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While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced

with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are

many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and tran-

scriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used

independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and

specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted

in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool,

INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints

by split-readmapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the

well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL).

The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the

seven previously reported fusions. Overall, INTEGRATE onlymissed six out of the 138 validated fusions and had the highest

accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer

Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken

together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use.

[Supplemental material is available for this article.]

Chromosomal rearrangements represent the most prevalent cate-

gory of somatic aberrations in cancer genomes, often leading to

the juxtaposition of two genes, creating gene fusions.Gene fusions

have served as exquisitely specific diagnostic markers, prognostic

indicators, and therapeutic targets (Druker et al. 2006). The unpar-

alleled depth of next-generation sequencing (NGS) has revealed

novel gene fusions in numerous solid tumors as exemplified by

fusions involving the E26 transformation-specific (ETS) tran-

scription factor family members in prostate cancer (Tomlins et

al. 2007), MAST and NOTCH kinases in breast cancer (Robinson

et al. 2011), and ALK, ROS1, and RET fusions in lung cancer

(Takeuchi et al. 2012).

To date, many groups have used whole-genome sequencing

(WGS) to identify structural variations (SV), a subset of which

may produce gene fusions. Despite some successes, existing bio-

informatics tools such as BreakDancer (Chen et al. 2009),

VariationHunter (Hormozdiari et al. 2010), CREST (Wang et al.

2011), and PRISM (Jiang et al. 2012) are hindered by intra-tumor

heterogeneity, alignment to repetitive genomic sequences, techni-

cal artifacts (i.e., library preparation), poor coverage, and a large

number of false-positive calls owing to sequencing errors. The fail-

ure to predict some SVs using WGS data would therefore result in

the corresponding gene fusion product being missed. Additional-

ly, it is unclear whether SVs predicted to produce a gene fusion

are expressed in the absence of RNA-seq expression data.

Therefore, many groups have focused on using RNA-seq for gene

fusion discovery as it enriches for expressed events that are more

likely to be functional.

Currently, many RNA-seq gene fusion discovery algorithms

utilize spanning reads (one read partially aligns to both genes

corresponding to the fusion junction) or encompassing reads

(each read of a pair aligns to a different gene, thereby surrounding

the fusion junction) such as TopHat-Fusion (Kim and Salzberg

2011), deFuse (McPherson et al. 2011a), ChimeraScan (Iyer et al.

2011), BreakFusion (Chen et al. 2012), FusionCatcher (Nicorici

et al. 2014), pyPRADA (Torres-Garcia et al. 2014), and TRUP

(Fernandez-Cuesta et al. 2015). However, despite the successful ap-

plication of these algorithms to discover gene fusions, a recent

comparison of eight gene fusion discovery tools revealed a lot of

variability between callers. Most tools report a very high number

of false-positive chimeras (Carrara et al. 2013), highlighting the on-

going struggle to balance sensitivity and specificity of fusion detec-

tion. Some of the various factors contributing to false positives and

false negatives include artifacts and mapping errors in RNA-seq
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data, reliance on a comprehensive transcriptome reference, repeti-

tive regions, and low-expressing gene fusions that may appear as

background signal. Furthermore, while a large portion of un-

mapped reads may represent sequencing errors, artifacts, or the

limitations of split-read mapping tools, it is possible that a subset

of these unmapped reads could represent critical reads spanning

the gene fusion junction. Therefore, more efficient split-readmap-

ping methods are necessary to find these critical reads among the

potential noise.

WhileWGS or RNA-seq have their limitations when analyzed

independently, the orthogonal validation from integrating RNA-

seq and WGS could generate a sensitive and specific approach

for detecting high-confidence gene fusion predictions. Since

WGS and RNA-seq data are generated separately, presumably

they do not share the same artifacts and noise and therefore will

result in fewer false positives. This in turn will facilitate the prior-

itization of gene fusion predictions as biologically relevant gene

fusions that are often masked by false positives. Furthermore,

weak sequence evidence by both WGS and RNA-seq could help

detect gene fusions expressed at low levels thatmay have appeared

as background noise when analyzing only WGS or RNA-seq data.

In addition to improving gene fusion discovery, integrating WGS

and transcriptome data can provide evidence about the gene

fusion biology. For instance, recent studies have shown the impor-

tance of read-through chimeras, which involve two adjacent genes

in the same coding orientation, in multiple cancers (Maher et al.

2009; Zhang et al. 2012; Varley et al. 2014). When analyzing

RNA-seq data alone, a chimera transcript is typically classified as

a read-through based on the proximity and orientation of the

genes. However, it is not possible to rule out that the event is the

by-product of a focal deletion. Therefore, the presence or absence

of a genomic event by integrating WGS and RNA-seq could im-

prove the classification of RNA chimeras.

In this study, we describe a newmethod, INTEGRATE, for de-

tecting expressed gene fusions by leveraging the advantages of

both WGS and RNA-seq generated from the same individual.

Existing methods that use both whole-genome and RNA-seq

data include Comrad (McPherson et al. 2011b), nFuse (McPher-

son et al. 2012), and BreakTrans (Chen et al. 2013). Comrad

(McPherson et al. 2011b) is a dedicated gene fusion calling pro-

gram that simultaneously uses both encompassing RNA-seq and

WGSpaired reads. It uses an integer linear programming algorithm

to assign repetitive reads that minimizes differences of WGS

data sets, RNA-seq data sets, and the reference genome. nFuse

(McPherson et al. 2012) is a computational tool intended to iden-

tify complex genomic rearrangements from whole-genome data

with the help of transcriptome sequencing data. More recently,

BreakTrans (Chen et al. 2013) was developed to intersect predicted

gene fusions that correspond with SV nominations by analyzing

the output of independent gene fusion and SV prediction tools.

Here, we developed INTEGRATE, which simultaneously uses

both RNA-seq and WGS encompassing and spanning reads to fo-

cus on the discovery of expressed gene fusions. To prioritize ex-

pressed gene fusions caused by SVs, INTEGRATE first utilizes

mapped and unmapped RNA-seq reads followed by analysis of

WGS reads from tumor, and if available, a normal sample. Tomin-

imize run time and memory requirements without sacrificing ac-

curacy, INTEGRATE uses discordant RNA-seq reads to construct a

gene fusion graph connecting genes involved in a putative fusion

event. This enables all of the unaligned RNA-seq reads that could

serve as spanning junction reads to undergo split-read mapping

against only the Burrows-Wheeler Transform (BWT) for the rele-

vant gene pair in the fusion graph instead of against the whole

genome or whole transcriptome (see Methods for details). The

gene fusion graph also avoids nominating false positives since

INTEGRATE realigns encompassing and spanning reads to only

the BWTs for the relevant gene pair in the graph, thereby decreas-

ing spurious mappings that may occur when aligning to the

whole genome or whole transcriptome. Here, we will show that

INTEGRATE is an efficient gene fusion discovery tool that has

both high sensitivity and accuracy. INTEGRATE can be download-

ed at https://sourceforge.net/projects/integrate-fusion/.

Results

Overview of INTEGRATE

INTEGRATE is designed to discover gene fusions using RNA-seq

and WGS paired-end sequencing reads properly aligned to the

reference genome in BAM format. Unlike many gene fusion tools

which are programmed to use a specific reads mapping tool,

INTEGRATE is implemented with the flexibility to use reads

aligned by different tools, including GSNAP (Wu and Nacu

2010), TopHat2 (Kim et al. 2013), and STAR (Dobin et al. 2013).

Since we are most interested in expressed gene fusions,

INTEGRATE first utilizes mapped and unmapped RNA-seq reads,

followed by analysis of WGS reads from tumor and, if available,

a normal sample. INTEGRATE uses two types of reads, encompass-

ing and spanning reads. Encompassing reads are pairs of readswith

each in the pair aligned to a different gene, thereby surrounding

the fusion junctions or genomic breakpoints, and spanning reads

are reads partially aligned to both genes corresponding to a fusion

junction or both flanking regions of an SV. As shown in Figure 1,

INTEGRATE is comprised of the following steps: (1) Construct

gene fusion graph using discordant, or encompassing, RNA-seq

reads; (2) remove edges corresponding to discordant reads that

have a concordant suboptimal mapping or have low weights due

to excessive multimapping; (3) map previously unaligned RNA-

seq reads between gene nodes as split-reads to reconstruct fusion

junctions (Supplemental Fig. 1); (4) retrieve encompassing WGS

reads corresponding to focal regions surrounding fusion junctions;

and (5) map spanning WGS reads to focal regions with the guid-

ance of encompassing WGS reads to reconstruct genomic break-

points. Once completed, INTEGRATE outputs the gene fusion

candidates with the exact fusion junctions sorted according to

the quantity of supporting WGS and RNA-seq reads.

To prioritize gene fusion candidates, INTEGRATE reports fu-

sions in tiers corresponding to the level of sequencing support

and potential biology (Supplemental Fig. 2). Tiers 1, 2, and 3 all

involve gene fusionswith canonical exonic boundaries. Tier 1 can-

didates have the highest confidence as they have both encompass-

ing and spanning RNA-seq and WGS reads supporting a gene

fusion. Tier 2 gene fusion candidates also have both WGS and

RNA-seq read support; however, they only have encompassing

WGS read support and lack spanning WGS reads. Tier 3 lacks

any WGS read support but has both encompassing and spanning

RNA reads. However, Tier 3 includes both non-read-through gene

fusions (Tier 3-nr) and read-throughs (Tier 3-r).

Application to HCC1395 breast cancer cells

To evaluate INTEGRATE, we used HCC1395 breast cancer cells

because both SVs and gene fusions have been previously character-

ized in this cell line (Stephens et al. 2009; Robinson et al. 2011;

Kalyana-Sundaram et al. 2012), multiple gene fusions have been
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experimentally validated using qRT-PCR (Lambros et al. 2011),

and because of the availability of a matched B lymphoblast cell

line (HCC1395BL) to be used as our normal comparator. We se-

quenced∼321million tumor RNA-seq paired-end reads, ∼339mil-

lion tumor RNA-seq paired-end reads, ∼1884 million tumor WGS

paired-end reads (∼63× coverage), and∼1031million normalWGS

paired-end reads (∼34× coverage). INTEGRATE was run using the

RNA-seq reads aligned by GSNAP (Wu and Nacu 2010), TopHat2

(Kim et al. 2013), and STAR (Dobin et al. 2013). WGS reads were

aligned using BWA (Li and Durbin 2009). Interestingly, we found

that different alignment tools affected the final list of gene fusion

predictions. Using alignments from GSNAP, TopHat2, and STAR

and running INTEGRATE with default parameters (i.e., two en-

compassing RNA-seq reads), we discovered 110, 68, and 68 gene

fusion candidates, respectively.

To compare theperformanceof INTEGRATE toother available

algorithms, we reanalyzed the HCC1395 data with three WGS

and RNA-seq callers (Comrad [McPherson et al. 2011b], nFuse

[McPherson et al. 2012], and BreakTrans [Chen et al. 2013]) and

five commonly used and recently published RNA-seq gene fusion

tools (TopHat-Fusion [Kim and Salzberg 2011], ChimeraScan [Iyer

et al. 2011], FusionCatcher [Nicorici et al. 2014], pyPRADA

[Torres-Garcia et al. 2014], and TRUP [Fernandez-Cuesta et al.

2015]). BreakTrans was provided with fusion and SV candidates

calledbyBreakDancer (Chenet al. 2009). For allmethods, common

false-positive gene fusion predictions were filtered (Methods) to

producehigh-confidencepredictions for eachprogram. This result-

ed in a range of four to 110 gene fusion candidates across the

programs. Anaggregate of the top gene fusion candidates nominat-

ed by each program resulted in 240 gene fusion candidates

(Supplemental Fig. 3; Supplemental Table 1). After applying our

filtering steps, of the eight additional programs, nFuse nomi-

nated the most gene fusion candidates (n = 103). ChimeraScan,

FusionCatcher, TopHat-Fusion, and pyPRADA had a moderate

number of gene fusion candidates with 54, 36, 12, and 17, respec-

tively. TRUP, Comrad, and BreakTrans nominated a limited num-

ber of gene fusion candidates with 6, 4, and 4, respectively.

Through our comprehensive analysis, we found that two pre-

viously reported gene fusions, KCNQ5-RIMS1 and BCAR3-ABCA4,

are not called by any of the nine methods. Subsequent manual in-

spection did not identify any supporting reads for the two missed

gene fusions (KCNQ5-RIMS1 and BCAR3-ABCA4) in our data set.

This is not surprising for KCNQ5 and RIMS1, as the DNA coverage

shows an obvious aberration but the expression levels of KCNQ5

and RIMS1 are very low (Supplemental Fig. 4). In contrast, the fu-

sion between BCAR3 and ABCA4 was previously identified by

RNA-seq but was never detected by WGS or experimentally vali-

dated. Therefore, its absence in our data could suggest that it

may not be expressed in our data or it is a false positive.

INTEGRATE is the only program to detect all seven previously dis-

covered gene fusions, whereas the other programs detected be-

tween 2 and 5 of these gene fusions.

Validation of HCC1395 gene fusions

To evaluate the accuracy of the predictions fromall thesemethods,

we used cDNA-Capture (Methods; Cabanski et al. 2014) which

combines RNA-seq with an enrichment step using custom probes

targeting 240 gene fusion candidates (Supplemental Table 1). The

240 gene fusion candidates are an aggregate of the top gene fusion

candidates nominated by each program. As shown in Figure 2, we

experimentally validated 138 gene fusions (see Supplemental

Figure 1. Overview of INTEGRATE. (A) INTEGRATE establishes a gene fusion graph using encompassing RNA-seq reads (black lines) to connect nodes or
genes (blue rectangles). Edges of the fusion graph are removed following various filtering steps before undergoing a targeted split-read alignment involving
the remaining edges. Encompassing and spanning split-read realignment and mapping are performed on BWTs of gene nodes (Supplemental Fig. 1).
Encompassing WGS reads are retrieved from regions determined by spanning RNA-seq reads. Spanning WGS reads are aligned to the regions indicated
by encompassing WGS reads (steps indicated by green and purple arrows; also see B). (B) When encompassing (black) and spanning (red) RNA-seq reads
have been mapped to the genes involved in a gene fusion, the encompassing WGS reads (green) are expected from focal encompassing WGS regions
(green area) bounded by maximum insert size upstream of or downstream from the fusion junctions of the transcripts. The spanning WGS reads (purple)
are expected to align within focal WGS regions (orange area) bounded by fusion junction and maximum insert size downstream from the encompassing
WGS reads.
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Table 2 for validated fusion junctions), of which 123 are called by

INTEGRATE using default parameters (two encompassing RNA-seq

reads), nine can be detected by INTEGRATE using one encompass-

ing RNA-seq read, and only six were not detected by INTEGRATE.

Next, we used the 138 validated gene fusions discovered us-

ing nine methods as the gold standard for comparing the sensitiv-

ity and precision of each method as shown in Figure 3. The

combined set of INTEGRATE gene fusion predictions using all

three alignment tools has the highest sensitivity (89%) while

maintaining a high precision (81%). While the default parameters

for INTEGRATE require two encompassing RNA-seq reads, a user

could modify this threshold to one encompassing RNA-seq read,

which had a sensitivity of 95.6% (132/138). Interestingly, while

INTEGRATE only missed six validated fusions (out of 138), none

of the other programs successfully detected all of the six remaining

candidates (Fig. 2), indicating that a user would have to use multi-

ple programs to detect all of the gene fusions. We also found vari-

ation based on the alignment tool used. The sensitivity of running

INTEGRATE with default parameters using a single alignment tool

is 67% for GSNAP, 46% for TopHat2, and 42% for STAR, while

maintaining high precision of 85%, 93%, and 85%, respectively.

Even when INTEGRATE uses STAR, which had the worst perfor-

mance of the alignment tools, it still outperformed the next best

program, nFuse, which discovered 45 gene fusions but missed

93 gene fusions resulting in a 33% sensitivity and 44% precision.

ChimeraScan has a slightly lower sensitivity (29%) than nFuse

but has a higher precision of 74%. FusionCatcher has an even

lower sensitivity (25%) but a higher precision (95%). The remain-

ing five methods (TopHat-Fusion, pyPRADA, TRUP, Comrad, and

BreakTrans) have sensitivities lower than 10%. TRUP, Comrad,

and BreakTrans all have a precision of 100%; however, they miss

more than 132 validated gene fusions. Overall, the accuracy (F1

score) of INTEGRATE, based on the combination of sensitivity

and precision, is the highest of all nine tools (Fig. 3).

Overall, INTEGRATE is a highly sensitivemethod, resulting in

the discovery of an additional 125 gene fusions that eluded earlier

studies. Interestingly, all of the previously discovered gene fu-

sions have more than five supporting RNA-seq reads (Fig. 2;

Supplemental Table 1) with a maximum of 306 supporting RNA-

seq reads. In contrast, most of the newly discovered fusions have

low expression levels, as exemplified by 85 out of the 138 fusions

having ≤5 RNA-seq reads and 44 of these 85 gene fusions having

only one spanning read. Additionally, as shown in Figure 2, the

eight additional programs typically detect the more highly ex-

pressed gene fusions, whereas the gene fusions with lower expres-

sion levels are typicallymissed bymoremethods. For example, the

most highly expressed of the seven previously reported gene fu-

sions, EIF3K-CYP39A1 (283 reads), PLA2R1-RBMS1 (306 reads),

Figure 2. Gene fusion validation. Targeted cDNA-capture validation was attempted for 240 gene fusion candidates called by INTEGRATE and eight ad-
ditional gene fusion detection methods, resulting in the validation of 138 gene fusions. Gene fusion candidates nominated by INTEGRATE using default
parameters and a threshold of one encompassing RNA-seq read (1-En) are shown on the left, whereas candidates nominated by eight additional programs,
and not INTEGRATE (“non-INTEGRATE”), are shown on the right. See Supplemental Figure 2 for tiers of INTEGRATE. In each category, gene fusion candi-
dates are further divided into rearrangement classes: inter-chromosomal (blue shade) and intra-chromosomal (yellow shade), and sorted in descending
order of total RNA-seq read support (dark red bar—encompassing RNA-seq reads; green bar—spanning RNA-seq reads). Previously reported gene fusions
are written at the top of the bars. In the lower panel, each row corresponds to the gene fusion candidates nominated by each program. INTEGRATE,
Comrad, BreakTrans, and nFuse use both RNA-seq and WGS data. INTEGRATE is shown using the RNA-seq alignments from GSNAP, TopHat2, and
STAR, separately. ChimeraScan, Tophat-Fusion, FusionCatcher, pyPRADA, and TRUP use only RNA-seq data. Red boxes indicate nominated gene fusions
that were experimentally validated, black boxes indicate nominated gene fusions that did not have validation read support, and the lack of a red or black
box indicates an algorithm did not nominate the gene fusion candidate.
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and RAB7A-LRCH3 (80 reads), are detected by seven, six, and seven

methods, respectively. EFTUD2-KIF18B (20 reads), FOSL2-BRE (47

reads), and ERO1A-FERMT2 (nine reads) were found by three,

three, and two methods, respectively. However, the lowly ex-

pressed gene fusion HNRNPUL2-AHNAK, having only six support-

ing reads, is only detected by INTEGRATE. Interestingly, while

INTEGRATE shows increased sensitivity, as exemplified by its abil-

ity to detect lowly expressed gene fusions compared to othermeth-

ods, it also discovered highly expressed gene fusions that were

missed by other methods. For example, INTEGRATE was the

only method that detected the Tier 1 gene fusion MAVS-PANK2

(Supplemental Fig. 5) that has 38 supporting RNA-seq reads.

We also compared the RNA-seq expression levels with the

read support from cDNA-Capture, revealing a positive correlation

(0.95) (Supplemental Fig. 6). This shows that gene fusion valida-

tion, similar to RNA-seq, is also heavily dependent on the expres-

sion of the gene fusion transcript. Therefore, it is unclear whether

low-expressing gene fusions predicted by INTEGRATE that were

not validated are actually false positives or whether additional val-

idation sequencing would eventually confirm their presence as

found by RNA-seq data. In contrast, 60 of the 71 gene fusion can-

didates that did not validate and were nominated by other meth-

ods, but not by INTEGRATE, had ≥5 RNA-seq reads. Therefore,

the higher quantity of supporting RNA-seq reads coupled with

lack of read support from cDNA-Capture further suggests that

these nominations are false positives.

In addition to discovering Tier 1 and 2 gene fusions accurately

by combining RNA-seq andWGS data (38 out 40 [95%] are validat-

ed) (see Supplemental Table 3 for genomic breakpoints of Tier

1 gene fusions), INTEGRATE also reliably detected candidates sup-

ported only by RNA-seq reads. Eighty-five out of 111 Tier 3-nr gene

fusion candidates were validated, resulting in a precision of ∼77%.

Fifty-one out of the 85 (60%) validated Tier 3-nr gene fusions were

missed by all the other methods.

Overall, we found that INTEGRATE

only missed six candidates; however,

none of these predictions were found to

have a high level of read support (all

have <5 reads). Additionally, the six gene

fusions missed by INTEGRATE were

not nominated by a single program but

were nominated by one of four programs

(nFuse, ChimeraScan, FusionCatcher,

and pyPRADA). Conversely, the other

four programs (TopHat-Fusion, TRUP,

Comrad, andBreakTrans)didnot identify

any validated gene fusions that were

missed by INTEGRATE.

Application to TCGA breast cancer

patient cohort

Next, we applied INTEGRATE to a cohort

of 62 breast cancer patients (Supplemen-

tal Table 4), generated by The Cancer

Genome Atlas (TCGA) Research Net-

work (http://cancergenome.nih.gov/), that

had both whole-genome and RNA-seq

data available (The Cancer Genome Atlas

Network 2012). INTEGRATE discovered

347 gene fusions involving both WGS

and RNA-seq read support and 132 non-

read-through gene fusions with only RNA-seq reads (Supplemen-

tal Table 4). This revealed eight recurrent gene fusions, six

of which (DCAF6-MPZL1, ESR1-CCDC170, KANSL1-ARL17A,

RPS15A-ARL6IP1, STAT3-PTRF, and TANGO6-CDH1) were recon-

structed by INTEGRATE with the fusion junctions and genomic

breakpoints (Fig. 4). SLC22A20-HORMAD1 and SCARB1-UBC were

calledbyonly supportingRNA-seq reads (Fig. 4). Themost frequent

gene fusion, KANSL1-ARL17A/ARL17B, has been recently reported

(Wen et al. 2012). Additionally, the estrogen receptor gene fusion

ESR1-CCDC170 (Fig. 5A,B) was recently reported in breast cancer

(Sakarya et al. 2012).

In addition to recurrent gene fusions, we hypothesized that

there may be a selective pressure to alter a gene in order to achieve

a similar molecular consequence, as exemplified by ETS family

members (Papas et al. 1989), BRAF (Stratton et al. 2004), MAST/

NOTCH (Robinson et al. 2011), whichwe refer to as being function-

ally recurrent. Therefore, we sought to identify genes that are in-

volved in multiple fusions with the breakpoint occurring with

the same 5′ or 3′ exon. We found eight conserved 5′ genes and

14 conserved 3′ genes representing 51 non-read-through gene fu-

sions across 25 patients (Fig. 4). Many of these genes have been

previously reported as gene fusion partners in breast cancer, e.g.,

RARA (Edgren et al. 2011), CDK12 (Asmann et al. 2011; Natrajan

et al. 2014), FBXL20 (Mardis et al. 2009; Robinson et al. 2011;

Kalyana-Sundaram et al. 2012), GAB2 (Stephens et al. 2009),

PLXDC1 (Robinson et al. 2011), CTSD (Asmann et al. 2012),

EIF3H (Edgren et al. 2011; Kalyana-Sundaram et al. 2012), MGP

(Asmann et al. 2012; Kalyana-Sundaram et al. 2012), PPP1R1B

(Robinson et al. 2011), and RAB6A (McPherson et al. 2011a).

Closer examinationof the genomic locations for the recurrent

and functionally recurrent gene fusions reveals multiple hotspots

of gene fusions (Fig. 5C) on Chromosomes 1, 11, and 17. In total,

44 out of the 65 recurrent and functionally recurrent gene fusions

harborpartners that reside in these three commonlyaltered regions

Figure 3. Comparison of INTEGRATE and eight additional fusion calling methods. Sensitivity and pre-
cision (red bar and blue bar, respectively) of eachmethodwere calculated using a gold standard, which is
the experimentally validated gene fusion called by ninemethods, sorted in decreasing order of sensitivity.
INTEGRATE applied with default parameters, using aligned reads generated by GSNAP, TopHat2, and
STAR is indicated by G, T, and S, respectively. The combination of the three alignment tools is indicated
by C. The accuracy, or F1 score, based on the combination of sensitivity and precision is shown with a
green triangle.
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(Supplemental Table 5). There are three recurrent and functionally

recurrent gene fusions involving a gene in 1q21.3. Seventeen gene

fusions involve a gene residing in 11q13.1–11q14.1. Thirty-three

gene fusions involved a gene that resides in the consecutive region

of bands17q11.2, 17q12, and17q21–23. It is plausible thatmanyof

these gene fusions may be passenger aberrations corresponding to

recurrent amplicons. However, a subset may represent potentially

relevant gene fusions in breast cancer as exemplified by ESR1 trans-

locations (Veeraraghavan et al. 2014). Additionally, while the ma-

jority of gene fusions reside in commonly altered regions, there is

still a subset of recurrent and functionally recurrent gene fusions

that are not the by-product of a copy number event and therefore

may warrant further exploration.

Read-through transcription

INTEGRATEclassifiesa read-throughasachimera involvingtwoad-

jacent genes on the same strand, with the 5′ gene being upstream,

but lacking anyWGS read support. For example, INTEGRATE iden-

tified 288 read-throughs in HCC1395 cells and 453 read-throughs

Figure 4. Recurrent and functionally recurrent gene fusions in a TCGA 62 breast cancer patient cohort. Gene fusions are listed in the order of recurrent,
5′ functionally recurrent, and 3′ functionally recurrent. The first column shows the 5′ genes and the second column shows the 3′ genes. The third column is
the TCGA names of the samples. Bar chart in the fourth column shows the log scale value of the quantity of supporting RNA-seq reads for each gene fusion.
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in a cohort of 62 TCGA patients (Supplemental Tables 6, 7).We ex-

amined the difference between gene fusions associated with

genomic rearrangements (Tiers 1, 2, and 3-nr) and read-throughs

(Tier 3-r) by classifying the patterns of exons involved in the fusion

junctions. This includes any combinationof a 5′ gene involving (1)

the first exon (Exon[1]), (2) the second to

the last exon (Exon[n−1], where n is the

number of exons), and (3) all other exons

(Exon[2:n−2])with a3′ gene involvingei-

ther the second exon (Exon[2]) or any

downstream exons (Exon[3:n]). This re-

vealed six classes: (I) Exon[n−1]-Exon[2];

(II) Exon[2:n−2]-Exon[2]; (III) Exon[n

−1]-Exon[3:n]; (IV) Exon[2:n−2]-Exon

[3:n]; (V) Exon[1]-Exon[2]; and (VI)

Exon[1]-Exon[3:n]. As shown in Figure

6A, we observed different patterns be-

tween gene fusions associated with geno-

mic rearrangements and read-throughs.

The majority of Tier 1, 2, and 3-nr gene

fusions (38%–40%) belong to class IV

(Exon[2:n−2]-Exon[3:n]),whichinvolves

randomexons in themiddle of the 5′ and

3′ fusion partners, in contrast to 7.2% of

read-throughs belonging to class IV.

Fifty-onepercentofread-throughsbelong

to class I (Exon[n−1]-Exon[2]), which in-

volves the second to the last exon of a 5′

transcriptandthesecondexonofa3′ tran-

script. Incontrast,only4%,6%,and3%of

Tier 1, 2, and 3-nr fall into class I, respec-

tively. Overall, the exon usage distribu-

tion of read-throughs is significantly

different from the Tiers 1, 2, and 3-nr

(Pearson’s χ2 test, each tier has a P < 2.2 ×

10−16), whereas Tier 2 and Tier 3-nr are

not significantly different from Tier 1

(P-values 0.32 and 0.17, respectively).

Wewere next interested in assessing

the recurrence of read-throughs relative

to gene fusions derived from genomic

events. As shown in Figure 6B, within

the 62 patient cohort, 98% of the non-

read-throughs predicted by INTEGRATE

occur in a single patient, whereas only

46% of read-throughs are singletons

(Pearson’s χ
2 test has a P < 2.2 × 10−16).

In addition to 54% of read-throughs oc-

curring inmultiple patients, we observed

eight read-throughs occurring in more

than 30 patients.

Discussion

INTEGRATE is a gene fusion discovery

tool that leverages both RNA-seq and

whole-genome data. By integrating or-

thogonal data sets, we demonstrate that

INTEGRATE is highly sensitive. This can

be exemplified by our discovery of 125

novel gene fusions in HCC1395 in addi-

tion to the previously discovered gene fu-

sions reported by three earlier studies (Stephens et al. 2009;

Robinson et al. 2011; Kalyana-Sundaram et al. 2012). Many of

these gene fusions were expressed at very low levels. For instance,

INTEGRATE identified 45 gene fusions with only one fusion junc-

tion spanning the RNA-seq read. Due to their low read support,

Figure 5. Hotspots of gene fusions in 62 TCGA breast cancer patients. (A) ESR1-CCDC170 fusion in
TCGA-A2-A0YG. (B) ESR1-CCDC170 fusion in TCGA-BH-A18R. ESR1 (red) and CCDC170 (blue) are on
the forward strand in region 6q25.1, and the 5′ gene ESR1 is downstream from the 3′ gene CCDC170.
The two fusions share the same 5′ exon at ESR1 (Exon 2 of transcript uc031sqe.1), but 3′ exons of
CCDC170 are different (Exons 2 and 3 of transcript uc003qol.3). (C) Circos plot of recurrent and function-
ally recurrent gene fusions detected by INTEGRATE. The green lines indicate inter-chromosomal gene fu-
sions, and the blue lines indicate intra-chromosomal gene fusions. The names of the genes involved in
each fusion are plotted on the outside of the circle. The gene fusions associate with several hotspots
on Chromosomes 1, 11, and 17.
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these gene fusions are difficult to detect and may even be filtered

by other programs depending on aminimum read support thresh-

old to nominate a fusion. Furthermore, the sensitivity of

INTEGRATE revealed low-expressing gene fusions that may have

been expressed below a level of detection with the current valida-

tion sequencing depth. Unlike DNA-based validation, where we

would expect more uniform coverage, the ability to detect and val-

idate expressed gene fusions is highly dependent on expression.

Our validation data could underrepresent the accuracy of

INTEGRATE, and additional sequencingmay confirm the presence

of the remaining candidates.

One major reason (other than orthogonal data sets) for the

improved sensitivity and accuracy of INTEGRATE is that we use a

gene fusion graph that enables us to conduct alignment steps

targeting specific gene nodes. In contrast to mapping the true

positive spanning RNA-seq reads against the whole genome or

whole transcriptome, reducing the search space to only a few rele-

vant genes that may be involved in a gene fusion event increased

sensitivity by (1) allowing for the alignment to shorter flanking

regions of the spanning RNA-seq reads, (2) tolerating more mis-

matches and gaps in the alignments, and (3) avoiding false positive

alignments that would have occurred outside of the relevant gene

nodes caused by repeats and sequencing errors. Furthermore,

INTEGRATE uses multiple realignment steps against a small num-

ber of relevant gene nodes to reduce false-positive encompassing

and spanning reads to achieve a more accurate rate in discovering

Figure 6. Different patterns between gene fusions and read-throughs. (A) Exons involved in gene fusions and read-throughs follow different patterns. A
gene fusion (or read-through) transcript can be categorized into six classes involving the first, second to last, or any other exon of the 5′ genewith either the
second or downstream exon of the 3′ gene. (B) Recurrence of gene fusions and read-throughs across 62 breast cancer patients. The horizontal axis is num-
ber of patients, and the vertical axis is fraction of events. Blue bars represent gene fusions and red bars represent read-throughs. The pie chart shows the
percentage of singleton gene fusions (left) and read-throughs (right).
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gene fusions. Interestingly, while INTEGRATE was designed with

the intent of using both WGS and RNA-seq data, we found that,

in the absence of WGS data, INTEGRATE can still be applied to

find high-quality gene fusion candidates using only RNA-seq

data. This is likely due to the thorough realignment steps to filter

inaccurate alignments that may introduce false-positive gene fu-

sion predictions.

INTEGRATE is also designed to be highly efficient due tomul-

tiple design aspects. First, the fusion gene graph that connects the

gene nodes guarantees only the relevant RNA-seq reads, i.e., dis-

cordant encompassing reads mapped to two genes and spanning

reads with their anchors in the graph, undergo thorough align-

ment and realignment steps. Second, alignments and realign-

ments in gene nodes are performed on the BWTs of the gene

nodes with time complexity linear of read length. Third, integra-

tion ofWGS data is guided by the RNA-seq gene fusion candidates.

Only relevant encompassing and spanning WGS reads residing

within focal regions near the candidate fusion junctions are con-

sidered for detecting SVs.

Currently, only a few existing computational tools focus on

using combined data with the intent of balancing sensitivity and

specificity. To discover gene fusion candidates, Comrad was de-

signed to simultaneously analyze encompassing, but not span-

ning, WGS and RNA-seq reads. However, spanning reads offer

significant evidence for nominating candidates that can help bal-

ance specificity and accuracy. This also represents a significant lim-

itation for being able to reconstruct the genomic breakpoint or the

fusion junction accurately. nFuse has a higher sensitivity (33%)

than all the other programs evaluated other than INTEGRATE;

however, it also had the most nominations of any program

(Fig. 2; Supplemental Fig. 3). This is not surprising as nFuse was in-

tended to identify complex genomic rearrangements. Lastly, as

BreakTrans integrates SV and gene fusion predictions called by sep-

arate tools, its overall performance relies on the sensitivity and ac-

curacy of each individual tool run separately. This will therefore

miss low-expressing gene fusions or low-frequency genomic

events that are detectable by using orthogonal applications but

are not easily detected by either RNA-seq or WGS alone.

Additionally, gene fusions with strong transcriptome read support

but no genomic evidence potentially due to lack of coverage, high-

ly repetitive sequence, or representing an RNA chimera (i.e., read-

through, trans-splicing events) will be missed by requiring both

RNA-seq and WGS evidence. Taken together, our comparative

analyses demonstrate the clear advances that INTEGRATE has

achieved in gene fusion discovery from NGS data.

Unlike many gene fusion prediction tools that ignore read-

through or trans-splicing events, INTEGRATE is able to provide

valuable insight into RNA chimeras. For instance, RNA callers cat-

egorize read-throughs purely based on their close proximity and

orientation but have no definitive way to discriminate between a

genomic or transcriptomic event in the absence of genomic data.

However, INTEGRATE can identify events that may be classified

as read-throughs based on genomic location but in fact are due

to a genomic deletion. This in turn could have important implica-

tions in the underlying biology. For instance, we have shown that

read-throughs have different patterns of exon usage and preva-

lence across patients compared to genomic-based events. First,

the patterns of exon utilization support that read-throughs are

due to splicing of a 3′ exon in the 5′ partner to a 5′ exon of the

3′ gene partner. In contrast, genomic-based gene fusions appear

to occur more randomly. Second, read-throughs appear to be re-

current whereas genomic events are typically patient-specific. Of

the few recurrent genomic events, they typically occur in a small

subset of patients, whereas read-throughs were observed in up

to 30+ patients. Taken together, the ability to distinguish a

genomic event from a common read-through event could reveal

genomic mutations that could serve as valuable biomarkers.

INTEGRATE has also been implemented to improve the inter-

pretation of gene fusion discovery. First, we have established a tier

structure that incorporates the level of data support from RNA-seq

andWGS data. This in turn provides more confidence beyond the

total number of reads that support a particular candidate. For in-

stance, a gene fusion with encompassing and spanning WGS

and RNA-seq reads would be considered a reliable candidate com-

pared to a candidate with only RNA-seq encompassing reads.

Second, INTEGRATE is able to provide candidate gene fusion junc-

tions at single-base resolution and the exact genomic breakpoints

if spanning WGS reads were detected. Sequences and locations of

the involved exons of the fusion junctions are provided to facili-

tate subsequent functional analysis and experimental validation.

This also facilitates downstream analysis, such as finding com-

plex gene fusions involving more than two genes, as exemplified

by the seven instances observed in the cohort of 62 TCGA breast

cancers (Supplemental Fig. 7). Furthermore, INTEGRATE is capa-

ble of detecting multiple alternative splicing isoforms for a fu-

sion gene. For instance, of the seven previously discovered gene

fusions in HCC1395, three of these gene fusions were captured

by INTEGRATE with multiple isoforms (four isoforms for EIF3K-

CYP39A1, three isoforms for RAB7A-LRCH3, and two isoforms

for HNRNPUL2-AHNAK). This is important to ensure that an iso-

form producing a potentially in-frame novel protein is not

overlooked.

Prior to this study, only a small number of gene fusions had

been experimentally validated in the HCC1395. However, follow-

ing our comprehensive analysis and validation, we have con-

firmed a large quantity of gene fusions. It is likely due to a

number of factors. First, this is the most comprehensive analysis

of this cell line conducted to date. Second, INTEGRATE was able

to detect gene fusions missed by multiple programs suggesting

that INTEGRATE is more sensitive and earlier analyses underrepre-

sented the total number of gene fusions in a given sample. Third, a

large portion of the HCC1395 cell line genome harbors copy num-

ber variation (Supplemental Fig. 8). As breast cancer gene fusions

have been associated with copy number variation (Kalyana-

Sundaram et al. 2012), it is not surprising that 106 (77%) of the

138 validated gene fusions have one or both genes residing in an

amplicon. In total, 143 (59%) out of 276 genes involved in the

138 validated gene fusions reside in the amplicons, which is signif-

icantly higher (Pearson’s χ2 test, P = 2.35 × 10−6) than the percent-

age of expressed genes residing in amplicons (FPKM≥ 0.1; 6871

[38%] out of 18,235).

The application of INTEGRATE to a breast cancer cohort en-

abled the identification of novel gene fusions, a subset of which

were recurrent. Interestingly, among the recurrent fusion candi-

dates, ESR1 translocations (Figs. 4, 5) have been reported to be in-

volved in hormone therapy resistance, exemplifying the potential

biological significance of these candidates (Li et al. 2013). ESR1-

CCDC170was recently reported to markedly increase cell motility

and anchorage-independent growth, reduced endocrine sensitiv-

ity, and enhanced xenograft tumor formation (Veeraraghavan

et al. 2014). Themechanistic studies suggest thatCCDC170 engag-

es theGAB1 signalosome to potentiate growth factor signaling and

enhance cell motility (Veeraraghavan et al. 2014). Additionally,

STAT3-PTRF has been reported to be present in uterus/cervix
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cancer (Ojesina et al. 2014). Furthermore, many of the functional-

ly recurrent gene fusions found by INTEGRATE involve genes relat-

ed to previously reported fusions in breast cancer. Overall, given

the high accuracy of INTEGRATE in detecting gene fusions, the lo-

cations of the nominated fusions are in hotspots of breast cancer,

and many of the gene fusion partners have been previously impli-

cated in breast cancer, it is possible that some of the remaining

INTEGRATE recurrent and functionally recurrent gene fusion

nominations may also be relevant to breast cancer progression.

Overall, based on our comparison of nine tools, INTEGRATE

provides a significant advance, balancing sensitivity and specificity

for improved gene fusion discovery. Various factors such as

artifacts, low data coverage, mapping errors, repetitive regions,

and low expression levels hinder the ability of using only WGS

SV prediction or RNA-seq fusion detection strategies. Therefore,

INTEGRATE takes advantage of both strategies due to the increas-

ing availability of bothwhole genome and transcriptome sequenc-

ing data fromthe samepatient to provide ahighly accuratemethod

for gene fusion discovery to unveil novel causative mutations.

Methods

INTEGRATE fusion calling using both RNA-seq

and WGS data

Supplemental Figure 9 provides a detailed overview of

INTEGRATE. The first step of INTEGRATE is to systematically store

all of the encompassing reads aligned by a RNA-seq readsmapping

tool in a graphwhere the nodes correspond to genes and the edges

connect two genes involved in a putative fusion. At this point, the

graph can be very dense, and INTEGRATE uses a series of filtering

steps to remove false-positive gene fusion candidates according to

the concordant suboptimal alignments and repetitiveness of the

paired-end reads in the graph (Supplemental Methods). Next,

INTEGRATE leverages the fusion gene graph that has been

built to conduct a targeted split-read alignment to map either

spanning reads or suboptimal concordant reads systematically in

a single step instead of using two independent procedures (Supple-

mental Methods). If provided with WGS data sets, INTEGRATE at-

tempts to identify SVs supporting the fusion candidates by

alignment in focal regions (Supplemental Fig. 10; Supplemental

Methods).

Due to the large quantity of encompassing reads that are re-

aligned, coupled with unmapped reads that are evaluated as span-

ning reads, we implemented a fast split-read mapping algorithm.

A BWT is created for each gene node (including exons and introns)

(Supplemental Fig.1) so that theprefix trieof eachgenenodecanbe

simulated. A dynamic programming algorithm is designed to per-

form local alignment between a split-read and the prefix trie using

abreadth first search that extendson theprefix trie according to the

number of differences (mismatches and indels) of the bestmatches

(highest scores in the dynamic programming). Pseudo code of the

algorithm is given in Supplemental Figure 11, and details of the al-

gorithmareexplained inSupplementalMethods.The fast split-read

mapping algorithm for aligning and realigning RNA-seq reads and

the fast split-readmapping algorithm for aligningWGS reads in fo-

cal regions enable INTEGRATE to perform efficiently in run time

(Supplemental Fig. 12). INTEGRATE also has a moderate space us-

age (Supplemental Fig. 12).

Validation of gene fusions in HCC1395 cell line

To enrich for the highest quality gene fusion predictions in our

tool comparison, gene fusions with canonical exonic boundaries

called by INTEGRATE and eight additional fusion callingmethods

(Comrad, nFuse, BreakTrans, TopHat-Fusion, ChimeraScan,

FusionCatcher, pyPRADA, and TRUP) are considered as gene fu-

sion candidates after additional filtering to remove false-positive

candidates (i.e., gene fusions involving transcript variants such

as HLA-A>>HLA-C, read-throughs, genes with overlapping iso-

forms) (Supplemental Fig. 3). For each gene fusion candidate,

two sequencing probes were designed near the fusion junction.

One probe was designed in the 5′ gene and the second probe was

designed in the 3′ gene. For gene fusions with multiple fusion

junctions corresponding to the alternative splicing of each gene

fusion partner, we chose probes corresponding to the isoform

with the greatest read support. All probes for the 240 gene fusion

candidates are summarized in Supplemental Table 8with their cor-

responding genes. Following cDNA hybridization, as previously

described (Cabanski et al. 2014), ∼10 million 2 × 250 paired-end

reads were generated using MiSeq. These reads were aligned using

BWA to the predicted gene fusion junctions. The number of target-

ed validation reads spanning fusion junctions, with a conservative

threshold of requiring the smaller flanking region to be longer

than 30 nt, are summarized in Supplemental Table 9.

Application of INTEGRATE on TCGA human patient cohort

We downloaded whole-genome and RNA-seq data of 62 TCGA

breast cancer patients. On average, INTEGRATE uses 8 h to process

data for one patient (minimum was 1 h and maximum was 78 h).

Average memory is 30 GB with a minimum of 24 GB and a maxi-

mum of 49 GB. When a gene fusion was predicted as a genomic

event (intra- or inter-chromosomal) and a read-through event in

multiple patients, then only if the percentage of patients with an

intra- or inter-chromosomal gene fusion was >80%was it reported

as a genomic fusion. For the less recurrent chimeras that could be

explained as read-throughs or genomic events (due to false-posi-

tive encompassing WGS reads, medium-size deletions, or lack of

WGS reads), three steps are performed before classifying them as

genomic or read-through events. First, the two genes are >1 Mb

apart. Second, for chimeras with genes closer than 1 Mb, the size

of the deletions must be longer than 5000 nt. Third, if the fusion

junction involves the second to last exon of the 5′ gene fusing

into the second exon of the 3′ gene, characteristic of splicing

that occurs in read-through transcripts, then we consider them

as read-throughs.

Data access

Thesequencedatafromthis studyhavebeensubmitted to theNCBI

BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/)

under accession number PRJNA201238. The INTEGRATE software

can be downloaded from SourceForge (https://sourceforge.net/

projects/integrate-fusion/), and the source code is available in the

Supplemental Material.
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