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Abstract 

In this dissertation, a novel approach of integrating template matching with statistical 

modeling is proposed to improve continuous speech recognition. Hidden Markov 

Modeling (HMMs) has been the dominant approach in statistical speech recognition since 

it provides a principled way of jointly modeling speech spectral variations and time 

dynamics. However, HMMs have the shortcoming of assuming the observations being 

independent within each state, which makes it ineffective in modeling the details of 

speech temporal evolutions that are important for characterizing nonstationary speech 

sounds. Template-based methods make comparisons between a test pattern and the 

templates derived from training data, and therefore they are able to capture speech 

dynamics and time correlation of speech frames better than HMM based methods. 

However, template matching requires large memory space and computational time since 

feature vectors of training data need to be stored in computer memory for access at the 

recognition stage, which is difficult in large vocabulary continuous speech recognition 

(LVCSR). Our proposed approach takes advantages of both statistical modeling and 

template matching, which overcomes the weakness of conventional template-based 

method and is feasible for LVCSR. 

We use multiple Gaussian Mixture Model (GMM) indices to represent each frame of 

speech templates, and define the template unit to be context-dependent phone segments 

(triphone context). We also use phonetic decision trees borrowed from those commonly 

used in HMMs to tie triphone templates and predict triphones unseen in training data.  
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Two local distances, log likelihood ratio (LLR) and Kullback-Leibler (KL) divergence, 

are proposed for dynamic time warping (DTW) based template matching. In order to 

reduce computational complexity and storage space, we propose methods of minimum 

distance template selection (MDTS) and maximum log-likelihood template selection 

(MLTS), and investigate a template compression method on top of template selection to 

further improve recognition performance. 

The template based methods were used to rescore lattices generated by baseline 

HMMs on the tasks of TIMIT continuous phone recognition and teleheath LVCSR and 

experimental results demonstrated that the proposed approach of integrating template 

matching with statistical modeling significantly improved recognition performances over 

the HMM baselines. The template selection methods also provided significant 

recognition accuracy improvements over the HMM baseline while largely reducing the 

computation and storage complexities. When all templates or MDTS were used, using the 

LLR local distance obtained better recognition performance than the KL divergence local 

distance. For MLTS and template compression, KL divergence local distance provided 

better performance than the LLR local distance, and the template compression method 

made further improvements over KL based MLTS.  

Since the templates were constructed based on the GMM indices extracted from 

HMM baselines, we also validated the effectiveness of the proposed template methods 

based on enhanced HMM baselines. Experimental results showed that LLR based all 

template method was able to consistently improve TIMIT phone recognition accuracies 

based on four enhanced HMM baselines.  
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Prosodic features such as duration, energy, and pitch can reflect longer span 

information of speech than conventional single frame vectors but they have commonly 

been ignored by HMMs. Template based methods provide possibilities to conveniently 

integrate prosodic features into speech recognition, which has not been well studied in the 

past. In this dissertation, we investigate combining template based methods with the 

speech prosodic features of duration, energy and pitch to further improve speech 

recognition accuracy. The scores of prosodic information were computed by a GMM 

based method and a non-parametric method, and the prosodic scores were combined with 

the acoustic scores in triphone template matching. Experimental results obtained on the 

telehealth task showed that prosodic information had positive effects on vowel sound 

recognition. 
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Chapter 1 

Introduction 

1.1 Background 

Automatic speech recognition is a technology that allows a computer to recognize human 

speech. For human beings, the way of most direct communication is speech. It has been a 

long-time dream for humans to make computers recognize human being’s speech [1]. 

Speech interface for computers has advantages in speed and convenience compared with 

today’s popular user interfaces such as mouse, keyboard, or touch-screen, etc. Therefore, 

speech recognition has lots of potentially useful applications. One example is that people 

can utilize the speech-input ability of a computer to significantly speed up document 

writing, email sending, web searching, and other operations with a computer. Some of 

these applications are already used by us and some of them are going to become 

available, which can bring great convenience to our lives. In addition, automatic speech 

recognition system can also greatly benefit disabled people who can use speech as the 

input to control computers in case they have difficulty to use keyboard or mouse with 

their hands. People who have hearing problems can also use automatic speech 

recognition technology to transcribe speech from other people to text, which can make 

their lives easier. Another advantage of automatic speech recognition is that it can be 

used for situations when people’s hands are already occupied, for example, when driving 

a car, where people can use speech as input to dial or receive a phone call. Speech 

enabled GPS navigation is another good example. With the development of machine 

translation techniques, another exciting application called speech-to-speech translation 

[2] has emerged, which allows people speaking different languages from all over the 
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world to freely communicate via speech without any professional translator. A 

specialized application of this kind is already being used in military. Speech technology 

can also be used in education systems to help improve foreign language learning for 

young people.  

Even though there are many potentially useful applications of automatic speech 

recognition, a universal application of automatic speech recognition products in human 

life is still facing great challenges since the complexity of human speech production and 

perception makes speech recognition a very difficult and complicated task, and automatic 

speech recognition is deeply involved with multiple disciplines including acoustics, 

phonetics, linguistics, anatomy, physiology, neuroscience, computer science, electrical 

engineering, artificial intelligence, and signal processing. However, we believe that under 

the continuous research efforts of human beings, these difficulties will be overcome and 

automatic speech recognition technology will be integrated into different products and 

bring more benefits to human life. 

1.2 Motivation  

In speech recognition, Hidden Markov Models (HMMs) have been the dominant 

approach since they provide a principled way of jointly modeling speech spectral 

variations and time dynamics. However, one of the HMM shortcomings is that it assumes 

within each state the observations are independent, which makes it ineffective in 

modeling the fine details of speech temporal evolutions that are important in 

characterizing nonstationary speech sounds [3]. Some technologies are already used to 

overcome the weakness of HMMs. For example, time derivatives of cepstral coefficients 

are widely used to capture dynamic information from the neighbor frame vectors in 



3 

 

speech feature distributions in HMM states. Trajectory model [4] is another example that 

introduces time-varying covariance modeling to capture temporal evolutions of speech 

features. Additionally, approaches like segment model [5] and long-contextual-span 

model of resonance dynamics [6] have been proposed for similar purposes. The second 

problem of HMMs is that it doesn’t conveniently model prosodic information such as 

duration, pitch and energy. Prosody has long been studied as an important knowledge 

source for speech understanding. In recent years there has been a large amount of 

computational work aimed at prosodic modeling for automatic speech recognition and 

understanding [7, 8, 9].  

Template-based methods make comparisons between a test pattern and templates of 

training data, and therefore they are able to capture the speech dynamics and time 

correlation of speech frames better than HMM based methods. For the template-based 

approach, no explicit assumption about the data needs to be made and it commonly uses 

DTW to compare a test pattern against a template or template sequences. Template-based 

methods were originally used to recognize isolated words or connected digits with good 

performance [1]. When using template-based methods, feature vectors of training set 

need to be stored in computer memory, and until recently, it has been practically 

impossible to apply template-based methods to large tasks of speech recognition. With 

today’s rapid advance in computing power and memory, template-based methods have 

attracted new efforts and the reported results are promising [10, 11, 12]. In addition, 

template-based methods can utilize the prosodic information conveniently [9]. Some 

newly proposed methods like template pruning and filtering [13] and template-like 

dimension reduction of speech observations [14] are helping to address the memory 
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usage problem. However, there is always a compromise between the costs in computation 

and space and the recognition accuracy. 

Combining statistical modeling and template-based approach can overcome the 

weakness of HMMs while significantly saving computational and storage complexities. It 

has been shown that by combining HMM-based and template-based recognition at the 

system level, accuracy performance can be improved over either system alone [15, 16]. 

However, this kind of combination is not so simple to be applied into large vocabulary 

continuous speech recognition (LVCSR). In this dissertation, we propose a within system 

combination of statistical modeling and template matching. This novel integration 

approach includes new methods for template construction, template tying, and template 

matching, etc. We also propose template clustering methods to reduce computing time 

and storage space which allow our approach to be applied to LVCSR. 

As we mentioned above, the traditional HMM based method ignores prosodic 

information where the information is discarded during the process of feature extraction. 

There has been some research efforts on first modeling prosodic information separately 

and then combine the prosodic model with the conventional HMM based system. 

However, using template based methods to integrate prosodic information has not been 

well studied. Since our template methods are different from the traditional ones [10, 11, 

12], the integration of our template based methods and prosodic information is a new 

problem, and this topic is investigated in this dissertation.   

1.3 Contribution of the Current Work  

In our current work, we formulate a novel approach of integrating template matching 

with statistical modeling. The main contributions of the current work are: 



5 

 

1) Instead of using the conventional speech frame feature vectors to represent the 

templates, we propose to use Gaussian Mixture Model (GMM) indices to 

represent speech frame vectors for templates. The GMMs are obtained from the 

well trained baseline HMMs, and the templates are defined as the context-

dependent phone segments (triphone context). The compact representation of 

GMM based templates converts the high dimensional float type frame vectors to 

integer GMM indices, which can save lots of storage space compared with the 

traditional frame-vector based templates. By using the Dynamic Time Warping 

(DTW) based template matching for the new template representation, the 

shortcoming of HMMs, which is unable to model the fine details of speech temporal 

evolutions, is overcome. Therefore, the newly proposed method for template 

representation offers the advantages of both statistical modeling and template 

matching. 

2) Since the templates are constructed and represent by GMM indices, the traditional 

local distances such as Euclidean distance and Mahalanobis distance are not suitable 

any more. New local distances are needed in order to performance template 

matching for the template representations. We explore the local distances of log-

likelihood ratio and Kullback-Leibler (KL) divergence for the proposed statistical 

modeling based template matching method.  

3) Since the template based methods are implemented by using the GMM indices 

extracted from baseline HMMs, we also want to know if further recognition 

improvements can be obtained when better HMM baselines are used. We verified 

that the proposed template matching method consistently improved HMM based 
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system performance on the task of TIMIT phone recognition by using different 

HMM baselines generated from the four methods investigated in [17]: 1) 

Discriminative Training (DT) of Minimum Phone Error (MPE), 2) MFCC 

concatenated with ensemble Multiple Layer Perceptron (MFCC+EMLP) features, 

3) DT combined with the MFCC+EMLP features, and 4) data sampling based 

ensemble acoustic models integrated with DT and MFCC+EMLP features. 

4) Traditional template matching methods were used in small scale speech 

recognition tasks in which the test units were fully covered by the training data. 

However, if template-based methods are used in LVCSR, allophones which are 

present in training data may not cover all allophones in test data. In general, how 

to deal with unseen allophones in test speech data is an issue needed to be solved. 

In our template-based method, we borrow the idea from HMM state Phonetic 

Decision Trees (PDT) to assign an unseen triphone into a known cluster to solve 

the unseen triphone template problem.    

5) Even though the proposed novel statistical modeling based template method can 

significantly reduce computation time and storage space compared with the 

traditional template based approaches, the extra cost of the method over HMM 

baseline systems is still high when it is used for large vocabulary continuous 

speech recognition. So we further propose methods of template selection and 

compression based on the local distances mentioned in 2). The proposed template 

selection algorithm significantly reduced computation and storage complexities, 

and the compressed templates produced further performance improvement based 

on the selected template representatives. The template selection and compression 
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methods were effective in removing low performance templates, keeping and 

generating good quality template representatives, and therefore obtaining 

relatively high recognition performances compared with using all templates.    

6) We explored using prosodic information of duration, energy and pitch to improve 

template matching based LVCSR. The prosodic feature scores were calculated 

using two different methods: GMM based method and non-parametric method. 

The integration of prosodic information into template based methods improved 

recognition accuracies for LVCSR.   

1.4 Statistical Speech Recognition 

Automatic speech recognition (ASR) is the task of converting a speech input signal into 

text by a computer. A speech utterance produced by a speaker is represented in the form 

of sound waves. Microphones capture the sound waves and convert them to electrical 

signals. Speech features are extracted from the electrical signals and stored in computer 

memory. Current speech recognition system searches over a large time-state space to find 

the word string hypothesis with the highest probability of generating the speech 

utterance. In order to do this, three steps are implemented. First, speech signals are 

analyzed to obtain frame feature vectors in which necessary information is retained for 

speech sound discrimination. Second, statistical language model and acoustic model are 

estimated from training data. Finally, in order to pick the sentence hypothesis with the 

highest probability, fast and memory-efficient search algorithms are needed. Figure 1.1 

[1] shows a block diagram for speech recognition. 
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Fig 1.1 Diagram of Speech Recognition System 

A speech recognizer maps a sequence of observation vectors of speech into its 

underlying word sequence, i.e., to find a word string  ̂ corresponding to the acoustic 

observation O=O1,O2,..., OT, where  ̂ is the hypothesis of the highest probability that 

best matches the words spoken in the speech. We can also use Bayesian decision theory 

to formulate the speech recognition problem as the following [1]:                     

 ̂          ( | )          ( | ) ( ) ( )           ( | ) ( )             (1.1) 

where the observation likelihood  ( | ) is the probability that the speaker produces the 

acoustic feature vector sequence O under the condition of the word sequence W, and  ( | ) is evaluated based on an acoustic model;  ( ) is the prior probability of the 

word sequence W and is determined by a language model;  ( ) is the prior probability of 
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observation O, which can be neglected because it is the same for all hypotheses W and 

does not affect the decision.  

The estimation of  ( | )  is also called acoustic modeling and it typically consists 

of two parts. The first part is to describe the representation of a word sequence by sub-

word units, which is also known as pronunciation modeling. The second part is to map 

from each sub-word units to acoustic observations [18]. Algorithms used in acoustic 

modeling involve hidden Markov models (HMM) and phonetic decision trees (PDT) 

which will be explained in Section 1.6 and in Section 1.7, respectively. 

The goal of language modeling is to estimate the probability  ( ). Statistical n-

gram is most commonly used in language modeling and it uses the previous history 

words to predict the current word, i.e., the probability of the current word is conditional 

on the previous n-1 words. More details about the language model will be introduced in 

Section 1.8. 

1.5 Pre-processing of Speech 

Since an effective representation of speech signals is required for speech recognition, 

speech feature extraction is a very important step in pre-processing of speech. The raw 

data as input to an ASR system is the speech waveform sampled at a rate between 8 kHz 

(for telephone speech) and 20 kHz. This data are pre-processed to generate feature 

vectors which are usually computed from overlapped sliding windows of 20 to 30ms in 

duration at a 10ms frame rate. There are two well-known feature extraction algorithms as 

the following [1]: 
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1. Mel Frequency Cepstral Coefficients (MFCC) - the cepstrum resulted from first 

warping the log energy spectrum according to the Mel frequency scale and then 

taking the cosine transform [1].  

2. Perceptual Linear Prediction (PLP) - a variation of linear prediction by taking into 

account of human auditory perceptions [19].  

Both MFCC and PLP are considered to be short-term locally stationary features and 

they can not cover the temporal dynamics in speech. In order to overcome the 

shortcoming, first-order and second-order time-derivatives of the static features are 

commonly used to capture temporal dynamics for speech recognition in practical use. 

Algorithms such as principal components analysis (PCA) [20], linear discriminant 

analysis (LDA or HLDA [21]), vocal tract length normalization (VTLN) [22], and 

independent component analysis (ICA) [23] are used to further transform the extracted 

features in order to improve ASR system performance. The ultimate goal of speech pre-

processing is to produce as robust and discriminative features as possible to bridge the 

gap between the performance of ASR systems and that of human beings. More efforts 

need to be made in the ASR field to achieve this goal. 

1.6 Statistical Acoustic Modeling 

An acoustic model is used to describe the acoustic-phonetic characteristics of speech 

signals. Hidden Markov Models (HMMs) have been the dominant approach since they 

provide a principled way of jointly modeling speech spectral variations and time 

dynamics. In HMM, the speech production mechanism is treated as a stochastic process 
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which generates the observed speech signals in a series of state transitions. If the 

probability of moving to the next state only depends on the identity of the current state, a 

first-order Markov process can be used to model the stochastic process. In speech 

recognition, a HMM is a stochastic finite state machine. Fig. 1.2 shows an example of 

HMM [1], where for each time frame, it has two options: either remains at the same state 

or changes to the next state. When a state j comes in at time t, the emitting probability 

distribution bj(Ot) generates an observation vector Ot. There are two special states in a 

HMM: an entry state    and an exit state   . They are reached before the speech vector 

generation process begins and when the generation process terminates, respectively, and 

both states are reached only once. State    and state    do not have emitting probability 

densities since they do not generate any observation. 

 

 

Fig. 1.2 An example of HMM for a phoneme [1] 

The transition probability in a hidden Markov model aij is defined as the probability 

of entering state j given the previous state i [1], i.e.,                             

      ( ( )   )| (   )   )                                      (1.2) 

where s(t) is the state index at time t.  
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The emitting probability density bj(o) defines the distribution of the observation 

vectors at the state j. Emitting probability density function in continuous density HMM 

(CDHMM) is often taken as a Gaussian Mixture Model (GMM) [1]: 

                                       ( )  ∑      (         )                                                                  

∑             and                                                     (1.3) 

where  (         )   (  )  ⁄ |   |       (     )      (     )
 is a multivariate Gaussian 

density, D is the dimension of a feature vector, and    ,    , and     are the weight, 

mean and covariance of the n-th Gaussian component of the GMM at state j.  

As we discussed in Section 1.4,  ( | ) represents the likelihood of an observation 

sequence O given word sequence W. Given {aij} and bj(o), i =1~N, j = 1~N, it is 

computed as [1]:  ( | )  ∑  (   | )                                                   (1.4) 

where S = s1, s2, …, sT is the hidden Markov model state sequence that generates the 

observation vector sequence O = o1, o2, …, oT, and the joint probability of O and the state 

sequence S given W,   (   | ), which is a product of the transition probabilities and the 

emitting probabilities, is defined as [1]: 

 (   | )  ∏    (  )                                                 (1.5) 

where sT+1 is the non-emitting exit state. 

In LVCSR systems, sub-word units, such as syllables and phonemes, are used as the 

basic units for acoustic model training and recognition test since it is impractical to build 
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a HMM for each word or word sequence. The model of a word string is constructed by 

concatenating the corresponding basic unit HMMs. 

1.7 Phonetic Decision Tree 

Speech is a very complex signal and its production can be affected by many variation 

factors. One of the most common variation factor is Co-articulation which means that the 

pronunciation of a phoneme can be affected by the articulations of neighboring 

phonemes. Context-dependent (CD) phonemic HMM is usually used to describe the co-

articulation phenomena in continuous speech recognition and triphone CD HMMs have 

been used in speech recognition system. A triphone has a monophone as its center phone 

with only one left phone and one right phone as the context. Different triphones with the 

same center phone are called allophones [18]. For instance, aw-iy+th (the left context is 

aw and the right context is th), m-iy+t, aw-iy+nx, ……, are called allophones since they 

have the same center phone iy. Since the left and right neighbors in triphones are different 

combinations of other phones in the phone set, the total number of triphones is much 

larger than the commonly used 40 monophones in English. Therefore, for reliable 

parameter estimations of HMM models, training data always seem insufficient, especially 

when Gaussian mixture models (GMM) are used as HMM’s output models. Phonetic 

decision tree (PDT) based clustering [22] is one of the most popular clustering algorithms 

used to reduce the number of physical triphones by tying physical triphone models for a 

large portion of logical triphone units (such as triphone state) . 
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Triphones for phoneme iy: {aa-iy+aa, m-iy+f, n-iy+h, zh-iy+zh, ae-

iy+aa…} 

                                       Left side is consonant? 

                                               yes             no                               

{m-iy+f, n-iy+h, zh-iy+zh}                                         {aa-iy+aa, ae-iy+aa…} 
      Left side is nasal? 
                                yes           no                   yes          no 
    {m-iy+f, n-iy+h}                        
                                  {zh-iy+zh} 
 
                                |                                  |                 |                      | 
                                |                                  |                 |                      | 
                                |                                  |                 |                      | 

 

Fig. 1.3 An example of PDT for phoneme iy 

In Fig. 1.3, an example of PDT is illustrated. From Fig 1.3, we notice that a phonetic 

decision tree is a binary tree with a yes/no phonetic question attached to each node. In 

PDT based state tying, from the context-dependent data of that phone, a decision tree is 

built for each phone state. All allophones of the phone state are tied and modeled by one 

Gaussian density at the root node of the tree. By asking a phonetic context question, the 

allophone set is split into two subsets at the node. The quality of each question can be 

measured by the likelihood increment due to the split, and the node split is determined by 

selecting the question that leads to the maximum likelihood gain [22]. This node split 

procedure is iterative. There are two criteria for stopping the iterative process. One is that 

the data count at a node falls under a predefined threshold, which ensures that all leaf 

nodes have enough data to estimate reliable GMMs. The other one is that the likelihood 

 P 

 Y 
 N 

 n11  n12  n13  n14 
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gain becomes smaller than a predefined threshold. In addition, leaf nodes with different 

parents could be merged if the likelihood loss due to the merging is less than the 

predefined likelihood gain threshold. This procedure of PDT construction is carried out in 

a top-down order until one of the two termination criteria as described above is met. 

Compared with other clustering methods such as k-means, PDT can greatly reduce the 

number of triphone models while effectively incorporating acoustic phonetic knowledge 

into the clustered models. In addition, it can also predict unseen triphone units which do 

not occur in training data. 

1.8 Language Model 

Given a sequence of previously spoken words, Language Model (LM) is used to provide 

the probability that the word w will be spoken next. There are different ways to solve this 

problem in the literature, such as Context-Free-Grammar (CFG) [24] and N-gram model 

[25]. CFG methods use knowledge-based rules to define the production of a sentence in 

words while N-gram LM uses counting-based occurrence probabilities to predict the 

occurrence of the next word. The advantage of the first method is that it is closer to 

grammar rules, which seems more reasonable than n-gram. However, its disadvantage is 

also very obvious, that is, in CFG, the knowledge-based rules are too complex to be 

represented by a grammar model. In fact, the second method is much more successful in 

practical use since N-gram based LM can be easily obtained and consistently integrated 

with acoustic model in a stochastic framework. An N-gram Language Model can be 

simply represented by  (  |             ), where               are N-1 words 

that appeared immediately before the current word   . The most commonly used N-

grams are bigram (N=2) and trigram (N=3), respectively. If higher order N-grams such as 
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4-gram needs to be used in a speech research system [26], much more training data are 

required to estimate a reliable LM. Usually, speech transcriptions are not sufficient to 

estimate a reliable LM. Therefore, an N-gram based LM is often estimated using a large 

text corpus which should include words in the same domain as speech transcriptions. 

However, for those words which do not appear frequently through the whole corpus, 

there are smoothing techniques that can help predict the probabilities for their 

occurrences [27, 28]. One of the most commonly used smoothing techniques is Backing-

off model [29] which uses lower-order N-grams to approximate the probabilities of those 

words which rarely appear in a training corpus. In the Backing-off model, an N-gram 

probability is expressed as [1]: 

   (  |             )          (                   )     (              )                                            ( )  (             ) (  |             )   ( )     

(1.6)  

where (a) is used if                  has occurred enough times to estimate a reliable 

probability for the N-gram, otherwise, (b) is used. In addition,  (             ) is the 

back-off coefficient of N-1-gram (  |             ) , which makes the total 

probability mass of the N-gram equal to 1 (which needs to discount the large counts).  

1.9 Viterbi Algorithm 

The goal of speech recognition is to obtain the word sequence W for a feature sequence O 

so that the posteriori probability P(W|O) is maximized. Decoding engine, which is also 

called speech recognizer, is able to combine the statistical models or knowledge sources 

including acoustic models, language models, pronunciation models, dictionary, and 
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decoding algorithms and use them during the search process to obtain the overall 

recognition results in a speech recognition system. 

In all decoding algorithms, the most commonly used algorithm is Viterbi algorithm. 

Viterbi algorithm is based on the Dynamic Programming (DP) principle [30] which 

decomposes a problem into some sequential, independent sub-problems and obtains the 

solution for the original problem in a bottom-up manner by solving those sub-problems 

recursively. A decoding procedure using Viterbi algorithm can be divided into two steps: 

forward-extension and backtrace [1]. Suppose we have a speech utterance including T 

acoustic frame vectors. In the forward-extension step, all possible paths are extended 

from time 0 to time T-1. In order to speed up the decoding, different heuristic pruning 

[30] and look-ahead methods may be implemented in this step to cut off those search 

paths with low probability scores. By combining the acoustic scores and language scores 

of all acoustic vectors till the current frame, the path scores are accumulated. At each 

time, when a new word is created, each path records its best previous word. In the 

backtrace step, a best path is selected with the highest probability score once the last 

frame at T-1 has been processed. A backtrack is implemented by recursively obtaining 

the best previous word recorded in the forward-extension step for the current word.  

1.10 Lattice Generation 

A word lattice is a compact, intermediate representation of alternative hypotheses for 

recognizing a speech utterance. A lattice can be generated by a HMM baseline and it is a 

directed acyclic graph which contains many paths in the search space. In a lattice, nodes 

are connected by arcs, and each arc is labeled with a word which is hypothesized between 

the time marks of its nodes as well as the likelihood that the word is uttered in that 
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particular interval. Lattices generated with HTK [22] include time information associated 

with the start and end nodes of each arc. Therefore, lattices provide word boundary 

information. The likelihoods or arcs are obtained during the recognition process as a 

combination of the acoustic and language model probabilities. One method for efficiently 

constructing word lattices is to use lexical trees [31]. The use of word lattices has become 

very popular in large vocabulary speech recognition. The main advantage of using word 

lattices is to provide alternative word hypotheses in a constrained space for speech 

signals in order to allow using more elaborate knowledge sources to improve recognition 

accuracy without repeating the whole decoding process. One example is to apply a more 

complex language model to implement lattice rescoring based on lattices generated by a 

simpler language model and acoustic model.  

1.11 Template based Speech Recognition 

Template-based methods make comparisons between a test pattern and templates of 

training data, and therefore they are able to capture the speech dynamics and time 

correlation of speech frames better than HMM based methods. Template-based methods 

commonly use DTW to compare a test pattern against a template or template sequences. 

They were originally used to recognize isolated words or connected digits with good 

performance [1]. When using template-based methods, feature vectors of training set 

need to be stored in computer memory, and until recently, it has been practically 

impossible to apply template-based methods to large tasks of speech recognition. With 

today’s rapid advance in computing power and memory, template-based methods have 

attracted new efforts and the reported results are promising [32, 33]. It has also been 
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shown that by combining HMM-based and template-based recognition at the system 

level, accuracy performance can be improved over either system alone [16]. 

1.11.1 Dynamic Time Warping 

Dynamic time warping (DTW) is used to calculate the shortest distance between two 

speech frame vector sequences based on some given constraints [34]. 

Suppose we have an input speech vector sequence x = (  , . . . ,   ) and a template y 

= (  , . . . ,     ). The distance between the two sequences of vectors is calculated as 

[35]: 

 (   )  ∑ ( (   ( )    ( ))   ( )   (   ))  
                           (   ) 

In Eq(1.7), an alignment path is determined by { (x) = (  (i),   (i)), i = 1 to   }. 

At each point of the path, the local distance d(   ( );    ( )) is calculated. Some 

constraints on the path can be [35]:     ( )    
      ( )     

                
               (i)    (j) 

                              (i)    (i-1),    (i)    (i-1)                          (1.8) 
 

Many additional local constraints have been proposed and used [34], and here we list 

two very important constraints. The first one is symmetric constraint [35]:                 (i)     (   )      and     (i)      (   )                  (1.9) 

and the second one is Itakura constraint [35]: 
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  ( )     (   )    

                                         ( )     (   )         ( )    (   )          (1.10) 

The symmetric constraint does not allow skipping for both reference and test frames 

while the Itakura constraint allows skipping of one reference frame and stalling in any 

particular reference frame for two consecutive input frame vectors. Both of them can 

generate a proper alignment between a test segment and a reference template even though 

they have different lengths. 

1.11.2 Local Distance 

A speech template is a sequence of N acoustic frame vectors. For a template having a 

sequence of N M-dimensional feature vectors yi, and it can be represented by    (          ). The dissimilarity between two acoustic frame vectors is commonly 

calculated by the Euclidean distance [35]:  

 (   )  (   )   (   )  ∑ (     )                              (1.11)                           

with IM the M×M identity matrix, and the Mahalanobis distance [35]                                                

    (   )  (   )    (   )                                             (1.12) 

with Σ the covariance matrix of the distribution of the data. 

1.12 Prosodic Information 

Prosodic information of speech involves variations in phone or syllable length, loudness, 

and pitch of speech sounds. Loudness can also refer to the sound energy. Details of a 

language's prosody depend upon its phonology. For instance, in a language including 

vowel and consonant sounds, vowel sounds usually have longer duration than consonant 

sounds. In a similar manner, prosodic pitch must not obscure tones in a tonal language if 

http://en.wikipedia.org/wiki/Oral_language
http://en.wikipedia.org/wiki/Syllable_length
http://en.wikipedia.org/wiki/Loudness
http://en.wikipedia.org/wiki/Pitch_%28music%29
http://en.wikipedia.org/wiki/Phonology
http://en.wikipedia.org/wiki/Vowel_length
http://en.wikipedia.org/wiki/Tone_%28linguistics%29
http://en.wikipedia.org/wiki/Tone_language
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speech is to be intelligible. Prosodic information is useful for automatic speech 

recognition (ASR) because it plays an important role in the comprehension of spoken 

language by human beings: it helps in recognizing spoken words, in resolving global and 

local ambiguities, and in processing discourse structure [36]. The role of prosody is 

particularly important in spontaneous speech. For example, acoustic differences between 

stressed and unstressed syllables are greater in spontaneous speech than in reading speech 

[37]. Since spontaneous speech contains lots of prosodic information [38], it has been 

hypothesized that prosodic information could be useful to improve speech recognition 

accuracy. However, prosody in speech recognition has not been studied well since 

prosodic information is ignored during the HMM based feature extraction process. Some 

promising work [39, 40] used prosodic information for improved duration modeling to 

control the search space. Vowel sound duration modeling was used to assess non-native 

speaker’s English [41]. In addition, prosodic information was also used for cross-word 

context models [42] and language modeling [43, 44]. Finally, prosody features have been 

widely used in speech understanding and many applications have been investigated [45, 

46].  

The integration of prosodic information with ASR has been investigated in [47, 48, 

49]. There are two ways to do so. The first one is to incorporate prosodic features as 

another stream at the segment level [49], which has the advantage that spectral and 

prosodic features are jointly modeled. However, the disadvantage of the method is that 

phenomena beyond the segment level cannot be captured. The second way is to build 

prosodic feature models which are independent of the ASR acoustic and language 

models. This method has the advantage that the models can be built at arbitrary linguistic 



22 

 

levels and combined with the ASR hypotheses by lattice rescoring. In addition, there is 

no modification for the conventional ASR in order to include prosodic information. The 

method can also be extended to the combination of template matching and prosodic 

features. Therefore, in this dissertation, we take the same strategy as the second method 

to integrate template matching scores with prosodic scores.  

Prosodic information has been ignored in the HMM based system and this kind of 

information is discarded during feature extraction. However, for template based 

approaches, prosodic information derived scores can be integrated with template 

matching scores which are based on frame spectral features, and this integration offers a 

possibility of obtaining a better recognition accuracy. There are also applications in 

integrating a template-based approach and prosody information [9] for connected digit 

recognition with positive results. Recently, the integration of template based methods and 

prosody information for large vocabulary speech recognition tasks has been explored in 

[50]. Since our template based methods have been successfully used for LVCSR [51], we 

investigate adding the prosody information to our template methods in order to further 

improve speech recognition accuracy. 
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Chapter 2 

Template Construction, Matching, Clustering and Lattice 
Rescoring 

2.1 Viterbi Alignment  

 
In Section 1.9, we have introduced Viterbi algorithm which is based on Dynamic 

Programming. To generate the time boundaries for templates, we use the Viterbi 

algorithm to align speech utterances with their word transcriptions. The acoustic model 

used to do the alignment is from the HMM baseline model. The aligned results include 

the start frame, the end frame, triphone unit and log-likelihood alignment scores, which 

are illustrated below for a sentence fragment. 

Start Frame            End Frame                    Phone Unit                  Alignment Score 
      0                                2                               sil                              -168.038223 
      2                                5                            sil-k+ay                        -245.223969 
      5                               11                           k-ay+n                         -389.628296 
     11                              15                           ay-n+d                         -235.218353 
     15                              21                           n-d+ah                         -310.358765 
     21                              22                              sp                              -69.052261 
     22                              26                           d-ah+v                         -259.734985 
     26                              31                           ah-v+m                        -356.604858 
     31                             100                              sp                             -4271.944824 
    100                            106                           v-m+ay                       -399.708344 
    106                            116                            m-ay+jh                     -738.841736 
    116                            117                              sp                             -80.015892 
    117                            128                            ay-jh+ao                    -738.621521 
    128                            146                            jh-ao+z                      -1201.498779 
    146                            153                            ao-z+aa                      -483.028595 
    153                            154                               sp                            -82.471916 
    154                            158                            z-aa+r                        -245.659470 

158                            161                            aa-r+g                       -194.141525 
                                                                                                                 

    281                            283                               sil                           -133.543701 

With the template boundaries obtained from the Viterbi alignment, we can proceed to 

construct templates. 
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2.2 Template Construction 

We choose the template unit as context-dependent phone segments (triphone context). As 

discussed in Section 2.1, forced alignments of training speech data with their 

transcriptions are first carried out to obtain phone boundaries which define the context-

dependent phone templates. We then use the GMM codebook which consists of the 

GMMs {m1, m2,…,mN} of the phonetic decision tree tied triphone states in the baseline 

HMMs to label the template frames in the templates. To do so, we compute the likelihood 

scores of a frame xt of a phone template by all GMMs and the GMMs that give the top n 

likelihood scores,  (  |  ( ))   (  |  ( ))     (  |  ( ))   , are used to label 

xt. Each GMM index is also associated with a weight wi that is proportional to the 

likelihood score  (  |  ( )). A frame which is labeled by GMMs is therefore represented 

as: 

   {[  ( )   ( )] [  ( )   ( )]} 

  ( )   (  |  ( ))∑  (  |  ( ))     ,             ∑   ( )                                     (2.1) 

For a template   having n frame vectors, it is represented by                
with each    (       ) a frame vector. Compared with the traditional real frame 

vector based templates, the templates constructed here are represented with multiple 

GMM indices associated with the corresponding weights. In conventional speech 

recognition, speech fames are represented by high-dimensional spectral feature vectors 

(usually 39-dimensional vectors are used) with the float data type. Our novel method of 

using the GMM indices to represent the templates converts the 39-dimensional float 
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vectors to integer numbers, which greatly reduces the memory space requirement and 

makes the template based method possible to be extended to LVCSR. 

2.3 Template Matching 

DTW is widely used for measuring the dissimilarity between two speech utterances to 

cope with variations in speaking speed. DTW has different local path constraints as we 

introduced in Section 1.11.1. For template matching, we adopt a symmetric constraint 

defined as:  (   )   (   )       (     )  (       )  (     )             (2.2) 

The advantage of the symmetric constraint is that it does not set any limitation on the 

lengths of two matching objects, which can guarantee a test segment to match with a 

template with any length. The distance between two feature vector sequences   and   is 

calculated as: 

   (   )         ∑  (  ( )    ( ))                                                          (2.3) 

where d is the local distance between any two frame vectors in the two sequences,   and    are the functions that map x and y to the common time axis, N is the warping path 

length, and L is the length of the test feature vector sequence. It is noted that the defined 

D(x, y) equals to a product of the average frame distance and L, and it is therefore 

proportional to the test segment length. 

2.4 Template Clustering 

In HMMs, Phonetic Decision Tree (PDT) is commonly used for triphone state tying. 

Although this method can be extended for tying whole triphone templates in our task, it is 

also plausible to utilize the PDT tying structures of the states of phone HMMs directly for 
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triphone template tying, since the tying structure of a phone state indicates partial 

similarities among triphone segments. Specifically, for the triphone templates of each 

monophone, we keep three tying structures defined by the three emitting states of the 

corresponding phone HMMs, and the multiple tying results are jointly used in template 

matching.  

In matching a test speech segment with a triphone unit, we select the n-best 

templates from the corresponding tied triphone cluster that are closest to the test segment 

and use their average score as the match score. More details about how to select the n-

best templates will be explained in Chapter 5.    

2.5 Lattice Rescoring 

Lattices can be generated by a HMM baseline system. A lattice contains many 

hypotheses. By setting different numbers of tokens [22], different sized lattices can be 

generated. Usually, a larger lattice can include more correct hypotheses but at the same 

time it also brings more confusion. An example of word lattice is shown in Fig 2.1. As 

we already introduced in Section 1.10, in a lattice, there is a starting node and an ending 

node which represents the beginning and the ending of an utterance, respectively. In 

addition, nodes in a lattice provide word boundary information and arcs between nodes 

represent words with the associated scores (Scores are not shown in the figure) which are 

the combined scores from the acoustic and language models. In Fig.2.1, the utterance 

starts at frame 0 and ends at frame 51. The highlighted path will be picked up as the 

speech recognition output since the sum of word hypothesis scores along the path is the 

highest. The advantage of using lattice rescoring is that lattices can provide hypothesized 

phone boundary information and template matching can be directly performed on the 
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phone arcs in each lattice without the re-decoding process. When using template 

matching for lattice rescoring, the scores changed by rescoring are only the acoustic 

scores and the scores from the language model remain unchanged. 

 

 

Fig. 2.1 An example of a word lattice 
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Chapter 3 

Local Distances 

 3.1 Euclidean Local Distance 

The commonly used local distance in DTW for matching templates and test segments is 

Euclidean distance [10] since it is easily used to calculate the distance between two high 

dimensional frame vectors. We use the Euclidian distance as the local distance in DTW 

as a baseline of template matching in order to compare the recognition performance 

between the traditional template matching method and the proposed template matching 

method in this dissertation.   

3.2 Negative Log-likelihood Local Distance 

In the proposed template matching method, templates are represented by GMM indices 

where the traditional local distance for two vectors such as the Euclidean distance can not 

be used any more. So here we first use negated log likelihood score to calculate the local 

distance between two frame vectors.  

Let each speech frame be labeled by its 1-best GMM index. Suppose we have a test 

phone segment n1{ f1: m1 , f2: m2 , f3: m3} consisting of three frame vectors f1, f2, and f3 

that are indexed by m1, m2, and m3, respectively, and a phone template n2{ k1: m4, k2: m5 , 

k3: m6} consisting of three frame vectors k1, k2, and k3 indexed by m4, m5, and m6, 

respectively. Assuming that the local distance d(f1, k1) needs to be calculated. The 

negative log likelihood local distance between f1 and k1 is defined as: 

 (     )       (  |  )                                             (3.1) 
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It is worth noting that the negative log likelihood distance directly changes the 

similarity measure of log likelihood into a dissimilarity measure.  

 3.3 Log-likelihood Ratio based Local Distance 

In the negative log-likelihood local distance, we only use the test frame vectors as the 

information from the test segments. Since test frame vectors are also labeled by GMM 

indices as we do for template construction, we can also include GMM indices which are 

used to label the test frame vectors in the local distance measurement. So here we 

propose a novel log likelihood ratio measure to calculate the local distance between two 

frame vectors. Suppose that a test phone segment n1{ f1: m1 , f2: m2 , f3: m3} consists of 

three frame vectors f1, f2, and f3 that are indexed by m1, m2, and m3, respectively, and a 

phone template n2{ k1: m4, k2: m5 , k3: m6} consists of three frame vectors k1, k2, and k3 

indexed by m4, m5, and m6, respectively. The log-likelihood local distance d(f1, k1) 

between f1 and k1 is: 

 (     )   𝑙   (𝑓 |  ) (𝑓 | 4)                                                 (3.2) 

The log likelihood ratio measure contrasts the fit scores of a test frame vector with its 

best model against its fit scores with the best model of the template vector, and therefore 

compares the two frame vectors indirectly through the models. The log likelihood ratio 

measure is nonnegative when 1-best GMM is used in frame indexing. When using 

multiple GMM indices for speech frame representation, however, this property is 

occasionally violated when a test frame vector is very close to the template vector. In the 

sense of indirectly measuring the frame distance, we simply take the absolute value for 

the log likelihood ratio. Suppose f1 is represented by top 2 GMM indices m1 and m2 with 
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weights w11 and w12, and likewise k1 is represented by GMM indices m4 and m5 with 

weights w21 and w22. The likelihood scores S1 and S2 are calculated as: 

       (  |  )      (  |  )        (  |  )      (  | 5)                                    (3.3) 

where 

                                          (𝑓 |  ) (𝑓 |  )  (𝑓 |  )  ,                            

                  (  | 4) (  | 4)  (  |  )  ,                                               (3.4) 

As we discussed in Section 3.2, the negative log likelihood local distance between f1 and 

k1 is defined as 

        (     )    𝑙                                                      (3.5) 

 

and the log likelihood ratio local distance between f1 and k1 is defined as: 

                (     )  |𝑙      |                                                  (3.6) 

 

 3.4 Kullback–Leibler Divergence based Local Distance 

In the negative log-likelihood and log-likelihood ratio local distances, except for using 

the GMM information for the templates and test segments, the real frame vectors are also 

used in both distances to compute the likelihood scores. Since both templates and test 

segments are labeled by GMM indices, we can also consider measuring the distance 

between GMMs without using the real frame vectors. Kullback–Leibler (KL) Divergence 

http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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is an effective way to measure the distance between two GMMs [52]. So we can use the 

KL distance between GMMs to measure the dissimilarity of two frame vectors. Since 

there is no closed form expression for KL distance of GMMs, we use the Monte Carlo 

sampling method of [52] to compute the distance from a GMM    to a GMM    as: 

 (   ||    )    ∑ 𝑙        (  )  (  )                                                (3.7) 

where xi’s are i.i.d. samples generated from the GMM   . Since the KL divergence is 

asymmetric, we define the KL distance between    and   as: 

   (     )    ( (   ||    )   (   ||   ))                            (3.8) 

The local distance between two frame vectors    and     is calculated as: 

 (       )  ∑ ∑ (  ( )  (  )   (  ( )   (  )))                              (3.9) 

where    and      are the numbers of GMMs used to label    and    , respectively. 

We already introduced and discussed the necessary concepts and components for the 

method of integrating statistical modeling with template matching. In Fig. 3.1, a block 

diagram of the overall method is given. 
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Fig. 3.1: Block diagram of integrating statistical modeling with template matching 
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Chapter 4 

Template Selection and Compression  

Even though using GMMs to label frame vectors can save computation time and storage 

space significantly compared with the traditional template matching method, when the 

method is used for large vocabulary speech recognition, the cost of computation and 

storage is still too high. In order to further reduce recognition time and storage space, we 

propose template selection and compression algorithms. Before we get into the details of 

these algorithms, the commonly used hierarchical agglomerative clustering algorithm 

[20] which is used to agglomerate templates into different clusters is first described.  

4.1 Hierarchical Agglomerative Clustering 

Hierarchical agglomerative clustering is a bottom-up algorithm which at the beginning 

treats each template as a singleton cluster and then successively merge (or agglomerate) 

pairs of clusters until all clusters have been merged into a single cluster that contains all 

templates. Given a distance function D(Ci, Cj) for two clusters, the  following procedure 

describes the clustering algorithm for m templates               : 
1. Initialize the template set Z1={{x1}, {x2},…,{xm}} with each template being a 

cluster. 

2. For n = 2,…,m: 

Obtain the new set Zn by merging two clusters Ci and Cj in the set Zn-1 with the 

minimum distance D(Ci, Cj) among all existing distinct cluster pairs. Stop the 

clustering process if the number of clusters in the set Zn drops below a threshold. 
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The cluster distance function D(Ci, Cj) is commonly defined by the distance of their 

elements D(xi, xj). The average distance measure [20]             

 (     )   |  ||  | ∑ ∑  (     )                                             (4.1)  

is adopted here. Note that D(xi, xj) is the DTW distance of two templates defined in 

Section 2.3, and in this step of template clustering, the local distance d is the Euclidean 

distance of two speech feature vectors (not represented by GMM indices). 

4.2 Minimum Distance based Template Selection 

The hierarchical agglomerative clustering algorithm divides the templates in each tied 

triphone cluster into smaller clusters. For each such smaller cluster, a template 

representative is selected to represent all templates in the same cluster. Only the template 

representatives are stored and used in recognition. We choose to use a minimum distance 

based criterion to produce the template representatives, which calculates the minimum 

average distance from a template to all other templates in the cluster to select cluster 

template representatives. We call the template selection algorithm the minimum distance 

template selection (MDTS) algorithm. The template-to-cluster distance is defined as [20]:   

  (     )   |  |  ∑  (     )                                                               (4.2) 

The template     is selected as the cluster template representative when it satisfies the 

following condition: 

   (      )           (     )                                                     (4.3) 

The frames of the selected template representatives are subsequently indexed by their n-

best GMMs. Since we use a selected template representative to represent all other 
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templates, only the template representative is used in recognition, which can further save 

the recognition time and memory space for the template storage.  

4.3 Maximum Likelihood based Template Selection 

In the algorithm of MDTS, we use the GMMs to label the selected templates as the 

template representatives which are then used in speech recognition. However, the 

template representatives generated by the MDTS method produced very poor recognition 

performance when the KL divergence local distance (described in Section 3.4) was used. 

In order to match better with the KL divergence local distance, we further propose a 

maximum likelihood based template selection method, and we call it the maximum 

likelihood template selection (MLTS) algorithm. In MLTS, based on the cluster center    
which is selected by MDST, we relabel    by using a set of GMMs and the selection of 

GMMs follows a maximum likelihood criterion. We use DTW to align all other templates 

in the cluster    to the initialized template center    and the local distance used is the 

Euclidean distance. Fig. 4.1 illustrates an alignment result among the sequences             in   . The frame vectors            from the sequences         , 

respectively, are aligned to the frame vector    of the cluster center s*. The following 

procedure describes the MLTS algorithm using the aligned frame vectors                  : 
1. Pool the distinct GMMs which are used to label all the frames in   into a local GMM 

set M. 

2. Use the k-medoids algorithm with the KL distance to partition the GMM set M into l 

clusters   ,       𝑙.  



36 

 

3. For       𝑙: 
Use the maximum likelihood criterion to select a GMM cluster center     for   : 
                                              (∑ 𝑙  ( |   )  𝑋𝑀 )                           (4.4) 

where     is a GMM in   ,       includes all frame vectors labeled by the 

GMMs in   .  
4.  For       𝑙: 

Calculate the weight    for each GMM cluster center    , which is proportional to 

the total likelihood of  X evaluated by    , i.e., ( |   ). 

                                (𝑋|   )∑  (𝑋|   )      ∑    ( |𝑀  )   ∑  ∑    ( |𝑀  )                                         (4.5) 

The k-medoids algorithm is a clustering algorithm which attempts to minimize the 

distance from all other points in the cluster to the medoid. A medoid is a cluster center 

whose average distance to all the points in the cluster is minimal, and itself is also a point 

in the cluster. 

The ML algorithm for generating the set of GMMs to relabel the frame vector    of    is applied to all frame vectors in s*. The frame of the template representative 

corresponding to the aligned frame vectors X is represented by     and    (      𝑙), 

and the representation has the same form as the templates in Section 2.2 with the 

difference that we use top n GMMs to label a frame vector in Section 2.2, and here the 

aligned multiple frame vectors are used to select and generate a set of GMM indices for 

the frame labeling. The selected GMMs represent better the frame vectors in each cluster 

and are thus more informative as the template representatives. 

http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Algorithm
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Fig. 4.1: Align the sequences          to    
4.4 Template Compression  

In MLTS, we discard all other GMMs if the cluster center     is selected. In template 

compression of this section, instead of keeping a cluster center GMM     and excluding 

all other GMMs from a cluster in labeling a template representative frame, we further 

merge the GMMs in each cluster    to include more information of the original templates 

into a compressed template representative. To remove the effect of outliers, we calculate 

the mean distance  ̅ and standard deviation   between all other GMMs     to the cluster 

center     from the distance     which is the KL distance between a GMM     and the 

cluster center    . An outlier GMM     which is t times standard deviation away from  ̅, 

i.e., 

|     |̅                                                                (4.6) 
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is removed. Suppose that there are    GMMs left in    after removing the GMM 

outliers. We first pool all Gaussian components from the GMMs together, and we then 

normalize the weight of each Gaussian component with   . Two Gaussian components    and     are merged if the entropy increase due to the merge is the smallest. The entropy 

increase is calculated as [53]:   (       )  𝑙  | |         𝑙  |  |         𝑙  |  |                       (4.7) 

where    and    are the normalized mixture weights for    and    ,   and   are the 

diagonal covariance matrices of    and    , and   is the diagonal covariance matrix of the 

Gaussian density generated by merging    and    . The mean  , covariance  , and mixture 

weight   of the newly generated Gaussian component are defined as [53]: 

                          (     ) (     )(     )  

                        
                                                                                                                                   (4.8) 

We continue merging the Gaussian components until the number of Gaussian 

components in    is below a preset threshold. The remaining Gaussian components 

construct a new GMM, and the new GMM is used as a member of the GMM set to label a 

frame vector of the template representative. 

 

 



39 

 

Chapter 5 

Experiments and Analysis 

5.1 Experimental Setup 

5.1.1 TIMIT Corpus and Experiment Setup 

TIMIT is a corpus of phonemically and lexically transcribed speech of American English 

speakers of different genders and dialects. It was designed to further acoustic-phonetic 

knowledge and automatic speech recognition systems. The TIMIT training set consisted 

of 3696 sentences from 462 speakers and the standard test set included 1344 sentences 

spoken by 168 speakers. For the TIMIT dataset, a set of 39 phones units was obtained by 

reducing the original phone set of 61 phones, and a phone bi-gram language model (LM) 

was used. Speech frame feature consisted of 39 components: 13 MFCCs and their 1st  and 

2nd order time derivatives. The HMM baseline was trained with the GMM mixture sizes 

of 24. From the baseline HMMs, 1189 GMMs were extracted for template generation and 

matching. Phone lattices were generated for each test sentence. The total number of 

triphone templates was 152715. To calculate a KL distance between two GMMs, 10000 

Monte Carlo simulation data samples were generated [52]. Crossword triphone models 

were trained and used in decoding search.  

5.1.2 Large Vocabulary Speech Corpus and Experiment Setup 

The large vocabulary speech recognition task is based on the telehealth automatic 

captioning system developed in the Spoken Language and Information Processing 

Laboratory at the University of Missouri-Columbia. The objective of this project is to 

develop an online captioning system to help patients with hearing impairments 

http://en.wikipedia.org/wiki/American_English
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communicate with doctors in teleconferencing. Spontaneous speech data from 5 doctors 

were included and the vocabulary size was 46K. The challenges in developing such a 

system include several ways such as data collection, preprocessing of speech data, 

acoustic and language modeling, etc. A summary of the Telemedicine corpus is given in 

Table 5.1 [54]. The training and test data sets consist of 5 doctors’ speech. Word counts 

from transcription texts are also listed. A total of 52 acoustic sound units were defined, 

including 42 speech monophone units, seven filled pause units, one unit for sound 

artifacts like lip smack and microphone ruffling, as well as one pause and one silence 

unit. For more details about the system, please refer to [55]. 

Table 5.1 Datasets used in the telehealth task: speech (min.)/text (no. of words) 

 Training set Test set 

Dr. 1 180/39.148 27.8/6421 

Dr. 2 250/44,967 12.1/3988 

Dr. 3 210/35,348 29.8/5085 

Dr. 4 145/28,700 19.3/3248 

Dr. 5 200/39.398 14.3/2759 

Total 985/187,561 103.3/21501 

 
 

Baseline acoustic model parameters were trained by using the HTK toolkit [56] 

where HMM states were tied by phonetic decision trees. Speech features consisted of 39 

dimensional frame vectors: 13 MFCCs base features and their 1st and 2nd order time 

derivatives. Short-time analysis window size was 20 ms and shift was 10 ms. Context-

dependent crossword triphone models were used. The average number of triphone 
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templates was 181601 per speaker for the 5 doctors.  On average, 1905 GMMs were 

extracted from the baseline HMMs for each of the 5 doctors for template generation. 

Word lattices were generated for each test sentence with phone boundaries by using 

HTK. 10000 Monte Carlo simulation data samples were generated to calculate a KL 

distance between two GMMs [52].  

In order to enlarge vocabulary coverage and improve events estimation, the language 

model (LM) was trained using the transcripts of the training speech as well as textual data 

from other domains including public domain data sets of Broadcast News, Switchboard, 

and Call Home, and medical domain data including telehealth related dataset on 

dermatology. Trigram LM using the SRI toolkit [57] was trained with Kneser-Ney 

backoff [58]. Four word trigrams LMs were trained for the out-of-domain datasets, and 

two class trigram LMs were trained for the in-domain datasets. These six LMs were 

linearly interpolated by using a ten-fold validation on telehealth training set. Details of 

language modeling for telehealth captioning are described in [59]. 

5.1.3 Lattice Rescoring 

For the phone recognition task, a phone lattice was generated for each test sentence, and 

for large vocabulary speech recognition, a word lattice was generated for each test 

sentence with phone boundaries, both by using HTK [56]. Since lattices provided 

hypothesized phone boundaries, template matching was directly performed on the phone 

arcs in each lattice. Three tying structures defined by the three emitting states of the 

corresponding phone HMMs for the triphone templates of each monophone were kept, 

and the multiple tying results were jointly used in template matching. In matching a test 

speech segment with a tied triphone template, we selected the n-best templates from the 
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corresponding tied triphone cluster that are closest to the test segment and used. The 

average matching score is calculated for on the n-best templates. The whole process is 

illustrated in Fig. 5.1 in which the square root of     (i=1, 2, and 3) is the number of 

templates used in the template matching score calculation.  

 

Fig. 5.1: Using PDT clustering structures inherited from a baseline phone HMM to 
calculate the template matching score 
 

5.2 TIMIT Phone Recognition 

5.2.1 Evaluation on Different Local Distances  

We first investigate the recognition performance of different local distances discussed in 

Chapter 3. In Fig. 5.2, we compare phone recognition performances by using the HMM 

baseline and the four different local distance measures in DTW: 1) HMM baseline; 2) 

Euclidean local distance between two frame vectors; 3) negative log likelihood (NLL) 

local distance; 4) log likelihood ratio (LLR) local distance [60]; 5) KL-divergence local 

distance. Except for the cases 1) and 2) which did not use GMM indeces, each frame 
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vector for the cases 3) to 5) was labeled by 5 GMM indices. The HMM baseline used 24-

component GMMs with the recognition accuracy of 72.72%. The Euclidean and NLL 

local distances obtained the recognition accuracies of 72.83% and 72.92%, respectively, 

and they did not make significant improvements over the HMM baseline. However, the 

LLR and KL divergence local distances achieved 1.79% and 1.54% improvements over 

the HMM baseline. We conducted student T tests on the performance differences 

between the proposed methods based on the LLR and KL divergence local distances and 

the HMM baseline method and conclude that our proposed template matching methods 

based on the LLR and KL divergence local distances improved TIMIT phone recognition 

accuracy significantly over the HMM baseline at the significant level of α=0.05. We also 

examined the recognition result without using the language model and found that the 

LLR local distance based template matching method got a big improvement for 

semivowels /w/, /l/, /r/, and /y/, and also obtained an obvious improvement for some 

consonant sound like /b/,/dh/, /p/,/n/ and /k/, and the KL local distance based template 

method improved vowel sounds such as /ah/, /ey/, and /ow/ significantly, and also got 

better recognition accuracy for several consonant sounds like /b/, /d/, and /g/. Since the 

LLR and KL divergence local distances made significant improvements over the HMM 

baseline, we only used these two local distances in the subsequent experiments. 
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Fig. 5.2: A comparison of phone accuracy (%) by using the HMM baseline and different 
local distance measures for DTW in lattice rescoring.  

5.2.2 Evaluation on Different Numbers of GMM for Labeling a Frame 
Vector  

In this section, we investigate how the number of GMMs for labeling a frame vector 

affected the recognition performance. The local distances used here were LLR and KL 

divergence. In Figure 5.3, we compare using different numbers of GMM indices 1, 3, 5, 

and 7 to label the frame vectors. The HMM baseline accuracy of 72.72% (24-component 

GMMs) is shown across the four cases for comparison. For both the LLR and the KL 

divergence local distances, recognition accuracies with or without the language model 

peaked when the top 5 GMMs were used. The results verified that multiple GMM indices 

represented frame vectors better than that of a single GMM. We also notice that the LLR 

local distance gave a better recognition performance than the KL divergence local 

distance did for all four cases. In the subsequent experiments, we used top 5 GMMs to 

label each frame vector. 
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Fig. 5.3: A comparison of phone accuracy (%) by using different numbers of GMM 
indices for template representation with the LLR and KL divergence local distances in 
lattice rescoring (The red dashed line is the baseline with LM and the yellow dashed line 
is the baseline without LM). 

5.2.3 Evaluation on the Templates Taken as the N-best Templates 

As we discussed in Section 5.1.3, only n-best templates were selected to calculate the 

final scores for lattice rescoring even though all templates were used to match with the 

test segments. Therefore, we need to find the n-best templates from each tied triphone 

class for a test segment. There are different ways to decide n. Here we first define n as a 

fixed percentage of the tied triphone class. In Fig.5.4, we demonstrate how the 

percentages of the selected n-best templates affected the recognition performance based 

on the LLR and KL divergence local distances.  When 3% best templates were used for 

calculating the final scores, the LLR local distance obtained its best performances of 

67.48% and 74.38% for the cases of acoustic model alone and acoustic model plus 

language model, respectively. However, for the KL divergence local distance, the best 

performances of 67.03% and 74.18% for acoustic model and acoustic model plus 

language model were achieved respectively when 5% best templates were used for the 

computation of final scores in lattice rescoring. 
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Fig. 5.4: A comparison of phone accuracy (%) by using different percentages of 
templates for final score calculation in lattice rescoring  

We also decided the value of n by an empirical method in which n was taken as the 

square root of the number of all templates in each tied triphone class in analogy to the K-

nearest neighbor (KNN) method of [61] where K was decided by the square root of 

training sample size which helps reduce the variance of the n-best numbers due to 

unbalanced data distribution. By using this method and with the LLR local distance, we 

obtained the recognition performances of 67.73% and 74.51% for acoustic model alone 

and for acoustic model plus language model, respectively. For the KL divergence local 

distance, the recognition performances of 67.15% and 74.26% for acoustic model alone 

and for acoustic model plus language model were achieved, respectively. Since the 

empirical method of taking n as the square root of all templates in each tied triphone class 

obtained better recognition performances than the method of taking n as a fixed 

percentage such as 3%, we use the empirical method to decide the value of n in all the 

subsequent experiments. 
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5.2.4 Evaluation on Template Selection and Compression Algorithms 
based on Different Local Distances   

In this section, we investigate the effects of the template selection and compression 

algorithms as discussed in Chapter 4.  In Fig. 5.5, we compare the recognition 

performance for the template selection and compression algorithms based on the LLR 

and KL divergence based local distances. Five cases are shown: 1) HMM baseline; 2) use 

all templates (without selection) based on the LLR and KL divergence local distances; 3) 

use the minimum distance template representative selection algorithm based on the LLR 

and KL divergence local distances; 4) use the maximum likelihood template 

representative selection algorithm based on the LLR and KL divergence local distances; 

5) use the template compression algorithm based on the LLR and KL divergence local 

distances. The HMM baseline accuracy was 72.72% (24-component GMMs).  

When all templates were used (without selection and compression), the LLR based 

local distance obtained better recognition performance of 74.51% than the KL divergence 

based local distance did (74.26%). The minimum distance template selection algorithm 

had the recognition accuracy of 73.79% when the LLR local distance was used, and when 

the KL local distance was used, it only increased the recognition performance by 0.03% 

over the HMM baseline. The maximum likelihood template selection algorithm got the 

recognition accuracy of 74.19% when the KL local distance was used, while when using 

the LLR local distance, it only improved recognition accuracy by 0.46% over the HMM 

baseline. Based on the maximum likelihood template selection algorithm, we further 

conducted an experiment on the template compression method based on the LLR and the 

KL divergence local distances.  The template compression made further improvement 
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(74.35%) over the MLTS method based on the KL local divergence distance while it 

decreased the phone recognition accuracy by 0.43% from the MLTS method when LLR 

local distance was used. The number of GMMs used to label frame vectors for cases 2) to 

5) was 5. The threshold t in equation (4.6) for removing the GMM outliers was set to 2. 

The percentages of template representatives taken in MDTS, MLTS and template 

compression were 10%, 5%, and 5%, respectively (more details about the selected 

template percentages are shown in Fig. 5.7).  

 

Fig.5.5 Phone accuracies (%) of all template and template representative methods with 
KL and LLR local distances (mixture size=24) 

Several points are worth noting in Fig.5.5. First, when the original templates 

(without template selection) were used, the LLR distance worked better than the KL 

distance in DTW. This is due to the fact that the KL divergence measures the distance 

between GMM distributions and it does not directly measure the distance between frame 

feature vectors; in contrast, the LLR local distance is computed by plugging the frame 
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feature vectors in the associated GMMs that best fit the vectors, and it therefore more 

directly measures the distance between two frame vectors.  

Second, for the MDTS method, the LLR distance worked better than the KL 

distance, but for the MLTS method, the KL distance worked better than the LLR 

distance. In MDTS, the template representatives were selected from the original 

templates, and therefore LLR distance worked better as discussed above for using all 

templates. In contrast, in MLTS, each frame vector of a selected template representative 

was relabeled by GMMs that maximized the likelihood of a cluster of template frame 

vectors, and therefore the KL distance that measures the distance between GMMs worked 

better. 

Third, relative to the case of using all original templates, MLTS with the KL distance 

only slightly decreased recognition accuracy, but MDTS with the LLR distance 

significantly decreased the accuracy. As was discussed above, MDTS simply selects a 

cluster center as the template representative, but MLTS further refines the GMM indices 

of template representative frames by maximizing the likelihood of all frame feature 

vectors in each cluster. Through this procedure, MLTS can generate more informative 

template representatives than MDTS.  

Finally, template compression further improved the performance over MLTS method 

with the KL distance. This can be attributed to the better representation of the template 

frame clusters by the new GMMs generated through merging the GMMs of the original 

frame vectors, which include more information of the frames of the templates in the 

cluster whereas in MLTS only the labels of GMMs were refined.   



50 

 

In summary, when original templates or MDTS were used, the LLR distance worked 

well in DTW, and when MLTS or template compression were applied, the KL distance 

worked well in DTW. Using the respectively compatible local distances, MLTS 

performed better than MDTS, and template compression further improved MLTS. We 

also conducted the same significance test on the performance differences between our 

proposed methods (case 2 to case 5) and the HMM baseline. The proposed methods that 

improved the recognition accuracy significantly over the baseline at the significance level 

of        are: 1) KL and LLR based all templates in case 2; 2) LLR based MDTS in 

case 3; 3) KL based MLTS in case 4; and 4) KL based template compression in case 5. 

For the subsequent experiments, we only used the LLR distance based MDTS method 

and the KL distance based MLTS and template compression methods. 

In Table 5.2, we investigate how the threshold value t of Eq. (4.6) for removing the 

GMM outliers affected the recognition performance. Since the template compression 

method is based on the template selection method and only KL divergence local distance 

based MLTS obtained a significant improvement over the HMM baseline, here we only 

evaluated the threshold effect suing the KL divergence based MLTS method. When t=2 

and 5% template representatives were selected, the KL divergence based template 

compression method gave the best phone accuracy performance of 74.35%, and when    , all GMMs in a cluster were used to generate compressed templates. For all the 

subsequent experiments, the threshold value t=2 was used in template compression. 
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Table 5.2.Phone accuracies (%) from using different threshold values for the compressed 
template representatives 

Threshold    1σ 2σ 3σ   

Accuracy (%) 73.99 74.35 73.52 71.02 

In Fig. 5.6, we show how the percentages of templates selected from the total 

templates as the representatives affected recognition accuracies for MLTS with KL 

distance, and we also show the effect on the template representatives from using different 

numbers of GMMs in labeling the frames of the original templates. The percentages 

varied from 100% down to 1% and the number of GMMs used to label each frame vector 

was 1, 3, and 5. For the 1 GMM case, the number of GMM clusters 𝑙 in MLTS was set to 

5 with the intention of selecting 5 GMMs to label each frame vector for the template 

representatives. However, when the percentage of templates selected as representatives 

was high, an aligned frame vector set may have less than 5 GMMs, and in such a case all 

GMMs in the set were used to label the corresponding frame vector of the template 

representative. It is observed from Fig. 5.6 that when each frame vector was labeled by 1 

GMM, using 100% templates produced a phone accuracy lower than using 80% 

templates since the latter used MLTS to label each frame vector by more than 1 GMMs 

(1.3 on average); when the percentage was reduced from 80% to 60%, phone accuracy 

decreased as there were less template representatives to be used in rescoring, and each 

frame vector of the template representatives was still labeled by less than 2 GMMs (1.7 

on average); when the percentage further decreased from 60% to 5%, phone accuracy 

increased steadily since on average each aligned frame set had more GMM candidates for 

selection, and the chance of finding good and sufficient GMMs to label the frame vectors 
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increased (for the cases of 40%, 20% 10% and 5% template representatives, the average 

number of GMMs used to label each frame of template representatives were 2.6, 5, 5, and 

5, respectively) even though the number of template representatives decreased. The best 

accuracy performance was obtained when only 5% template representatives were 

selected. When the percentage reduced to 1%, the template representatives became 

insufficient and the accuracy performance dropped. When 3 GMMs were used to label 

each frame vector, the trend of the phone accuracy curve is similar to the 1 GMM case 

except that the peak of the former occurred at 20%. When 5 GMMs were used to label 

each frame vector, using more template representatives produced higher recognition 

accuracy. Compared with the 1 GMM case, when 3 GMMs or 5 GMMs were used to 

label each frame vector, there were more GMM candidates to be selected to form 𝑙 (𝑙=5) 

clusters, but the confusion among the selected templates also increased since there were 

larger overlaps of GMMs in the original frame vector labels. 

 

Fig.5.6: Phone accuracies (%) for MLTS versus percentages of template representatives 
with each frame vector labeled by 1, 3, and 5 GMMs, respectively.  
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It is also worth noting that for the 1 GMM case in Fig. 5.6, the accuracy 

performances for the high percentage of template representatives like 80% and 60% were 

inferior to those in the 3 GMM and 5 GMM cases due to fewer choices of GMM 

candidates for each aligned frame vector set. However, since the purpose of the proposed 

MLTS is to reduce computation and storage costs, the performance of the small 

percentages of template representatives as shown in the 1 GMM case is more relevant. 

Therefore, in Fig. 5.7, we only show the performance of template compression for the 1 

GMM case with KL distance in comparison with MLTS and MDTS. It is observed that in 

the low percentage cases, template compression improved accuracy performance over 

MLTS and the best result was obtained when only 5% template representatives were 

used. For MDTS, the number of GMMs used to label each frame vector was 5, where 

using more template representatives produced higher recognition accuracy. We also did 

experiments using 1 and 3 GMMs to label each frame vector for MDTS, where the 

recognition accuracy had the similar trend with the 5 GMM case. 

 

 Fig.5.7: Phone accuracies (%) versus percentages of template representatives for MLTS, 
template compression, and MDTS 
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5.3 Large Vocabulary Speech Recognition 

We evaluated the word accuracy performance for the telehealth task using the methods of 

all templates, template selection, and template compression based on the KL and the LLR 

local distances. The HMM baseline was trained using crossword triphone models (The 

phone “sp” was inserted between two words and the phone “sil” was added at the 

beginning and end of utterances). The word lattices were generated with token size n=4. 

In Table 5.3, we compare the recognition accuracies for the 5 doctors over six cases: 1) 

HMM baseline, 2) all templates with KL local distance in DTW, 3) all templates with 

LLR local distance in DTW, 4) MDTS with LLR distance in DTW, 5) MLTS with KL 

distance in DTW, and 6) template compression with KL distance in DTW. In template 

selection and compression, 10% templates were selected from the total templates as the 

representatives since at that point, the best recognition accuracy were obtained. When all 

templates were used with the LLR distance in DTW, the average word accuracy 

performance for the 5 doctors was 80.91%, which was a gain of 1.59% absolute over the 

baseline and was 0.33% higher than using the KL local distance in DTW. As in the case 

of TIMIT phone recognition, when the original templates were used, the LLR local 

distance worked better than the KL local distance did. By using MLTS with KL distance 

in DTW, the average word accuracy for the 5 doctors were 80.36% which was a gain of 

1.04% absolute over the baseline and was 0.2% higher than using MDTS with the LLR 

distance in DTW. Using template compression with the KL distance in DTW further 

improved the word accuracy to 80.59% which was a gain of 1.27% absolute over the 

baseline and was 0.23% higher than using MLTS with the KL distance in DTW. In 

template compression, the number of Gaussian components included in each GMM of the 



55 

 

condensed template was 16 which was the same as in the GMMs of the baseline HMMs, 

and the average number of GMMs generated for the condensed template representatives 

were 1048 for each of the 5 doctors. Again, we conducted a student t significance test on 

the average performance of the 5 doctors in the five cases from 2) to 6) against the 

baseline. All the five cases described above improved the recognition accuracy 

significantly over the HMM baselines at the significant level of       . 

Table 5.3. Word accuracies (%) for HMM baselines, all templates, template selection, and 
template compression 

Speakers 
(# of word) 

Dr.1 
(6421) 

Dr.2 
(3988) 

Dr.3 
(5085) 

Dr.4 
(3248) 

Dr.5 
(2759) 

Weighted
Average 

Baselines 79.32 84.00 82.50 72.14 74.20 79.32 

All templates (KL) 80.35 85.38 83.79 73.20 75.26 80.58 

All templates (LLR) 80.67 85.98 84.22 73.53 75.74 80.91 

MDTS (LLR) 79.97 85.03 83.55 72.90 74.94 80.16 

MLTS (KL) 80.27 85.13 83.60 73.15 75.24 80.36 

Template compression 
(KL) 

80.42 85.49 83.84 73.42 75.42 80.59 

For the 5 doctors, we also investigated how the average percentage of templates 

selected as template representatives affected recognition accuracies for MDTS, MLTS, 

and template compression. The three cases had similar trends as in the phone recognition 

task shown in Fig. 5.7. When 10% templates were selected as the template 

representatives, MLTS and template compression obtained the peak performance 



56 

 

reported in Table 5.3, while the costs of computational time and memory storage were 

reduced largely.   

5.4 Computation and Space Overheads 

5.4.1 TIMIT Phone Recognition    

We first compare the storage space costs of the conventional and the proposed template 

representation methods. In conventional template methods, a speech frame vector is 

represented by a 39-dimensional vector (float) which is now labeled by n GMM indices 

(integer) and the associated n weights (float) in the proposed method. With n=5 in our 

experiments, the proposed frame labeling method saved 5.2 times of memory space over 

the conventional frame vector based templates.  

We next make a comparison on the computation and storage space overhead between 

the methods of using all templates with LLR local distance and using MLTS with KL 

local distance in DTW. For the method of using all templates, we need to store all 152715 

GMM indexed training templates. There were around a total of 400 PDT tied triphone 

clusters for each fixed state of all phone HMMs. Accordingly, in lattice rescoring, each 

test segment needs to make on average of 3*(152715/400) 1145 comparisons with the 

triphone templates, where the factor 3 comes from the three different PDT tyings for the 

three HMM states. In the MLTS method, with the number of template representatives 

being 5% of total templates, 95% computer memory space and computational time were 

saved from using all templates, while the phone recognition accuracy only decreased 

from 74.51% to 74.19%. For the TIMIT dataset, the average length of a phone template 

was 8 frames with the frame shift of 10ms. By using 5 GMM indices to label each frame 
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vector, the storage space was around 32M for all templates and 1.6M for template 

representatives (about 7636), respectively.  For the baseline HMM, the storage space for 

the acoustic model was about 18MB with the double data type (HTK format) for the 

whole set of model parameters when 1189 GMMs with the mixture size 24 were used. 

The total memory space overhead over the baseline was 177% and 8.9%, respectively, for 

the all template and template representative methods. A rough comparison on the runtime 

computation costs relative to the baseline is as follows (although the current codes have 

not been optimized for speed). Relative to the time of the baseline that generates the 1-

best phone string hypotheses, the overhead of lattice generation was 20% and the 

overhead for calculating the likelihood scores to label the test data frames with the 

GMMs was 9%. In addition, the overhead of lattice rescoring was 68% by using all 

templates and only around 3% by using the template representatives (the average 1-best 

path search time was included). Therefore the total computation time overhead over the 

baseline was 97% and 32%, respectively, for the all template and the template 

representative methods. By using template representatives, the costs in computation time 

and storage space were greatly reduced while the recognition gain over the baseline only 

slightly decreased relative to using all templates. In Table 5.4, we summarize the memory 

space and computational time overhead of using all templates and MLTS for the phone 

recognition task. 
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Table 5.4 Memory and computation overheads of using all templates and template 
selection for the TIMIT phone recognition task 

 
All templates (LLR) MLTS (KL) 

Recognition accuracy gain (absolute) 1.79% 1.47% 

Number of templates used 152,715 7636 

Memory space used 32MB 1.6MB 

Overhead time of lattice generation 20% 20% 

Overhead time to label test data 9% 9% 

Overhead time of lattice rescoring 68% 3% 

Total memory space overhead 177% 8.9% 

Total computation overhead 97% 32% 

 

5.4.2 Telehealth Speech Recognition    

In Table 5.5, we summarize the average memory space and computational time 

overheads of the telehealth captioning task for the cases of using all templates with LLR 

local distance and using MLTS with KL distance. When all templates were used, we 

stored 181601 GMM indexed training templates and the memory space overhead was 

130%. In the MLTS method, only 10% template representatives were used and the 

memory space overhead was only 12.7%. The computation overhead for all templates 

was 335%, and it was reduced to 64% when 10% template representatives were used. The 

overhead time of lattice rescoring for LVCSR was much higher than that of the phone 

recognition task of TIMIT, since in LVCSR, a word lattice included both word and phone 
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boundaries, template matching was performed on each triphone, and the score of a word 

was calculated by adding the template matching scores of all triphones in the word.  

Table 5.5 Average memory and computation overheads of using all templates and 
template selection for 5 doctors in the teleheath task 

 
All templates (LLR) MLTS (KL) 

Recognition accuracy gain (absolute) 1.59% 1.04% 

Number of templates used 181,601 18,160 

Memory space used 39MB 3.8MB 

Overhead time of lattice generation 28% 28% 

Overhead time to label test data 9% 9% 

Overhead time of lattice rescoring 298% 27% 

Total memory space overhead 130% 12.7% 

Total computation overhead 335% 64% 
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Chapter 6 

Effectiveness of Statistical Modeling based Template Matching 

Since the proposed template based methods were implemented using GMM indices 

extracted from a HMM baselines, we also want to know if the template methods can 

make consistent improvement when better HMM baselines are obtained. Since the LLR 

based all template method made the most improvement over the HMM baseline, we only 

evaluate this method for the TIMIT phone recognition task by using four better HMM 

baselines that were generated by Discriminative Training (DT) of Minimum Phone Error 

(MPE), MFCC concatenated with ensemble Multiple Layer Perceptron (MFCC+EMLP) 

features, DT combined with the MFCC+EMLP features, and data sampling based 

ensemble acoustic models integrated with DT and MFCC+EMLP features.  These four 

HMM baselines were previously investigated for the TIMIT task in [17]. In the work 

here, we trained these baseline models by using HTK [56] and used them in template 

representations, matching, and lattice generation. 

6.1 Template Matching based on the DT Baseline Model 

Discriminatively trained models have been shown to significantly improve error rates, as 

they have more power to better differentiate between confusable sounds. Minimum 

Phone Error (MPE) based DT has been shown to improve HMM baseline for TIMIT in 

[17]. In our current work, MPE was used to train a HMM baseline, where 39-dimensional 

features defined by 13 MFCCs and their first and second time derivatives were used. We 

first used the maximum likelihood criteria to train a basic HMM baseline which had the 

recognition accuracy 71.86%. We then used the MPE criterion to train the discriminative 
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models on top of the basic baseline HMMs. The discriminative models were obtained 

with 4 iterations of DT. The DT trained HMM baseline had the recognition accuracy of 

73.25% and the accuracy gained from the MPE training over the basic HMM baseline 

was 1.39% absolute. We used the discriminative HMMs as a new baseline to generate the 

phone lattices for rescoring, where three different size lattices were generated with the 

token sizes of n=2, 3, and 4, with the average numbers of nodes per lattice in the order of 

250, 850 and 1800, and the average numbers of arcs in the order of 450, 2350 and 6250, 

respectively, representing small, medium, and large lattices for the current TIMIT task. 

We extracted 1189 GMMs from the DT baseline model to label the frame vectors of 

templates.  

In Fig. 6.1, we compare phone recognition performances by using the MPE based 

HMM baseline and template matching rescored results on three lattice sets which were 

generated with tokens n=2, 3, and 4. Template matching made the largest improvement 

of 1.49% absolute over the MPE baseline on the smallest lattice size (token n=2). When 

the lattice size increased to n=4, even though template matching still made a 1.02% 

improvement over the baseline, compared with the case n=2, the gain decreased.  

 

Fig. 6.1: A comparison of phone accuracy (%) for MPE trained HMM baseline and 
template matching based lattice rescoring on three lattice sets with tokens n=2, 3, and 4 
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6.2 Template Matching based on the Baseline Model Generated by 
MFCC+ EMLP Features 

The concatenation of MLP features with traditional MFCC features has been proven 

effective in different tasks [62]. In [17], MFCC plus ensemble MLP (EMLP) features 

were used on the TIMIT task and a significant improvement was obtained over a HMM 

baseline. In the current work, the MFCC+EMLP features that were available in the 

spoken language and information processing LAB were also used to generate HMMs as 

our baseline, where 10-fold cross validation (CV) data sampling was used to build the 

MLP ensemble to generate the EMLP features., and for each speech frame, PCA was 

used to reduce the EMLP feature dimension from 39 to 15, and the reduced EMLP 

features were then concatenated with the original 39 MFCC-based features to form a 54-

dimensional feature vector. For more details about the generation of the EMLP features, 

please refer to [17]. The MFCC+EMLP feature based HMM baseline had the phone 

recognition accuracy of 75.66%, from which 1678 GMMs were extracted to generate 

templates. The MFCC+EMLP baseline models were used to generate the phone lattices 

for rescoring. Lattices with the three token sizes as we described above were generated 

and used again. 

In Fig. 6.2, we compare phone recognition performances by using the MFCC+EMLP 

feature based HMM baseline and template matching based lattice rescoring on the three 

lattice sets. Template matching made the improvements of 1.37%, 1.61%, and 1.49% 

absolute over the MFCC+EMLP feature baseline for the three lattice sets with tokens 

n=2, 3, and 4, respectively. It’s worth noticing that this time template matching made the 

most improvement over the HMM baseline when the lattice token n=3. 
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Fig. 6.2: A comparison of phone accuracy (%) for the MFCC+EMLP feature based 
HMM baseline and template matching based lattice rescoring on three lattice sets with 
tokens n=2, 3, and 4 

6.3 Template Matching based on the Baseline Model Generated by DT 
Integrated with MFCC+EMLP Features 

We further combined the MPE based discriminative training with the MFCC+EMLP 

feature based HMMs. Using the MFCC+EMLP based HMMs as the initial model, MPE 

based discriminative training was then performed with 4 iterations to further optimize the 

model parameters. The newly trained MPE+MFCC+EMLP based models had the same 

number of HMM parameters as the MFCC+EMLP baseline HMMs, and the phone 

recognition accuracy of the new baseline was 76.51%. From the newly trained baseline 

HMMs, 1678 GMMs were extracted to index the template frames, and three sets of phone 

lattices were again generated.   

In Fig. 6.3, we compare phone recognition performances by using 

MPE+MFCC+EMLP based HMM baseline and the template matching based lattice 

rescoring on the three lattice sets. Template matching made the phone accuracy 

improvements of 1.07%, 1.25%, 1.47% absolute over the HMM baseline on the lattice 

sets with tokens n=2, 3, and 4, respectively. It is worth noting that this time template 

matching continued improving the baseline until the lattice token n=4 (We also generated 
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a lattice set with token n=5 to evaluate template matching, but the performance gain 

became 1.31% which was smaller than the case of n=4). 

 

Fig. 6.3: A comparison of phone accuracy (%) for MPE+MFCC+EMLP based HMM 
baseline and template matching based lattice rescoring on three lattice sets with tokens 
n=2, 3, and 4 

6.4 Template Matching based on the Baseline Model Generated by 
Ensemble Models Integrated with DT and MFCC+EMLP Features 

Using data sampling approach to generate ensemble acoustic models was discussed in 

[17], where through data sampling, multiple training data sets were produced, and each 

sampled training data set was used to train one set of acoustic models which is also called 

a base model. For an N-fold cross validation (CV) data sampling, a (N-1)/N fraction of 

training data is included in each sampled training set. An ensemble model generated by 

data sampling usually makes significant performance improvement over the single model 

trained from the full training set, even though each individual base model in the ensemble 

model has lower performances [17]. In Section 6.3, we obtained the phone recognition 

accuracy of 76.51% for MPE+MFCC+EMLP based HMM baseline that was trained 

using the full training set. Here we applied a 10-fold CV data sampling to produce an 

ensemble of 10 base models. Each base model was trained in the mode of 

MPE+MFCC+EMLP. The phone recognition accuracy of the ensemble acoustic model 
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was 77.97%, which made an improvement of 1.46% absolute over the baseline model in 

Section 6.3. We used the base models in the ensemble acoustic model to generate 10 

lattice sets for each fixed token size n, and template matching was performed individually 

on the lattices generated by the corresponding model in the 10 base models for rescoring. 

The average number of GMMs extracted from each one of the 10 individual model sets to 

be used in template construction was 1558. In order to combine the 10 different rescored 

lattices from these 10 individual base models, we first used HTK to convert each lattice 

in the 10 lattice sets to the corresponding confusion network (CN) and then combined the 

10 CNs to produce the final rescored recognition result [63].  

In Fig. 6.4, we plot the recognition accuracies for the individual base models and the 

template matching rescored accuracy with the three lattice sets generated by the 

corresponding base models. We can see that template matching improved the accuracy of 

the individual models, and on the lattice set with token n=4, template matching made the 

largest improvement. In Table 6.1, the phone recognition accuracies were averaged for 

the 10 base models and for the lattice rescoring results based on the 10 base models with 

the token size n=2, 3, and 4, respectively. In Table 6.2, we show the phone recognition 

accuracy results for the baseline models of MPE+MFCC+EMLP that was trained by 

using the full training set, the ensemble acoustic models, and the CN integration of lattice 

rescoring results on each of the three lattice sets. When token n=4, the lattice rescoring 

results based on the CN integration produced the best recognition accuracy of 79.55% 

which was a 1.58% absolute improvement over the ensemble acoustic model baseline. In 

addition, we also implemented the lattice rescoring based on lattices generated by the 

ensemble model (more details about computing the acoustic scores by combining the 10 
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base models can be found in [54]). We did lattice rescoring on the same lattices using 

templates extracted and constructed from the 10 based models. Since the lattice rescoring 

by the 10 base models was implemented on the same lattices, for an arc in a lattice, there 

were 10 different scores generated and the average scores were taken as the final scores 

for the arcs in lattices. The best phone recognition accuracy generated by this lattice 

rescoring method was 78.96% with the token size n =4.  

 

Fig. 6.4: Recognition accuracies (%) of individual base models and template matching 
based rescored results of each base model with three lattice sets (token n=2, 3, and 4). 

Table 6.1. Average recognition accuracies (%) for base models and lattice rescoring 
results on three lattice sets with tokens n=2, 3 and 4. 

Method Base models 
n=2 

(rescoring) 
n=3 

(rescoring) 
n=4 

(rescoring) 

Averaged 
accuracy 
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75.5

76

76.5

77

77.5

78

78.5

1 2 3 4 5 6 7 8 9 10

n=4

n=3

n=2

baseline

P
h

o
n

e
 a

cc
u

ra
cy

 (
%

) 



67 

 

Table 6.2. Recognition accuracies (%) for baseline single model trained using the full 
training set, the ensemble acoustic models, and the CN integration of the lattice rescoring 
results on three lattice sets 

Method Phone accuracy 

MPE+ MFCC+EMLP based single model 76.51 

MPE+MFCC+EMLP based ensemble models 77.97 

CN integration of template matching based 
lattice  rescoring 

n =2 78.89 

n=3 79.28 

n=4 79.55 

 

6.5 Experimental Result Analysis 

We summarize the accuracy performances of the different baselines and their best lattice 

rescoring results with the corresponding lattice sizes in Table 6.3. The template matching 

approach has made consistent and significant improvements over the HMM baselines 

with increasing recognition accuracies. In addition, the best lattice size determined by the 

number of tokens n for template matching increased when the quality of the baseline 

models improved. In Fig.6.5, we show the average rank of correct phone string references 

when they were inserted into the different lattice sets for the three methods of baseline 

generation. The MPE had the lowest phone baseline accuracy among these three 

methods, and in this case template matching produced the best performance for the lattice 

set with token n=2. We also notice that when the token size for the lattices generated by 

MPE models increased from 2 to 4, the average rank of correct references significantly 

“decreased”. For the method of MFCC+EMLP features, its baseline accuracy was better 

than MPE. When the lattice token increased from 2 to 3, the average rank of the correct 
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references was stable. However, when the lattice token further increased from 3 to 4, the 

rank largely “decreased”. In this case, template matching obtained the best recognition 

accuracy for the lattice size generated by token n=3. The method of MPE+MFCC+EMLP 

was the best baseline among these three methods, and template matching achieved the 

best recognition accuracy for the lattice size with token n=4. In this case, the average 

rank of the reference phone strings was almost unchanged when the lattice token 

increased from 2 to 4. 

Table 6.3. Summary of recognition accuracies (%) of the four baselines and the best 
lattice rescoring results with the corresponding lattice size  

Method Baseline Template Matching # of tokens 

MPE 73.25 74.74 2 

MFCC+EMLP 75.66 77.27 3 

MPE+MFCC+EMLP 76.51 77.96 4 

MPE+MFCC+EMLP+ 
Ensemble models 

77.97 79.55 4 

In general, the phone recognition results of higher recognition accuracy should be 

closer to the correct references. When the lattice size increases, if the average rank of the 

correct references “decreased” largely, then the possibility of picking up the correct 

hypotheses by rescoring becomes smaller, whereas if the rank of the correct references 

stays stable, then the additional correct hypotheses provided by large lattices are more 

likely to be picked up by rescoring and better recognition accuracy can be achieved. 

Based on these observations and reasoning, we conclude that the template matching 

approach has a better capacity to pick up correct hypotheses from the large lattices when 

better baseline models are used. To support the analysis, in Table 6.4, we also provide the 
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percentages of the inserted correct references being ranked the first in the TIMIT test data 

with the different lattice sets produced by the three token sizes. 

 

Fig. 6.5: Average ranks of correct references in three lattice sets for the three methods of 
baseline generation 

Table 6.4. Percentages of the correct references ranking the first in the TIMIT test data 
with three different lattice sizes 

Method n=2 n=3 n=4 

MPE 84.2% 82.7% 78.6% 

MFCC+EMLP 88.6% 88.2% 85.9% 

MPE+MFCC+EMLP 89.8% 89.8% 89.5% 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

n=2 n=3 n=4

MPE

MFCC+EMLP

MPE+MFCC+EMLP

R
a

n
k
 



70 

 

Chapter 7 

Integrate Template Matching with Prosodic Information 

In this chapter, we investigate new methods to integrate prosodic information of phone 

duration, phone pitch and phone energy into our current template matching framework in 

order to further improve speech recognition accuracy.  

7.1 Method of Prosodic Information Extraction  

As we discussed above, phone duration, energy, and pitch are prosodic features that may 

help improve speech recognition accuracy. In this section, we discuss how to extract 

these three types of prosodic information. 

 7.1.1 Phone Duration and Energy Extraction  

The key issue in extracting phone duration and energy prosodic information is to get 

phone boundaries, which can be obtained by using the aligned transcriptions of training 

data and the lattices generated for test data. After the boundary information is obtained, 

the extraction of duration is straightforward, and the energy of a phone segment is 

calculated by using the following formula: 

  𝑙  ∑                                                                      (7.1) 

where    , n = 1…N are speech samples and N is the number of samples in the phone 

segment.  

 

7.1.2 Phone Pitch Extraction  
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Phone pitch is more difficult to extract compared with phone duration and energy and 

also it is easier to make mistakes. We extract the phone pitch information from speech 

data by using CMU Yin algorithm [64] which is an algorithm for estimating the 

fundamental frequency (F0) of speech and is based on the well-known autocorrelation 

method with a number of modifications that are combined to prevent errors. The 

algorithm has several desirable features such as low error rates, no upper limit on the 

frequency search range, efficiency, low latency, and few parameters. For more detail 

about the algorithm, please refer to [64]. Yin algorithm extracts the pitch information for 

each speech frame. The pitch value P of a phone was calculated from the pitch values of 

the speech frames    within a phone segment as: 

       ∑                                                                  (7.2) 

where N is the number of frames for a phone.  

7.2 Integrate Prosodic Information with Template Matching 

In this section, we investigate an integration of the prosody information with the template 

matching methods discussed in the earlier chapters. Two methods of calculating the 

prosodic information scores were evaluated. One was a parametric method based on 

GMM and the other was a non-parametric method. The prosodic information scores were 

used to integrate with three template based methods as we discussed in the previous 

chapters, including the LLR local distance based all templates method, the KL local 

distance based all template method, and the LLR local distance based MDTS method. 

We investigate how different prosodic information of duration, pitch and energy 

affect speech recognition accuracy separately in order to know which prosodic 
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information has more influential effect on speech recognition accuracy. We also explore 

first combining duration, energy, and pitch together and then integrating with template 

based methods to see whether a better speech recognition performance can be obtained. 

7.2.1 Integration of GMM based Prosodic Scores with Template based 
Methods  

The basic idea of the GMM based method is to model the prosody information duration, 

energy, and pitch by using the Gaussian Mixture Models (GMMs). Since speech is 

affected by many factors as we introduced in Chapter 1, a phone pronunciation from a 

speaker can be different under different situations and different speakers may have 

different pronunciations for the same phone. The exact distributions of the prosodic 

features are unknown. However, GMMs are able to approximate any distribution, which 

makes it a good choice for modeling prosodic feature distribution. Phone duration, 

energy, and pitch extracted as discussed in Section 7.1 can be used to train GMMs and 

the number of GMM components can be tuned using a development set which will be 

discussed in Section 7.3. The prosody likelihood score           can be calculated by 

plugging the prosodic feature value into GMMs. We combine the score of the previous 

LLR or KL based all template methods and the newly calculated GMM based prosodic 

score by using a weighted average:   

                  (         )                                   (7.3)                    

where     represents a negated distance score obtained from the previous LLR or KL 

based all template method for measuring similarity here. The weights    and    can be 

tuned by using a development set.  
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For the LLR based MDTS method, we also use prosodic information to help 

template selection. The log prosodic scores were first negated to become a dissimilarity 

score and then added to the distance scores. Given a cluster   , the template-to-cluster 

distance is defined as:  (     )      |  | ∑  (      )                         (      (         ))         (7.4) 

where    and    are the combination weights with     ,     , and   +    . 

Again, the weights can be tuned on a development set. A template    is selected as the 

cluster template representative when it satisfies the following condition: 

               (     ) 

For both prosodic scores in Eq. (7.3) and (7.4),           can be a single score from 

phone duration, energy, or pitch, and it can also be a combined score from these three 

different types of prosodic information: 

                                                                           
             (7.5) 

where the weights are positive and sum to 1:     +        +        =1. Again these 

three weights can be tuned on a development set. 

7.2.2 Integration of Non-Parametric Prosodic Scores with Template 
based Methods  

Prosodic score can also be derived directly from distance calculation and we call the 

method non-parametric since no model is used in calculating the prosodic scores. For the 

LLR or KL based all template method, a distance between a template N and a test 

segment T is calculated by: 

                                                                  (7.6) 
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where     has the same definition as above,    and    are combination weights, and           is defined by : 

             |   (         )     (         )|                  (7.7) 

where            and           are the prosodic values of the template T and a test 

segment N.           is negated to measure the similarity between T and N , to be 

consistent with    .   

The rationale behind the score           is that it is close to zero if a phone 

hypothesis is supported by a set of templates with similar prosodic feature values; 

otherwise, the scores will decrease and therefore penalize the hypothesized phones with 

aberrant prosodic features. There are two reasons for using the absolute difference of the 

log-transformed features: first, it is more consistent with the template matching DTW 

scores and LM log probabilities, and second, taking absolute value focuses on the 

measurement of relative difference between T and N.  

For the method MDTS (LLR), prosodic information can be used to help select 

template representatives as:  (     )  ∑ {    (      )      |                        | }                        (7.8) 

where    and    are the combination weights and             and             
 are the 

prosodic values of    and    , respectively. The template    is selected as the cluster 

template representative when it satisfies the following condition:                (     )                                                            (7.9) 

In addition, the combination of the three types of prosodic information is defined in the 

same way as in Eq. (7.5). 
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7.3 Experimental Results 

The experimental dataset is the telehealth corpus which was described in Section 5.1.2. 

The prosodic information was integrated with the LLR based all template method, the KL 

based all template method, and the LLR based MDTS method, where both the GMM 

based method and the non-parametric method were used to compute the prosodic scores. 

7.3.1 Experimental Results of Integrating GMM based Prosodic Scores 
with Template based Methods 

We used the prosodic information extracted from the aligned transcriptions of training 

data to train GMM models with the different component sizes. One doctor’s data set was 

used as the development set, and for the GMM based prosodic scores, several different 

sizes (n=1, 2, 4, 6, and 8) of GMM components were tried. In Appendix, we show that, 

in general, when n=4, the best recognition performance was obtained for combining the 

prosodic scores of duration, energy and pitch with the template based methods. 

Therefore, the number of GMM components was set to 4 for the other four doctors. In 

addition, the combination weights of Eq. (7.3), Eq.(7.4) and Eq.(7.5) were not tuned in 

Table I to Table IV in Appendix . However, in Table 7.1, experimental results were 

presented for the same doctor (Dr.1) with tuned weights. For other four doctors, the same 

weights were taken when combining the prosodic information scores with the template 

method scores. In Table V to Table VIII in Appendix, the experimental results for the 

four other doctors are also presented. From these tables, we notice that, in general, 

duration combined with the template based methods gave the best recognition 

performance. Energy held the second place, and pitch was the last. In addition, when 

duration, energy, and pitch were first combined by using different weights and then 



76 

 

integrated with the template method based scores, improved performance was obtained.  

In Table 7.2, the average scores were listed based on the other four doctor’s scores from 

Table V to Table VIII in Appendix. All templates with LLR local distance obtained 

0.38% absolute accuracy improvement and all templates with KL local distance got 0.3% 

absolute accuracy improvement when combined with the three prosodic information 

scores. Besides, MDTS (LLR) obtained 0.15% improvement when the three prosodic 

scores were combined to help select 10% template representatives. MDTS used the same 

weights (  ) as the LLR based all templates when combining with the prosodic scores. 

Table 7.1 Word accuracies (%) of integrating template based methods and GMM based 
prosodic scores for Dr.1 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 
All templates 

(LLR) 
80.67 80.74 

(  =0.74) 
80.76 

(  =0.82) 
80.40 

(  =0.89) 
80.81 (    =0.48,        =0.41,    0.82) 

All templates 
(KL) 

80.35 80.29 
(  =0.78) 

80.25 
(  =0.88) 

79.91 
(  =0.92) 

80.51 (    =0.47,        =0.42,    0.87) 

MDTS (LLR) 79.97 79.91 
(  =0.75) 

79.87 
(  =0.86) 

79.54 
(  =0.9) 

79.99 (    =0.45,        =0.40,    0.83) 
 

Table 7.2 Average word accuracies (%) of integrating template based methods and GMM 
based prosodic scores for the other four doctors 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 80.83 81.1 80.96 80.78 81.21 

All templates (KL) 80.37 80.53 80.43 80.16 80.67 

MDTS (LLR) 80.07 80.08 79.89 79.49 80.22 

 

7.3.2 Experimental Results of Integrating Non-parametric Prosodic 
Scores with Template based Methods  

Prosodic information scores of duration, energy, and pitch based on the non-parametric 

method were also used to combine with the template methods. In Table 7.3, experimental 

results are presented for Dr.1 whose data was used to tune the combination weights as we 
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did in Section 7.3.1, and the tuned weights in Eq. (7.5), Eq.(7.6) and Eq.(7.8) are listed in 

Table 7.3. For the other four doctors, the same weights were taken when combining 

prosodic information scores with template method scores. In Table IX to Table XII in 

Appendix, the experimental results for the other four doctors are also presented. From 

these tables, the same trend can be noticed that duration obtained the best recognition 

performance when combined with template based methods, energy was the second best, 

and pitch was the last. In addition, when three different types of prosodic information of 

duration, energy, and pitch were first combined and then integrated with the scores of 

template method, improved performance was obtained as in the GMM based method.  In 

Table 7.4, the average scores were listed based on the other four doctor’s scores from 

Table IX to Table XII. All templates with LLR local distance got 0.39% absolute 

accuracy improvement when combined with the three prosodic information scores 

together and all templates with KL local distance obtained 0.38% absolute accuracy 

improvement. In addition, MDTS (LLR) obtained 0.13% improvement when combined 

with the three prosodic scores to select 10% template representatives. MDTS took the 

same weights (  ) as the LLR based all template method when combining with prosodic 

scores. From the averaged experimental results for the other four doctors in Table 7.2 and 

Table 7.4, we notice that for the LLR based all template and MDTS methods, when 

integrating with the prosodic scores computed by the non-parametric method, 

improvements similar with the GMM based method were obtained. However, for the KL 

based all template method, using non-parametric method to calculate prosodic scores 

gave slightly better performance than GMM based method did.     
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Table 7.3 Word accuracies (%) of integrating template based methods and non-
parametric prosodic scores for Dr.1 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates 
(LLR) 

80.67 80.83 
(  =0.62) 

80.81 
(  =0.66) 

80.52 
(  =0.77) 

80.88 (    =0.46,        =0.41,    0.7) 

All templates 
(KL) 

80.35 80.43 
(  =0.78) 

80.34 
(  =0.84) 

80.02 
(  =0.94) 

80.57 (    =0.45,        =0.39,    0.82) 

MDTS (LLR) 79.97 79.87 
(  =0.69) 

79.77 
(  =0.75) 

79.45 
(  =0.86) 

79.95 (    =0.47,        =0.41,    0.76) 

 

 

Table 7.4 Average word accuracies (%) of integrating template based methods and non-
parametric prosodic scores for the other four doctors 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 80.83 81.14 81.04 80.83 81.22 

All templates (KL) 80.37 80.62 80.53 80.24 80.75 

MDTS (LLR) 80.07 80.14 79.97 79.6 80.20 

7.4 Effects of Prosodic Information on Phoneme Recognition 

In this section, we analyze how different phonemes are affected in recognition when 

prosodic information was used, and we provide an insight on which types of prosodic 

information help improve speech recognition accuracy.  For the telehealth tasks, around 

50 phones (including filled pauses) were used, but some of these 50 units had very few 

occurrences in the training set. Therefore, our analysis of the experimental results was 

based on 41 phones of the 50 units in which 39 came from the standard CMU phone 

definition in [65] and two other units were “sil” and “sp” which stand for the silence at 

the beginning and end of utterances and the pauses between words, respectively. 
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From the experimental results, we noticed that using only one type of prosodic 

information could not make much improvement for recognition accuracy (like duration) 

and it could even degrade recognition accuracy (like pitch). However, when three 

different types of prosodic information were combined together, they helped consistently 

improve recognition accuracy. Therefore, our analysis focuses on the phoneme accuracies 

when the three types of different prosodic information of duration, energy, and pitch were 

combined. We found that the recognition accuracies for most phonemes did not change 

much after prosodic information was integrated and there were only a few phonemes 

whose recognition accuracies improved or degraded significantly when using prosodic 

information. In order to show the trend of how prosodic information affects the phoneme 

accuracies, we list the three most improved phonemes and the three most degraded 

phonemes in Table 7.5 and Table 7.6 for the GMM and non-parametric based prosodic 

score calculation methods, respectively. From these two tables, we can observe that 

prosodic information had positive effects on vowel sound recognition. Actually, when we 

speak English, we follow the rule of “longer, louder and higher” [66] for vowel sound 

pronunciation in words. The three factors in this rule exactly correspond to the three 

types of prosodic information of duration, energy, and pitch, and this is also why they 

have positive effect on recognition of vowel sounds.  On the other hand, prosodic 

information had negative effects on certain consonant phonemes since the consonant 

sounds listed in Table 7.5 and 7.6 belong to the stop and fricative consonant categories 

which do not have obvious prosodic characteristics. Therefore, prosodic information 

extraction for these kinds of consonant sounds was difficult, and using prosodic scores 

for these consonants may bring in more phoneme confusion. 
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Table 7.5 Three most improved and degraded phonemes in speech recognition after the 
integration of template based methods and GMM based prosodic scores  

 
Improved phonemes 

(Duration+Energy+Pitch) 
Degraded phonemes 

(Duration+Energy+Pitch) 

All templates (LLR) AH, IY, OW B, K, T 

All templates (KL) IH, OW, AW B, G,SH 

MDTS (LLR) AH, AA, AO D, P, S 

 
Table 7.6 Three most improved and degraded phonemes in speech recognition after the 
integration of template based methods and non-parametric based prosodic scores 

 
Improved phonemes 

(Duration+Energy+Pitch) 
Degraded phonemes 

(Duration+Energy+Pitch) 

All templates (LLR) AH, IH, IY F, K, S 

All templates (KL) AA, IH, AO D, K, P 

MDTS (LLR) AH, IY, AE B, DH, S 
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Chapter 8 

Conclusion 

In this dissertation, we have formulated a novel approach of integrating template 

matching with statistical modeling to improve the accuracy of continuous speech 

recognition. The main contributions of this work are in the following five aspects: 

1) A novel method was proposed to use GMM indices to represent speech frame 

vectors for template matching. The newly proposed method for template 

representation has both advantages of statistical modeling and template matching, 

which not only improves speech recognition accuracy but also saves lots of 

memory space and computation time compared with traditional frame vectors 

based templates.  

2) Local distances of log-likelihood ratio and KL divergence were investigated and 

found successful for the proposed statistical modeling based template matching 

method.  

3) Phonetic Decision Trees (PDT) was introduced to cluster triophone templates and 

to assign unseen triphone templates into known clusters, which solves the 

traditional unseen allophone problem in the template-based approach, and enables 

the template based methods to be used in LVCSR tasks. 

4) The effectiveness of LLR based all template method was validated for TIMIT 

phone recognition based on rescoring the lattices generated by four different 

HMM baseline systems, which indicates that the LLR based all template method 

can consistently improve speech recognition accuracy on top of enhanced baseline 

systems.  
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5) Methods of template selection and compression based on the LLR and KL local 

distances were proposed. The KL based MLTS method significantly improved 

speech recognition accuracies and reduced computation and storage complexities, 

and the compressed templates produced further performance improvement.   

6) An integration of the template based methods with prosodic information was 

explored for LVCSR. Three types of prosodic information of phone duration, 

phone energy, and phone pitch were studied. GMM based and non-parametric 

methods were proposed to calculate prosodic scores. Experimental results on the 

telehealth task show that prosodic information can help further improve speech 

recognition accuracy through improving vowel recognition.   

The current work can potentially be extended in the future to further improve LVCSR by 

integrating the method of discriminative training with the current template matching 

approach. For example, discriminative training can be used to enlarge the distances 

among templates of different speech sound units to obtain discriminative templates. In 

addition, the templates that are used to calculate the template matching scores may be 

assigned different weights according to the degrees of similarity between the templates 

and each test segment to produce more reliable combined template matching scores.   
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APPENDIX 

The experimental results obtained by integrating the template based methods with the 

GMM based prosodic scores (duration, energy, and pitch) are presented for the 

development set of Dr.1 in Table I to Table IV. The numbers of GMM components used 

were 1, 2, 4, 6 and 8. The weights in Eq.(7.3) and Eq.(7.4) for combining the prosodic 

information scores with template method based scores were equal (  =   =  =  =0.50), and the weights in Eq.(7.5) for combining the different prosodic 

information scores were also equal (    =       =      =1/3). From Table I to Table 

IV, we notice that, in general, when the number of GMM components was equal to 4, 

recognition accuracy peaked. Therefore, for the GMM based method, the number of 

GMM components was set to 4 for the other four doctors.  

Table I Word accuracies (%) of integrating template based methods and GMM based 
duration scores for Dr.1 

Duration Baseline 1GMM 2GMMs 4GMMs 6GMMs 8GMMs 

All templates (LLR) 80.67 80.63 80.66 80.66 80.37 80.25 

All templates (KL) 80.35 80.05 80.11 80.21 79.74 79.68 

MDTS (LLR) 79.97 79.83 79.86 79.88 79.68 79.22 

 

Table II Word accuracies (%) of integrating template based methods and GMM based 
energy scores for Dr.1 

Energy Baseline 1GMM 2GMMs 4GMMs 6GMMs 8GMMs 

All templates (LLR) 80.67 80.47 80.58 80.65 80.32 80.22 

All templates (KL) 80.35 79.80 79.84 80.13 79.65 79.54 

MDTS (LLR) 79.97 79.55 79.68 79.85 79.48 79.01 
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Table III Word accuracies (%) of integrating template based methods and GMM based 
pitch scores for Dr.1 

Pitch Baseline 1GMM 2GMMs 4GMMs 6GMMs 8GMMs 

All templates (LLR) 80.67 79.84 80.20 80.36 79.92 79.66 

All templates (KL) 80.35 79.37 79.72 79.75 79.42 78.83 

MDTS (LLR) 79.97 79.12 79.26 79.37 79.01 78.67 

 

Table IV Word accuracies (%) of integrating template based methods and GMM based 
prosodic (duration, energy and pitch) scores for Dr.1 

Energy + Duration+Pitch Baseline 1GMM 2GMMs 4GMMs 6GMMs 8GMMs 

All templates (LLR) 80.67 80.65 80.77 80.78 80.42 80.31 

All templates (KL) 80.35 80.17 80.18 80.31 80.01 79.98 

MDTS (LLR) 79.97 79.92 79.95 79.98 79.88 79.68 

 

Table V Word accuracies (%) of integrating template based methods and GMM based 
prosodic scores for Dr.2 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 85.98 86.10 85.95 85.51 86.15 

All templates (KL) 85.38 85.26 85.23 84.78 85.46 

MDTS (LLR) 85.03 
85.10 

 
85.06 84.56 85.15 

 

Table VI Word accuracies (%) of integrating template based methods and GMM based 
prosodic scores for Dr.3 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 84.22 84.33 84.16 83.95 84.37 

All templates (KL) 83.79 83.76 83.60 83.33 83.85 

MDTS (LLR) 83.55 83.67 83.25 82.93 83.80 
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Table VII Word accuracies (%) of integrating template based methods and GMM based 
prosodic scores for Dr.4 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 73.53 74.02 73.88 73.98 74.49 

All templates (KL) 73.20 73.59 73.60 73.39 73.67 

MDTS (LLR) 72.90 73.05 72.94 72.81 73.20 

 

Table VIII Word accuracies (%) of integrating template based methods and prosodic 
scores for Dr.5 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 75.74 76.06 75.94 75.57 76.11 

All templates (KL) 75.26 75.39 75.35 74.98 75.51 

MDTS (LLR) 74.94 75.03 74.90 74.38 75.09 

 

Table IX Word accuracies (%) of integrating template based methods and non-parametric 
prosodic scores for Dr.2 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 85.98 86.18 85.99 85.54 86.20 

All templates (KL) 85.38 85.39 85.30 84.97 85.55 

MDTS (LLR) 85.03 85.08 84.92 84.41 85.12 

 

Table X Word accuracies (%) of integrating template based methods and non-parametric 
prosodic scores for Dr.3 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 84.22 84.35 84.21 84.11 84.39 

All templates (KL) 83.79 83.85 83.68 83.41 84.00 

MDTS (LLR) 83.55 83.48 83.21 82.85 83.73 
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Table XI Word accuracies (%) of integrating template based methods and non-parametric 
prosodic scores for Dr.4 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 73.53 74.04 73.91 74.04 74.49 

All templates (KL) 73.20 73.64 73.63 73.48 73.75 

MDTS (LLR) 72.90 72.91 72.89 72.57 73.02 

 

Table XII Word accuracies (%) of integrating template based methods and non-
parametric prosodic scores for Dr.5 

 Baseline Duration Energy Pitch Duration+Energy+Pitch 

All templates (LLR) 75.74 76.09 76.01 75.69 76.16 

All templates (KL) 75.26 75.47 75.42 75.09 75.60 

MDTS (LLR) 74.94 75.00 74.73 74.31 75.01 
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