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Integrated Active Contours for Texture Segmentation
Chen Sagiv, Nir A. Sochen, and Yehoshua Y. Zeevi

Abstract—We address the issue of textured image segmentation
in the context of the Gabor feature space of images. Gabor filters
tuned to a set of orientations, scales and frequencies are applied to
the images to create the Gabor feature space. A two-dimensional
Riemannian manifold of local features is extracted via the Bel-
trami framework. The metric of this surface provides a good indi-
cator of texture changes and is used, therefore, in a Beltrami-based
diffusion mechanism and in a geodesic active contours algorithm
for texture segmentation. The performance of the proposed algo-
rithm is compared with that of the edgeless active contours algo-
rithm applied for texture segmentation. Moreover, an integrated
approach, extending the geodesic and edgeless active contours ap-
proaches to texture segmentation, is presented. We show that com-
bining boundary and region information yields more robust and
accurate texture segmentation results.

Index Terms—Active contours without edges, anisotropic dif-
fusion, Beltrami framework, Gabor analysis, geodesic active
contours, image manifolds, texture segmentation.

I. INTRODUCTION

T
HE TASK of unsupervised texture segmentation has been

the subject of intensive research in recent studies, at-

tempting to discriminate between regions which have different

textures [17], [36], [40], [45].

This is usually an effortless task for a human observer, but

far from being an easy one in image processing and computer

vision. The reasons for these difficulties are twofold. First, seg-

mentation is not a straightforward problem even in the case of

un-textured images. Second, there does not exist a universal

mathematical model of real world textures, although some at-

tempts to devise such models have been reported [16], [19], [49],

[51], and it is, therefore, difficult to analyze them.

Texture segmentation algorithms combine usually four major

components. First, a texture representation space is selected.

Common choices are windowed Fourier transforms, the Gabor

representation [18], Wavelet transforms [5], [26], [48], local his-

tograms [17], the local structure tensor [40], and the space of

oscillating functions [49]. In the second step, texture features
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are extracted, e.g., the magnitude of the response of the Gabor

filters and particular moments which are calculated from local

histograms [18], [42].

An introduction of a measure on the texture characteristic fea-

tures is the heart of the third stage of processing. The measure

indicates how much variability is characteristic of the texture.

Kulback–Leibler, mutual information, gradients, and other dis-

tance measure are typical for this stage.

Finally, some objective function can be defined using the tex-

ture features, and the segmentation is formulated as an optimiza-

tion, minimization or clustering problem. In region-based algo-

rithms the third and fourth stages become inseparable.

The texture segmentation algorithm proposed in this study

is based on a generalization of the geodesic active contours

model from the one-dimensional intensity-based feature space

to a multidimensional space of texture features. The Gabor-

Morlet transform is applied to the image, in the first stage, using

self similar and rotated Gabor functions. At the second stage,

features yielding maximum response for the Gabor filters, are

selected for each pixel in the image [41]; this choice defines

a subspace of the spatial-feature space. Alternatively, the com-

plete set of the Gabor responses may be selected as features. In

the third step a texture edge indicator is defined. Its construction

is one of the main contributions of this paper, and we refer to it

when describing the Beltrami framework. Finally, a new form

of geodesic active contours mechanism is applied to obtain the

segmentation. We also study the integration of this active con-

tours model with the edgeless active contours model proposed

by Chan et al. [4], which was recently extended to texture seg-

mentation [45]. This approach is based on a general model that

was recently developed by Kimmel [23], which combines active

contours with and without edges.

An important aspect of our research is how to obtain the tex-

ture gradients information. We base our work on the approach

developed by Kimmel, Sochen, and Malladi [24], [25] who have

shown that the Gabor spatial-feature space can be described, via

the Beltrami framework [47], as a four-dimensioanl Riemannian

manifold embedded in . Using this framework, the Gabor fea-

ture space is elaborated for representation, processing and seg-

mentation of textured images via diffusion and curve evolution

partial differential equation (PDE) flows applied in this space.

The construction of the “texture edge indicator,” and of

the generalized stopping term, in the context of texture-based

geodesic active contours, begins with an analysis and a revised

viewpoint of the form of the stopping term in the intensity-based

geodesic active contours. It is shown that it can be interpreted,

via the Beltrami framework, in terms of the Riemannian struc-

ture on the two-dimensional (2-D) surface described by the

graph of the intensity function. In order to define a meaningful

texture gradient the chosen feature subspace is represented, via
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the Beltrami framework, as a submanifold. This submanifold

inherits a Riemannian structure, i.e., the induced metric, from

the full spatial-feature space. The metric introduced in the

Gaborian subspace is used to derive the inverse edge indicator

function , which attracts in turn the evolving curve toward the

texture boundary in the geodesic active contours scheme.

The main contributions of this work are as follows. First, we

derive an edge indication function in the Gabor feature space

of the images, by viewing this feature space as a manifold. The

determinant of this manifold’s metric is interpreted as a measure

for the presence of gradients on the manifold. This is because

the integral over the square root of the determinant of the metric

is simply the area of the manifold. When the contribution of the

integrand is large, this means that the area of this part of the

manifold is large comparing to the projected area on the -

plane. This is an indication for the existence of large gradients.

Second, while we look for gradients in the Gabor feature

space, Sandberg et. al [45] are interested in the homogeneity of

the Gabor features and apply the vector valued active contours

without edges algorithm to this space. We compare the concep-

tual features and performance of the geodesic snakes and the

active contours without edges approaches using synthetic and

real life examples, and explore the idea of combining these two

approaches into a single segmentation procedure for textured

images. This idea is a generalization of a recent publication of

Kimmel [23], but innovative in expanding the scalar case to a

more general vectorial case with application of this idea to the

Gabor feature space.

We begin by briefly reviewing related studies dealing with

texture segmentation. Then we present the Gabor transform, fea-

ture space generation, the Beltrami framework and geodesic ac-

tive contours. We review the Gaborian submanifold generation

and diffusion, and then the application of the active contours

with and without edges in the Gabor feature space. Finally, a

combined approach utilizing both geodesic contours and edge-

less active contours is considered. Results are compared with

those obtained by using the unsupervised “edgeless” texture

segmentation technique [45].

II. RELATED STUDIES

Texture representation and modeling can be roughly di-

vided into two classes: statistical-based approaches and

filtering-based approaches. Statistical modeling is based on the

assumption that each texture has unique statistical attributes.

Among them are: local statistical features [7], random field

models [8], [14], [31], co-occurence matrices [12], second

order statistics [6], statistics of texton attributes [19], local

linear transforms [48], and a gaussian distribution modeling of

the structure tensor [40].

The filtering modeling is based on applying some filter bank

to the image and considering the filters’ responses as informa-

tion about the local behavior of the image. A popular choice

are the Gabor filters. The motivation for the use of Gabor filters

in texture analysis is double fold. First, it is believed that simple

cells in the visual cortex can be modeled by Gabor functions [9],

[32], and that the Gabor scheme provides a suitable representa-

tion for visual information in the combined frequency-position

space [37]. Second, the Gabor representation has been shown to

be optimal in the sense of minimizing the joint 2-D uncertainty

in the combined spatial-frequency space [13]. The analysis of

Gabor filters was generalized to multiwindow Gabor filters [53]

and to Gabor wavelets [27], [34], [37], [53], and studied both

analytically and experimentally on various classes of images

[1], [11], [53]. Most approaches use the power spectrum of the

Gabor filtered images. The local phase information obtained by

Gabor filtering was also used for simple test images [10]. Nev-

ertheless, it seems that utilizing the phase information still re-

quires further investigation. The wavelets approach to texture

modeling was also considered [5], [26], [48]. Some approaches

combine statistical modeling, structural modeling and the filter

bank model. The FRAME theory proposed by Zhu et al. [51],

[52] combines the use of filters, random fields and maximum

entropy as a unified approach for texture modeling.

Once the representation space is selected, texture features

are obtained and the segmentation procedure evolves in a

boundary-based approach, or a region-based approach. Here,

we review some of the schemes already proposed for texture

segmentation. We focus on those schemes which either use the

Gabor representation or minimization of energy functionals

approaches. Lee et al. [28] attempted to use the Gabor feature

space for segmentation, by implementing a variant of the

Mumford&ndash;Shah functional adapted to signature vectors

in the Gabor space. Porat and Zeevi [38] proposed using lo-

calized features based on the Gabor transform of the image,

and computed for this purpose the mean and variance of the

localized frequency, orientation and intensity. In a previous

study [42], we applied a Beltrami-based multivalued snakes

algorithm to this feature space. Jain and Farrokhnia [18] used

Gabor filters to obtain texture features by subjecting each

filtered image to a nonlinear, threshold-like transform, and

computing a measure of “energy” in a window around each

pixel. A square error clustering algorithm was then used to

produce segmentation. Manjunath and Ma [30] defined features

vector whose components are the responses of the Gabor

channels. They used the Euclidean distance between these

vectors as a criterion for similarity between textures. Kim et al.

[22] viewed the segmentation problem as a maximization of

the mutual information between region labels and the image

pixel intensities, subject to a limitation on the length of region

boundaries. Hofmann et al. [17] considered the homogeneity

between pairs of texture patches by a nonparametric statistical

test applied to the Gabor space. A pairwise data clustering

algorithm was utilized to perform segmentation. In Paragios

and Deriche [36], a supervised variational framework was

developed, where the responses of isotropic, anisotropic and

Gabor filters applied to the texture image were considered as

multicomponent conditional probability density functions. This

information served as the stopping term in a variation of the

geodesic snakes mechanism. Rousson et al. [40] extracted tex-

ture features using the gray level values and a structure tensor

which is defined using smoothed versions of image derivatives.

Then, assuming a Gaussian model for the elements of the struc-

ture tensor and Parzen density for the image intensity channel,

an energy functional that is the a posteriori partitioning proba-

bility is maximized. Zhu et al. [51], [52] proposed an approach
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called region competition, unifying snakes, region growing

and Bayes/MDL criterion by the application of a variational

principle for multiband image segmentation. This algorithm

integrates the geometric benefits of the snakes/balloons mecha-

nism with the benefits of the statistical modeling used in region

growing. Sandberg et al. [45] applied a vector-valued active

contour without edges mechanism [4] to the Gabor filtered

images. Vese and Osher [49] used a model which assumes that

an image is a linear combination of some bounded variation

function, a “cartoon” approximation of the image, and an os-

cillatory function which represents texture or noise, following

a model proposed by Meyer [33].

In the framework presented here, we are interested in defining

“texture gradients” and utilizing them in the geodesic snakes

mechanism, to determine the texture boundaries. The geodesic

snakes mechanism is rooted in the popular “snakes,” or active

contours segmentation algorithm proposed by Kaas et al. [20].

In this framework, an initial contour is deformed toward the

boundary of an object to be detected. The evolution equation

is derived from minimization of an energy functional, which

obtains a minimum for a curve located at the boundary of the

object. The geodesic or geometric active contours model [3],

[21] offers a different perspective for solving the boundary de-

tection problem; it is based on the observation that the energy

minimization problem is equivalent to finding a geodesic curve

in a Riemannian space whose metric is derived from image

content. The geodesic curve can be found via a parameteriza-

tion invariant geometric flow. Utilizing the Osher and Sethian

level set numerical algorithm [39] allows automatic handling

of changes of topology. This snakes’ model was extended to

account for vector-valued active contours, and to handle more

complex scenery such as color images [46] and multitexture im-

ages [42]. Goldenberg et al. [15] offer a fast algorithm based on

the AOS scheme for geodesic active contours and generalize it

to color images.

An edgeless active contours model was recently proposed by

Chan and Vese [54]. It is also based on techniques of curve evo-

lution and level set methods, but the gradient-based information

is replaced by a criterion which is related to region homogeneity.

The active contours without edges model was extended to vector

valued images [4] and specifically to texture segmentation [45].

Chan and Vese [54] use a reduced form of the Mumford–Shah

functional [35] where the image is approximated by a piecewise

constant function. They add a regularity term that controls the

contour’s smoothness which is its arc length. Kimmel [23] pro-

posed to incorporate a more general weighted arclength in the

edgeless active contours method. The arclength is weighted by

a function of the image’s gradients. This addition is practically

the geodesic active contours functional. In his work, he com-

bines the Chan–Vese approach with the geodesic active contours

model, along with an alignment term which gets high values if

the normal to the curve aligns with the direction of the image’s

gradient.

Motivated by the basic approach of the Mum-

ford&ndash;Shah functional [35], which combines piecewise

smoothness with the existence of edges, and by the studies

of a general model which combines active contours with and

without edges [23], we also apply the integrated active contours

model (IAC) (with and without edges) to the problem of texture

segmentation. Thus, we offer a new mechanism for the concept

of “texture gradients” which is based on the metric of the

Gabor features space manifold, and combine the information

on the gradients of the Gabor features with the information on

the homogeneity of these features.

III. PRELIMINARIES

A. Gabor Transform and Feature Space

A Gabor filter centered at the 2-D frequency coordinates

has the general form of

(1)

where

(2)

(3)

and is the aspect ratio characterizing the elliptic Gaussian

window, is the scale parameter, and the major axis of the

Gaussian is oriented at angle relative to the axis and to the

modulating sinewave gratings.

Accordingly, the Fourier transform of the Gabor function is

(4)

where, and are rotated frequency coordinates.

Thus, is a bandpass Gaussian with its minor axis

oriented at angle from the axis, and the radial center fre-

quency is defined by: , with orientation

. Since maximal resolution in orientation is

desirable, the filters whose sinewave gratings are co-oriented

with the major axis of the modulating Gaussian are usually con-

sidered ( and ), and the Gabor filter is reduced to

(5)

It is possible to generate Gabor wavelets from a single

mother-Gabor wavelet by transformations such as: translations,

rotations and dilations. We can generate, in this way, a set of

filters for a known number of scales and orientations

(6)

where are the spatial coordinates rotated by and

scaled by powers . The responses of Gabor

wavelets in the frequency spectrum can be seen in Fig. 1.

Alternatively, one can obtain Gabor wavelets by logarith-

mically distorting the frequency axis [37] or by incorporating

multiwindows [53]. In the latter case, one obtains a more gen-

eral scheme wherein subsets of the functions constitute either

wavelet sets or Gaborian sets.

There are several degrees of freedom in selecting the family

of Gabor filters to be used: number and values of scales, fre-

quencies, and orientations. In order to obtain good segmenta-

tion results, the filters should be carefully selected, so that they

represent the data and the differences in textures within the data
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Fig. 1. In this diagram, the responses in the frequency domian of a possible
set of Gabor wavelets is presented. A common design strategy of Gabor filters
is to ensure that the half-peak magnitude support of the filter responses in the
frequency domain touch each other.

in an accurate way. Although some techniques were suggested

to obtain such selection [11], [50], they are complex to imple-

ment, and we manually selected the number of orientations and

the values of scales and frequencies. Our selection was also mo-

tivated by the guidelines offered by Lee [27].

The feature space of an image is obtained by the inner product

of this set of Gabor filters with the image:

(7)

Once this feature space is generated, one may use all chan-

nels, or use an appropriate subspace. In this study, the features

space is either the full set of Gabor coefficients (for all scales,

orientations and frequencies) or only the maximal value of

Gabor coefficients at each pixel location, when maximization

is done per scale, orientation and frequency.

B. Beltrami Framework

Sochen et al. [47] proposed to view images and image feature

spaces as Riemannian manifolds embedded in a higher dimen-

sional space. Their approach, rooted in high-energy physics,

is based on the Polyakov action functional which weights the

mapping between the image manifold (and its metric) and the

image features manifold (and its corresponding metric). The

term image manifold is used here as the surface formed by

the graph of the image (not to be confused with the space of

all images). This functional can be minimized with respect to

the image features manifold parameters (embedding space),

the Riemannian structure (the metric parameters), or both.

It was shown that different choices for minimization lead to

different known flows [47], e.g., the heat flow, a generalized

Perona–Malik flow and the mean curvature flow.

Using the Beltrami framework, the image is viewed as a 2-D

manifold, which represents the spatial extent of the image, em-

bedded in a multidimensional feature space. Formally, an image

is described as a section of a fiber bundle. The base manifold

of the bundle is the image domain and the fiber is the feature

space. A choice of a point in the feature space for each point

in the base manifold is called a section. Thus, image analysis

turns into analysis of manifolds (sections). The most important

concept related to our research is determining distances on the

manifold. In many applications, the notion of distance between

two locations on the image refers not only to the spatial dis-

tance, but also to the “information” part of the distance between

points. This can be calculated for example by Euclidean or the

Kullback–Leibler distance measures. The Beltrami framework

offers a natural choice for distances measurements, as the “infor-

mation” distance between points in the image turns into distance

between points on the image manifold; This can be calculated

using the manifold’s metric.

As a simple example, let us examine a gray scale image

. It can be viewed as a 2-D Riemannian surface (man-

ifold), with as local coordinates, embedded in

with as local coordinates. The relation is given by

( , , ). When we consider fea-

ture spaces of images, e.g., color space, statistical moments

space, and the Gaborian space, we may view the image-fea-

ture information as a -dimensional manifold embedded

in a dimensional space, where stands for the

number of local parameters needed to index the manifold

of interest and is the number of feature coordinates. For

example, the Gabor transformed image can be viewed as a

2-D manifold with local coordinates embedded in a

seven-dimensional (7-D) feature space. The embedding map

is , where

and are the real and imaginary parts of the Gabor transform

value, and , , and are the direction, scale and frequency for

which a maximal response has been obtained.

We are interested in measuring distances on the manifold.

For example, consider a 2-D manifold with local coordi-

nates . Since the local coordinates are curvilinear, the

distance is calculated using a positive definite symmetric bi-

linear form called the metric whose components are denoted

by

(8)

where the Einstein summation convention is used: elements

with identical superscripts and subscripts are summed over.

How is the metric on the manifold chosen? This can be done

using either a variational or a geometric approach. In the varia-

tional approach the Polyakov action is minimized with respect

to the metric [47]. The resulting Euler–Lagrange equation is

solved analytically and the minimizing metric is the induced

metric. We describe below how the induced metric is obtained,

from a geometric point of view, via the pullback procedure.

Let be an embedding of in , where

is a Riemannian manifold with a metric . is another Rie-

mannian manifold, and thus has its own metric. We assume that

the embedding of in is isometric and thus we may use the

knowledge of the metric on and the map to construct the

metric on . This pullback procedure is as follows:

(9)
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where we use the Einstein summation convention,

, and are the local

coordinates on the manifold . We actually use the Jacobian,

, of the smooth map to obtain the metric of

from the metric of ; the jacobian of the mapping should

be computed, and for an Euclidean embedding space with a

Cartesian coordinate system (as is the case here), the desired

metric can be obtained by multiplying the transpose of that

jacobian by the jacobian itself: .

If we pull back the metric of a 2-D image manifold from the

Euclidean embedding space we get

(10)

In the more general case of higher dimensional feature space

, the metric is given by

(11)

It turns out that the inverse of the metric’s determinant can

serve as a good edge detector. The rationale behind this is as fol-

lows: The metric is used to measure distances on manifolds,

and its components indicate the rate of change of the manifold

given a specific direction. Therefore, when the determinant of

has a value which is much larger than unity, it indicates the

presence of a strong gradient on the manifold. A value which is

close to unity indicates a region where the manifold is almost

flat. Thus, we may select as an edge indicator the inverse of the

determinant of . Moreover, the metric’s determinant gives an

indication for the ratio between the size of an area element

when measured on the manifold and when measured on the –

plane. The larger the metric, the less horizontal this patch of the

manifold (thus contains an edge).

IV. GEODESIC ACTIVE CONTOURS

We review the geodesic active contours method for nontex-

tured images according to the formalism presented in [3], [21].

Let be a parametrized curve,

and let be the given image. Let

be an inverse edge detector, so that

approaches zero when approaches infinity. Visually, should

represent the edges in the image, so that we can judge the

“quality” of the stopping term by the way it represents the

edges and boundaries in an image. Thus, the stopping term

has a fundamental role in the geodesic active snakes mech-

anism; if it does not well represent the edges, application of

the snakes mechanism is likely to fail. Minimizing the energy

functional proposed in the classical snakes is generalized to

finding a geodesic curve in a Riemannian space by minimizing

(12)

We may consider this term to be a weighted length of a

curve, where the Euclidean length element is weighted by a

factor , which contains information regarding

the boundaries in the image. The resultant evolution equation

is the gradient descent flow

(13)

where denotes curvature and is a unit vector which is

normal to the curve.

Defining a function , so that , we

may use the Osher–Sethian level-sets approach [39] and replace

the evolution equation for the curve with an evolution equa-

tion for the embedding function

(14)

A popular choice for the stopping function is given

by: [29], but other image-specific

functions may also be used. For gray level images, this expres-

sion coincides with the determinant of the image’s manifold,

. Thus, we can rewrite the expression for the

stopping term in the geodesic snakes mechanism as follows:

(15)

The importance of the Beltrami framework for segmentation,

in general, and for texture segmentation in particular, is that it

offers a general tool for evaluation of gradients on the image

manifold regardless of the features used. Given a set of texture

features, we can derive the metric of the image manifold em-

bedded in that feature space, and use it as described to create

the edge indicator function.

V. GABORIAN SUBMANIFOLD

We choose, in the Gabor feature space, a submanifold of most

relevant information for the determination of texture bound-

aries. We may interpret the Gabor transform of an image as a

function assigning to each pixel’s coordinates, scale, orienta-

tion and frequency, a value . In this study, we select texture

features to be either the Gabor responses per scale, orien-

tation and frequency, or alternatively, the scale, orientation and

frequency for which maximum amplitude of the transform is ob-

tained at each pixel. Thus, for each pixel, we obtain: , the

maximum value of the transform, , , and , i.e.,

the orientation, scale and frequency that yield this maximum

value. Whatever the features selection is, it can be naturally rep-

resented as a 2-D manifold [with local coordinates ], em-

bedded in a higher dimensional space. This initial manifold is

noisy and should be regularized before it can be used. We use

here the Beltrami flow with a regularized metric. In order to pro-

ceed, we need to define the Riemannian structure on this sub-

manifold. Using the pullback mechanism described earlier, we

get the following metric:

(16)

where indicates the relevant Gabor features , and ac-

counts for the different weights given to each Gabor feature. As

stated earlier, the texture features can be the Gabor response, the
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scale, the orientation, or the frequency. Each feature has its own

range of values. Thus, in order to obtain a meaningful metric,

the weights are used to obtain the same numerical range for

all features.

VI. GABOR FEATURE SPACE DIFFUSION

In the previous section, we have described how the Gabor fea-

ture space can be treated as a 2-D manifold embedded in a higher

dimensional space. We have used a maximum criterion to obtain

a single orientation, scale and frequency for each pixel location.

This selection has the advantage of being simple. However, it

does not always well represent the textural information and is

sensitive to local variations in texture characteristics. The resul-

tant Gabor features can, therefore, be quite noisy. The full set of

Gabor responses per scale, orientation and frequency can also

suffer from noise. Thus, it is desirable to reduce the amount of

noise in the Gaborian features and obtain a smoother function

to be used in the geodesic snakes mechanism (e.g., [44]). We

present two approaches: the first is the Beltrami flow, applied to

texture features which were selected according to the maximum

criterion, and the second is a Gaussian–Beltrami flow, applied

to the full set of Gabor responses.

A. Gabor Feature Space Diffusion Via the Beltrami Flow

In the framework of the Beltrami approach, an energy func-

tional is defined to minimize an area element of

a manifold. We consider first how to implement Beltrami diffu-

sion for each feature separately. A coupled scheme is presented

in Section VI-A2.

1) Gabor Feature Space Diffusion Via the Beltrami

Flow: Let us take, for example, the orientation feature

manifold, which is a 2-D manifold with local coordinates

embedded in a three-dimensional feature space .

The energy functional is defined as

(17)

where is the determinant of the metric of the Gabor fea-

tures manifold.

For the orientation feature manifold , this

metric is given by

(18)

The resultant gradient descent process is the Beltrami flow for

the orientation feature . According to the Euler–Lagrange

method, we get

(19)

where

According to the steepest descent method, the evolution equa-

tion is

(20)

Note that this is identical to Beltrami diffusion for gray level

images, as was already presented earlier [24]. Here, this flow is

simply applied to each Gaborian feature.

2) Gabor Feature Space Diffusion Via a Coupled Beltrami

Flow: The coupling term in the coupled Beltrami flow is the

metric. In the previous section, each Gaborian component is

Beltrami-diffused in a stand alone approach. Here, we de-

fine an energy functional which minimizes an area element

of the features’ manifold, which is a 2-D man-

ifold with local coordinates embedded in a 7-D feature

space

(21)

where is the determinant of the metric of the Gabor

features manifold, given, in general, for any number of

features each weighted by [see (16)]. For the

Gabor feature submanifold of maximal feature responses

, we

assign a metric by the pullback mechanism as follows:

(22)

The combination , an area element of the

Gabor features manifold, is the term that forces smoothing as

the features field reduces its overall area when it flows toward

the optimal solution. The resultant gradient descent process is

the Beltrami flow for each Gaborian feature. Let represent one

of the Gaborian features, then according to the Euler–Lagrange

method

(23)

where

According to the steepest descent method, the evolution equa-

tions are

(24)

We obtain a set of coupled evolution equations. The update of

the values of , , , , is done at the end of each iteration.

In order to further regularize the process, one can smooth

the metric before applying the Beltrami flow. To regularize the

metric, we first convolve each feature channel with a Gaussian

kernel and only then calculate the derivatives and construct the

metric. Once the metric is obtained, we denoise the features with
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the Beltrami flow as is derived above. This presmoothing of the

metric yields a more robust and accurate submanifold, which,

in turn, yields a better texture edge detector and a more accurate

and robust segmentation.

B. Gabor Feature Space Diffusion

Via a Gaussian–Beltrami Flow

The Beltrami diffusion flow is characterized by its edge pre-

serving ability, in comparison to linear operators. It is advanta-

geous to use bigger stencil for the calculation of the metric in

order to improve the robustness of the Beltrami diffusion. The

metric used for the Gaussian–Beltrami flow is calculated using

gaussian smoothed derivatives of the image. For a gray-level

image, the metric is usually calculated as

(25)

where and are the image derivatives. For the

Gaussian–Beltrami scheme, we convolve the image derivatives

with a relatively large gaussian filter ,

and the metric is then given by

(26)

Using a linearly smoothed metric as the edge indicator has

the advantage of being more robust, while its edge preservation

quality is kept.

VII. GABOR-SPACE GEODESIC ACTIVE CONTOURS

WITH AND WITHOUT EDGES

In this section, we review the geodesic snakes and the ac-

tive contours without edges models applied to the Gabor feature

space. We also present the integration of the two models as an

extension of the work of Kimmel [23].

A. Gabor-Space Geodesic Active Contours

Having the essential components of the formalism presented

so far, it is straightforward to generalize the geodesic active con-

tours algorithm to texture segmentation. Based on the defined

2-D submanifold of texture features, and using the natural Rie-

mannian metric defined on it, we proceed to build the key in-

gredient of the geodesic active contours algorithm, namely the

stopping function. We construct it in an analogous way to the

intensity-based algorithm

(27)

Using this stopping term in the context of the Osher–Sethian

formulation yields

(28)

The zero crossings of the resulting generates the desired seg-

mentation.

B. Active Contours Without Edges for Texture Segmentation

The active contours without edges model was extended to

vector valued images, in general, [4], and was applied to the

Gabor space of images for texture segmentation [45]. The mul-

tivalued information is the magnitude of the Gabor transforms

obtained when convolving Gabor filters with the image. Let

be the textured image, and , , be Gabor trans-

forms of the original image , obtained for different scales,

orientations and frequencies. Let be the evolving contour, and

and the averages of the Gabor channel inside and out-

side the curve , respectively. The following energy functional

is minimized with respect to , ,

and

(29)

where and are fixed parameters for each

channel. Note that the first term is merely the arc-length of

the curve. Using the level sets algorithm [39], the Euler–La-

grange equation for the level set , which is defined via

, is

(30)

C. Combined Energy Functional and Evolution Equation

Following the model developed by Kimmel [23] for gray

level images, we generalize the active contours model with and

without edges to texture segmentation. The energy functional

to be minimized can be seen as a natural extension of the Chan

and Vese functional, where the term which accounts for the arc

length of the curve is replaced by the geodesic length of the

curve, which is weighted by the gradient information

(31)

where will be calculated as the inverse of the determi-

nant of the features submanifold’s metric. Again, the level sets
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Fig. 2. (a) Image composed of two very similar Brodatz textures.
(b) Inverse edge indicator of the Brodatz image. The following orientations:
[0; (�=8); (2�=8); (3�=8); (4�=8); (5�=8); (6�=8); (7�=8)]; scales:
[0:8638;0:9070;0:9525;1]; and a single frequency: 0.15 were used. Beltrami
coupled diffusion was applied for 20 iterations with a 0.1 time step. (c)
Resultant segmentation of the image composed of Brodatz textures, using the
geodesic snakes approach.

algorithm [39] is used, and the Euler–Lagrange equation for a

level set is

(32)

where is the derivative of a regularized Heaviside func-

tion. The zero-crossings of the resulting generates the desired

segmentation.

VIII. RESULTS

To demonstrate the performance of the proposed method,

both synthetic and natural images are used. The Gabor feature

space is generated for this purpose and the texture features,

being the Gabor responses per channel or the maximum re-

sponse in scale, orientation and frequency, are obtained. The

metric of the image manifold embedded in the higher dimen-

sional feature space is calculated, and used to obtain a texture

edge detector, to be used in the geodesic active contours mech-

anism or in the combined model. The selection of the Gabor

filters is fine-tuned to obtain the best texture representation.

The geodesic snakes mechanism is initialized with a signed

distance function.

The first test image [Fig. 2(a)] is composed of two Brodatz

textures taken from a widely used photographic album [2]. First,

the image is convolved with Gabor wavelets of five scales, eight

orientations and a single frequency. Next, the texture features (in

this case, the orientation and scale which yielded the maximal

Gabor response for each pixel) are obtained. Following a cou-

pled Beltrami process of smoothing, the edge indicator function

is calculated, using the metric of the image manifold [Fig. 2(b)].

As can be seen, there are a few outliers in the background which

are weaker than the square’s gradients, but do not correspond to

any relevant boundary. These outliers are the result of using the

maximum value of the Gabor features rather than the complete

data. Nevertheless, the result obtained for the Brodatz example

is quite satisfying [Fig. 2(c)], and comparable to that obtained

by Sandberg, Chan and Vese [45].

The second example is of a zebra image [Fig. 3(a)], tested also

in our previous studies [44]. The texture features selected are

the orientation and scale which yielded the maximal Gabor re-

sponse for each pixel. The Beltrami diffusion procedure was ap-

plied to obtain a smooth edge indicator [Fig. 3(b)]. The resulting

segmentation is shown in [Fig. 3(c)]. The segmentation result

obtained in this study is more accurate in comparison to that

obtained in our previous study [44]. This is primarily due to the

following improvements. First, a better selection of the Gabor

filters was implemented in the present study; indeed, selection of

the best (in terms of texture discrimination) Gabor filters is very

important, in general, and is especially crucial when considering

maximal values as we do. Second, application of Beltrami diffu-

sion to the resultant texture features yields a noise-free edge de-

tector function. Third, a careful selection of the geodesic snakes

parameters proves to be very important for obtaining good re-

sults. We refer the readers to Rousson et al. [40] for a compa-

rable result obtained by the structure tensor-based approach. We

present another segmentation result for an image of a leopard

(Fig. 4). Segmentation fails in the neck area and in the face area,

because the texture in these areas is not very different from the

background, and thus, the Gabor filters used for this example

are limited in their capability to detect very similar textures.

Although further improvement of this result can be obtained,

it is interesting to evaluate the performance of our algorithm

with that of the geodesic active contours algorithm when sim-

pler edge detectors, such as the popular image gradient, are used.

Thus, we obtain the edge detection function using

(33)

rather than using

(34)

As the segmentation results are very poor when using the usual

gradient information, we choose to present the edge detectors

obtained (Fig. 5). The left image is the edge detector when using

our approach. The boundary between the leopard and the back-

ground is obvious, and this explains the good segmentation re-

sult shown in figure (4). The middle image is the edge detector

when we use the gradients of the original image

(35)

As can be seen, no boundary information exists. There is no

valuable edge information in the gradients of a textured image,

as the image itself contains several gradients within the tex-

tural structure. This is why the Gabor or similar transforms are

needed to obtain the boundary information in textured images.

To demonstrate the actual benefit of using the edge

detector, we also present the edge detector obtained from accu-

mulating the gradient contributions of all the Gabor channels

[Fig. 5(c)]. Thus, if the Gabor channels are marked as , and

is indexing the number of filters used , the edge detector is

given by

(36)

In this case, the leopard’s silhouette can be seen, but there are

several outliers and important gradients are not present, so that

segmentation fails.
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Fig. 3. (a) Real-life test image of a zebra. (b) Inverse edge indicator of the zebra image obtained after applying Gabor filters (with
orientations:[0; (�=6); (�=4); (�=3); (�=2); (2�=3); (3�=4); (5�=6)]; scales: [1; 2; 3]; and frequencies: [0:225;0:3;0:375]) and then applying the Beltrami
diffusion to each texture feature separately for ten iterations with a 0.1 time step. (c) Segmentation result for the zebra image.

Fig. 4. Segmentation result for a leopard using the geodesic snakes algorithm
for textures.

We wish to further assess the performance of our method,

and compare it to results that were obtained by another, previ-

ously proposed, algorithm. We restrict our comparison to a study

which uses a similar conceptual approach. Moreover, we would

like to explore the pros and cons of the edge and region-based

approaches.

In the study of Sandberg et al. [45], segmentation of the Bro-

datz image, also used here, is very good. Their study is based on

a variational formulation, in which a texture region is character-

ized by a certain value. Thus, the homogeneity in some variables

is important. This refers to the assumption that in each Gaborian

channel there is a certain mean response value for each texture.

The problem is that this approach will not always work. Con-

sider a simple example of a gray-level image which depicts a

bright circle on a dark background, with a tilted plane of illumi-

nation added to the image [Fig. 6(a)]. While the tilted illumina-

tion plane presents no problem to the geodesic snakes mecha-

nism [Fig. 6(b)], the approach of active contours without edges

fails in this simple segmentation task [Fig. 6(c)]. Implicit to the

active contours without edges is the assumption that each re-

gion, e.g., object and background, can be de scribed by the mean

gray level value, without regarding the edges. This example il-

lustrates that edges still contain valuable information.

A similar argument applies to textured images, where the

Gabor channels exhibit properties analogous to that of the

tilted illumination plane. We use for this purpose a synthetic

image composed of two “spatial chirps” [Fig. 7(a)]. The base

frequency of the squared object is selected to be higher than

that of the base frequency of the background. The dependence

of the image’s horizontal frequency on position resembles the

dependence of the gray level value on position in the previous

example. In fact, the low-pass filtered image resembles a sim-

ilar (though tilted toward the horizontal axis) gradient across

the field. The squared object is in this case darker than the

background.

The square object gradients are not the only ones present

in the edge detection function calculated using our approach

[Fig. 7(b)], but they are definitely the most dominant. Appli-

cation of geodesic snakes yields the segmentation result shown

in [Fig. 7(c)].

To compare with, application of the Gabor-based active con-

tours without edges process results in inaccuracies [Fig. 8(a)].

Let us examine the energy functional in the case of this approach

where is the contour, the constants and that depend on

are the averages of inside and outside , respectively, and

and are fixed parameters for each channel.

The second and third terms of the above expression are gen-

erated under the assumption that each Gaborian channel is en-

dowed with a certain mean value for each textured region (in-

side the curve and outside the curve). The contribution of these

terms in the evolution equation is depicted in [Fig. 8(c)]. Thus,

because of the frequency-tilted nature of the original image, the

minimum value of the defined energy functional is obtained for

a falsely segmented image.
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Fig. 5. Inverse edge indicator of the leopard image obtained when using: (a) (1=det(g )) edge detector. (b) Image gradients edge detector:E(jrrrIj) = (1=(1+

jrrrIj )). (c) Gradients of the Gbor channels: E(jrrrIj) = 1= 1 + G +G .

Fig. 6. (a) Bright circle on a dark background, illuminated by a tilted plane that
generates a gradual change in intensity across the image. (b) Segmentation of
the circle-on-background image, using geodesic active contours algorithm. As
can be seen, the tilted background presents no problem for the geodesic snakes
process. (c) Segmentation of the circle-on-background image, using the active
contours without edge algorithm. As can be seen, the tilted brightness of the
backgrounds results in outliers when using the active contours without edges
approach.

Fig. 7. (a) Test image composed of two “spatial chirps.” The object’s base
frequency is higher than that of the background. The Gabor filters applied
have seven scales: [0:6667; 1; 1:5; 2:25;3:375;5:0625;7:5938], a single
frequency 0.4, and a single orientation zero. (b) Inverse edge indicator of the
two-chirps image used along with the Gabor space geodesic snakes algorithm.
(c) Segmentation of the two-chirps aquare image, using the gradient-based
Gabor space geodesic snakes algorithm.

Fig. 8. (a) Squared image segmented by using the active contours without
edge-based algorithm. The parameters (32) are: � = 10, � = 100000,
� = 50;000. (b) Function used in the active contours without edges algorithm.
This function represents the contribution of the Gabor channels to the evolution
of the level set �.

The next example is composed of two textures [Fig. 9(a)].

The background texture of a brick wall exhibits a “chirp-like”

behavior. Following application of the Gabor filters, the absolute

values of the Gabor channels were considered as texture features.

Then, these texture features were submitted to the gaussian

Fig. 9. (a) Image of a “chirp-like” brick-wall background and a Brodatz
texture object. The Gabor filters used here have four orientations: 0, (�=4),
(�=2), (3�=4); six scales: [0:3277;0:4096;0:512;0:64;0:8;1]; and a single
frequency 0.4. The texture features are the responses obtained for each Gabor
channel. (b) Resultant segmentation following the Gabor space active contours
model. (c) Resultant segmentation following the active contours without edges
model for the Gabor space.

Fig. 10. (a) Test image which is composed of a bright ring on a darker
background with a tilted illumination plane. (b) Application of geodesic snakes
results in the detection of the outer boundary only. (c) Edgeless active contours
model fails to detect the boundary, and divides the image into two parts which
have the most different mean gray levels.

Beltrami diffusion mechanism. Applying the geodesic active

contours on the the diffused Gabor feature space provides a

satisfactory result [Fig. 9(b)], but the active contours without

edges scheme halts away from the boundary [Fig. 9(c)].

Next, we show that the combined approach may produce

better segmentation results than the geodesic snakes or the

edgeless active contours scheme—when they are independently

applied. The first example is again a simple gray level image,

yet, it demonstrates the usefulness of applying the IAC model.

The image [Fig. 10(a)] is composed of a bright ring and a

darker background. A tilted illumination plane is added to the

image at 45 . Thus, the top left corner is the darkest, and

the bottom right corner is the brightest, even brighter than

the ring. This simple image poses major difficulties to both

algorithms. The geodesic snakes algorithm stops at the outer

boundary, with no detection of the inner boundary [Fig. 10(b)].

The edgeless active contours model divides the image into

two parts which do not correspond to the actual boundaries

[Fig. 10(c)]. This is because the gradual change in gray level
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Fig. 11. (Left and middle) Curve’s evolution represents the combined
influence of both mechanisms. (Right) Application of the combined approach
results in an accurate detection.

values makes it impossible to characterize the object by one

constant value and the background by another constant value.

Application of the combined active contours model (with and

without edges) results in a good segmentation result, as can

be seen in Fig. 11.

If we test the idea of the combined approach on the zebra’s

image we have used before, we may observe the contribution

of each approach to the integrated scheme. Application of the

Chan–Vese algorithm resulted in a good segmentation, how-

ever with a large degree of noise [Fig. 12(a)]. Recall that ap-

plication of the geodesic snakes mechanism resulted in a much

smoother boundary [Fig. 3(c)]. The integrated result yields a

smooth boundary which captures the details more accurately

[Fig. 12(c)].

We have also tested the algorithms on another natural image

of a leopard lying on the grass. Gabor wavelets, with six cales,

, four orientations,

, and a single frequency 0.4 are ap-

plied to the image. The texture features are selected for this

example to be the Gabor responses for each channel. The

resulting segmentation using the geodesic snakes approach,

the active contours without edges approach, and the integrated

approach are shown in (Fig. 13). As can be seen, the results

are not satisfactory, and further improvement is desirable.

Clearly, part of the head, and the front pows, are more similar

to the background than to the main texture of the leopard. The

problem is caused because of the existence of more then one

textural region in the object (the leopard). Still, we would like

to present this result to show that combining both approaches

provides better results. For example, let us take a closer look on

the feet area. Application of the Gabor-space geodesic snakes

to the leopard image [Fig. 13(a)] fails to accurately detect the

leopard’s feet, as the gradient there is not sharp enough. We

may also see that the edgeless active contours model provides

unsatisfactory results [Fig. 13(b)]. However, the leopard’s feet

are better detected. The IAC mechanism produces the best

result, as can be seen in [Fig. 13(c)]. There are only a few

outliers, and the detection of the feet boundaries are improved

as can be seen in Fig. 14.

These are the best results we got for this image. We cannot say

that these are the absolute best results, as the problem involves

a large set of parameters (Gabor filters parameters, geodesic

snakes parameters, Chan–Vese parameters and the weighting of

the two approaches parameters), and each parameter may have

a substantial impact on the final result. However, the point we

would like to stress here is the usefulness of combining the two

conceptually different approaches.

IX. DISCUSSION

In the introduction, we pointed out that there are several

methods to generate texture features, and at least that many

optimization criteria that can be implemented in order to obtain

the actual segmentation. It is difficult to assess the performance

of each algorithm, and to pinpoint the right choices in each step,

e.g., the quality of the feature selection, or the quality of the

optimization procedure. Each algorithm seems to be suitable

for a specific type of textured image segmentation problem

and, most likely, there does not exist a universal segmentation

algorithm that is optimal for the entire wide spectrum of natural

textured images. It is, therefore, still desirable to enhance the

repertoire of methods and algorithms available for applications,

and the fittest will survive. However, some rationale should

motivate the development of such algorithms so that they

will not proliferate without real necessity or purpose. With

these boundary conditions in mind, we presented here an

approach based on scaled (i.e., wavelet-type) and oriented

Gabor representation of images, where the Gaborian filters

responses or their maximal values define the texture features.

The analysis is based on the gradients present in these texture

features space. In some cases, this approach yields better

results than approaches based on some homogeneity criteria

like the edgeless activecontours approach. Further, the combined

approach, which combines boundary detection with region

growing algorithms can serve as a more general scheme for

texture segmentation.

In this study, we examined a feature set which is generated

by taking the maximum amplitude of the Gabor coefficients

at each pixel location, along with the scale and orientation

for which this maximum value was obtained. This selection

is based on the assumption that maximum values provide

adequate information about textures, as long as the textures are

homogenous. The selection of maximal values provides only

partial information regarding image structure, and in turn, may

generate less than satisfactory segmentation results in the case

of more complex textures. The solution to this problem may

be a better selection of the feature space, and adding some

statistical data, in the spirit of [17], [22], [36], and [51]. A

simpler approach applied here, is to improve the Gabor feature

space by incorporating a Beltrami-based diffusion scheme [43],

[44]. Moreover, when the full set of Gabor responses was

selected, we have used a Gaussian–Beltrami diffusion scheme

to eliminate noise.

The main novelty of this study is in the representation of tex-

ture parameters as the embedding of a Riemannian surface in a

higher dimensional space. This representation enables the defi-

nition of a Riemannian structure and its implementation in the

definition of a texture edge indicator. This texture edge indicator

is subsequently used in a geodesic active contour algorithm for

segmentation. These ideas and techniques are general and are

applicable to other choices of texture feature spaces and other

multichannel spaces. The advantage of this approach over other

algorithms was demonstrated for nonpiecewise constant texture

images.

Another main contribution of this work is the comparison of

the geodesic snakes with the edgeless active contours model for
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Fig. 12. (a) Segmentation of the zebra using the active contours without edges approach results in several outliers. (b) Segmentation of the zebra image can be
accurate, smooth and capture details using the integrated approach.

Fig. 13. (a) Segmentation when applying the geodesic active contours model. There are inaccuracies where the edges are not sharp. (b) Segmentation when
applying the active contours without edges model. As can be seen, there are many outliers. (c) Combined approach results in a better segmentation, while producing
only a small number of outliers.

Fig. 14. Closer look at the leopard’s feet shows that (left) the combined approach better detects them than (right) the geodesic snakes alone.

the issue of texture segmentation. These attitudes are conceptu-

ally different. The snakes mechanism relies on gradients present

in the image or image features and the edgeless approach con-

siders the image to be a piecewise constant function. The two

approaches were integrated into a unified algorithm in the work

of Kimmel [23]. The proposed energy functional is composed

of a geodesic snakes term and a minimal variance term, which

is the Chan–Vese approach [54]. In this study we generalized
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the unified algorithm of Kimmel for texture images. Both algo-

rithms were independently applied to test images, as well as the

integrated scheme. We have shown that both methods have their

drawbacks: the geodesic snakes may produce unsatisfactory re-

sults when the gradients are not sharp enough, and the edgeless

active contours model fails to handle intensity tilts in gray level

images, as well as frequency tilts in texture images. The com-

bined approach which accounts for both the gradients between

regions and region’s homogeneity, may produce better results

for gray level and texture images.
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