for the ISI

moments in the limit of small correlation times and found

that, in general, the first-order correction with respect to the

diffusion approximation is proportional to
√

τc. The same

had previously been observed for LIF neurons driven by

an OU process, a different colored noise (Brunel and Sergi

1998; Moreno et al. 2002). For QIF neurons driven by OU

processes, the firing rate correction has been shown to be of

order τc (Brunel and Latham 2003), which is also recovered

in our case, as for vR → −∞, vT → ∞, the corrections

proportional to
√

τc can be shown to vanish. We have also

used the expansion in small τc to prove that for potentials

with positive curvature (as is the case for LIF neurons), cor-

rections to the firing rate are always negative (to the lowest

order in τc).

In addition to the qualitative similarities between neurons

driven by dichotomous and OU processes at small correlation

times, we have found that they agree well even quantitatively

(results not shown). We thus expect our conclusions for small

correlation times to be relevant also for other noise processes

and think that they may help to clarify the effect of input cor-

relations on neural firing, as well as its dependence on the

specific choice of neuron model. Beyond the study of input

correlations, our theory allows for the exploration of excita-

tory shot-noise input, as well as the effect of network up and

down states. These applications will be pursued elsewhere.

9 Appendix: FPT recursive relations in the general case,

transformed to ease numerical integration

Here, we transform the recursive relations for the moments

of the FPT density in order to facilitate stable numerical inte-

gration near fixed points. We start by considering how Eqs.

(62)–(65) behave at unstable FPs. As pointed out, setting

Dn = 0 and En = vU ensures that Q0(v) and Qn(v) do

not diverge at an unstable FP vU . Also, this choice entails

Qn(vU ) = Jn(vU ), which means that the no divergence

occurs in the integrand of Eq. (63),

lim
s→vU

f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2
(114)

= lim
s→vU

( f (s) − σ) Jn−1(s)

( f (s) − σ)( f (s) + σ)
= Jn−1(vU )

2σ
. (115)

Numerically, however, relying on this cancellation turns out

to be problematic. It is thus advisable to rewrite the recursive

relations, as shown in the following.

We define

Hn(v):= σ

f 2(v) − σ 2
(Qn(v) − Jn(v)) . (116)
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With this, Jn>0(v) becomes

Jn>0(v) = n

v
∫

v−

dx
Jn−1(x)

f (x) + σ
− Hn−1(x), (117)

where we have already satisfied the boundary condition for

Jn>0(v) by setting the lower integration limit to v−. This

means that, going from {Jn(v), Qn(v)} to {Jn(v), Hn(v)},
we now only need to pay attention to unstable FPs in the

calculation of Hn(v), instead of in both calculations. For the

calculation of Hn(v), we again need to split the voltage range

v− to vT into intervals at fixed points of the “-” dynamics.

Expressions for the solution in the i th interval, H i
n(v)

can be obtained by plugging Eqs. (62)–(65) into Eq. (116).

Exploiting that,

J0(v) = θ(v − vR), (118)

2k+
f (v) + σ

= φ′(v) + γ2(v), (119)

J ′
n(v) = n

(

Jn−1(v)

f (v) + σ
− Hn−1(v)

)

, (120)

one may rewrite the integrand to obtain

H i
0(v) = σe−φ(v)

f 2(v) − σ 2

v
∫

ci

dx
(

2(α − 1)δ(x − vR)−

2k+
f (x) + σ

θ(x − vR)

)

eφ(x), (121)

H i
n>0(v) = e−φ(v)

f 2(v) − σ 2

v
∫

ci

dx
(

n( f (x) + σ)Hn−1(x)

2k+
f (x) + σ

σ Jn(x)

)

eφ(x). (122)

As for Qn(v), the solutions in different intervals differ only

in their integration constant ci .

It is easily verified that the boundary conditions for Qn(v)

(see Sect. 4) are satisfied by the following choice for ci :

ci =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

vR if f (vT ) − σ > 0 and the left interval boundary isvR

vU if one of the interval boundaries is an unstable

FP at vU

vT f (vT ) − σ < 0 and the right interval boundary is vT

(123)

Denoting the index of the rightmost interval by N and the

left and right boundaries of the i th interval by li and ri , we

have

α = 1 −
k+

vT
∫

cN

dx eφ(x)

f (x)+σ
θ(v − vr)

eφ(vT ) − θ(vR − cNi
)eφ(vR)

(124)

J0(v) = θ(v − vR), (125)

Jn>0(v) = n

N
∑

i=1

min(ri ,v)
∫

li

dx
Jn−1(x)

f (x) + σ
− H i

n−1(x). (126)

These equations, together with Eqs. (121) and (122), allow

for a recursive calculation of the n-th ISI moment in the

general case.

10 Proof that the
√

τc correction vanishes for a QIF

Consider first the correction to the mean FPT:

J c
1 (vT ) = e

U (vT )

D

√
D

vT
∫

−∞

dx e
−U (x)

D

− e
U (vR )

D

√
D

vR
∫

−∞

dx e
−U (x)

D

(127)

If U (v) → ∞ as v → −∞ (as is the case for a QIF),

l’Hôpital’s rule can be used to show that the second term

goes to zero as vR goes to −∞. It then remains to show that

lim
vT →∞

ϑ(vT )√
D

:= lim
vT →∞

e
U (vT )

D

√
D

vT
∫

−∞

dx e
−U (x)

D = 0. (128)

If the potential additionally has the properties

1. U (v) → −∞ for v → ∞,

2. there is an a such that U ′(v) < −Dv ∀ v > a,

as is the case for the cubic potential of a QIF, then

lim
vT →∞

ϑ(vT ) (129)

= lim
vT →∞

e
U (vT )

D

vT
∫

−∞

dx e
−U (x)

D (130)

= lim
vT →∞

[

a
∫

−∞

dx e
U (vT )−U (x)

D +
vT
∫

a

dx e
U (vT )−U (x)

D

]

(131)

≤ 0 + lim
vT →∞

vT
∫

a

dx − U ′(x)

Dx
e

U (vT )−U (x)

D (132)

= lim
vT →∞

[

1

vT

− e
U (vT )−U (a)

D

a
+

vT
∫

a

dx
e

U (vT )−U (x)

D

x2

]

(133)

≤ lim
vT →∞

[

1

vT

− e
U (vT )−U (a)

D

a
+

vT
∫

a

dx
1

x2

]

(134)

= 1

a
. (135)
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Thus, limvT →∞ ϑ(vT ) is smaller than any finite value c,

because we can always choose an a > 1/c. The same rea-

soning can be used to show that the
√

τc contribution to the

n-th FPT moment vanishes.
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